InterSystems:

Caché

MSM to Cache Conversion
Guide

\ersion 2017.2
2020-06-25

MSM to Caché Conversion Guide

Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

ADOUL THIS BOOK ...ttt bbbt bbb bbbttt e et et e e b et ebe e 1
OVEIVIBW .ttt ettt sttt b ekttt b bt e et e s e st e st e bt e b e be e bt ebe s beebe e besbesbesbenbenee st enbeneeneeneeneas 1

1 GELEING STANTEAeiveiiiecte bbbtttk e bbb bbbt bbbt bt eb s 3
1.1 Determining Hardware REQUITEMENTSccvcveveieieeeeeresese e se e sre e e sae e esaese e enesreseenns 3

1.2 Determining Networking REQUIFEMENTScveiireiriese et e e sre s see e nnes 3
1.2.1 Mixed MSM/CAChE NEEWOIKScoiveirieiirieinieiesieisere sttt st sre e 4

1.2.2 Running Caché and MSM on the Same Machineccccoovvieriiersiensinsenense s 4

1.2.3 Ensuring Unique $JOB Values Across the Networkccccveennnieinnicieienniciees 4

1.3 INSEAITING CACNE ...ttt bbb 5
1.3.1 Installing the Caché LiCENSE KBYviiiviiiiriireieeiceee et 5

2 Creating Caché Databases and NaAMESPACESccvevverrerrerreriereeieeesiesesreseseesresseseessessessessessesessessessens 7
2.1 Creating Database FIlESciiiieiiiiiciccie sttt et sre et e e e ste s raesreeneen 7

2.2 Creating a Namespace CONfIQUrAtiONocooeririiieiieicie et 7
2.2.1 The CACHETEMP Databaseccceveruereeieieiinieeiisiesie ettt sre e 8

3 CoNVErting MSM GIODAISc.oouiiiiiieiere e bbb 9
3.1 Converting Selected GIODAISccoviiiiiieierce e 9

3.2 Preserving MSM String Colationcoeiveiieiieieiiecese s s e re e sne 9

3.3 Enabling Null Subscript SUPPOrt iN CAChEccoiierieiieeree e 10

3.4 Converting Globals by Databasecceiiiiiiiiiieie e 10
3.4.1 Running %MSMCVT in BIOCK MOGEccciiiiiiiiiiiccecee e 11

4 Converting Your MSM APPHCALIONccocviiieierisere et 13
4.1 HOW ROULINES DITFEI ...iiviiiiiicie ettt e 13

4.2 POrtiNGg IMSIM ROULINES ...vevviviietiieeiesieiestee sttt sttt ettt ettt eb et 14

4.3 MSM Language CompatiDility MOTEooeiiiiiiiiiiieiee e e 14

4.4 Converting Nonstandard FUNCtions and FEAtUESccoerereriericiininere e e 16
4.4.1 MSM-XCALL FUNCHIONS ...ttt sttt s sre st st e 17

4.4.2 OS Functions via %0S and $ZOScccocevieiiiiiiisese e 17

4.4.3 Converting ZWINTERM Callscccovoviiiiieiiriieereee e 17

4.4.4 MSM PreprocessOr DIFECLIVES ...c.vcvvcicieeereesiesesiesesestese e s sie e see e se e sresseseesreneas 17

4.4.5 Extended References for Globals and ROULINEScceieiiriniiiniene s 18

4.4.6 Handling End-of-file Situations in CaChEcccvveriiiriiiiee e 18

4.5 MSM and Cache Database Networking (DDP)ccoceiiiriiineniiense s 19

5 Connecting ApPlIications 10 CACNE ..o 21
5.1 CONNECLION TOOIS ..ottt bbbttt b bbbttt st be et e 21
5.1.1 MSM=ACEIVALE 1.vevivirieiiiieiisieisie ettt ettt sttt sb bt en et ntenes 21

5.1.2 MSM-SQL, KB-SQL, and M/SQLcccoviiiiriirieiirieiriecsieesieesiee s seenas 22

5.1.3 MSM-PDQWED ..ottt ettt 22

5.1.4 MSM-WOTKSEALIONeouieiieiieiieiisesiesie sttt bbbttt ens 23

5.2 TEIMINAL SEIVELSvieieeee ettt sttt st ettt e se st e stestesbesbeseestenbesaeseeeeneeneeneeneeseaneans 23
5.2.1 TELNET and LAT Terminal SEIVETSccoveiireiiiiiieienieisie sttt 23

5.2.2 Serial Port EXPander BOAIASccevveueeereesiesesresesiestese e ssessessesasssssessessessessessessesees 24

5.2.3 Conversion of MSM Terminal Device CharaCteristiCsc.ccoovverierienieneienesieieeeenens 24

6 Caché System MaNAGEMENTccevierieeiiee ettt sttt se et se et st te b resbe e besesbens 27
6.1 CONFIGUIING CACNE ...ttt bbb bbbt n bt 27

MSM to Caché Conversion Guide

6.2 CONFIGUIING DEVICES ...eevviiieiiciiete ettt ettt e e st te e e et e st e et esbe et e sneentesneesresnneseaaneens 27

6.3 Automating Cach€ BACKUPSccivevirieierieirieesieesteesieeste e ste st st e stesaste st ssetessesessesessesessesessens 28

6.4 CACNE JOUIMAIING ...vviieiititeieeirieteie ettt ekt b bt b bbb bbb 29
6.4.1 Shadow SyStem JOUNAIINGc.coeiiiiiiiie bbb 29

6.4.2 Shadowing and Switching from MSM t0 Cachéccccceveveicieciece e 30
Appendix A: MSM and Caché Utilities Catalogccovvrrreiiirneiinneeenseeesesese s 31
Appendix B: M Language DIffEreNCEScouiiiiiiriieiieieeeie et 43
B.1 COIMIMANGS ...ttt stttk e bt bt s b e b sbesbesb e sb e b e b e e et ebeabeeneebesbesbennen 43

B.2 OPEIALOIS ...eeieieiitiiie ittt e 46

B.3 Structured System VariabIes ..o 46

B4 FUNCLIONS ..ottt n et 46

B.5 PreproCeSSOr DIFECHIVES ...viiviiviriirieiierieieieieeeetestesestesteseestesteseessesesseseessesessessessessessessessessessens 49

B.6 SPECIAL VATADIES ...ttt bbb ettt ene s 50

MSM to Caché Conversion Guide

About This Book

Whenever you migrate from one database environment to another, there are always many points to consider. The decisions
you will have to make can be as simple as determining how much disk space you will need, or as complex as figuring out
which implementation-specific language features you will need to change in your code in order for your application to
work.

This document will attempt to address all of these concerns. We will cover a variety of topics ranging from hardware
requirements to data migration to system management.

Because this conversion guide is meant to provide a path for you to follow, rather than actually teach you how to use the
various Caché components themselves, you will want to familiarize yourself with the Caché documentation as much as
possible. These references will be your most complete source for moving ahead with Caché. See the InterSystems web
sites for the most up-to-date information on Caché (http://www.intersystems.com/cache/index.html) and MSM
(http://mtechnology.intersys.com/mproducts/index.html).

You are of course invited to contact your InterSystems Account Manager and Sales Engineer for more detailed information
as necessary.

Overview

Migrating to Caché from MSM involves several steps. Your success in this project depends greatly on carefully planning
each aspect of the transition. Keep the following points in mind:

1. Choosing the appropriate hardware and installing Caché
» Define a tier structure suitable for the application and user load

* Choose the best disk configuration for optimal performance

2. Distributing your databases on individual or networked servers

» Design data distribution as a means of load balancing

3. Converting the MSM volume groups
» Convert globals by UCI and/or volume groups, or

» Convert globals individually

4. Converting the application
* Move routines over to Caché
e Handle implementation-specific M language features and syntax
» Connect the application to Caché

» Call out to the operating system from Caché, and vice-versa

5. Creating solid Caché system operations
» Choose the right backup method

e Implementing system security

MSM to Caché Conversion Guide 1

http://www.intersystems.com/cache/index.html
http://mtechnology.intersys.com/mproducts/index.html

About This Book

e Manage users

6. Training your staff

» Learn systems operations for both the operating system and Caché

e Enroll in InterSystems training programs

e Teach staff internally

CAUTION:

All information written in this document is believed to be accurate as of the date of publication. While
most of the strategies behind migrating to Caché 5 will be applicable to migrating to future versions of
Caché, there may be some differences. You should carefully consult future Caché documentation to learn
how the strategies presented in this paper may need to be modified.

Any code presented is by example only, and is unsupported and without warranty. You are free to use any
code you see here, but in doing so you assume all responsibility and risk associated with its use. We welcome
any comments or suggestions that you might have regarding this guide.

MSM to Caché Conversion Guide

Getting Started

1.1 Determining Hardware Requirements

Before beginning this project, you will need to make sure your hardware meets the requirements for the expected user load.
Most of your hardware-related decision making will be based on total process count. First, you should check your operating
system documentation for suggested hardware configurations based on this total process count. In particular, pay attention
to requirements for CPU, memory, and swap space. In addition to these operating system requirements, Caché specifically
requires shared memory to store various system structures such as global, routine, and network buffers.

See your platform’s version of the Caché Installation Guide for an understanding of how Caché uses memory, and how to
calculate the appropriate memory configuration.

In some cases, you may be changing hardware platforms as part of the migration process. Your Caché migration is a good
opportunity to move to a more powerful hardware platform, as Caché makes optimal use of SMP and multiple-disk config-
urations. In these cases, you will need to carefully consider how your application will exist in the new hardware configuration.

For the most recent list of currently supported Caché platforms, see the Current and Planned Caché Products page on the
InterSystems web site:

http://www.intersystems.com/cache/technology/product-tables/current-prodlist.ntml.

1.2 Determining Networking Requirements

Caché networking supports the following message format protocols:

» Enterprise Cache Protocol (ECP)

e Distributed Cache Protocol (DCP)

» Distributed Data Processing (DDP)

* DTM-NetBIOS (For a DTM client/Caché server configuration only)

on top of one of these communication protocols:
* Raw Ethernet

« TCP/IP (both UDP and TCP)

* NetBIOS

MSM to Caché Conversion Guide 3

http://www.intersystems.com/cache/technology/product-tables/current-prodlist.html

Getting Started

* NetBEUI

You use the Management Portal to set up your network connections; see the Caché System Administration Guide. For more
information on Caché’s supported network protocols, see the Distributed Data Management Guide.

1.2.1 Mixed MSM/Caché Networks

Peer-to-peer networking between MSM and Caché can be achieved using DDP over Raw Ethernet. With this method, MSM
can act as either a client or a server to Caché. At some stages of the conversion process, you may find it useful to have
some machines running MSM and some running Caché, with Caché-level networking connecting your systems.

When planning a mixed network, bear in mind the following limitations:

* MSM does not support DCP or ECP networking.

» Caché does not support the Open MUMPS Interconnect (OMI) protocol.
* You cannot share routines across a network between Caché and MSM

e Caché does not support RVGs (Remote Volume Groups). For Caché to Caché connectivity it is recommended that
you use ECP, which can be likened to a high-performance equivalent to MSM’s RVGs.

* You cannot share string collated globals over a DDP network between MSM and Caché (see the section on “Preserving
MSM String Collation™ for details).

» Accessing 8KB databases over DDP may cause problems because DDP does not support accessing globals that contain
nodes with subscripts containing more than 255 characters.

1.2.2 Running Caché and MSM on the Same Machine

It is possible to have Caché and MSM installed and running on the same machine. If you plan on using DDP networking
between Caché and MSM on the same machine, you will need two separate Ethernet cards (see “Configuring Multiple
Caché Instances” in the Caché System Administration Guide).

If you want both Caché and MSM to run connectivity services simultaneously on Windows NT, you will need to do the
following:

e For Telnet, change the Telnet port number for one of the systems. By default, both Caché and MSM use port 23.
» For LAT services, make sure that both Caché and MSM use unique service names.

» For Serial Port services, make sure MSM and Caché use unique ranges of COM ports.

For more information on Telnet, LAT, and Serial Port services, see “Terminal Servers”.

1.2.3 Ensuring Unique $JOB Values Across the Network

While MSM networking could be set up to ensure unique $JOB values across a network, Caché cannot. Since Caché obtains
a process ID (PID) from the operating system for each Caché process, it’s possible for client processes from different
machines to carry the same $JOB value. If your application sets globals indexed by $JOB from multiple clients to the same
server, you can correct the situation with any of the following options:

» Combine $ZU(110), which returns the Caché node a process is running on, with $JOB to guarantee a unique identifier.
This is functionally similar to MSM’s $SYS.

» Store any globals indexed by $JOB locally on each client (this is generally a good practice on any system).

» Use subscript-level global mapping to distribute the global differently.

4 MSM to Caché Conversion Guide

Installing Caché

1.3 Installing Caché

The steps taken to install Caché depend upon the host operating system. The following outline will highlight some important
information, but you should read your platform’s version of the Caché Installation Guide for more details.

Before installing Caché make sure you that you have the following:
e System privileges for your machine (either Administrator, root, or system, depending on your operating system)
* Approximately 200MB of free hard disk space for the core product installation

» TCP/IP configured for your OS (Caché requires that you have the TCP/IP protocol installed on your machine, even
for stand-alone configurations, because it is used to connect the Caché GUI utilities to the server.)

e The license key supplied to you by InterSystems to activate Caché’s product features (recommended)

1.3.1 Installing the Caché License Key

If you have not configured your Caché license during initial installation of the product, or you can do so with the Management
Portal, or via a host-based editor such as vi, emacs, or edit. The license information is stored in an ASCII file called cache.key,
found in your Caché manager’s directory. Caché license keys are case-sensitive. If the license is not properly entered, Caché
will start in a single-user mode. All fields must be entered.

On Windows platforms, the installation program will ask you for your license key during installation if it has not already

located one. In UNIX®, if the installation program does not prompt you for the license, you will need to enter the license
manually, using either a host-based editor or the License wizard on a PC client running Caché. In either case, the information
must be entered exactly as shown on your paper copy of the license.

If you purchased licenses for multiserver systems, you must also configure one or more license managers to allocate the
Caché license units authorized by the key.

Unlike MSM, where licenses are purchased in blocks of concurrent users, Caché licenses are typically purchased on a
simple per concurrent user basis. For example, you could purchase a 17 user Caché license, which is not possible under
MSM. There are a number of different license types available with Caché, and it is recommended that you contact your
InterSystems Account Manager for more detailed information on this topic.

For more information on how to install and configure your license, see your platform’s version of the Caché Installation
Guide.

MSM to Caché Conversion Guide 5

Creating Cache Databases and
Namespaces

To create a Caché database and access its data, use the Management Portal, which provides a convenient wizard that creates
the physical volume and namespace, if needed.

2.1 Creating Database Files

A Caché database can be one of two formats — 2KB block size or 8KB block size. InterSystems strongly recommends
(for performance and ECP networking reasons) that you convert your MSM databases to the 8KB database format.

A Caché database is consists of a file named CACHE.DAT, representing a logical database which can grow to 32 terabytes,
assuming that the host operating system can support files large enough for this. The database is referenced by the directory
path of the CACHE.DAT file.

The absolute limit on the number of databases per Caché instance is 15,998, but the practical limit is likely to be much
lower. See Configuring Databases in the “Configuring Caché” chapter of the Caché System Administration Guide for more
information about the maximum number of databases per instance.

Some key points to consider while creating databases are:
» Creating as large a database as possible will aid in combating fragmentation issues at the operating system level.

* You can reference a database that physically exists on another system. For this to happen, you must first have a
working Caché network configured between the two systems.

» Currently, database names, which are mapped to physical locations, are internally translated to all uppercase and do
not allow punctuation.

See the Caché System Administration Guide for detailed instructions on creating, editing, and deleting databases.

2.2 Creating a Namespace Configuration

You do not typically work within a database in Caché, but rather in a namespace, which is a virtual environment.

It is important to understand the differences between the concept of a Caché namespace and an MSM UCI. Simply put, a
namespace is roughly equivalent to an MSM UCI plus its relevant translation table. This translation table also implicitly

MSM to Caché Conversion Guide 7

Creating Caché Databases and Namespaces

includes locations of both % globals and % routines. By default, all % globals and % routines exist in either the CACHESY'S,
CACHELIB or CACHETEMP databases, but they can in fact live in any database that you choose, as long as the namespace
mapping is first set correctly.

CAUTION: During a Caché upgrade, the CACHESYS, CACHELIB and CACHETEMP databases can be purged of
globals and/or routines, or even completely replaced by a new version.

Thus, it can be considered dangerous to simply load any user written % routines into the Caché manager.
Unless you completely understand the ramifications of using the Caché manager databases, it is much safer
to define the namespace mappings to store your % routines and globals elsewhere, or modify your application
to use non-% names for application specific globals and routines.

In Caché, unlike MSM, the concept of % globals and routines is a naming convention only, and has no hard “mapping”
implications. See the chapter on “Converting MSM Globals” for tips on how to handle extended global references from
your MSM application.

Once your databases are defined, you will add them to your namespace configuration. Through namespace mapping you
will be able to access data from all of your databases from one logical location. To create Caché namespaces, you use the
Management Portal.

Some useful facts on namespaces:
» Namespaces allow you to break the old 16-gigabyte physical limitation of a single database for your system.

* Mapping globals to different databases is an effective way to balance the load on your machines. You should always
consider different database layouts for optimal 1/0 performance.

e The "%CD utility allows you to list and change namespaces (enter a question mark at the prompt to list all available
namespaces). See the “Changing Namespaces™ section in the “Introduction to the Terminal” chapter of Using the
Terminal for more detailed information on navigating Caché namespaces.

* You can see the active namespace mappings by running either ~%NSP or *%SYS.GXLINFO.

» Aswith databases, namespace names currently are translated internally to all uppercase.

2.2.1 The CACHETEMP Database

This database has special characteristics that are designed to give higher performance and make it easier to clean up temporary
globals.

The CACHETEMP database is purged automatically by the system on restart. Because the database is primarily used for
temporary working files, the system will attempt to retain in memory any database blocks that are scheduled to be written
to it for as long as possible. Data blocks are only flushed to disk in cases of clean buffer starvation in the buffer pool. This
feature can relieve the workload on the system and lead to superior performance and scalability.

To make use of CACHETEMP and the benefits that it brings, simply configure global mapping for the relevant globals
(using wildcards where possible) to point to the CACHETEMP database.

8 MSM to Caché Conversion Guide

Converting MSM Globals

Caché provides several mechanisms for converting your MSM data.

3.1 Converting Selected Globals

Caché offers the following methods for converting individual globals or groups of globals, rather than an entire database:

» Set up a network between MSM and Caché. Use either the MERGE command or *%GCOPY to transfer globals from
the MSM database to the Caché database.

* Use %GS or %FGS to save individual or groups of MSM globals in MSM format.

— For %GS-format global saves, use ~%Gl to import the data. It is more reliable to use the ANSI “%GS entry point,
especially if the globals can contain control characters.

— For %FGS-format global saves, use ~%SYS.GIFMSM to import the data.

3.2 Preserving MSM String Collation

By default, Caché uses the Latin-1 subset of Unicode collation. The Latin-1 subset follows the same collation rules as
MSM’s default numeric collating sequence. You do not need to do any preliminary work to convert numerically collated
MSM globals since Caché’s Unicode collation will be backward compatible with this format. However, since you cannot
reference string collated globals across DDP from Caché, you will need to prepare Caché in order to convert MSM globals
that use a string collation.

For example, suppose that you need to convert a string collated global called ~XYZ. There are two ways you can do this
conversion:

1. Create the ~XYZ global using the "%SYS.GCREATE utility. This option is recommended unless you want to convert
all MSM globals with a string collation type.

e Change to the appropriate namespace.
* Invoke "%SYS.GCREATE, and select type129 (string collation) when prompted for the globals collation sequence.

» Convert as described previously in “Converting Selected Globals™.

2. Change the characteristics of the process performing the conversion to use string collation.

MSM to Caché Conversion Guide 9

Converting MSM Globals

e Issue the command:

Set x=$ZU(23, 1, 129)

» Convert as described previously in “Converting Selected Globals™.

3.3 Enabling Null Subscript Support in Caché

By default, Caché does not allow the use of null subscripts in your global data. It is strongly recommended that you modify
your application and data so that null subscripts are not used.

There are two ways you can convert MSM globals that contain null subscripts.
e Enable null subscript support interactively:
— For the issuing process only, run the command:

Set x=$ZU(68, 1, 1)

— For all processes in the system, run the command:
Set x=$ZU(69, 1, 1)
— Convert as described previously in “Converting Selected Globals”.
» Enable null subscript support at each Caché startup for all processes. To do so, add the following line of code to either
AZSTU or SYSTEM "%ZSTART:

Set x=$ZU(69, 1, 1)

Then restart Caché and convert as described previously in “Converting Selected Globals”.

3.4 Converting Globals by Database

If you plan to convert all globals in a particular volume group or UCI at once, it is recommended that you convert it in its
entirety, rather than convert individual globals or groups of globals. Converting an entire UCI or volume group at once is
not only a much faster process, but it also drastically reduces the risk of error.

1. Make sure that any incompatible MSM globals have been already converted:

* MSM globals that use a string collation must be converted as described previously in “Preserving MSM String
Collation™.

» MSM globals that contain null subscripts must be converted as described previously in “Enabling NULL Subscript
Support in Caché”.
2. Back up your MSM databases.
3. Run "VALIDATE on your MSM database to ensure physical integrity.

4. Ifconverting in block mode, run "RECOVER to ensure that there are no unused blocks that are still marked as allocated
in their map blocks. (If globals have been removed from the global directory block but "RECOVER has not been run,
%MSMCVT will see this data as valid global data and convert it to Cache data).

10 MSM to Caché Conversion Guide

Converting Globals by Database

Run ~OLC on your MSM database to maximize global efficiency. This will help the conversion’s overall performance.
Kill any MSM system or user-defined scratch globals.

Ensure that the database to be converted is not active, either by shutting down MSM or by dismounting the database.

o N o o

Use either binary-mode FTP, network copy, or tape to move your MSM database over to the machine hosting Caché.
You can put this database in any directory you wish.

9. Configure as many global buffers as possible on your Caché system, and then start Caché.

10. Make sure your local destination database(s) and namespace are ready (as described previously in “Creating a
Namespace Configuration™).

11. From the new namespace, run the ~%MSMCVT utility. At the prompt, enter the path and filename of your MSM
database. When you run the conversion, your database is converted into a Caché database in the current namespace.

12. If you are importing data from several MSM databases into one Caché namespace, run the utility repeatedly from the
same namespace, once for each database.

3.4.1 Running %MSMCVT in Block Mode

AHMSMCVT can run in two modes, block mode and non-block mode. There is a prompt during the setup that says "Convert
with block mode?" If you answer "No" to this prompt *%MSMCVT will use non-block mode. The difference is important:

* Inblock mode, "%MSMCVT scans through the entire database sequentially, block by block, looking for data blocks
that are marked as allocated in the corresponding map block. When it finds one, it sets it into the new Caché database.

e Innon-block mode, *%MSMCVT converts the database global by global (which allows you to avoid converting some
globals if you want) and follows the tree for each global.

Running "RECOVER on the MSM side is an absolute requirement if you use block mode conversion, unless you are 100%
sure that you have no "orphan” blocks in the MSM database from previous repair work. An "orphan™ block is a block that
is marked as allocated in its map block but is not a part of any valid global tree. This can happen if a block was cut out of
a tree during database repair, but the block was never unallocated in the map. If there are orphan blocks and "RECOVER
is not run, old data that was not visible in MSM will be present in Caché, and will be indistinguishable from valid data.

If you run ~"%MSMCVT in non-block mode “RECOVER is not required (and in fact will make no difference).

MSM to Caché Conversion Guide 11

Converting Your MSM Application

It is strongly recommended that you convert any MSM-specific language features to native Caché code, even though the
Caché MSM language compatibility mode may allow you to run your MSM application with fewer changes. Conversion
will be the first step in taking advantage of Caché-specific features such as ObjectScript.

This chapter discusses the following topics:

Differences between Caché routines and in MSM routines
How to port your MSM routines to Caché

How to switch on and use MSM language mode
Converting Nonstandard Functions and Features

MSM and Cache Database Networking (DDP)

4.1 How Routines Differ

Working with routines is slightly different in Caché than in MSM.

The MSM approach:

A programmer works with routine source code, ZSaves it (implicitly or explicitly) and it is compiled implicitly into
object code, regardless of how it is modified.

Both source and object code are stored on disk together in routine blocks.

At runtime the object code is loaded into generic buffers in the buffer pool.

The Caché approach:

A programmer works with either INT (intermediate) or MAC (macro) code, or possibly INC (include) code. These are
actually extensions to the routine name. l.e. A123.mac.

The Caché equivalent to MSM source is INT code. Macro code is useful when embedding macro statements such as
embedded SQL directly into your code.

A programmer edits a routine using the Studio, but routines require explicit compilation to generate the OBJ object
code files (the equivalent to MSM p-code).

Compiling MAC code in Caché automatically generates both INT and OBJ code. Compiling INT code automatically
generates the OBJ code as well.

MSM to Caché Conversion Guide 13

Converting Your MSM Application

e All code is stored in globals (*rMAC, *rINV, ~rOBJ and "ROUTINE).

» Atruntime, only the OBJ code is loaded into special routine buffers that are separate from the main global buffer pool,
with the obvious advantages that this brings.

4.2 Porting MSM Routines

Use the following procedure to migrate MSM routines that are less than 64KB in size:
e Save your MSM routines in MSM format using the "%RS utility.
* Restore your code into Caché using ~%SYS.RI in the destination namespace.

» From the destination namespace, use “%RCOMPIL recompile your code in Caché and check for syntax errors. Once
you find which routines have generated <SYNTAX> errors, you should look to the Caché ObjectScript Reference to
familiarize yourself with Caché’s language syntax.

Although MSM can support as large a routine as the current stack and partitions sizes will allow (tested as high as 200 KB),
Caché routines must compile to less than 64KB in size. You can use MSM’s "%RSIZE utility to check your routine’s size
before importing into Caché. To figure out how large a routine is, multiply the number of Text Blocks, as reported by
"HRSIZE, by 1 KB.

Any MSM routines larger than 64KB can be addressed in one of two ways:
» Split the routines in MSM first so that no routine is larger than 64KB, then import into Caché.
» Import the routines into Caché first, with Syntax Checking and Compile options off. Once in Caché, split the routines

and then use "% RCOMPIL to compile them.

You cannot migrate an MSM routine that is only stored as p-code (known as object code in Caché). If you need to migrate
a routine that was only supplied as p-code, you will need to contact your application supplier to get the routine’s source
code before proceeding.

4.3 MSM Language Compatibility Mode

Caché operates in MSM language mode when working with a MSM routine that has been ported. A language mode can
be set individually for each routine, and a routine compiled in one language mode can call or be called by a routine compiled
in another mode. Thus, for instance, an MSM mode routine could call a Caché mode routine which could in turn call another
MSM mode routine.

Use $ZU(55, mode) to switch language modes, where mode is the number of the language mode. The relevant settings are:
e Switch to MSM mode:

Set x=$Z\(55, 8)

» Switch to native Caché mode:

Set x=$Z(55, 0)

* Return the current language mode:

Set x=$zZU(55)

14 MSM to Caché Conversion Guide

MSM Language Compatibility Mode

After an MSM application is compiled in the correct language mode, it can be installed and run on any Caché system, no
matter what other applications or language modes are used on that system. Almost all language mode processing occurs at
compile time, not runtime. As a result, using a language mode such as MSM will generally deliver the same high performance
as the Caché native language mode.

Native Caché mode is the default for each process. To change this default for specific process types, you will need to
modify the appropriate line tag within the ~%ZSTART routine.

From within any of these modes, you can add your own commands, functions, or special variables, allowing you to convert
your MSM %ZZCMNDS, %ZZFUNCS, and %ZZSVARS MSM routines. Depending on the current language mode, cor-
responding Caché routines will be searched for these added features.

Commands Functions Variables
Original (native MSM) %ZZCMNDS %ZZFUNCS %ZZSVARS
routines
Native Caché mode NoHZLANGCOO NopZLANGFOO NpZLANGVOO
routines
MSM mode routines NoHZLANGCO008 NopZLANGFO008 NoHZLANGVO008

The line tags you enter in these routines will be the names of your new commands, functions, or special variables. The line
tags entered must begin with a “Z” and must be all capital letters. Actual execution of the command, function, or special
variable is not case-sensitive.

e Adding code to "%ZLANGC* creates a new command, such as ZSS:

%ZL ANGC008

ZSS ; do a System Status
Do %8S
Qi t

e Adding code to "%ZLANGF* creates a new function, such as $ZRTN(x):

%L ANG-F008
ZRTN(x) ; find out what routine a process is currently running
Quit $Print($View-1,x),"~",6)

e Adding code to "%ZLANGV* creates a new special variable, such as $ZTIME:

%L ANGV008

ZTI ME ; return the current tine
Do | NTA9ar
Quit %M

Here is an example of custom code that calls the routines defined above:

M/Rt n ; Call the code added to the "%LANG' routines
New pid, rtn, x
Set x=%ZU(55, 8) ; Change to MSM node
ZSS

Read !,"Enter a process ID ",pid
Set rtn=$ZRTN(pi d)

If rtn="" Set rtn="no routine"

Wite !',"At "_$ZTIME_ ", process #'_pid_" was running "_rtn_"."
Set x=%ZU(55, 0) ; Return to native node

Qi t

MSM to Caché Conversion Guide 15

Converting Your MSM Application

4.4 Converting Nonstandard Functions and Features

Converting MSM’s implementation-specific functions and features will be the most intricate part of your conversion. Issues
to keep in mind include:

Many MSM commands such as ZUSE, functions such as $Z0S, and special variables such as $SYSTEM will need to
be handled differently for Caché.

Any VIEW commands or $VIEW functions which access MSM memory structures will need to be removed or modified.
Any references to MSM utilities may need to be converted.

Caché does not support the hex operator #. However, support for $ZHEX is identical and so this function should be
used in its place.

Caché does not support printer mnemonics.

In some cases, the *%RCHANGE utility can be used to make some simple syntax changes, but you should use this
method with care, as blind modifications to a routine can make unwanted changes to your code. Most code changes
should be done interactively by a programmer.

Here are a few suggested actions that you can take to get a rough idea of how much effort will be involved in an MSM to
Caché conversion.

Load all your MSM routines into Caché and run %RCOMPIL and analyze the syntax errors
— Most of the open and use commands should appear here.

— Extraneous whitespace is a common problem. You might run into cases where MSM successfully compiles a
routine, but Caché generates a <SYNTAX> error upon compiling due to extra whitespace. Whitespace issues are
best corrected interactively by a programmer. A good example of this is less than two spaces between a QUIT
command and a semicolon.

— Duplicate line tag names in routines are not supported in Caché. Compiling such a routine will give you a
<LABELREDEF> error. You will need to eliminate or change one of the line tags, and make any necessary code
changes to maintain the same application logic.

Use %RFIND to search for the following character strings:

- $V (View)

— $Z (system functions generally)

- "%

— /\[

"

— " (; note space between the “~” and the “(* (SPACE operator!)

— 051,052,053 0r O 54 (Open number rather than name)

See the appendix “MSM and Caché Utilities Catalog™ for a list of MSM commands, functions, operators, preprocessor
directives, special variables, and structured system variables, and their Caché equivalents.

16

MSM to Caché Conversion Guide

Converting Nonstandard Functions and Features

4.4.1 MSM-XCALL Functions

XCALL functions allow the use of external programs, such as C or Assembler, to be called from within M. For backward
compatibility support, MSM also supports a ZCALL interface. Both XCALLs and ZCALLs are similar in concept and in
implementation to Caché’s $ZF() Callout interface (see Using the Caché Callout Gateway). XCALL and ZCALL functions
must be converted to Caché $ZF() functions.

4.4.2 OS Functions via %0S and $Z0S

MSM’s %0S utility and $Z0OS function allow many OS-related functions to be performed from within M. There are no
direct equivalents to %0S or $Z0S in Caché, although through the use of $ZF(-1), $ZF(-2), or a pipe to an OS command
(using the "Q" parameter to the OPEN command), you can easily execute any OS functions you wish.

Generally speaking, any file related operations (as used in $ZOS for example) should be replaced with method calls to the
%Library.File class. For example, to delete a file:

Set status=##class(%.ibrary.File).Delete("filename")

Caché’s $ZF(-1) function allows you to run OS commands from a Caché programmer’s prompt. On Windows platforms,
these commands will hang if they expect user input. For more details see “Issuing Operating System Commands” in Using
the Caché Callout Gateway.

4.4.3 Converting ZWINTERM Calls

MSM allows you to use pop-up windows to display messages via the ZWINTERM interface. With Caché, you have several
options to gain this same character-based windowing functionality.

* Use mnemonic spaces to create pop-up windows .
» Use the $ZF(-1) function to issue an operating system level command to open a new terminal window.

» Keep MSM as a network client to Caché so that your existing character windowing functions can be used. This is a
good short-term goal while your migration to Caché is in progress.

4.4.4 MSM Preprocessor Directives
Both MSM and Caché provide mechanisms by which you can use preprocessor directives to perform tasks such as defining
macros, defining macro libraries, and including source code from another routine.

Caché stores its directives in .MAC and .INC code. The MSM globals ~ZMSMMAC and ~ZMSMSRC, which store the
preprocessor directives and source code respectively, have conceptual equivalents in Caché’s ~rMAC and "ROUTINE
globals.

While MSM and Caché have similar facilities conceptually, the syntax varies between the two systems. For example, in
MSM you can use one of two mechanisms to build formal parameter lists for your macros:

» Through the use of enumerated variables, such as $1, $2, ... $N, as the arguments’ formal names:

#define copyright() Copyright $1-$2

» Through alphanumeric names as the arguments’ formal names:

#define copyright(fromto) Copyright fromto

Caché does not support the use of enumerated variables for macro preprocessing. Instead, you will need to adopt Caché’s
method of referencing alphanumeric names. The MSM examples above would look like this in Caché:

MSM to Caché Conversion Guide 17

BGCL_preface
BGCL_syscall
BGCL_preface
BGCL_preface

Converting Your MSM Application

#defi ne copyright (%arl, %ar2) "Copyright ",%arl,"-", %ar2

Arguments of the formal parameter list in Caché must begin with a % sign. Caché does not support MSM’s $0 variable,
which stores the number of arguments passed to a given macro.

MSM and Caché also differ in the way that macros are referenced from within the application. Using the above macro
definition, in MSM you could reference the copyright macro using one of two methods:

» Passing arguments in a parenthesized parameter list

Weopyri ght (1997, 1998)

e Passing arguments as a comma-delimited list

#%opyright 1997, 1998

In Caché, the %% and #% syntax for referencing macros is not supported. You would call the copyright macro using this
syntax:

$$$copyri ght (1997, 1998)

4.4.5 Extended References for Globals and Routines

As mentioned earlier, Caché relies on namespaces to access data from the actual physical database volumes. It is strongly
recommended that you adopt Caché’s namespaces from within your application. In some cases however, changing every
hard-coded extended reference in the application will be a difficult short-term goal.

Caché supports several forms of extended references:
For globals:

Al "nanespace"] gl obal
Al " namespace”, ""] gl obal
(this is useful if piecing apart an MSM UVI/VOL string)
A["directory", "systeni] gl obal
Al "namespace” | gl obal
N "rsystemtdirectory”| gl obal

For routines:

DO | "namespace" | routi ne

DO ~| ""systenfdi rectory"|routine
JOB “routine["namespace"]

JOB “routine["nanespace",""]

JOB ~routine["directory","systenl']
JOB “routine[""systemtdirectory"]

You might want to create a Caché namespace called MGR that uses the CACHESY'S database as the default location for
globals and routines. Extended references that expect MGR to contain system globals and routines will not need modification.

4.4.6 Handling End-of-file Situations in Caché

MSM uses the special variable $ZC to store status information from the last device access. In particular, MSM applications
made wide use of $ZC to check if the READ command reached the end of a sequential file ($ZC returns -1 in this case).
Caché, unlike MSM, triggers an <ENDOFFILE> error in this situation. To handle an End-Of-File situation in Caché, you
will need to create a custom error trap in your application using $ZTRAP.

Caché also supports the $ZC (if used in MSM language compatibility mode) as well as the $ZEOF (native Caché language
mode) special variables.

18 MSM to Caché Conversion Guide

MSM and Cache Database Networking (DDP)

4.5 MSM and Cache Database Networking (DDP)

There are a number of differences between MSM database networking (DDP) and Caché database networking (DSM-
DDP/DCP/ECP).

e MSM can communicate with Caché only using DSM-DDP over a raw Ethernet (sometimes referred to as a MSM Data
Link) link. This link will have different performance characteristics than a MSMV3 link. For MSM it will be slower.

» Caché networking does not support the MSM RVG concept. The Caché ECP protocol uses similar net traffic optimiza-
tions as the MSM RVG on all connections, but it is not compatible with MSM.

» Only the MSM DDP protocol supports jobbing with parameter passing.

e When communicating with Caché using DSM-DDP, you can only access data sets (databases) and not namespaces.
This means that namespace mapping in Caché cannot be used by MSM.

* When starting remote jobs on Caché from MSM, you cannot start jobs that will make global access from a namespace.
MSM can only start jobs that have a default data set (database). This means that there is no namespace mapping in
Cache by default for jobs started from MSM.

MSM to Caché Conversion Guide 19

Connecting Applications to Caché

5.1 Connection Tools

Depending on the nature of your application, you might be using a variety of tools to connect your user interface to the
database.

* MSM-Activate

« MSM-SQL, KB-SQL, and M/SQL
« MSM-PDQWeb

* MSM-Workstation

5.1.1 MSM-Activate

MSM-Activate provides the means to call M functions, run XECUTE commands, or perform low-level operations on an
MSM Server from any of the following methods:

e« A Windows DLL callable from C

e AnActiveX control or a COM object

* AC library from various UNIX® platforms

* A setof Java classes and an associated Java Bean

Regardless of the connection method you choose, the clients all connect to a listening process on the MSM server via
TCP/IP.

MSM-Activate’s server code has been ported to Caché, enabling you to run your MSM-Activate applications against Caché
servers without any client-side application changes.

InterSystems recommends that, as a long-term goal, you convert your MSM-Activate based applications to native Caché
technology. Depending on the tool you have used to build your client interface, you will have different Caché options
available.

» Caché objects allow you to use a number of different approaches, including C++, any Active X client (such as Visual
Basic, PowerBuilder, or Delphi), or any Java-based tool (such as J++, Visual Café, or JBuilder). See the various Caché
Binding books for details.

» Caché Direct, which is conceptually quite similar to MSM-Activate’s Active X component, allows you to use any tool
that can manage an OCX. See Using Caché Direct for detailed information.

MSM to Caché Conversion Guide 21

Connecting Applications to Caché

e Caché Callin interface is very similar to MSM-Activate’s Call-In Interface, and allows you to access Caché from C
programs on all platforms. See Using the Caché Callin API for detailed information.

5.1.2 MSM-SQL, KB-SQL, and M/SQL

For relational access, you have probably chosen one of two relational environments for MSM:

MSM-SQL (which is just a badged version of older versions of KB-SQL)

e InterSystems M/SQL (also known as the FDBMS)

Since the globals containing your data dictionaries will have been already migrated from MSM to Caché, you will be able

to convert the relational environment from MSM to either Caché SQL or version F.17 of M/SQL for Caché directly on
your Caché system.

» For the KB-SQL contact your InterSystems Account Manager for access to the latest version of the data dictionary
converter. This will take the *SQL dictionary global and convert the table mappings into Caché objects class definitions.
These definitions automatically expose your data as relational tables.

» For the M/SQL FDBMS, you will need to do two steps to convert to Caché’s DBMS. These steps must be run from
any namespace that contains the FDBMS objects.

— Use the Conversion Manager, found under the System Management menu option of the ~%msqgl utility, to run any
necessary DBMS conversion steps.

— Recompile all DBMS objects by running the command:

Do al | *"%rconpi |

— Runthe F to CDL Export Utility/

Once your data dictionaries have been converted to F.17 or greater of Caché, you may still convert these F data dictionaries
to the latest Caché SQL, which is highly integrated with Caché objects.

For ODBC connectivity, MSM and Caché function in a similar fashion, though you will typically benefit from much-
improved overall relational performance and lower running costs. See the Using Caché SQL guide for more information
on ODBC.

For information on converting your MSM-SQL and KB-SQL data dictionaries, contact your InterSystems Account Manager.

If you have implemented your application using M/SQL for MSM, contact your Account Manager or the WRC for further
information on migrating M/SQL Forms to Caché.

5.1.3 MSM-PDQWeb

MSM-PDQWeb connects web servers with MSM servers. It enables processing requests to be sent from the web to MSM,
which replies in the form of static or dynamically generated HTML. MSM-PDQWeb is quite similar, in both purpose and
implementation, to InterSystems WebL.ink technology, which in turn has been superseded by Caché Server Pages (CSP).
WebL.ink is no longer being actively enhanced by InterSystems.

PDQWeb and WebL.ink are converged in Caché, enabling applications written for either technology to run unchanged or
with only minor changes. This convergence delivers the two most frequently requested PDQWeb enhancements to MSM
customers:

» Support for state-aware connections (in addition to the currently available stateless connections).

e Support for a wider variety of web servers.

22 MSM to Caché Conversion Guide

Terminal Servers

There are some important steps you should follow for running your PDQWeb application in Caché. Depending on your
web server platform, the steps will vary. See the Caché WebLink Guide for detailed information on this conversion process.

CSP is recommended as the preferred approach to building browser-based applications, and should be used instead of
WebLink if at all possible.

5.1.4 MSM-Workstation

In the area of GUI development tools, InterSystems and Micronetics strategies differed greatly. Where Micronetics focused
on developing its own interactive development environment, InterSystems focused on leveraging mass market GUI devel-
opment tools such as Visual Basic and Delphi.

We strongly recommend the use of Caché Object technology, in place of your current MSM-Workstation applications.
With Caché objects, any industry-standard GUI or web development tool can be used for all of your GUI development
projects. We believe that through use of Caché objects, in conjunction with industry-standard tools, you will be able to
more effectively keep up with the rapidly changing industry.

Caché currently offers some of MSM-Workstations main features:
» A graphical debugging environment
* A graphical routine editor

» Royalty-free licensing for single user systems

Caché does not support the M/WAPI standard defined by the MDC.

For more information, contact your InterSystems Sales Representative.

5.2 Terminal Servers

5.2.1 TELNET and LAT Terminal Servers

Caché supports terminal servers as a method of connecting terminals to your application. These terminals can connect via
TELNET or LAT using Caché’s built-in terminal capabilities. To configure TELNET and LAT connectivity, use [Home]

> [Configuration] > [Advanced Settings] page of the Management Portal. (Note that Caché Telnet settings apply only to
Windows configurations in which InterSystems supplies the Telnet servers.)

For more information on using terminal devices, see the Caché 1/0 Device Guide chapters on /O Devices and Commands
and Terminal 1/0.

Under Windows, there does not appear to be a standard way to tie a certain physical terminal server port to a particular
terminal device. This means that MSM applications using $10 to identify a specific user or device may need to be modified.
There are several solutions to this problem:

e Tie individual or groups of terminals to a particular value of the special variable $ZIO. For a terminal device, $ZI0
will contain the TELNET port number and host IP address, or LAT server name and port name.

— Identify a specific terminal by creating a Caché user account whose name is made up of the terminal’s corresponding
server or domain name and port (taken from the $Z10 special variable). From within the application, many references
to the $10 special variable will then need to be changed to either the $Z10 variable or another application defined
variable.

— You can also tie this terminal device to a particular routine via the User Accounts utility.

MSM to Caché Conversion Guide 23

http://www.intersystems.com/priordocexcerpts/weblink-42.pdf

Connecting Applications to Caché

» Use the dumb terminal’s answerback feature to get a unique ID. For example, on a DEC VVT420, set answerback in
Setup|Comm|Answerback, and retrieve the string with $character(5).

» If available on your terminal server, you can use telnet to report session and port information. There may be a need to
do some scripting, either at the NT or Caché levels, which queries the terminal server for this information and parses
the data that the terminal server returns.

Caché’s TELNET and LAT services do not run on Windows 95 or 98 platforms. For this functionality, you must use another
Windows platform such as NT, 2000 or XP. LAT is only supported directly by Caché on these Windows platforms. For
LAT support on non-Windows platforms, a third-party product would need to be used.

The load balancing algorithms differ between MSM and Caché. The MSM LAT Service Rating (LATSR) is calculated
based upon current process load and maximum process load on a given server. The Caché LATSR is calculated by taking
a specific figure defined by the system manager and multiplying that by the current CPU load on the system, thus producing
a figure that is higher or lower than the figure set by the system manager.

The Caché LATSR is set to a value of one by default. Thus, connecting an MSM and Caché application/compute server
side by side with both advertising the same LAT service will almost certainly result in every user logging into the MSM
server!

To avoid this, simply increase the Caché LATSR level to something more appropriate based upon the known range of the
MSM server’s LATSR.

5.2.2 Serial Port Expander Boards

Caché for Windows fully supports the use of any intelligent serial port expander board produced by Digi International,
provided the board has a supported driver for Windows NT. Prior to using your Digi board with Caché, you must make
sure the Auto-Start COM Ports box is checked. This option is found on the Terminal tab of the System Configuration
Utilities. You will need to restart Caché after enabling this option. This launches COM port listener routines on the specified
ports that will listen on specified ports allowing user login.

Unlike MSM, most Caché devices can be used dynamically and do not need to be predefined in the system setup.

5.2.3 Conversion of MSM Terminal Device Characteristics

The following table lists the equivalent Caché OPEN/USE protocols for MSM terminal device characteristics:

Bit Pos Decimal MSM Name Cache Equivalent (name)
Value
31-28 n/a Reserved [**
27 1.3E+08 Pass-All Flow Enabled in image mode if supported by device.
26 6.7E+07 Prompted Read Part of /FLUSH or "F" protocol (Flush).
25 3.4E+07 Type Ahead See /FLUSH or "F" protocol (Flush).
24 1.7E+07 ZUSE No ZUSE available in Cache.
23 8388608 Pass All See /IMAGE or "I" protocol (Image Mode).
22 4194304 No <XOFF> Cache uses OS settings.
21 2097152 <CTRL_O> Controlled by OS.
20 1048576 Control Character No direct correlation.
19 524288 Empty Line Delete | Not supported in Cache.

24 MSM to Caché Conversion Guide

Terminal Servers

Bit Pos

18
17

16

15
14

13
12
11
10

N W | 01O N 0| ©

Decimal
Value

262144
131072

65536

32768
16384

8192
4096
2048
1024

512
256
128
64
32
16
8

4

MSM Name

Data Length

$X and $Y Update

Type of CRT

Interrupt

Lowercase

Line Feed
<TAB> Control
Line Carrier

Printer

Connect

Logon

Cursor Position
Escape
<CTRL_S>
<CTRL_O>
Modem Control

CRT

Output Only

Echo

Cache Equivalent (name)

Controlled by OS.

Controlled through /XYTABLE or "Y\name\" protocol
($X/$Y Action Mode).

See /CRT or "C" and "P" protocol (CRT Terminal / Printer
Device).

Not supported in Cache.

Controlled through /TRANSLATE or "K" protocol (I/O
Translation Mode).

Controlled in configuration for device subtype.
Controlled in configuration for device subtype.
Supported in Windows only, see $ZA and COMMCTRL.

See /CRT or "C" and "P" protocol (CRT Terminal / Printer
Device).

Supported in Windows only, see COMMCTRL.
Supported in Windows only, see COMMCTRL.
Not supported in Cache.

Not supported in Cache.

Controlled by OS.

Controlled by OS.

Supported in Windows only, see COMMCTRL.

See /CRT or "C" and "P" protocol (CRT Terminal / Printer
Device).

Not directly supported in Cache, in Windows see
COMMCTRL.

See /ECHO or "S" protocol (Secret Input).

MSM to Caché Conversion Guide

25

Cacheé System Management

6.1 Configuring Cacheé

To configure Caché, you use the Management Portal. The Caché System Administration Guide includes detailed information
on how to use the manager, and also highlights the minimum and maximum values for each parameter. Alternatively, you
can access Caché’s online help by pressing the <F1> key with a particular field within the utilities selected.

Tips and tricks on basic system configuration;

e Check that Maximum # of User Processes equals the total process count of your Caché license, unless you want fewer
users to gain access.

» Keep your partition size at a sensible level (the default is 1MB), unless your application requires larger values. If you
set this value too large, you will use memory and swap space inefficiently. Caché partitions are fixed size and do not
expand and contract as do MSM partitions. You cannot dynamically change the partition size because there is no
%PARTSIZ equivalent utility in Caché.

» Inmany cases, increasing the number of Global and Routine Buffers is the best and quickest way to improve performance.

See the appendix “MSM and Caché Utilities Catalog” for a list of MSM utilities and their Caché equivalents.

6.2 Configuring Devices

In most cases, devices must first be set up at the operating system level. Once configured at the OS level, you can immediately
begin using these devices from within Caché. If you need to set up mnemonic names or numeric aliases for these devices,
use the device configuration utility in Management Portal. These Caché-level device configurations are stored in the
cache.cpf file. At each Caché startup, the system will read the cache.cpf file and recreate the system level globals in the
CACHESYS database.

Tips on configuring devices:

e Caché has a set of reserved, built-in device numbers which are generally different from MSM. See the Caché 1/0
Device Guide for more information.

e You only need to enter devices into Caché’s device tables if you want to access them via a mnemonic name, such as
SUN, or a numeric alias, such as 100 (common on MSM systems).

* Mnemonic names are used by the character-based utility called ~%lS, which is used by utilities such as "INTEGRIT
and "%G.

MSM to Caché Conversion Guide 27

Caché System Management

Numeric aliases are used directly by Caché’s OPEN, USE, and CLOSE commands. The use of aliases is the best way
to get MSM-like device handling.

If you do not require the use of mnemonic names or numeric aliases, you can still access your devices through either
the 7%IS utility or through OPEN, USE, and CLOSE commands. For example, the command OPEN "/dev/rmt0":"R"
is perfectly valid, provided that /dev/rmt0 is a valid device on your system.

Pipes are a very effective way of accessing printers and other devices on your machine. See the Caché 1/0 Device
Guide for details on setting up and using pipes.

If you use Caché’s SPOOL device, it might be a good idea to store the ~SPOOL global in an isolated location so that
it does not take up space in your production environment. You can then reference this global through a namespace
configuration.

See the Caché System Administration Guide for information on configuring devices in Caché.

6.3 Automating Caché Backups

Caché backups and restorations are designed to run on live systems. These backups can either be system wide, on a per-
database basis, or on globals and routines individually. Automating Caché backups from the OS level can be done with a
few considerations. There are four recommended strategies:

1.

An OS scheduler can call into Caché’s backup API, performing Caché’s concurrent backup. Any of Caché’s backup
strategies are available through this API, including full, cumulative, and incremental backups. This strategy is recom-
mended for live automated backups.

Caché can be brought down via OS scripting, and then an OS level backup can be run.
Caché’s databases can be frozen while an OS level backup is being performed.

An OS level backup can perform a full backup of a live Caché database. For this strategy, a valid cumulative backup
must also be performed immediately after to ensure physical integrity. The Caché backup API can be called here to
automate the cumulative backup. The steps for this procedure are as follows:

e Asa pre-backup command, clear incremental bitmaps:

Set x=$$CLRI NC"DBACK(1)

* Run the OS backup on the live system
* Asa post-backup command, perform cumulative backup:

Set x=$$BACKUPADBACK(Ar g1, Arg2, . . . Arg10)

This option requires that your OS-level backup allow files to change while the backup is being performed. Choose
your OS backup software with care.

Restoration of system backups is performed via the character-based utility called "BACKUP. See the Caché System
Administration Guide for more information on the basic backup types, and how to perform them.

28

MSM to Caché Conversion Guide

Caché Journaling

6.4 Caché Journaling

Journaling in Caché is very similar to what you are used to in MSM. When used in conjunction with backups, it is the best
mechanism for bringing a system as up-to-date as possible after a system failure. Journaling is also used to keep track of
your application’s transactions. For information on journaling, see the High Availability Guide.

The Before Image Journaling (BIJ) feature is equivalent to the Caché feature called Write Image Journaling (W1J). This is
automatically enabled on Caché systems. It consists of a single file (unlike MSM that has a separate BIJ file for each bullet
proofed volume group) named cache.wij, located in the \cachesys\mgr directory. Its size is not fixed and grows as necessary
to accommodate modified blocks.

After Image Journaling is also automatically enabled. Unlike MSM, Caché journal files are created as needed and do not
have to be defined in advance. Each time Caché is restarted a new journal file is begun. The “age” at which a journal file
is automatically deleted is determined by settings that can be modified in the Management Portal.

Journaling Tips:

e A process can enable or disable journaling for itself via the ENABLE and DISABLE line tags of ~%SYS.NOJRN,
respectively.

» Do not use the Journal All Globals option unless you really need to. Choosing this option will journal every global in
your database, which can lead to an extraordinarily large journal file, reduced system performance and increased network
traffic if Shadow System Journaling is employed. Temporary globals that can be deleted upon system restart should
never be journaled.

e Itisagood idea to switch your journal files after each backup. This process can be automated.

» Under ashadow system journaling configuration, a global READ will access only the local version of the global, unless
an extended global reference is used.

6.4.1 Shadow System Journaling

While Caché’s Shadow System Journaling is very similar conceptually to MSM’s Cross-System Journaling, you will find
that Caché’s Shadow System Journaling is much more feature-rich. For example, in Caché you have two modes of data
transfer available to you:

1. Fast (previously block-mode) Transmission
» The shadow connects to the database server via TCP and captures the live journal flat file.

* Acquired transactions are optionally applied to the Shadow machine. Choosing not to apply the acquired transaction
is a good way to keep redundant journal files.

» Since many transactions are captured at once via a binary journal block, block-mode tends to be quicker than
record-mode.

» Applied transactions are optionally logged in the shadow machine’s local journal file.

2. Compatible (previously record-mode) Transmission
» The shadow connects to the database server via TCP and captures transactions via packaged strings.

» Acquired transactions can be programmatically scanned before applying the transactions. You have access to the
following information when scanning:

— Address of current record

— Transaction type, such as SET or KILL

MSM to Caché Conversion Guide 29

Caché System Management

— Global reference, if any

— New value to which global is set

» Since transactions are captured via packaged strings, record-mode tends to be slower than block-mode.
» Applied transactions are optionally logged in the shadow machine’s local journal file.

» Record mode shadowing can be employed when differing endian systems are to be linked (e.g. Intel and Sun),
unlike block mode shadowing, which is limited to transmissions of the same endian type.

The transport and delivery mechanism differs between MSM and Caché. MSM utilizes a “push” mechanism via DDP --
individual sets and kills are applied as regular cross system updates to the shadow server. Caché instead pulls the data from
the primary server to the shadow server via TCP/IP.

The Caché use of native TCP results in benefits such as much improved shadowing performance and easier setup of WAN
support. It also allows enhanced capabilities such as shadowing across the Internet and the ability to define multiple shadow
servers for each primary server.

6.4.2 Shadowing and Switching from MSM to Caché

Given that MSM Cross System Journaling is implemented using simple DDP cross-system sets and kills (i.e. using extended
global references), and Caché supports DDP, a MSM server can in fact shadow to a Caché server. This can be a big help
in preparing for a switch over with minimal down time of a production system.

For example, consider the following steps when replacing a MSM Primary/Shadow pair with its Caché equivalent:
Take the MSM shadow off line, back it up, enable journaling (or switch journal spaces if already enabled).
Restore the backup onto the Caché server.

Convert the MSM UCIs to Caché databases (see previous chapters).

1

2

3

4. Configure DDP between Caché and MSM so that MSM can see the Caché databases.

5. Configure Cross System Journaling on the MSM shadow to point to the correct databases on the Caché primary.
6

Enable Cross System Journaling on the MSM shadow.

Updates will then begin to arrive on the Caché primary and will continue to do so. Of course a Caché shadow can be created
(using the original Caché databases created in #3 above), and connected to the Caché primary.

Once the systems are stable and a switchover date and time has been set, disable all access to the MSM primary server,
allow all updates to filter down to the Caché primary, shut down the MSM servers (to be safe), and then give access to the
users to the new Caché primary instead of the old MSM one. The last step maybe as simple as changing an IP address of
a server or in the client configuration.

Using this technique can result in a total downtime literally measured in minutes.

30 MSM to Caché Conversion Guide

MSM and Cache Utilities Catalog

This appendix lists MSM commands, functions, operators, preprocessor directives, special variables, and structured system
variables, and their Caché equivalents. Bear in mind that many of the Caché equivalents mentioned here are deprecated or
have been rendered obsolete by more modern tools. They are presented here only to provide you with the most direct sub-
stitutes when porting legacy code. Documentation for most of the utilities mentioned here can be found in the “Legacy
Documentation™ chapter in Using InterSystems Documentation.
%ACTJIOB

Caché equivalent: No direct equivalent

Purpose: Provides a *-delimited list of all job numbers in the system.

Notes: In Caché, use the following code:

Set (j.p)=""
For {
Set j=$Order (~$Job(j))
; $Order (*"$JOB(j)) 1s recormended over $ZJOB(j)
Quit:j=""

%CHKSUM
Caché equivalent: $ZCRC

Purpose: Computes a checksum (ASCII summation) of one or more routines.

%D
Caché equivalent: %D
Purpose: Displays the date currently stored in $HOROLOG.
Notes: %D in MSM reports the date in the format DD-MMM-Y'Y, while Caché uses the format MMM-DD-YY.
Use $ZDATE($HOROLOG,2) to mimic MSM’s %D output in Caché.
%DEBUG
Caché equivalent: No Direct Equivalent
Purpose: Invokes an interactive program debugging facility.
Notes: See the Caché ObjectScript Reference for information on BREAK and ZBREAK.
%DEVUSE

Caché equivalent: No Direct Equivalent

MSM to Caché Conversion Guide 31

MSM and Caché Utilities Catalog

%DH

%Dl

%DO

Purpose: Displays a list of all opened devices and the number of the job that owns each one.

Notes: In Caché, use TTYFREE to check reserved TTY devices and the processes that own them. Use %SS to see
all processes and the devices they have open.

Caché equivalent: %DX

Purpose: Converts a decimal value to hexadecimal.

Caché equivalent: %DATE
Purpose: Converts a date from external form (for example: 8-SEP-97) to internal HOROLOG format.

Notes: In Caché, you can call %DATE programmatically via the INT line tag.

Caché equivalent: $ZDATE($H_Value)

Purpose: Converts a date from internal SHOROLOG format to external format.

%ECHO

%EDP

%EDP1

%ER

Caché equivalent: No Direct Equivalent

Purpose: Allows the program to control the echoing of characters at the terminal. Entry points are provided to
turn ECHO on and off.

Notes: In Caché, use the Secret-Mode feature of Caché’s terminal 1/0. For example, to hide the user’s input from
a Caché program, try:

Use 0:(:"s")
Read rec

Caché equivalent: Not Available

Purpose: Performs macro lookup, expansion, and parameter substitution.

Caché equivalent: Not Available

Purpose: Processes directives, has supplementary entry points.

Caché equivalent: %ER

Purpose: Displays error information trapped by the %ET routine.

%ERRCODE

%ET

Caché equivalent: Not Available

Purpose: Display an explanation for database-specific error codes.

Caché equivalent: %ET, %ETN

32

MSM to Caché Conversion Guide

MSM and Caché Utilities Catalog

Purpose: Error trap routine

Notes: Caché’s %ET(%ETN) routine is much more feature-rich.

%FGR
Caché equivalent: %GIF, %SYS.GIFMSM
Purpose: Fast global restore (block format).

Notes: Use %SYS.GIFMSM to import %FGS-format global saves into Caché.

%FGS
Caché equivalent: %GOF

Purpose: Fast global save (block format)

%FL
Caché equivalent: %RFIRST

Purpose: Display the first line of code for selected routines.

%FLIST
Caché equivalent: Not Available

Purpose: Lists a file stored in the host file system.

%GCH
Caché equivalent: %Library.Global class, %GDISP (not available in Caché 5.0 or later), PROTECT

Purpose: Display characteristics of global(s) and modify

%GCHANGE
Caché equivalent: %GCHANGE

Purpose: Changes all occurrences of a string in one or more globals.

%GCMP
Caché equivalent: %GCMP

Purpose: Compares two globals in the same or different namespace.

%GCOPY
Caché equivalent: %GCOPY, MERGE

Purpose: Copies one or more globals from one namespace to another. The namespace may be on the same machine
or on a remote machine.

%SYS.GD
Caché equivalent: %SYS.GD

Purpose: Display global directory for current namespace.

%GDE

Caché equivalent: %Library.Global class, %GDISP (not available in Caché 5.0 or later)

MSM to Caché Conversion Guide 33

MSM and Caché Utilities Catalog

Purpose: Provides an extended global directory display.

%GDEL
Caché equivalent: Not Available

Purpose: Deletes one or more globals from a namespace.

%GE
Caché equivalent: INTEGRIT, BLKDIST
Purpose: Display efficiency of global(s).

%GEDIT
Caché equivalent: Management Portal
Purpose: The [System] > [Globals] > [Edit Global Data] page allows an administrator or operator to edit and delete
global data values.
%GL
Caché equivalent: %G

Purpose: Lists all or selected portions of a global file.

%GR
Caché equivalent: %GI, %GIGEN, %GIF
Purpose: Restore global(s) from a device, and allows them to be renamed.

Notes: Caché does not allow the renaming of globals on import.

%GS
Caché equivalent: %GO, %GOGEN, %GOF

Purpose: Saves all or selected portions of one or more globals to a device.

%GSE
Caché equivalent: Management Portal

Purpose: The [System] > [Globals] > [View Global Data] page allows an administrator or operator to view globals
and search for global data values.

%GSEL
Caché equivalent: %SYS.GSET

Purpose: Allows you to select one or more globals from the current namespace.

%GSIZE
Caché equivalent: %GSIZE

Purpose: Display size of one or more globals

%GUCI
Caché equivalent: %DIR

34 MSM to Caché Conversion Guide

MSM and Caché Utilities Catalog

Purpose: Returns the three-character name and internal UCI number for the current UCI.

Notes: Caché’s %DIR will report the current namespace and default global directory.

%HD
Caché equivalent: %XD

Purpose: Converts a hexadecimal number to a decimal.

%HELP
Caché equivalent: No Direct Equivalent
Purpose: Provides online help for character-based utilities.

Notes: In Caché, you can get online help by entering a “?” at any of the character-based utility prompts.

%HL
Caché equivalent: %PRIO
Purpose: Allows you to change the priority of the current job from high to low or from low to high.

Notes: Call Caché’s %PRIO utility through the LOW, NORMAL, and HIGH line tags.

%HOSTCMD
Caché equivalent: $ZF(-1,"CMD")

Purpose: Allows you to issue host operating system commands from within an M program.

%INDEX
Caché equivalent: Not Available
Purpose: Provides a cross-reference listing of one or more routines, and optionally provides a structured program
listing of selected routines.
%LOGON
Caché equivalent: “%CD, ZN, $ZU(5)

Purpose: Allows you to switch from one UCI to another.

%MDMP
Caché equivalent: Not Available
Purpose: Provides a display in hexadecimal format, character format, or both for selected memory locations or
the VIEW buffer.
%MFUNC
Caché equivalent: ~"%math
Purpose: Provides mathematical functions including E, PI, SIN, and COS.

Notes: ~%math must be called by the appropriate line tag—see source code.

%MODESET
Caché equivalent: Not Available

Purpose: Allows you to change environmental mode flags such as maximum length of routine lines.

MSM to Caché Conversion Guide 35

MSM and Caché Utilities Catalog

%MTCHK
Caché equivalent: Not Available

Purpose: Allows you to interrogate the status of a magnetic tape drive.

%NEWED
Caché equivalent: %RD

Purpose: Lists routines that were filed by the program editor during a specified range of dates.

%0S
Caché equivalent: No Direct Equivalent

Purpose: Performs operating system-specific tasks.

%PARTSIZ
Caché equivalent: Not Available

Purpose: Allows you to dynamically change the partition size of the current job.

%RCHANGE
Caché equivalent: %RCHANGE

Purpose: Changes all occurrences of a string in one or more routines.

%RCMP
Caché equivalent: %RCMP

Purpose: Compares two routines in either the current namespace or different namespaces.

%RCOPY
Caché equivalent: %RCOPY
Purpose: Copies a routine from one UCI to another.
Notes: Caché’s %RCOPY will not allow you to copy the routine to another namespace. This utility renames a
routine in the current namespace.
%RD
Caché equivalent: %RD

Purpose: Display a routine directory for the current namespace.

%RDEL
Caché equivalent: %RDELETE

Purpose: Deletes one or more routines from the current namespace.

%RELOAD
Caché equivalent: %RCOMPIL

Purpose: Recompiles one or more routines in a namespace.

36 MSM to Caché Conversion Guide

MSM and Caché Utilities Catalog

%RPRT
Caché equivalent: %RD

Purpose: Prints a listing of one or more routines stored in the current namespace.

%RR
Caché equivalent: %SYS.RI, %SYS.RIMF, %urload
Purpose: Restores all or selected routines from an external device and allows them to be renamed.

Notes: Caché does not allow the renaming of routines on import.

%RS
Caché equivalent: %R0, %ROMF, %urprint

Purpose: Allows one or more routines to be saved on an external device.

%RSAND
Caché equivalent: %RFIND
Purpose: Searches one or more routines for occurrences of one or more character strings.
Notes: Unlike MSM, if more than one string is specified in Caché, each string may be anywhere in the routine.
MSM requires that both strings be on the same line.
%RSE
Caché equivalent: %RFIND
Purpose: Searches one or more routines for any occurrence of one or more character strings. If more than one
string is specified, any one of the strings found satisfies the search.
%RSEL
Caché equivalent: %RSET

Purpose: Allows you to select one or more routines from the current namespace.

%RSIZE
Caché equivalent: %RD, $$"%ROUOBJ(...)

Purpose: Displays the number of blocks used by selected routines.

%SBP
Caché equivalent: Not Available

Purpose: Displays the current status, block location, and buffer offsets for the Sequential Block Processor device.

%SDEV
Caché equivalent: %IS

Purpose: Allows you to select and open a device, and specify the OPEN parameters.

%Sl
Caché equivalent: %SS

Purpose: Displays general system information, including the status of system-related processes.

MSM to Caché Conversion Guide 37

MSM and Caché Utilities Catalog

%SP
Caché equivalent: %FREECNT
Purpose: Displays the total amount of disk space within a volume group and the amount of free space.
%SQRT
Caché equivalent: sqr*%math
Purpose: Computes the approximate square root value of a number.
%SS
Caché equivalent: %SS $V(-1,PID)
Purpose: Displays status information about each job currently active on the system.
%T
Caché equivalent: %T
Purpose: Displays the time stored in $SHOROLOG in the form HH:MM.
Notes: In Caché, use the INT tag to programmatically get the time.
%TI
Caché equivalent: %T]
Purpose: Converts a time value in external format (for example: 1:05 P.M.) to an internal $SHOROLOG format.
Notes: In Caché, use the INT tag to programmatically get the SHOROLOG value.
%TO
Caché equivalent: $ZTIME
Purpose: Converts a time value from internal $HOROLOG format to external format.
%TRANS
Caché equivalent: Not Available
Purpose: Enables you to transfer routines and globals between machines. Includes all of the necessary controls
(checksums) to ensure proper transmission of the routines and globals.
%UTL
Caché equivalent: "UTIL
Purpose: Provides a way to invoke most MSM utilities, based on the type of function to be performed.
%VIDEO
Caché equivalent: Not Available
Purpose: Allows users to modify contents of the PC Console video buffer. (MSM-PC/PLUS and MSM for Windows
only).
%XMIT

Caché equivalent: Not Available

38 MSM to Caché Conversion Guide

MSM and Caché Utilities Catalog

Purpose: Enables communication with another port on the system; this is useful for transferring information
between machines.

%ZSTIME
Caché equivalent: %RD

Purpose: Displays the last-saved time of one or more routines.

APIMGR
Caché equivalent: No Direct Equivalent
Purpose: MSM-Activate management utilities

Notes: In Caché, use the Caché Direct Client and Server Management Utilities.

BCS
Caché equivalent: BROADCAS, $ZU(9), $ZU(94)

Purpose: Broadcast messages to other terminals or process IDs

BI1J
Caché equivalent: Management Portal

Purpose: Manage Before Image Journaling (Write Image Journaling)

DBMAINT
Caché equivalent: MSU, MOUNT, DISMOUNT, etc.

Purpose: Perform database maintenance

GLBPLACE
Caché equivalent: %SYS.GCREATE

Purpose: Create a new global

JOBEXAM
Caché equivalent: JOBEXAM

Purpose: Display detailed information for a process

JRNL
Caché equivalent: JRNSTART, JRNSTOP, JRNDUMP, JRNSWTCH, JRNRESTO, %SYS.NOJRN

Purpose: Manage After Image Journaling (Flat File Journaling)

KILLJOB
Caché equivalent: RESJOB, , $ZU(4)

Purpose: Terminate a job

LOCKTAB
Caché equivalent: LOCKTAB

Purpose: Display all active locks in the system

MSM to Caché Conversion Guide 39

MSM and Caché Utilities Catalog

OLB
Caché equivalent: BACKUP

Purpose: Perform concurrent backup of databases

oLC
Caché equivalent: GCOMPACT

Purpose: Perform online compression

PEEK
Caché equivalent: Not Available

Purpose: Monitors another terminal device’s activity.

RECOVLCK
Caché equivalent: LOCKTAB

Purpose: Recover a lock

SETBAUD
Caché equivalent: Not Available
Purpose: Temporarily modifies terminal characteristics such as number of data bits, number of stop bits, parity,
and baud rate of a terminal.
SSD
Caché equivalent: SHUTDOWN, ZSHUTDOWN, %ZSTOP

Purpose: System shutdown utility

STU
Caché equivalent: STU, ZSTU, %ZSTART
Purpose: System startup utility

SYSGEN
Caché equivalent: Management Portal

Purpose: Generate system configuration

UCIMGR
Caché equivalent: Management Portal

Purpose: Manage UCI configurations

VALIDATE
Caché equivalent: INTEGRIT, CHECKPNT, CHECKMAP
Purpose: Check physical integrity of a database

VERIFY
Caché equivalent: See VALIDATE

40 MSM to Caché Conversion Guide

MSM and Caché Utilities Catalog

Purpose: Verify a database’s physical integrity

XCALLMGR
Caché equivalent: Not Available

Purpose: Manage XCALL functions

MSM to Caché Conversion Guide 41

M Language Differences

Only language features that differ between MSM and Native Caché mode are listed.

While MSM will allow varied abbreviations for many of its language features, Caché will only allow the abbreviations
stated in the Caché ObjectScript Reference.

B.1 Commands

BREAK
Caché equivalent: BREAK, ZBREAK
Purpose: Invokes the debugger.
Notes: Not supported from interactive debugger.

ZGO not supported in Caché — use argumentless GOTO instead.

CLOSE
Caché equivalent: CLOSE
Purpose: Closes a device.

Notes: Caché supports MSM-like numeric devices after you define a numeric alias for that device—see OPEN.

DO
Caché equivalent: DO
Purpose: Executes a routine or block of code.
Notes: Square brackets ([]) not supported from routines — use vertical bars instead (||). And, MSM’s UCI and
VOL values must be changed to namespace and system values, respectively. Or, eliminate routine extended refer-
ences and use namespace routine mapping (Preferred).

JOB

Caché equivalent: $ZCHILD, JOB
Purpose: Spawns a new background process.

Notes: In Caché, use $ZCHILD to return the PID of the jobbed process rather than $ZB as done in MSM.

MSM to Caché Conversion Guide 43

M Language Differences

Using the JOB command to specify a new partition size [JOB:(:PartitionSize)] is only supported in Caché for
UNIX®—For Windows, use $ZF(-2) to spawn an external Caché job with a new partition. For example, this code
runs ~Test in the %SYS namespace with a 1024 KB partition size on Windows NT (assumes default installation
directory):

Set x=%zf (-2, "c:\cachesys\bin\cache -s..\ngr -b 1024 -U %SYS " Test")

Note these differences between MSM jobs and Caché jobs:

* When jobbing to Caché (or any DSM-DDP system), you cannot pass parameters. Parameter passing across
the network is an MSMV 3 circuit option only. You need to set passed values into a global on one of the systems
and fetch these values in the JOBed process.

* When jobbing from MSM to Caché, you can only start jobs with a default database. That is, you cannot
specify a namespace in the JOB command in MSM to start the job on cache in. Once started, the job on the
Caché system will need to specifically change (ZNAMESPACE) to a hamespace to use mapping.

NEW
Caché equivalent: NEW
Purpose: Stacks one or more local variables.
Notes: Caché does not allow $TEST or $ZREFERENCE as arguments to the NEW command.
OPEN
Caché equivalent: OPEN
Purpose: Opens a device.
Notes: Devices in Caché correspond to device name at the OS level (such as /dev/tty3a), unless a numeric alias is
specified in the System Configuration utilities for the device. You must use a numeric alias to emulate MSM’s
device structure.
TRESTART
Caché equivalent: Not implemented.
Purpose: Causes current transaction to be restarted.
TSTART
Caché equivalent: TSTART
Purpose: Marks the beginning of a transaction.
Notes: Caché does not support restart variables or transaction parameters.
USE
Caché equivalent: USE
Purpose: Uses a device, and sets $10 to this current device.
Notes: Caché supports MSM-like numeric devices after you define a numeric alias for that device—see OPEN.
VIEW
Caché equivalent: VIEW
Purpose: Reads and writes blocks to disk, and writes locations in memory.
44 MSM to Caché Conversion Guide

Commands

Notes: VIEW commands must respect Caché disk and memory structures—see documentation for more details.

WRITE
Caché equivalent: WRITE
Purpose: Sends output to current device.

Notes: Mnemonic spaces may need to be rewritten for Caché.

ZCALL
Caché equivalent: $ZF

Purpose: Calls an external procedure.

ZFLUSH
Caché equivalent: Not implemented.

Purpose: Flushes all disk blocks out of the internal disk buffer cache.

ZGO
Caché equivalent: argumentless GOTO
Purpose: Resumes execution of a program after a BREAK command.
ZHOROLOG
Caché equivalent: the %SYSTEM.Process FixedDate() method.
Purpose: Sets date and time for current process.
Notes: Caché’s FixedDate() method only allows a new date value, not time.
ZMSM
Caché equivalent: No direct equivalent.
Purpose: Traces the sequence of program execution within a routine and from routine to routine.
Notes: In Caché, try:
For i=0:1:$stack(-1) Do
W T e TR L S e
. Wite !,?5 "Current source:", $stack(i,"ncode")
Qi t
ZNEW
Caché equivalent: Not implemented.
Purpose: Similar to NEW command, but variable is persistent after subroutine explicitly or implicitly quits.
ZQUIT

Caché equivalent: ZQUIT

Purpose: Passes control to the next higher error-processing routine that has been specified by $ZTRAP.

Notes: Caché clears entire stack, unless an argument representing the number of error trap levels to quit back is

specified.

MSM to Caché Conversion Guide

45

M Language Differences

ZSETOBJ

ZUSE

Caché equivalent: SET
Purpose: Assigns an object reference to a variable.
Notes: ObjectScript uses the native SET command, such as:

Set var =Car . Make

Caché equivalent: the %Library.Device Broadcast() method or the %SYSTEM.Process Broadcast() method.

Purpose: Allows write access to any device, even if in use — broadcasting

B.2 Operators

#

Caché equivalent: $ZHEX

Purpose: Performs numeric conversions from hexadecimal to decimal.

B.3 Structured System Variables

~$DEVICE

Caché equivalent: Not implemented.

Purpose: Provides information on the existence, operational characteristics, and availability of a device.

B.4 Functions

$ORDER

Caché equivalent: SORDER

Purpose: Returns next subscript at the same level of a given variable. Also loops through a list of local variables
set in a partition.

Notes: This looping functionality differs on the two platforms. For example, assume we have these variables set:

%1, 9JSER="m kel ", var=123.

MSM code

Wite $Order() ; this returns "%

Wite $O der (% ; this returns "%JSER'
Wite $O der (%SER) ; this returns "var"

Caché code

Wite $Oder(@"")) ; this returns "%
Wite $Oder (% ; this returns "%JSER'
Wite $O der (%JSER) ; this returns "var"

46

MSM to Caché Conversion Guide

Functions

SVIEW
Caché equivalent: $VIEW

Purpose: Returns contents of memory locations.

$ZASCII
Caché equivalent: SASCII

Purpose: Returns the Unicode character code of a specified character.

$ZBN
Caché equivalent: Not available.
Purpose: Returns the starting block number for a routine or global, allocates a disk block, or de-allocates a disk
block.
$ZBname
Caché equivalent: $ZBIT<name>

Purpose: A collection of functions that are used to perform logical operations on bitstrings.

$ZCALL
Caché equivalent: $ZF
Purpose: Calls an external procedure and returns a value.
Notes: Caché’s $ZF expects function names in double-quotes [$ZF("MyFunction™)], while MSM’s $ZCALL does
not [$ZCALL(MyFunction)].
$ZCHAR
Caché equivalent: Not available.

Purpose: Returns a string of characters, given a list of Unicode character codes.

$ZCRC
Caché equivalent: $ZCRC

Purpose: Returns a computed checksum or cyclic redundancy check.

$ZCREATEOBJECT
Caché equivalent: SET
Purpose: Returns an object reference to a newly instantiated object.
Notes: ObjectScript uses the native SET command, such as:

Set var =##cl ass(Car). %New)

$ZDATE
Caché equivalent: $ZDATE
Purpose: Returns an external date value, given a SHOROLOG date.

Notes: Caché will return a <VALUE OUT OF RANGE> error for any $H value below 0 and above 2980013.
While MSM will not generate an M error for dates out of range, invalid dates are reported for $H values below 0
and after 94598.

MSM to Caché Conversion Guide 47

M Language Differences

$ZDEVICE
Caché equivalent: No direct equivalent.
Purpose: Returns the actual device name, given the internal device ID.
Notes: For a terminal device, the special variable $Z10 contains the TELNET port number and host IP address,
or LAT server name and port name. For more information on using terminal devices, see the Caché 1/0 Device
Guide chapters on /O Devices and Commands and Terminal 1/0.
$ZGETOBJECT
Caché equivalent: SET
Purpose: Retrieves database object, and returns object reference to the instantiated object.
Notes: ObjectScript uses the native SET command, such as:

Set var =##cl ass(Car) . %pen(OREF)

$ZHL

Caché equivalent: $ZDATE, $ZTIME, $ZDATETIME

Purpose: Returns an external date or time value, given a SHOROLOG date.

Notes: Use $ZDATE to convert dates and $ZTIME to convert times, or $ZDATETIME to convert both.
$ZOBJREFERENCE

Caché equivalent: Not available.

Purpose: Identifies whether an expression refers to an object, and whether two expressions refer to the same object.
$Z0S

Caché equivalent: $ZF(-1), $ZSEARCH, OPEN

Purpose: Invokes commonly used host OS functions from within M.
$ZPOSITION

Caché equivalent: Not available.

Purpose: Returns the number of positions of a string that can fit in a field, on an output device.
$ZUCI

Caché equivalent: No direct equivalent.

Purpose: Returns the UCI internal number or external name.

Notes: In Caché, use $ZNSPACE or SNAMESPACE to return the current namespace.
$ZVERIFY

Caché equivalent: Not available.

Purpose: Returns a string of errors, if any exist, in the logical structure of the database.
$ZWIDTH

Caché equivalent: Not available.

Purpose: Returns the width that a string occupies when it is displayed on an output device.

48 MSM to Caché Conversion Guide

Preprocessor Directives

B.5 Preprocessor Directives

#comment
Caché equivalent: No direct equivalent.

Purpose: Turns on the insertion of pre-expansion lines of code that contain macros into the generated code as
comments.

Notes: In Caché, you can use #show to enable the inclusion of comments from .INC code in the generated .INT
code.

#defarray
Caché equivalent: Not available.

Purpose: Defines a macro to be used for referencing an array.

#deflabel
Caché equivalent: Not available.
Purpose: Defines a unique local label or variable, and is guaranteed to be unique in a routine as long as the prefix
is not used directly.
#include
Caché equivalent: #include
Purpose: Includes source code in a given routine.

Notes: In Caché, #include can only be used to reference .INC code.

#library
Caché equivalent: Not available.

Purpose: Specifies path to library files.

#makelib
Caché equivalent: Not available.

Purpose: Creates a macro library.

#nocomment
Caché equivalent: No direct equivalent.
Purpose: Stops the inclusion of unprocessed source code lines as comments.

Notes: In Caché, you can use #noshow to exclude comments from .INC code from the generated .INT code.

#noroutine
Caché equivalent: Not available.

Purpose: Prevents generation of an M routine.

#prefix

Caché equivalent: Not available.

MSM to Caché Conversion Guide 49

M Language Differences

Purpose: Defines the prefix used to identify a macro reference.

#routine

Caché equivalent: Not available.

Purpose: Specifies the name of a routine to be generated.

#undefine

#updlib

#X

Caché equivalent: #undef
Purpose: Removes a macro definition.

Notes: In Caché, you must change all #undefine statements to #undef.

Caché equivalent: Not available.

Purpose: Updates a macro library.

Caché equivalent: Not available.

Purpose: Executes M code during preprocessing.

B.6 Special Variables

$DEVICE

Caché equivalent: $SDEVICE
Purpose: Indicates whether last 1/0O operation was successful.

Notes: Caché always returns the NULL string indicating a successful 1/0 operation You can use the SET command
to place a value in $DEVICE. By convention, this value should describe the outcome of an 1/0 operation as a
string in the form: " st andard_error, user_error, expl anatory_text".

$ECODE

$I0

Caché equivalent: $ECODE
Purpose: Returns a list of errors encountered by the application.

Notes: While MSM’s and Caché’s $ECODE are the same conceptually, Caché will use Caché-specific error strings
such as: ,ZSYNTAX, ZNOROUTINE, ZDISKHARD,

Caché equivalent: $10
Purpose: Contains the currently active device.

Notes: While MSM will represent $10 as an internal device number, Caché will use an actual device name, with
a device type header. For example, a printer in Caché might look something like this:

| PRN| \\ sal esserver\printerl

For MSM-like devices, you must create a numeric alias for your device via the System Configuration Wizard.

50

MSM to Caché Conversion Guide

Special Variables

$JOB
Caché equivalent: $JOB
Purpose: Contains the job number for the current process.
Notes: Caché’s $JOB values correspond to the process’ PID number at the OS level, while MSM’s $JOB values
are MSM-specific numbers.
$PRINCIPAL
Caché equivalent: SPRINCIPAL
Purpose: Contains a job’s principal device.
Notes: While MSM will represent $PRINCIPAL as an internal device number, Caché will use an actual device
name, with a device type header. For example, a user login in Caché might look something like this:
| TNT| 192. 9. 204. 64: 1097| 316
Inthis case, [TNT]| specifies a TELNET device, 192.9.204.64 represents the TERMINAL server IP, 1097 the virtual
port number, and 316 the OS level process ID.
$SYSTEM
Caché equivalent: No direct equivalent.
Purpose: MSM uses $SYSTEM to return three pieces of information: an M User Group # (43), the Serial # from
the MSM license, and a unique # for the current instance of M.
Notes: Caché license information can be accessed through methods of the %SYSTEM.License class:
» KeyMachinelD() returns the contents of the MachinelD field in the active key.
» KeyOrderNumber() returns the active key OrderNumber field.
» KeyAuthorizationKey() returns the AuthorizationKey field in the active key.
» KeyCustomerName() returns the active key CustomerName field.
These methods are implemented in the special $SYSTEM object and can be accessed with the
$SYSTEM Li cense. Met hod() syntax.
$TRESTART
Caché equivalent: Not implemented.
Purpose: Indicates the number of transaction restarts that have occurred since the initiation of the transaction.
$ZB
Caché equivalent: $ZB, $ZCHILD
Purpose: Returns device-specific information for the current device. When used with the JOB command. MSM’s
$ZB returns the jobbed process’ PID.
Notes: For this functionality in Caché, use $ZCHILD.
$zC

Caché equivalent: Not implemented.

Purpose: Contains device-specific information for the current device.

MSM to Caché Conversion Guide 51

M Language Differences

Notes: In Caché, $ZC is used to represent both the $ZCHILD special variable and $ZCY C function, depending
on context.
$ZERROR
Caché equivalent: $ZERROR
Purpose: Contains the text of the error message most recently produced by the application or programmer.

Notes: Caché will report Caché-specific error text that may or may not correspond to MSM’s error text.

$ZLEVEL
Caché equivalent: No direct equivalent.
Purpose: Contains a number that indicates the current nesting level.

Notes: Use $STACK

52 MSM to Caché Conversion Guide

	Table of Contents
	About This Book
	Overview

	1 Getting Started
	1.1 Determining Hardware Requirements
	1.2 Determining Networking Requirements
	1.2.1 Mixed MSM/Caché Networks
	1.2.2 Running Caché and MSM on the Same Machine
	1.2.3 Ensuring Unique $JOB Values Across the Network

	1.3 Installing Caché
	1.3.1 Installing the Caché License Key

	2 Creating Caché Databases and Namespaces
	2.1 Creating Database Files
	2.2 Creating a Namespace Configuration
	2.2.1 The CACHETEMP Database

	3 Converting MSM Globals
	3.1 Converting Selected Globals
	3.2 Preserving MSM String Collation
	3.3 Enabling Null Subscript Support in Caché
	3.4 Converting Globals by Database
	3.4.1 Running %MSMCVT in Block Mode

	4 Converting Your MSM Application
	4.1 How Routines Differ
	4.2 Porting MSM Routines
	4.3 MSM Language Compatibility Mode
	4.4 Converting Nonstandard Functions and Features
	4.4.1 MSM-XCALL Functions
	4.4.2 OS Functions via %OS and $ZOS
	4.4.3 Converting ZWINTERM Calls
	4.4.4 MSM Preprocessor Directives
	4.4.5 Extended References for Globals and Routines
	4.4.6 Handling End-of-file Situations in Caché

	4.5 MSM and Cache Database Networking (DDP)

	5 Connecting Applications to Caché
	5.1 Connection Tools
	5.1.1 MSM-Activate
	5.1.2 MSM-SQL, KB-SQL, and M/SQL
	5.1.3 MSM-PDQWeb
	5.1.4 MSM-Workstation

	5.2 Terminal Servers
	5.2.1 TELNET and LAT Terminal Servers
	5.2.2 Serial Port Expander Boards
	5.2.3 Conversion of MSM Terminal Device Characteristics

	6 Caché System Management
	6.1 Configuring Caché
	6.2 Configuring Devices
	6.3 Automating Caché Backups
	6.4 Caché Journaling
	6.4.1 Shadow System Journaling
	6.4.2 Shadowing and Switching from MSM to Caché

	Appendix A: MSM and Caché Utilities Catalog
	Appendix B: M Language Differences
	B.1 Commands
	B.2 Operators
	B.3 Structured System Variables
	B.4 Functions
	B.5 Preprocessor Directives
	B.6 Special Variables

