InterSystems-

Ensemble

Ensemble XML Virtual
Document Development Guide

Version 2017.2
2020-06-26

Ensemble XML Virtual Document Development Guide
Ensemble Version 2017.2 2020-06-26

Copyright © 2020 InterSystems Corporation

All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
I o1 oo [T f o ISR 3
BN = 11 = o] = oo SRS 5
2.1 Using the XML Schema StrUCIUrES PAgEccveeruerereseseseeseseseeseeesesessessesseseessesseseessensesenns 5

2.2 Using the XML DOCUMENt VIEWES PAJEcceeeeueeierereestesiesiesieseseeseessesesessessessessessesseseessensesenns 5

2.3 Importing XML Schemas ProgrammatiCallycccceceririninenenene e 6

2.4 XML ClBSSES .vuiiveuertiestiseetiseetessssesaesessesessssessesessassasassssessesessesessesessesessasessessssensssensesensesessesessanes 6

S CONTIGUI BLION SEEPS ...ttt b bbb et b et b e e b e e b e b ne e r st nnene 9
3.1 Loading XML Schemas into ENSEMDBIEcocoevieiinene et 9

3.2 Adding a Business Service to Handle Inbound XML asVirtual Documentscoceeevenereennn 9

3.3 Adding a Business Process to Handle XML Virtual DOCUMENLSccevveerirerircriineniinesienennes 10

3.4 Adding a Business Operation to Handle XML Virtual DOCUMENEScccevereereeneereenenenennenn 10

4 Overview of Property Pathsin XML Virtual DOCUMENESccccoirieiieieinieieie e 13
4.1 Orientation to Virtual Property Paths for XML Virtual DOCUMENLScoeoerverererenerieenieenee 13
4.1.1 Basic Syntax for Schema-dependent Pathscccooevrivninrienneneeeee e 14

4.1.2 Basic Syntax for DOM-styl€ Pathsccccoveoirirericecece e 14

4.2 Viewing Path Units for XML Virtual DOCUMENLSccevueveeeeereresesesesrese e sseseeseeseeeeesnens 15

4.3 Redundant Inner Elements for Schema-dependent Pathsccocvirinineieneneneereeeeeeeens 17

4.4 REPEAIING FTEIAS ...ttt b e e st st se e b e e ae e 18

A.5 DUPIICAEE NGITIES ...ttt sttt et skt se b e bt e st s b et b et b et ebeseebeseebeseebeseene e 18

4.6 CRNOICE SLIUCIUIES ..veveeeeeiiesiesietesteseeseeeeseeseesessessessessessessessessessessensessessensensensenseneesessessessessenes 19

4.7 Groups Included DY REFEIENCEcveeeeeeeee et nnens 20

5 Specifying Schema-dependent Pathsfor XML Virtual DOCUMENTSccceeveceeveeceeerieriesenesennens 23
5.1 Getting or Setting the Contents of an XML ElemMentcccevvveve e v s 23

5.2 Getting or Setting the Value of an XML AtriDULEooeiiieiieeeeeeeeeeree e 24

5.3 CommENtS aNd DESCITPLIONS ...c.veueveuerriertireetesiete ettt e bbb se e sneaes 24

5.4 Using Mixed Content When Setting Pathsccoiiiriincrceiereenceseeseseee s 25

5.5 Special Variations for Repeating EIEeMENtSccocvveeveveiisiene e 25
5.5.1 Iterating Through the Repeating ElEMENESccccccvvievirinie v 25

5.5.2 CouNting EIEMENLSooueiiiiiiiiiitesese ettt bbb e 26

5.6 Testing Schema-dependent Paths in the Terminal ... 26

6 Specifying DOM-style Paths for XML Virtual DOCUMENLSccceererierereninereeeniee e 29
6.1 Getting or Setting Nodes (BaSiC Paths)ccviiriniiirieirieerie e 29

6.2 Using Mixed Content When Setting Pathscccovoeveriiieiisesie e 31

6.3 Using the BasiC Path MOQITIErSc.ccvirierecice et 32

6.4 UsiNg the FUIT() FUNCLION ...ocueeieceeeee ettt st n e sne e 33

6.5 Getting or Setting the Value of an XML AttribDULEooeriieiieeeeeeeee e 34

6.6 Using Path Modifiers to Insert or APPend NOTEScceirieireeneirieereesee e 34

6.7 Using the element() FUNCLIONoouiiiiireiec e 37

6.8 Getting PoSitioNs Of EIEMENLScccoiiviierierieereese ettt s ne e 37

6.9 Getting CouNts Of EIEMENLS ...c.eceeieececeeer st sne e s 38
6.10 Accessing Other MELAOEIAceceieeriecieecee et e e eneenneenes 38
6.11 Summary of Path MOGITIENSccuiiieieeee ettt s 39
6.12 Variations for Documents That USe NaMESPACEScovvereireriireriiresierieieseeieseeeseeeseeeseseseenes 39

Ensemble XML Virtual Document Development Guide

6.13 Testing DOM-style Paths in the TErmMinalcccooeeiiieeie e s 40

7 Defining Data Transformations for XML Virtual DOCUMENLSccccevirinerienieneeieieereeenereeeas 41
7.1 Creating @ Data TranSfOrMELiONc.coeerreierierererese sttt s ere e b seere e 41

7.2 Available Assignment Actions for XML Virtual DOCUMENESccceereeerieerieereeerieenieeseeeneas 42

G £ 1o o[- 42
7.3.1 The PFOrMat ATQUMENTccveiiiiesiereeiereeseeeees e sesres e seestesteseeseessesseseesesneeneesessessesssssenees 43

7.4 Example 1: Copying Most of the Source DOCUMENLccccceererinenenieneene e 44

7.5 Example 2: Using Only a Few Parts of the Source DOCUMENtcocevevererierienieneeneeeeeeene 45

7.6 Example 3: Using Code and SEtValUBAT()cvrveereererrireerireeierieierieesieesieeseees e 46

8 Defining Rule Setsfor XML Virtual DOCUMENTS ..o e 47
8.1 Creating @RUIE SEL ... st nre s 47

ST e 2] o] = 48

9 Defining Search Tables for XML Virtual DOCUMENEScccceieeiierieie e ceee et 49
9.1 INEFOUUCTION ..ttt sttt sttt et sttt et b et b e st b et b e se e b e ne b e e b e s s r e rns 49

9.2 EXBIMPIE 1.ttt b b e b e bR bR Rt e e b e n e enn 49

10 XM L -Enabled Objects Compared to XML Virtual DOCUMENLEScoveveereeerereresese e 51
T LS = L0 R {0 G T o 53
SettingS for XML BUSINESS SENVICESccviviviiieriereeieieeieeesesesestes e seestesteseesesssessessessssessessessesseses 54
Settings for XML BUSINESS OPEIratioNScc.eeuereereeieeeeeeeiere ettt s se e see e 55

Ensemble XML Virtual Document Development Guide

About This Book

Thisbook is one of a set that describes how to add virtual document interfaces and processing to Ensemble productions.
It contains the following sections:

Introduction

Available Tools

Configuration Steps

Overview of Property Pathsin XML Virtual Documents
Specifying Schema-dependent Paths

Specifying DOM-style Paths

Defining Data Transformations for XML Virtual Documents
Defining Rule Sets for XML Virtua Documents

Defining Search Tables for XML Virtual Documents
XML-Enabled Objects Compared to XML Virtual Documents

Reference for Settings

For a detailed outline, see the table of contents.

The following books provide related information:

Ensemble Best Practices describes best practices for organizing and developing Ensemble productions.

Developing Ensemble Productions explains how to perform the devel opment tasks related to creating an Ensemble
production.

Configuring Ensemble Productions describes how to configure Ensemble productions, business hosts, and settings. It
also provides reference information on settings not discussed in this book.

Ensemble Virtual Documents describes the concept of Ensemble virtual documents and provides generic information
on working with them.

For genera information, see the InterSystems Documentation Guide.

Ensemble XML Virtual Document Development Guide 1

Introduction

Ensemble provides support for XML documents as virtual documents. A virtual document is akind of message that
Ensemble parses only partialy. Thiskind of message has the standard Ensembl e message header and the standard message
properties such as ID, Priority, and Sessionld. The data in the message, however, is not available as message properties,
instead it is stored directly in an internal-use global, for greater processing speed.

Ensemble provide tools so that you can access valuesin virtual documents, for use in data transformations, business rules,
and searching and filtering messages. For background information, see Ensemble Virtual Documents.

Note: < Whenreading XML documents, Ensemble removes the XML declaration, all processing instructions, and
al comments.

e |f the name of an element or attribute includes a period (.), Ensemble replaces that with atilde (=).

For example, an XML element named My . Element appears as My~Element in Ensemble.

You can also work with XML documents as standard Ensemble messages. To do so, you can generate classes from the
corresponding XML schema. For information, see Using Caché XML Tools.

In some cases, it may be more efficient to use XML-enabled objects in productions instead of XML Virtual Documents.
See “XML-Enabled Objects Compared to XML Virtual Documents™ for more information.

Ensemble XML Virtual Document Development Guide 3

Available Tools

This chapter provides an overview of the Ensemble tools that you can use to work with XML schemas and documents. It
contains the following sections:

e Using the XML Schema Structures Page

e Using the XML Document Viewer Page

* Importing XML Schemas Programmatically
XML Classes

2.1 Using the XML Schema Structures Page

The XML Schemas page enables you to import and view XML schema specifications.
To display this page, click Ensemble > Interoperate > XML > XML Schema Structures.
For general information on using this page, see “Using the Schema Structures Page” in Ensemble Virtual Documents.

Before importing a schemafile, renameit so that its name isinformative and unique within this Ensemble namespace. The
filename is used as the schema category name in the Management Portal and elsawhere. If the filename ends with the file
extension . xsd, the file extension is omitted from the schema category name. Otherwise the file extensionisincluded in
the name.

Note: You can use these schemas only to support processing of XML virtual documents as described in this book.
Ensemble does not use them for any other purpose.

Important: After importing aschemafile, do not remove thefile from its current location in the file system. The XML
parser uses the schema file rather than the schema stored in the Ensemble database.

2.2 Using the XML Document Viewer Page

The XML Document page enablesyou to display XML documents, parsing them in different ways, so that you can determine
which DocType to use. You can also test transformations. The documents can be external files or documents from the
Ensemble message archives.

Ensemble XML Virtual Document Development Guide 5

Available Tools

To display this page, click Ensemble > Interoperate > XML > XML Document Viewer.

For general information on using this page, see “Using the Document Viewer Page” in Ensemble Virtual Documents.

2.3 Importing XML Schemas Programmatically

You can also load schemas programmatically by using the EnsLib.EDI.XML.SchemaXSD class directly. This class provides
the Import() class method. The first argument to this method is the name of the file to import, including its full directory
path. For example:

set status= ##class(EnsLib.EDI.XML.SchemaXSD) . Import(‘'c:\ENSEMBLE\myapp.xsd'")

The EnsLib.EDI.XML.SchemaXSD class also provides the ImportFiles() method. For this method, you can specify thefirst
argument in either of the following ways:

e Asthe name of adirectory to import files from. Ensemble attemptsto import al filesin this directory, regardless of
the file extensions. For example:

set status=##class(EnsLib.EDI.XML.SchemaXSD) . ImportFiles(''c:\ENSEMBLE\'")

* Asalist of filenames, separated by semicolons. You must include the full directory path for the first of these, and you
can use wildcards in the filenames. For example:

set status=##class(EnsLib.EDI.XML.SchemaXSD) . ImportFiles(''c:\ENSEMBLE*.xsd;*.XSD'")

For more information, see the class reference for EnsLib.EDI.XML.SchemaXSD.

Important: After importing aschemafile, do not remove thefile from its current location in the file system. The XML
parser uses the schema file rather than the schema stored in the Ensemble database.

2.4 XML Classes

For reference, this section lists the classes that Ensembl e provides to enable you to work with XML documents.

Iltem Classes Notes
XML business e EnsLib.EDI.XML.Service.FileService Each of these business service
services classes uses a different adapter,

e EnsLib.EDI.XML.Service.FTPService .
as indicated by the class name.

XML routing EnsLib.MsgRouter.VDocRoutingEngine This class is the standard virtual
process document routing process.

XML business e EnsLib.EDI.XML.Operation.FileOperation Each of these business operation
operations classes uses a different adapter,

¢ EnsLib.EDI.XML.Operation.FTPOperation L
P P as indicated by the class name.

Messages EnsLib.EDI.XML.Document (automatically used by the | This is a specialized message
business host classes) class to carry XML documents as
Ensemble virtual documents.

6 Ensemble XML Virtual Document Development Guide

XML Classes

Search table EnsLib.EDI.XML.SearchTable This is a specialized search table
class for XML documents.

You can also create and use subclasses of these classes.

The business host classes include configurable targets. The following diagram shows some of them:

Business Rule Name setting

=II:= transform E target H

For information on other configurable targets, see “ Reference for Settings.”

Ensemble XML Virtual Document Development Guide 7

Configuration Steps

This chapter describes the configuration steps needed to use XML virtual documentsin a production. It discusses the fol-
lowing topics:

* How toload XML schemasinto Ensemble
* How to configure a business service to handle inbound XML as virtual documents
* How to configure a business process to route XML virtual documents

» How to configure a business operation to handle XML virtual documents

For information on settings not described here, see “Reference for Settings.”

Later chapters describe how to create items to use in the production: data transformations, rule sets, and search tables.

3.1 Loading XML Schemas into Ensemble

For XML virtual documents, it is useful, but not required, to load the corresponding XML schemas into Ensemble. If the
schemas are available in Ensembl e, then Ensemble can validate the documents, and you can use the schema-dependent
virtual property paths (rather than only the DOM-style paths). Also, the DTL editor and the Business Rule Editor provide
assistance with the document structure.

Toload an XML schemainto Ensemble, usethe XML Schema Structures page, described in the chapter “ Available Tools.”

3.2 Adding a Business Service to Handle Inbound XML
as Virtual Documents

To add a business service to handle inbound XML documents as Ensemble virtual documents, do the following:

1. Toyour production, add a business service that is based on the class EnsLib.EDI.XML.Service.FileService or
EnsLib.EDI.XML.Service.FTPService.

2. Specify where this business service will find theinbound XML documents.

For example, for EnsLib.EDI.XML.Service.FileService, specify the File Path setting, which is the directory that the
business service will check for new files.

Ensemble XML Virtual Document Development Guide 9

Configuration Steps

3. Optionally specify other settings as needed. In particular, you might want to specify the following:

* Doc Schema Category, which specifies the XML schemathat appliesto the inbound documents. Select a XML
schemathat you have previoudy loaded.

You must choose aschemaif you want to validate the messages. The schema can also be used if you define search
tables.

e Charset, which specifiesthe character set of theinbound data. Ensemble automatically translates from this character
encoding. For more options, see “Charset” in “Reference for Settings” in Using File Adapters with Ensemble.

* Search Table Class. Seethe chapter “Defining Search Tables for XML Virtual Documents.”

Make sure that this search table class is consistent with the kinds of messages received by this business host. For
example, if the business host receives messages whose root element is <Transaction>, it would not be appro-
priate to use a search table class that used propertiesin an <Employee> element.

4. Specify where to send the XML documents. To do so, specify acomma-separated list of values for the Target Config
Names setting. Each value should be the name of either a business process or a business operation.

3.3 Adding a Business Process to Handle XML Virtual
Documents

To add a business process to handle XML virtual documents, do the following:
1. Toyour production, add a business process that is based on the class EnsLib.MsgRouter.VDocRoutingEngine.

2. For this business process, specify the Business Rule Name setting. Choose the appropriate business rule set that acts
on XML virtual documents.

For information on defining these, see the chapter “Defining Rule Setsfor XML Virtual Documents.”
3. Optionally specify other settings as needed.

4. Configurethe appropriate business host or hostsin the same production to send XML virtual documentsto this business
process:

» For abusiness service, edit the Target Config Names Setting to include the name of this business process.

» For abusiness process, specify aBusiness Rule Name that routes messages to this business process.

3.4 Adding a Business Operation to Handle XML Virtual
Documents

To add a business operation to send XML virtual documents to destinations outside of an Ensemble production, do the
following:

1. Toyour production, add a business operation that is based on the class EnsLib.EDI.XML.Operation.FileOperation or
EnsLib.EDI.XML.Operation.FTPOperation.

2. Specify settings of this business operation as needed.

10 Ensemble XML Virtual Document Development Guide

Adding a Business Operation to Handle XML Virtual Documents

For example, for EnsLib.EDI.XML.Operation.FileOperation, specify the File Path setting, which isthe directory to which
the business operation will write the files. The directory must exist and must be accessible.

3. Optionally specify the Search Table Class setting. See the chapter “Defining Search Tables for XML Virtual Docu-
ments.”

Make sure that this search table class is consistent with the kinds of messages received by this business host. For
example, if the business host receives messages whose root element is <Transaction>, it would not be appropriate
to use a search table class that referred to an <Employee> element.

4. Configure the appropriate business host or hostsin the same production to send XML virtual documentsto this business
operation:

e For abusiness service, edit the Target Config Names setting to include the name of this business operation.

» For abusiness process, specify aBusiness Rule Name that routes messages to this business operation.

You might also want to add business operations to handle bad messages (for background, see “Business Processes for
Virtual Documents” in Ensemble Virtual Documents).

Ensemble XML Virtual Document Development Guide 11

Overview of Property Paths in XML Virtual
Documents

This chapter provides an overview of property pathsin XML virtual documents. It discusses the following:
» Orientation to virtual property paths for XML documents

* How to view property path units for an XML schema

* How Ensemble handles redundant inner elements

» How Ensemble handles repeating elements

* How Ensemble handles duplicate elements

* How Ensemble handles choice structures

* How Ensemble handles groups included by reference

The next two chapters describe in detail how to create property paths.

Note: Thecodeexamplesin thischapter are fragments from data transformations, because datatransformations generally
use aricher set of property paths than do rule sets and search tables. Also, the emphasis is on DOM-style paths,
because those are the paths that you must create manually. (In contrast, when you specify a schemato use,
Ensemble displays the structure of the document and automatically generates schema-dependent paths when you
drag and drop or when you use auto-completion.)

4.1 Orientation to Virtual Property Paths for XML Virtual
Documents

This section briefly introduces virtual property paths for XML virtual documents.

As noted earlier, you can use schema-dependent paths only if you have loaded the corresponding XML schema. You can
always use DOM-style paths, even when no schemais available.

Ensemble XML Virtual Document Development Guide 13

Overview of Property Paths in XML Virtual Documents

4.1.1 Basic Syntax for Schema-dependent Paths
For XML virtua documents, aschema-dependent path consists of aset of path units separated by periods, asin thefollowing
example:

unitl.unit2.unit3

Where unitl is the name of achild XML element in the document, unit2 is the name of a child element within unitl, and
s0 on. The leaf unit isthe name of either achild XML element or an XML attribute.

For example:
HomeAddress.City
For complete information, see the chapter * Specifying Schema-dependent Paths.”

4.1.2 Basic Syntax for DOM-style Paths

A DOM-style path always starts with a slash and has the basic structure shown in the following example:

/root_unit/unitl/unit2/unit3

Each path unit has the following form.

namespace_identifier:name

Where namespace_identifier represents the XML namespace; thisis atoken that Ensemble replaces with the actual
namespace URI, as discussed in alater subsection. Thistoken is needed only if the element or attribute isin a namespace,
asyou will seelater in this chapter.

name isthe name of an XML element or attribute.
For example:
/$2:Patient/$2:HomeAddress/$2:City

For complete information, see “ Specifying DOM-style Paths.”

4.1.2.1 XML Namespace Tokens

When you load a schemainto Ensemble, Ensembl e establishes a set of tokens for the namespaces used in that schema, for
usein any DOM-style paths.

The token $1 is used for first namespace that is declared in the schema; this usually corresponds to the XML schema
namespace (http://www.w3.0rg/2001/XMLSchema). The token $2 is used for the next namespace that is declared
in the schema, $3 is used for the third, and so on.

Ensembl e assigns namespace tokens for all namespaces declared in the schema, whether or not those namespaces are
actually used. Therefore, Ensemble might use $3 or ahigher value rather than $2 for theitems of interest to you, if additional
namespaces are declared in the schema. It is practical to use the Management Portal to view the individual path units, as
discussed in the next section, to be sure that you are using the correct token for a specific path unit.

You can use namespace tokens if you have also loaded the corresponding schema (and have configured the applicable
business host to use that schema). Otherwise, you must use the namespace prefixes exactly as given in the XML document.

14 Ensemble XML Virtual Document Development Guide

Viewing Path Units for XML Virtual Documents

4.2 Viewing Path Units for XML Virtual Documents

Until you are familiar with property paths for XML virtual documents, it is useful to use the Management Portal to view
the individual path units. You can do thisif you have loaded the corresponding schema.

To view the path units for the elements and attributes in a schema:
1. Load the schema as described in the previous chapter.

For example, consider the following XML schema, shown here for reference, for the benefit of readers who are
familiar with XML schemas:

<?xml version="1.0" encoding="UTF-8"7?>
<schema xmlns="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="http://myapp.com"
xmlns:myapp="http://myapp.com">
<element name="Patient” type="myapp:Patient"/>
<complexType name="Patient'>
<sequence>
<element minOccurs="0" name=""Name'" type=''string'/>
<element minOccurs="0" name="FavoriteColors"
type="myapp:ArrayOfFavoriteColorString" />
<element minOccurs="0" name="‘Address" type="myapp:Address" />
<element minOccurs="0" name="Doctor" type="myapp:Doctor" />
</sequence>
<attribute name="MRN" type=''string'/>
<attribute name="DL" type="string"/>
</complexType>
<complexType name="ArrayOfFavoriteColorString'>
<sequence>
<element maxOccurs="unbounded"™ minOccurs="0" name="FavoriteColor"
nillable=""true" type='string'/>
</sequence>
</complexType>
<complexType name="Address'>
<sequence>
<element minOccurs="0" name="Street" type="string'/>
<element minOccurs="0" name="'City" type='string'/>
<element minOccurs="0" name="State" type="string'/>
<element minOccurs="0" name="ZIP" type="string"/>
</sequence>
</complexType>
<complexType name="Doctor'>
<sequence>
<element minOccurs="0" name="Name" type="string"/>
</sequence>
</complexType>
</schema>

The following shows an example XML document that obeys the schema shown in this section:

<?xml version="1.0" ?>
<Patient MRN="000111222" xmlIns="http://myapp.com”>
<Name>Georgina Hampton</Name>
<FavoriteColors>
<FavoriteColor>Red</FavoriteColor>
<FavoriteColor>Green</FavoriteColor>
</FavoriteColors>
<Address>
<Street>86 Bateson Way</Street>
<City>Fall River</City>
</Address>
<Doctor>
<Name>Dr. Randolph</Name>
</Doctor>
</Patient>

2. Click Ensemble > Interoperate > XML > XML Schema Structures. Thisdisplaysthe XML Schemas page. Theleft column
lists XML schemas loaded into this Ensemble namespace.

3. Click category link in the row corresponding to the XML schema of interest.

If we do thisfor the XML schema shown previously, Ensemble then displaysthis:

Ensemble XML Virtual Document Development Guide 15

Overview of Property Paths in XML Virtual Documents

XML DocType structures in Category MyApp

4. Click thelink for the document type of interest.

If we click patient, Ensemble then displays this:

XML Document Structure / Document Type Definition

Type: CT:Patient
xsd: element:complexType
Top Element: $2:Patient

Name Type Required
1 Mo
ArrayOffF avoriteColorString() Mo
Mo
Doctor Mo
Mo
Mo

(oo T o i T U P TR %

On this page:

e Abovethetable, the valuein large font displays the DocType value for this XML element. In this case, DocType

isMyApp:Patient.

Element

$2:Mame
32:FavoriteColors/52:FavariteColor]
$2-Address

$2:Doctor/$2:Name

@MRM

@DL

* The Name column shows path units in the format needed for schema-dependent paths.

In this case, this page tells us that we can use Name, FavoriteColors, Address, Doctor, MRN, and DL as

path units in schema-dependent paths.

e TheElement column shows path units in the format needed for DOM-style property paths.

In this case, this page tells us that we can use $3:Name, $2:FavoriteColors/$2:FavoriteColor,

$2:Address, $2:Doctor/$2:Name, @MRN, and @DL as path unitsin DOM-style paths. Notice that @MRN and

@DL do not have a namespace prefix; these attributes are not in any namespace.

5. Click additional sub-items as wanted.

If we click Address in the Name column, Ensemble displays this:

16 Ensemble XML Virtual Document Development Guide

Redundant Inner Elements for Schema-dependent Paths

XML Complex Type Structure Definition

Type: CT-Address
xsd: complexType

Name Type Required Element

1 Mo $2:Street
2 Mo $2-City
3 Mo $2:State
4 Mo $2:ZIP

This page displays any additional path unitswithin Address.

In this case, this pagetells us that we can use these additional path unitsin combination with the path unit that we used
to get to this page, for example:

Schema-dependent path (partial) | ...Address.Street
DOM-style path (partial) /.../%$2:Address/$2:Street

The following sections note specific variations due to schema variations.

4.3 Redundant Inner Elements for Schema-dependent
Paths

For schema-dependent paths, Ensemble collapses redundant inner elements. This is best explained by example:

* The<FavoriteColors> element contains a sequence of multiple <FavoriteColor> elements. On the schema
viewer page, <FavoriteColors> isshown simply as FavoriteColors() in the Name column (which shows the path
unit for schema-dependent paths). This column is displayed in blue in the following figure.

Ensemble XML Virtual Document Development Guide 17

Overview of Property Paths in XML Virtual Documents

ZML Document Structure / Document Type Definition

Type: CT:Patient
xsd: element:complexType
Top Element: $2:Patient

Name Type Required Element
1 Mo $2:Mame
2 ArrayOffF avoriteColorString() Mo 32:FavoriteColors/52:FavariteColor]
3 Mo $2:Address
4 Doctor Mo $2:Doctor/$2:Name
5 Mo @MRM
B Mo @DL

In contrast, the ssamedement isshown as$2 : FavoriteColors/$2 :FavoriteColorsltemintheElement column
on the right. This column shows the path unit for DOM-style paths.

For aseguence of multipleitems of the sametype, the schema-dependent path does not use the name of theinner element.
(In contrast, the DOM-style path uses al the element names.) More generally, any redundant inner levelsfound in a
schema are ignored in schema-dependent paths; the following item shows another example.

* The<Doctor> elementincludesasingle <Name> element. On the schemaviewer page, the <Doctor> itemisshown
as Doctor in the Name column, as shown in the previous figure.

Notice that the schema-dependent path to the data inside <Doctor> does not use the name of the inner element.

In contrast, the same item is shown as $3 : Doctor/$3: Name in the Element column on the right. This column shows
the path unit for DOM-style paths.

4.4 Repeating Fields

If agiven element can occur multiple times, the Name column displays parentheses () at the end of the element name. For
example, see the FavoriteColors() row in the preceding figure.

The Type and Element columns indicate the number of times the element can be repeated. In this case, the element can be
repeated five times. If there is no number displayed in parentheses in the Type column, the element can be repeated any
number of times.

4.5 Duplicate Names

If an XML schema has multiple elements at the same level that have the same name but different types, then Ensemble
appends_2, 3, and so on, as needed to create unique names at that level. This procedure applies only to the schema-
dependent paths. For example, consider a schema that defines the <Person> element to include two elements named

18 Ensemble XML Virtual Document Development Guide

Choice Structures

<Contact>. Oneis of type <Phone> and the other is of type <Assistant>. Ensemble displays the schemafor the
<Person> element asfollows:

Type: DS:Person
xsd: complexType

Name Type Required Element
1 Mo $2:Contact
2 Mo $2:Contact

Similarly, if the schema has multiple elements at the same level but in different namespaces, then Ensemble appends 2,
_ 3, and so on, as needed to create unique names at that level. This procedure applies only to the schema-dependent paths.

4.6 Choice Structures

Some schemas include <choice> structures, like the following example:

<xsd:choice>
<xsd:element name=""OptionA"” type="my:OptionType'/>
<xsd:element name="OptionB" type="my:OptionType'/>
<xsd:element name="OptionC" type="my:OptionType'/>
</xsd:choice>

Ensemble represents this structure differently for the two kinds of paths. The following shows an example:
Type: CT:-MainType

®sd: element:complexType
Top Element: $2:Parent

Name Type Required Element
1 Yes -
2 OtherType Yes OtherElement
3 date Mo @OtherAttribute

For schema-dependent paths, the Name displays a generic name for the <choice> structure, and the Type column displays
anumeric placeholder. The Element column does not display anything.

If we click choice, Ensemble then displays the following:

Ensemble XML Virtual Document Development Guide 19

Overview of Property Paths in XML Virtual Documents

Type: #choice
xsd: choice

Name

Type

OptionType
OptionType
OptionType

Required Element

Yes OptionA
Yes OptionB
Yes OptionC

In this case, these pages tell usthat we can use the following paths to access OptionB:

Schema-dependent path (partial) .- -Parent._choice.OptionB

DOM-style path (partial) /. ../Parent/OptionB

4.7 Groups Included by Reference

A schema can include a <group> that isincluded viathe ref attribute. For example:

<sOl:complexType name="Patient'>
<s01:sequence>

<sOl:element name="Name" type="'sO0l:string" minOccurs="0"/>
<sOl:element name="Gender' type="s0l:string"” minOccurs="0"/>
<sOl:element name="BirthDate" type="s0l:date" minOccurs="0"/>
<sO0l:element name=""HomeAddress" type="'s02:Address" minOccurs="0"/>

<s0l:element name=""FavoriteColors™"

type="'s02:ArrayOfFavoriteColorsltemString"” minOccurs="0"/>
<sO0l:element name="Container" type='s02:ContainerType'" minOccurs="0"/>
<sOl:element name="Latestlmmunization' type="s02:Immunization” minOccurs="0"/>

<sOl:element ref=""s02:Insurance" minOccurs="0"/>

<sOl:group ref="s02:BoilerPlate" minOccurs="1" maxOccurs="1"/>

</s01:sequence>

éébl:group name=""Boi lerPlate">
<s01l:sequence>

<sO0l:element name="0One" type="s0l:string"/>
<sOl:element name="Two" type="'sO0l:string'/>
<sOl:element name="Three" type="'sOl:string"/>

</s01:sequence>
</s01:group>

Ensemble represents this structure differently for the two kinds of paths. The following shows an example:

20

Ensemble XML Virtual Document Development Guide

Groups Included by Reference

Type: CT:Patient
xsd: element:complexType
Top Element: 52:Patient
Name Type Required Element
1 ame MNa $2:Name
2 Gende Mo $2:Gender
3 BirthDate date Mo $2:BirthDate
4 HomeAddress Address No $2:HomeAddress/52:Address
5 FavoriteColors ArrayOfFavaoriteColorsltemString() No $2:FavoriteColors/52:FavariteColorsltem(]
6 Containe ContainerType Mo $2:Container/32:Intermediate/$2:Final
T Lates za nizatio Mo $2:Latestimmunization
3 surance Insurance No $2:Insurance
9 BoilerPlate + Yes BaoilerPlate
10 R Mo @MREN

For schema-dependent paths, the Name displaysthe name of the group, and the Type column displays anumeric placehol der.
The Element column also displays the name of the group.

If weclick Boi lerPlate, Ensemble then displays the following:

Type: CG:BoilerPlate
xsd: seguence:group
Name Type Required Element Default Description
1 One Yes $2:0ne
2 Two Yes $2:Two
3 Three Yes $2-Three

In this case, these pages tell us that we can use the following paths to access Two:

Schema-dependent path (partial)
DOM-style path (partial)

. ..Patient.BoilerPlate.Two

/.../$2:Patient/$2:Two

Ensemble XML Virtual Document Development Guide

21

Specifying Schema-dependent Paths for
XML Virtual Documents

This chapter describes how to specify schema-dependent paths for XML virtual documents. It discusses the following:

How to access contents of an element

How to access the value of an attribute

Comments and descriptions

Mixed content

Specia variations for repeating elements

How to test schema-dependent paths in the Terminal

You can use these paths to access values and to set values.

The examplesin this chapter use the schema shown in the previous chapter.

5.1 Getting or Setting the Contents of an XML Element

To access the contents of an element, you can use one of the following schema-dependent paths. You also use these paths
when you create more complex schema-dependent paths as discussed in later subsections.

Syntax Refers to

element_name Contents of the given element. element_name must be a child of the root
element.

parent._element_name Contents of the given element. parent is the full path to an element — that is,

any syntax shown in this table. In this case, element_name is a child of the
element referred to by parent.

parent.element_name(n) | Contents of the nth element with the name element_name within the given
parent.

parent_element_name(-) | Contents of the last element with the name element_name within the given
parent.

Ensemble XML Virtual Document Development Guide 23

Specifying Schema-dependent Paths for XML Virtual Documents

Consider the following XML document:

<?xml version="1.0" ?>
<Patient MRN="000111222" xmlIns="http://myapp.com”>
<Name>Georgina Hampton</Name>
<FavoriteColors>
<FavoriteColor>Red</FavoriteColor>
<FavoriteColor>Green</FavoriteColor>
</FavoriteColors>
<Address>
<Street>86 Bateson Way</Street>
<City>Fall River</City>
</Address>
<Doctor>
<Name>Dr. Randolph</Name>
</Doctor>
</Patient>

The following table shows some example paths for this document:

Example Path Current Path Value

Name Georgina Hampton
FavoriteColors(l) Red

FavoriteColors(2) Green

FavoriteColors(-) Green

Address 86 Bateson WayFall River
Address.Street 86 Bateson Way

Doctor Dr. Randolph

5.2 Getting or Setting the Value of an XML Attribute

To access the value of an attribute, you can use one of the following schema-dependent paths. Here (and in the rest of this
section), element_reference is a complete schema-dependent path as described in the previoustable.

Syntax Refers to

element_reference. attribute_name Value of the attribute_name attribute of the element indicated by
element_reference.
The following table shows an example path for the previous document:

Example Path Current Path Value
MRN 000111222

5.3 Comments and Descriptions

Ensemble removes the comments when it reads XML files. Consequently, you should not use comments to document the
schema. Instead of using comments, you can use the description or altdesc attributes available on most schema elements.

Although it is not useful in most cases, you can access a comment by using one of the following schema-dependent paths:

24 Ensemble XML Virtual Document Development Guide

Using Mixed Content When Setting Paths

Syntax Refers to

element_reference.# Text of the first comment of the given element.
element_reference.#(n) Text of the nth comment of the given element.
element_reference.#(-) Text of the last comment.

Note: Ensembleremovesall commentswhenit readsin XML files. The only commentsthat can be present are comments
that have been added since the XML file was read. To add a comment, use setValueAt() with a path like one
shown in the preceding table.

5.4 Using Mixed Content When Setting Paths

When you use setVValueAt(), you can specify a value that consists of mixed content (that is, a value that consists of a mix
of element and text nodes). For example:

set mixed=""SOME TEXT<HOMETOWN>BELMONT</HOMETOWN>""
set status=target.SetValueAt(mixed,"Address')

The following table describes how Ensemble handles the value in different scenarios:

Path Refers to How Ensemble Handles the Mixed Content

element or comment Ensemble replaces the current contents of the element or comment with the given
mixed content

attribute Not supported

5.5 Special Variations for Repeating Elements

This section describes variations of virtual property paths that apply when you are referring to a repeating element.

5.5.1 lterating Through the Repeating Elements

If the path refers to arepeating element, you can use the following syntax to iterate through every instance of that element.

Syntax Refers to

element_name() Iterates through the elements of the given name, within the given context.

Suppose that we now use a data transformation that contains only the following code:

set status=target.SetValueAt("'REPLACED COLOR","FavoriteColors()'™)
if "status {do $system.Status.DisplayError(status) quit}

Thisline of code transforms the document shown previously in this chapter to the following:

Ensemble XML Virtual Document Development Guide 25

Specifying Schema-dependent Paths for XML Virtual Documents

<?xml version="1.0" ?>
<Patient MRN="000111222" xmlns="http://myapp.com">
<Name>Georgina Hampton</Name>
<FavoriteColors>
<FavoriteColor>REPLACED COLOR</FavoriteColor>
<FavoriteColor>REPLACED COLOR</FavoriteColor>
</FavoriteColors>
<Address>
<Street>86 Bateson Way</Street>
<City>Fall River</City>
</Address>
<Doctor>
<Name>Dr. Randolph</Name>
</Doctor>
</Patient>

5.5.2 Counting Elements

If the path refersto a repeating element, you can use the following syntax to return the number of elements.

Syntax Refers to

element_name(*) Number of elements of the given name, within the given context. This syntax is
valid only if the schema defines element_name as a repeating element.

element_name.* Number of elements of the given name, within the given context. This syntax is
valid for any element_name.

The following table shows example paths for the document shown previously in this chapter:

Example Path Current Path Value
FavoriteColors.* 2
FavoriteColors(*) 2

5.6 Testing Schema-dependent Paths in the Terminal

It can be useful to test virtual document property paths in the Termina before using them in business processes, data
transformations, and so on, particularly when you are getting familiar with the syntax. To do so for schema-dependent
XML paths, do the following:

1. Load the corresponding XML schema or schemas into Ensemble. To do so, use the XML Schema Structures page,
described in the chapter “Available Tools.”

2. Usethe Management Portal to find the DocType value for the root element of the documents that you plan to test. For
example:

XML Document Structure f Document Type Definition

See “Viewing Path Units for XML Virtual Documents,” earlier in this book.
3. IntheTermina or in test code:

a. Createastring that contains the text of a suitable XML document.

26 Ensemble XML Virtual Document Development Guide

Testing Schema-dependent Paths in the Terminal

b. UsethelmportFromString() method of EnsLib.EDI.XML.Document to create an instance of an XML virtual
document from this string.

c. Setthe DocType property of thisinstance.
d. Usethe GetValueAt() and SetVValueAt() methods of thisinstance.

The following method demonstrates step 3:

ClassMethod TestSchemaPath()
{

set string='"'<Patient xmlns="http://myapp.com®">"

_""<Name>Jack Brown</Name>"

_""<Address><Street>233 Main St</Street></Address>"

_"</Patient>"

set target=##class(EnsLib.EDI.XML.Document). ImportFromString(string, .status)
if "status {do $system.Status.DisplayError(status) quit}

//Use the DocType displayed in the Management Portal
set target.DocType="MyApp:Patient"

set pathvalue=target.GetValueAt(''Address.Street", ,.status)
if "status {do $system.Status.DisplayError(status) quit}
write pathvalue

}

The following shows output from this method:

ENSDEMO>d ##class(Demo.CheckPaths).TestSchemaPath()
233 Main St

For additional options for GetValueAt(), see * The pFormat Argument,” later in this book.

Ensemble XML Virtual Document Development Guide 27

Specifying DOM-style Paths for XML
Virtual Documents

This chapter describes how to specify DOM-style paths for XML virtual documents. It discusses the following:
* How to get or set a document node (basic paths)
» How to use mixed content when setting a value
» How to use basic path modifiers

* How to use the full() function

e How to get or set the value of an attribute

e How toinsert or append nodes

* How to use the element() function

* How to get positions of elements

* How to count items

* How to get other metadata

e Summary of path modifiers

* How to modify a path to consider namespaces

* How to test DOM-style paths in the Terminal

You can use these paths to access values and to set values (with noted exceptions).

Most of the following sections assume that the document does not use any XML namespaces. The last section givesinfor-
mation on adapting these paths for a document that does use XML namespaces.

The examplesin this chapter use the schemashown in the chapter “ Overview of Property Pathsin XML Virtual Documents. ™

6.1 Getting or Setting Nodes (Basic Paths)

Inan XML virtual document, there are five kinds of nodes: the root node, elements, text nodes, comments, and processing
instructions. The root node and any element can have child nodes of any type. The other kinds of nodes cannot have child
nodes. Attributes are not nodes.

Ensemble XML Virtual Document Development Guide 29

Specifying DOM-style Paths for XML Virtual Documents

The following table lists basic DOM-style paths to get or set many of the nodes of an XML virtual document. When there
are multiple nodes of the same type or with the same name, and when you do not want the first one, see the next section.

You also use these paths when you create more complex DOM-style paths as discussed in later subsections.

Syntax Refers to

/ Contents of the root node. You can also use """, if the context makes
it clear that you are using a DOM-style path (that is, if no schema is
loaded).

/root_element_name Contents of the root element, whose name is root_element_name.

parent/element_name Contents of the first element of the given name (element_name),

within the given parent. Here parent is the full path to its parent
element, including (as always) the initial slash.

element_reference/text() First text node in the element indicated by element_reference.
element_reference/comment() First comment in the element indicated by element_reference.

The value returned does not include the opening syntax (<!--) or
the closing syntax (-->). Similarly, do not include the opening or
closing syntax when setting the value.

Ensemble removes all comments when it reads in XML files. The
only comments that can be present are comments that you add. (To
add them, use setValueAt() with a path like the one shown here.)

element_reference/instruction() | First processing instruction in the element indicated by
element_reference.

The value returned does not include the opening syntax (<?) or the
closing syntax (?>). Similarly, do not include the opening or closing
syntax when setting the value.

Ensemble removes all processing instructions when it reads in XML
files. The only instructions that can be present are instructions that
you add. (To add them, use setValueAt() with a path like the one
shown here.)

Consider the following XML document:

<?xml version="1.0" ?>
<Patient xmIns="http://myapp.com”">Sample text node
<I--Sample comment-->
<!--Another comment-->
<Name>Jane Doe</Name>
<Address>
<Street>100 Blank Way</Street>
</Address>
</Patient>

The following table shows some example paths for this document:

Example Path Current Path Value

/Patient/Name Jane Doe

30 Ensemble XML Virtual Document Development Guide

Using Mixed Content When Setting Paths

Example Path Current Path Value
/Patient/Address <Street>100 Blank Way</Street>

In this case, the referenced element contains a child element (in contrast
to the previous example). Note that Ensemble ignores whitespace when
comparing DOM-style paths to values. That is, the value here matches
the given path whether or not the document contains line breaks and

indentation.
/Patient/Address/Street 100 Blank Way
/Patient/text() Sample text node
/Patient/comment() Sample comment

Suppose that we now use a data transformation that contains only the following code:

set status=target.SetValueAt(''892 Broadway",'/Patient/Address/Street')
if "status {do $system.Status.DisplayError(status) quit}

set status=—target.SetValueAt(''Dr. Badge",'/Patient/Doctor/Name')

if "status {do $system.Status.DisplayError(status) quit}

Notice that one of these paths already exists and the other does not; both paths are valid. After we use this transformation,
the new document would then look like the following:

<?xml version="1.0" ?>
<Patient xmlIns="http://myapp.com”">Sample text node
<I--Sample comment-->
<!--Another comment-->
<Name>Jane Doe</Name>
<Address>892 Broadway</Address>
<Doctor>
<Name>Dr. Badge</Name>
</Doctor>
</Patient>

6.2 Using Mixed Content When Setting Paths

When you use setVValueAt() to set the value at a node, you can specify avalue that consists of mixed content (that is, a
value that consists of amix of element and text nodes). For example:

set mixed=""SOME TEXT<HOMETOWN>BELMONT</HOMETOWN>""
set status=target.SetValueAt(mixed,"/Patient/Address/Street')

The following table describes how Ensemble handles the value when you set the value of each different kind of node:

Node Type How Ensemble Handles Mixed Content Provided for the Node Value
root Not supported
element or comment Ensemble replaces the current contents of the node with the given mixed content

text node or instruction | Ensemble escapes the XML special characters and then replaces the current
contents of the given node

Note that attributes are not nodes.

Ensemble XML Virtual Document Development Guide 31

Specifying DOM-style Paths for XML Virtual Documents

6.3 Using the Basic Path Modifiers

You can add the following basic path modifiers to the end of basic paths (listed in the previous section), with noted
exceptions. You can use the resulting paths in the same way that you use any of the basic paths.

[n]

/1n]

[$n]

Refers to an item by item position. Only instances of that item are counted; items of other types are ignored.

* When you get avalue, this syntax returns the nth instance of the item to which the basic path refers (or an

empty string otherwise).

» When you set avalue, this syntax either overwrites or creates the nth instance of the item to which the basic

path refers.

You can substitute a hyphen (-) to access the last instance. You can also omit the square brackets.

Refersto a child element by child element position.
You can substitute a hyphen (=) to access the last child. You can also omit the square brackets.

Restrictions:

e You can usethisonly with abasic path that refersto an element; that is, you cannot use it with functions such

as comment().

* You can use this syntax only when getting a value, not when setting a value.

You can combinethis path modifier with the other path modifiers, if you usethe /[[n] modifier asthe last modifier.

Refers to an item by node position.

e When you get avalue, this syntax returns the nth node, if that node is an instance of the item to which the

basic path refers. Otherwise the path isinvalid, and an error is returned.

* Whenyou set avalue, this syntax overwrites the nth node, if that node is an instance of the item to which the

basic path refers. Otherwise the path isinvalid, and an error is returned.

Different path modifiers, listed in alater section, enable you to insert or append nodes. (Also see “ Summary of Path

Mod

ifiers”.)

Consider the following XML document:

<?Xxm
<Pat

</Pa

1 version="1.0" ?>

ient xmIns="http://myapp.com">

<!--Sample comment-->

<I--Another comment-->

Sample text node

<Name>Fred Williams</Name>

<FavoriteColors>
<FavoriteColor>Red</FavoriteColor>
<FavoriteColor>Green</FavoriteColor>

</FavoriteColors>

<Doctor>
<Name>Dr. Arnold</Name>

</Doctor>

tient>

The following table shows some example paths for this document:

32

Ensemble XML Virtual Document Development Guide

Using the Full() Function

Example Path

/Patient/Name

/[11/11]

/Patient/FavoriteColors/[1]
/Patient/FavoriteColors/[2]
/11171217111

/11171217121
/Patient/Name[$1]

/Patient/Name[$4]

/Patient/Doctor[$6]

/Patient/4

/Patient/comment()[1]
/Patient/comment()[2]
/Patient/comment() [$2]

/Patient/comment([-]

Current Path Value
Fred Williams

Fred Williams

Red
Green
Red
Green

An empty string

Fred Williams

<Name
xmIns="http://myapp.com”>Dr.
Arnold</Name>

An empty string

Sample comment
Another comment
Another comment

Another comment

6.4 Using the Full() Function

Notes

This path accesses the first
child element within the first
element of the document (which
is the only element in the
document, according to the XML
standard). The square brackets
are optional here.

The square brackets are
optional here.

This path is invalid. The first
node within <Patient>is nota
<Name> element.

This path is invalid. <Patient>
does not have a fourth element.

For these paths, the square
brackets are required, because
without square brackets, these
paths would be interpreted as
element names.

For apath that refersto an element (either abasic path or a path that uses basic modifiers), you can also obtain the opening
and closing tags of the element. To do so, add ful 1 () to the end of the path.

You can use the full() function when you are setting avalue. Within DTL, thisis permitted only within adatatransformation
that uses the append action; see “Assignment Actions for XML Virtual Documents,” later in this book.

Consider the following XML document:

<?xml version="1.0" ?>

<Patient xmlns="http://myapp.com”>

<Name>Jack Brown</Name>
<Address>

<Street>233 Main St</Street>

</Address>
</Patient>

The following table shows some example paths for this document:

Ensemble XML Virtual Document Development Guide

33

Specifying DOM-style Paths for XML Virtual Documents

Example Path Current Path Value
/Patient/Name/full () <Name xmlns="http://myapp.com*>Jack Brown</Name>
/Patient/Address/full () <Address xmlns="http://myapp.com”><Street>233 Main

St</Street></Address>

/Patient/Address/Street/full() <Street xmlns="http://myapp.com®>233 Main
St</Street>

For the root note, use of the full() function isimplied. That is, the following two paths are equival ent:

/
/FullO

Note: If you use GetValueAt(), you can aso specify an additional format argument () that retrieves the full element.
For details, see “The pFormat Argument,” later in this book.

6.5 Getting or Setting the Value of an XML Attribute

To accessthe value of an attribute, you can use one of the following DOM-style paths. Here (and in therest of this section),
element_reference is a complete DOM-style path to an element.

Syntax Refers to
element_reference/@attribute_name Value of the given attribute of the given element.

element_reference/@[n] (For use only when retrieving values) Value of the nth attribute (in
alphabetical order) of the given element.

element_reference/@[-] Value of the last attribute of the given element.
You can omit the square brackets.
For example, consider the following XML document:

<?xml version="1.0" ?>

<Patient MRN="000111222" DL="123-45-6789" xmlns="http://myapp.com”>
<Name>Liz Jones</Name>

</Patient>

The following table shows some example paths for this document:

Example Path Current Path Value
/Patient/@MRN 000111222
/Patient/@[1] 000111222
/Patient/@2 123-45-6789

6.6 Using Path Modifiers to Insert or Append Nodes

To insert or append nodes, add the following path modifiers to the end of basic paths. Use the path modifiers listed here
only when you are setting avalue.

34 Ensemble XML Virtual Document Development Guide

Using Path Modifiers to Insert or Append Nodes

Also see the next section for a couple of additional options.

[~n]
Inserts an instance of the item to which the basic path refers, right before the nth instance of that item, in the given
context. Nothing is overwritten. See the following table for details.

Here and in the rest of this subsection, n is an integer.

Example Path Behavior

/Patient/Episode[~5] Inserts a new <Episode> element within <Patient>,
before the existing fifth <Episode> element.

If <Patient> does not include five <Episode> elements,
Ensemble performs padding; it creates empty <Episode>
elements so that the inserted <Episode> is the fifth
<Episode>. All the newly inserted elements are at the
end of the <Patient> element.

If the path refers to intermediate, nonexistent elements,
Ensemble creates those.

/Patient/element(Episode)[~-5] | Inserts an <Episode> element within <Patient>, before
the existing fifth element.

If <Patient> does notinclude five elements (of any type),
this path is invalid. The element() function does not gen-
erate empty elements for padding.

/Patient/[~-5] Not allowed, because there is no information about the

- kind of element to insert.
/Patient/element()[~5]

For example, consider the following XML document:

<?xml version="1.0" ?>
<Patient xmIns="http://myapp.com”>
<Name>Betty Hodgkins</Name>
<FavoriteColors>
<FavoriteColor>Purple</FavoriteColor>
</FavoriteColors>
</Patient>

Also consider the following code from within a data transformation:

set status=target.SetValueAt("'INSERTED COLOR","/Patient/FavoriteColors/FavoriteColor[~4]"")
if "status {do $system.Status.DisplayError(status) quit}

Thisline of code transforms the original document into the following:

<?xml version="1.0" ?>
<Patient>
<Name>Betty Hodgkins</Name>
<FavoriteColors>
<FavoriteColor>Purple</FavoriteColor>
<FavoriteColor/>
<FavoriteColor/>
<FavoriteColor>INSERTED COLOR</FavoriteColor>
</FavoriteColors>
</Patient>

For another example, consider the following XML document:

Ensemble XML Virtual Document Development Guide 35

Specifying DOM-style Paths for XML Virtual Documents

<Patient xmIns="http://myapp.com”>
<Name>Colin McMasters</Name>
<Address>
<Street>102 Windermere Lane</Street>
</Address>
</Patient>

Also considering the following code from within a data transformation:

set status=target.SetValueAt("'INSERTED ADDRESS",''/Patient/Address/Street[~2]"")
if "status {do $system.Status.DisplayError(status) quit}

Thisline of code transforms the original document into the following:

<?xml version="1.0" ?>
<Patient>
<Name>Colin McMasters</Name>
<Address>
<Street>102 Windermere Lane</Street>
<Street>INSERTED ADDRESS</Street>
</Address>
</Patient>

[~$n]

Inserts an instance of the item to which the basic path refers, right before the nth node in the given parent. Nothing
is overwritten. The path isinvalid if the parent does not contain at least n nodes.

Example Path Behavior

/Patient/Episode[~$3] Inserts a new <Episode> element within <Patient>,
before the existing third node in that parent. The path is
invalid if the parent does not have three nodes.

/Patient/element(Episode)[~$3] @ Not allowed. The element() function works only with
element positions.

/Patient/[~-3] Not allowed, because there is no information about the
kind of element to insert.

/Patient/element()[-3] Not allowed for multiple reasons; see above items.

Appends an instance of the item to which the basic path refers, as the (new) last node of the given parent. Nothing

is overwritten.
Example Path Behavior
/Patient/Episode[~] Appends a new <Episode> element within <Patient>,

as the last node in that parent. If the path refers to
intermediate, nonexistent elements, Ensemble creates
those.

/Patient/element(Episode)[~] | Appends an <Episode> element within <Patient>, as
the last node in that parent. If the path refers to
intermediate, nonexistent elements, the path is invalid.

/Patient/[~] Not allowed, because there is no information about the

- kind of element to append.

/Patient/element()[~] ! PP

For example, the following shows part of a code element in a data transformation:

36 Ensemble XML Virtual Document Development Guide

Using the element() Function

set status=target.SetValueAt(''orange",'/Patient/FavoriteColors/Color[~]"")
if "status {do $system.Status.DisplayError(status) quit}

set status=SetValueAt("'pink","/Patient/FavoriteColors/Color[~]")

if "status {do $system.Status.DisplayError(status) quit}

Thisaddstwo new <Color> childrentothe<FavoriteColors> element. If the<FavoriteColors> element
does not exist, Ensemble creates it.

Also see “Summary of Path Modifiers”.

6.7 Using the element() Function

You can use the element() function when getting or setting values, as described in the following table:

Syntax When Allowed Behavior
element_reference/element() When getting a Returns the first child element of
value the given element.
element_reference/element()[n] Returns the nth child element of
the given element.
element_reference/element()[-] Returns the last child element of
the given element.
parent_element/element(element_name)[~n] When setting a Inserts the specified element
value (given by the element_name

argument) right before the nth child
element of the given parent. This
path is invalid if the given element
does not have at least n child
elements.

parent_element/element(element_name)[~] Appends the specified element
(given by the element_name
argument) as the last node in the
given parent.

6.8 Getting Positions of Elements

You can use the following syntaxes to get positions of elements.

Syntax Returns

element_reference/position() Element position of the given element within its parent.

element_reference/node-position() Node position of the given element within its parent. For node
position, Ensemble considers all kinds of nodes, not just
elements.

Ensemble XML Virtual Document Development Guide 37

Specifying DOM-style Paths for XML Virtual Documents

6.9 Getting Counts of Elements

You can use the following syntaxes to get counts of elements.

Syntax Returns
» element_reference/[*] Count of child elements within the given parent.

» element_reference/count()

* parent/element_name[*] Count of elements of the given name, within the given parent.
Notice that there is no slash after the name of the element (in

. arent/element_name.count) :
P - O contrast with the previous set of paths).

» element_reference/[$*] Count of child nodes of the given element.

» element_reference/node-count()

e element_reference/@[*] Count of attributes of the given element.

* element_reference/@.count()

You can omit the square bracketsin all cases except for /[*]. Note that Ensemble also supports the last() function
(equivalent to count()) and the node-last() function (equivalent to node-count()); you might prefer to use last() and
node-last() if you are familiar with XPATH, which has asimilar last() function.

6.10 Accessing Other Metadata

You can use the following functions to access other metadata of the XML virtual document. You can use these functions
only at theend of apath.

Function Returns
/node-type() Type of the given node. This function returns one of the following values:
e root

¢ element
. text
e comment

. instruction

/name() Full name of the given node. For example: sO1:Patient
/local-name() Local name of the given node. For example: Patient
/prefix(Q) Namespace prefix of the given node. For example: sO1

/namespace-uri() URI of the namespace to which the given node belongs. For example:
www . myapp-org

38 Ensemble XML Virtual Document Development Guide

Summary of Path Modifiers

Function Returns

/prefixes() All the namespace prefixes and their corresponding URIs, in the scope of the given
element. This information is returned as a comma-separated list. Each list item
consists of the namespace prefix, followed by an equal signs (=), followed by the
URI. The default namespace URI is listed first without a prefix. For example:
=http://tempuri.org,s0l=http://myns.com

6.11 Summary of Path Modifiers

The following table summarizes the path modifier for DOM-style paths:

Path Uses Methods that can Provides padding (as

modifier use paths that needed) when used
contain this modifier with SetValueAt()?

[n] Getting or setting nth instance GetValueAt() and Yes
SetValueAt()

/[n] Getting nth child element GetValueAt() Not applicable

[-n] Inserting nth instance SetValueAt() Yes

-1 Appending instance SetValueAt() No

[$n] Getting or setting instance at nth node GetValueAt() and No

position SetValueAt()
[-$n] Inserting instance at nth node position SetValueAt() No

6.12 Variations for Documents That Use Namespaces

If the document uses XML namespaces, for each element or attribute that isin anamespace, you must modify that section
of the path to include a namespace prefix, followed by colon (:). A namespace prefix is one of the following:

» |If youhaveloaded the corresponding XML schema, use anamespace token asdescribed in “ XML Namespace Tokens,”
earlier in this book. For example: use $2:element_name rather than element_name

e |f you have not loaded the XML schema, use the namespace prefix exactly asit appearsin the document. For example:
sO1:Patient

» Usethewildcard * to ignore the namespace. For example: *:Patient

Another option is to ignore all namespaces in the document. To do this, start the path with the wildcard * - / rather than /
For example: *:/Patient/@MRN

You cannot use any wildcards in a path when you are setting the value for that path.

Note: Theoutput document of aDTL does not necessarily use the same namespace prefixes as the input document. The

namespaces are the same, but the prefixes are generated. According to the XML standard, thereisno significance
to the choice of prefix.

Ensemble XML Virtual Document Development Guide 39

Specifying DOM-style Paths for XML Virtual Documents

6.13 Testing DOM-style Paths in the Terminal

It can be useful to test virtual document property paths in the Termina before using them in business processes, data
transformations, and so on, particularly when you are getting familiar with the syntax. To do so for DOM-style XML paths,
do the following in the Terminal or in test code:

1. Create astring that contains the text of a suitable XML document.

2. UsethelmportFromsString() method of EnsLib.EDI.XML.Document to create an instance of an XML virtual document
from this string.

3. Usethe GetValueAt() and SetValueAt() methods of thisinstance.

The following method demonstrates these steps:

ClassMethod TestDOMPath()
{

set string="<Patient xmlns="http://myapp.com”>"

_"<Name>Jolene Bennett</Name>"

__""<Address><Street>899 Pandora Boulevard</Street></Address>"

_"</Patient>"

set target=##class(EnsLib.EDI_XML.Document). ImportFromString(string, .status)
if "status {do $system.Status.DisplayError(status) quit}

set pathvalue=target.GetValueAt(''/Patient/Name", , .status)
if "status {do $system.Status.DisplayError(status) quit}
write pathvalue

}

The following shows output from this method:

ENSDEMO>d ##class(Demo.CheckPaths).TestDOMPath()
Jolene Bennett

For additional options for GetValueAt(), see “The pFormat Argument,” later in this book.

40 Ensemble XML Virtual Document Development Guide

Defining Data Transformations for XML
Virtual Documents

This chapter discusses how to create data transformations (specifically DTL-based transformations) for XML virtual docu-
ments, for usein rule sets. It discusses the following topics:

How to define a data transformation

Details on the behavior of different actions

Using code

Example 1: copying most of the source document
Example 2: using only afew parts of the source document

Example 3: using code and SetValueAt()

7.1 Creating a Data Transformation

To create a data transformation for XML virtual documents:

1. Optionally load the applicable XML schema or schemas into Ensemble.

See “Loading XML Schemas into Ensemble,” earlier in this book.
Usethe DTL editor in the Management Portal or in Studio, as described in Developing DTL Transformations.
Within the data transformation, use the following values:

* For Source Class and Target Class, USe EnsLib.EDI.XML.Document, the class with which Ensemble represents XML
virtual documents.

» For Source Document Type, optionally select the XML type expected in the message. Choose an XML type from
one of the XML schemas you have loaded into Ensemble.

Leave thisvalue blank if you do not have or do not want to use the schema.
» For Target Document Type, optionally select a different XML type or remove the value.

Ensembleinitializes Target Document Type with the value you select for Source Document Type, if any.

Ensemble XML Virtual Document Development Guide 41

Defining Data Transformations for XML Virtual Documents

4. Createactionswithin the datatransformation asusual, using the XML property paths described in the previous chapter.
There are two basic scenarios:

» |If you haveloaded the schemas and have specified the source and target document types, the DTL editor displays
each document structure as atree. Then you can drag and drop to create the transformation. Ensemble creates
actions that use schema-dependent paths. You can edit these to use DOM-style pathsinstead, if those are needed
for some reason.

» |If you do not specify the document types, the document structures are not displayed astrees. Inthiscasg, it is
necessary to add and edit the actions manually. You can use only DOM-style paths.

In either case, you can add code elements to support more complex processing.

After you save and compile the data transformation, it is available for usein arule set; see the chapter “Defining Rule Sets
for XML Virtual Documents.”

7.2 Available Assignment Actions for XML Virtual
Documents

For XML virtual documents, Ensemble supports the following assignment actions:

* set— Setsavalue. If the type of the target element is "*any"’, then the text can include XML markup. The XML
markup must be well formed, but it will not be validated against any schema.

e append — Appends the new value to the target element, after any subnodes in that element.

e clear — Clearsthe text context of the target but retains the element and any children. Or, if the target is an attribute,
the action clears its value but retains the attribute.

* remove — Removes the target element or attribute.

Note that insert is not supported.

7.3 Using Code

If you need to add code elements to support more complex processing, you directly invoke the GetValueAt() and
SetValueAt() methods of the source and target variables. For EnsLib.EDI.XML.Document, these methods are as follows:
GetValueAt()

method GetValueAt(pPropertyPath As %String,
pFormat As %String,
Output pStatus As %Status) as %String

Where:
» pPropertyPath isan XML property path, as described earlier in this book.
» pFormatisaset of flags that control the format of the returned string. See the following subsection.

e pStatus is a status that indicates success or failure.

This method returns the current value at the given property path, or returns an empty string if the path is not valid.

42 Ensemble XML Virtual Document Development Guide

Using Code

SetValueAt()

method SetValueAt(pValue As %String,

pPropertyPath As %String,
pAction As %String = "'set",

pKey As %String = '"'") as %Status

Where:

» pValue isasuitable value for the given XML property path.

» pPropertyPath isan XML property path, as described in the previous chapter.

» pAction iseither "set", "append”, ""clear", or "'remove". For details, seethe previous section.

» pKey isnot used for XML virtual documents.

This method evaluates the given property path, and (if the path is valid), uses pValue and pAction to modify the

value at that path.

Important: It isuseful to check the status values returned by these methods. The status contains specific information
when you specify invalid paths or attempt actions that are not permitted. Thisinformation is particularly
useful when you are debugging and can save you time.

7.3.1The pFormat Argument

The pFormat argument for GetValueAt() is an optional string that controls the format of the returned string. This string
can contain any suitable combination of the charactersin the following table:

General Description

Line feeds and
carriage returns

Indentation. Note that
these options are
used only if the output
includes new lines.

Handling attributes

Handling namespaces

Character to
Include in
Format Setting

w

i
Any integer from
1to9

t

Specific Behavior

Adds a Windows-style carriage return and line feed combination
after every text-free element.

Uses the stored line feeds and carriage returns. This option takes
precedence over the options w and n.

Includes a new line (line feed) after every text-free element. In
contrast to w, this option does not add a carriage return.

Indents each new line with four spaces.

Indents each new line with this number of spaces. This option
takes precedence over the previous indentation option.

Indents each new line with a tab. This option takes precedence
over both of the previous indentation options.

Uses the stored indentation whitespace. This option takes
precedence over the previous indentation options.

Alphabetizes the attributes in an element.

Uses double quotes (rather than single quotes) to set off attribute
values if possible.

Suppresses output of namespace prefixes.

Suppresses output of namespace declarations.

Ensemble XML Virtual Document Development Guide 43

Defining Data Transformations for XML Virtual Documents

General Description = Character to Specific Behavior
Include in
Format Setting

Handling empty e Generates output for each empty element with an open tag and
elements close tag pair. If this option is not set, empty elements are output
as a single empty tag.
Other c Canonical output. This option takes precedence over the options
eintw
f Generates the full element (including both the starting and ending
tags), not just the contents within the element.
| Includes information about the location of the schema file that
was loaded into Ensemble. This option takes effect only if you
use T.
o Includes any XML entities as is, rather than performing XML

escaping for those entities.

Cc(e) Generates an XML header line that declares the given character
encoding; e is the non-quoted name of a character encoding
such as UTF-8. If e is empty, use the encoding defined by the
adapter. If e begins with ! then force the encoding of the output
stream. Note that this will be applied automatically for file
operations configured with a non-UTF-8 character set.

Asnoted above, the pFormat argument can equal acombination of theseitems. For example, if you usethevalue C(UTF-8)q,
the outbound document isin the UTF-8 character set and attributes are set off with double quotes. For another example, if
you use the value C(UTF-16)a, the outbound document is in the UTF-16 character set and attributes are al phabetized.

Note: Thisinformation also applies to the Format setting of an XML business operation.

7.4 Example 1: Copying Most of the Source Document

To easily define adata transformation that copies most of a source document, do the following in the Data Transformation
Builder:

e Onthe Transform tab, select copy from the Create drop-down list.
Then, by default, the new document will be a copy of the original document.

» Define actions that partly or fully remove selected elements or attributes. To define such an action:
1. InAdd Action, click clear or remove.
2. Double-click the target property that you want to clear or remove.

3. Enter any value into Value; thisfield isrequired but isignored in this case.

The following shows an example that uses schema-dependent paths:

44 Ensemble XML Virtual Document Development Guide

Example 2: Using Only a Few Parts of the Source Document

Class Demo02.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]

<transform sourceClass="EnsLib.EDI_XML.Document® targetClass="EnsLib_.EDI_XML.Document®
sourceDocType="Demo02:Patient” targetDocType="DemoO2:Patient” create="copy" language="objectscript” >
<assign value="""this value is ignored"" property="target.{WorkAddress}" action="remove" />

<assign value=""this value is ignored"" property="target.{HomeAddress}" action="remove" />
</transform>

Parameter REPORTERRORS = 1;
3

This data transformation copies the source document to the target and then removes the <WorkAddress> and
<HomeAddress> elements from the target.

The following shows an equivalent example that uses DOM-style property paths:

Class DemoO2A.MyDTL Extends Ens.DataTransformDTL

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]

{

<transform sourceClass="EnsLib_.EDI_XML.Document® targetClass="EnsLib.EDI_XML.Document*
create="copy" language="objectscript” >

<assign value="""this value is ignored"" property="target.{/Patient/WorkAddress}" action="remove®" />
<7ssignfvalue='"this value is ignored"" property="target.{/Patient/HomeAddress}" action="remove" />
</transform>

Parameter REPORTERRORS = 1;
3

Notice that in this case, the data transformation does not specify the document types because they are unnecessary here.

7.5 Example 2: Using Only a Few Parts of the Source
Document

To easily define a data transformation that uses only a few parts of a source document, do the following in the Data
Transformation Builder:

e Onthe Transform tab, select new from the Create drop-down list.
Then, by default, the new document will be empty.

» Define actions that copy selected elements or attributes. To define such an action, drag and drop from the source doc-
ument area to the target document area. Each action that you add thisway isaset action.

The following shows an example that uses schema-dependent paths:

Class DemoO5.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www. intersystems.com/dtl"]

<transform sourceClass="EnsLib.EDI_XML.Document® targetClass="EnsLib_.EDI_XML.Document*
sourceDocType="Demo0O5:Patient” targetDocType="DemoO5:Patient” create="new" language="objectscript” >
<assign value="source.{MRN}" property="target.{MRN}" action="set" />

<?ssign value="source.{PrimaryCarePhysician}" property="target.{PrimaryCarePhysician}" action="set" />
</transform>

Parameter REPORTERRORS = 1;
3

Ensemble XML Virtual Document Development Guide 45

Defining Data Transformations for XML Virtual Documents

This data transformation copies only the MRN and PrimaryCarePhysician properties from the source to the target.
The following shows an equivalent example that uses DOM-style property paths:

Class DemoO5A.MyDTL Extends Ens.DataTransformDTL
{

XData DTL [XMLNamespace = "http://www.intersystems.com/dtl"]

<transform sourceClass="EnsLib.EDI.XML.Document® targetClass="EnsLib_EDI.XML.Document*
create="new" language="objectscript” >

<assign value="source.{/Patient/MRN}" property="target.{/Patient/MRN}" action="set" />
<assign value="source.{/Patient/PrimaryCarePhysician}"
property="target.{/Patient/PrimaryCarePhysician}" action="set" />

</transform>

s
Parameter REPORTERRORS = 1;

}

7.6 Example 3: Using Code and SetValueAt()

The following example uses the code action type and uses a DOM-style path. It adds an attribute and an XML comment
to the root element:

Class Demo0O6.MyDTL Extends Ens.DataTransformDTL

XData DTL [XMLNamespace = "http://www. intersystems.com/dtl"]

{
<transform sourceClass="EnsLib.EDI_XML.Document® targetClass="EnsLib_.EDI_XML.Document*
create="copy" language="objectscript” >
<code>
<I[CDATA[

//this part adds an attribute to the document

set path="/1/@NewAttribute"

set status=target.SetValueAt("'New attribute value",path)

ifT "status {do ##class(MyApp.Utils)._Trace("'Demo06.MyDTL","Error setting path: ",path)}

//this part adds a comment to the document
set path='"/1/comment()"
set status=target.SetValueAt("'This is an XML comment',path)
if "status {do ##class(MyApp.Utils).Trace(''Demo06.MyDTL","Error setting path: ",path)}
>
</code>
</transform>

Parameter REPORTERRORS = 1;
3

If the SetValueAt() method returns an error, this transformation uses a utility method to record the details.

46 Ensemble XML Virtual Document Development Guide

Defining Rule Sets for XML Virtual
Documents

This chapter discusses how to create rule sets for XML virtual documents, for use in business processes. It discusses the
following topics:

 How to create arule set
* Example

To configure a business process to use arule set, specify its Business Rule Name setting; see “Adding a Business Process
to Handle XML Virtual Documents,” earlier in this book.

8.1 Creating a Rule Set

To create arule set for XML virtual documents:
1. Optionaly load the applicable XML schema or schemas into Ensemble.
See “Loading XML Schemas into Ensemble” earlier in this book.
2. Usethe Rule Set editor in the Management Portal or in Studio, as described in Developing Business Rules.
3. For therule set basic definition, use Virtual Document Message Routing Rule for Type.

This choice sets Context Class t0 EnsLib.MsgRouter.VDocRoutingEngine. It also setsRule Assist Class to
EnsLib.MsgRouter.VDocRuleAssist.

4. For any rule constraint in the rule set, use the following values:

» For Message Class, Use EnsLib.EDI.XML.Document, the class with which Ensemble represents XML virtua docu-
ments.

» For Schema Category, optionally select an XML schemathat you have previously loaded into Ensemble.
L eave this value blank if you do not have or do not want to use the schema.
e For Document Name, optionally select a document type defined in that schema.

Leave this value blank if you have not specified Schema Category.

5. Createrules asusua, using the XML property paths described earlier in this book. There are two basic scenarios:

Ensemble XML Virtual Document Development Guide 47

Defining Rule Sets for XML Virtual Documents

* |If you have loaded the schema and have specified the target document type, the Expression Editor provides
assistance when you start typing Document.

O Expression Editor

a fx Document {$2 | 0K

Document {$2:MName}
O Dacument {$2MRN]
Document {$2:Gender}
Document {$2:BirthDate}
Document {$2:HomeAddress} hd|

Notice that these property paths are schema-dependent paths, although you could edit them to be DOM-style paths
instead, if those are needed for some reason.

» |If you have not loaded the schema and specified the document type, you must type the path manually. You can
use either schema-dependent paths or DOM-style paths.

After you save and compile the rule set, it is available for use in a business process.

8.2 Example

The following shows the class definition for asimple rule set. Thisrule set has one rule that uses a DOM-style path to
check the <MRN> element of the <Patient> document. Depending on the returned value, the rule routes the message to
either FileOutl or FileOut2. Notice that in this case, the rule constraint does not refer to the XML schema or type.

Class Demo09.MyRules Extends Ens.Rule.Definition

Parameter RuleAssistClass = "EnsLib.MsgRouter.VDocRuleAssist";
XData RuleDefinition [XMLNamespace = "http://www.intersystems.com/rule"]

<ruleDefinition alias=""" context="EnsLib.MsgRouter.VDocRoutingEngine'>
<ruleSet name=""" effectiveBegin="" effectiveEnd="">

<rule name="CheckMRN" disabled="false">

<constraint name="msgClass" value="EnsLib.EDI_XML.Document'></constraint>
<when condition="Document.{/$2:Patient/$2:MRN}="123456789""">
<send transform=""" target="FileOutl'></send>

<return></return>

</when>

<when condition="Document.{/$2:Patient/$2:MRN}!=8"123456789""">
<send transform=""" target=""FileOut2'></send>

<return></return>

</when>

</rule>

</ruleSet>

</ruleDefinition>

48 Ensemble XML Virtual Document Development Guide

Defining Search Tables for XML Virtual
Documents

This chapter describes briefly how to define search tables for XML virtual documents. It discusses the following topics:
* Introduction
 Example

To configure a business service or business operation to use a search table class, specify the Search Table Class setting of
that business host. See “ Configuration Steps,” earlier in this book.

0.1 Introduction

The XML searchtableclass, EnsLib.EDI.XML.SearchTable indexes only the name of the root element of the XML documents.

If you need moreitems to search, you can create a subclass. For details, see “ Defining a Search Table Class” in Ensemble
Virtual Documents.

Note: Ensemble does not retroactively index messages that were received before you added the search table class.

9.2 Example

The following shows an example:

XData SearchSpec [XMLNamespace = "http://www. intersystems.com/EnsSearchTable" 7]

<ltems>
<ltem DocType="MyApp:Patient'” PropName="Gender" >{*:/Patient/Gender}</Iltem>
<ltem DocType="MyApp:Patient" PropName="MRN" >{*:/Patient/@MRN}</Item>
</ltems>

Ensemble XML Virtual Document Development Guide 49

10

XML-Enabled Objects Compared to XML
Virtual Documents

When developing a production with XML messages, you can use either of the following structures to contain the XML
document:

e XML Virtua Documents
* XML-enabled objects

If you need to access a small number of the elementsin the input XML document, you can use XML Virtual Documents,
but if you need to access most of the elementsin the input XML document, you should choose XML -enabled objects
because they are more efficient, especially when an object with many elementsis processed by atransformation. The fol-
lowing business services and operations are provided to handle XML-enabled objects:

e EnsLib.XML.Object.Service.FileService

* EnsLib.XML.Object.Service.FTPService

» EnsLib.XML.Object.Operation.FileOperation

e EnsLib.XML.Object.Operation.FTPOperation

The XML-enabled object business services read afile containing an XML document and convert it to one or more objects.
You specify a property that defines the XML element to convert to objects. If the XML root document contains asingle

element, then the service convertsit to one object, but if the XML root document contains a series of these elements, then
the service converts them to separate objects.

To use the XML -enabled object services, you do the following:

1. Define aclassthat matches the structure of the input XML documents that you are processing. The class can either
match the entire XML document or arepeating element within theroot XML document. You can usethe XML Schema
Wizard to definethis class. You can optionally defineaNAMESPACE parameter for thisclass. This parameter specifies
the XML namespace.

2. Specify the classname in the business service Class Name field.

3. Optionally, specify the element name in the Element Name field. If you specify this field, the service looks for one or
more XML elements with this name within the root XML object. Each occurrence of this element is converted to an
instance of the specified class. If you do not specify this field, the service matches the root document to the specified
class.

Ensemble XML Virtual Document Development Guide 51

XML-Enabled Objects Compared to XML Virtual Documents

4. Optionally, specify the Format parameter and optionally select ignore Null. The Format parameter can have a value of

"literal", "encoded", or "encoded12". These parameters specify the corresponding parameters for the %XML.Adaptor
class.

The XML-enabled object business operations convert an object to an XML document and write the document to afile. In
addition to specifying information about the XML class and element, you can specify propertiesthat are used when the
operation invokes the %XML.Writer class.

Specify the following properties in the operations:

Root Element Name — If you specify this property, it is used as the root element name. If you omit this element, the
operation uses the input element name.

Namespace — Specifies the XML namespace except if the class defines a NAMESPACE property. In that case, the
operation always uses the XML namespace defined in the class.

Expected Class Name — Class name of the XML -enabled object. If the expected name does hot match the actual name,
the %XML.Writer adds an xsi:type attribute to the XML element.

Indentation Type — Specifies the corresponding property for %XML.Writer. Indentation Type specifies if indentation
of the XML output should take place and what type of indentation.

Indentation Depth — Specifies the corresponding property for %XML.Writer. Indentation Depth specifies the number
of indentation characters to be used for indentation. The default for "tab" is 1. The default for "space” is 4.

Charset — Specifies the corresponding property for %XML.Writer. Charset isthe charset to use for encoding the XML
output. The default depends upon the output destination. "UTF-8" is the default for output to files and binary streams.
OnaUnicode system, "UTF-16 isthedefault for output to character streamsand strings. On an 8-bit system, the default
charset for the locale is the default charset for output to character streams and strings

No XML Declaration — Specifies the corresponding property for %XML.Writer. If No XML Declaration is 1 (true), the
%XML.Writer does not write the XML declaration. The default is for the %XML.Writer to write the XML declaration
unless Charset is not specified and the output is directed to a string or character stream in which case it does not write
an XML declaration.

Runtime Ignore Null — Specifies the corresponding property for %XML.Writer.
Element Qualified — Specifies the corresponding property for %XML.Writer.
Attribute Qualified — Specifies the corresponding property for %XML.Writer.
Default Namespace — Specifies the corresponding property for %XML.Writer.
Suppress xmIns — Specifies the corresponding property for %XML.Writer.
Format — Specifies the corresponding property for %XML.Writer.

References inline — Specifies the corresponding property for %XML.Writer.

52

Ensemble XML Virtual Document Development Guide

Reference for Settings

This section provides the following reference information:
o Settingsfor XML Business Services
e Settingsfor XML Business Operations

For information on settings for the routing process (EnsLib.MsgRouter.VDocRoutingEngine), see “ Settings of a Virtua
Document Routing Process” in Ensemble Virtual Documents.

Ensemble XML Virtual Document Development Guide

53

Reference for Settings

Settings for XML Business Services

Provides reference information for settings of XML virtual document business services.

Summary
XML virtual document business services provide the following settings:
Group Settings See
Basic Settings Target Config Names, Doc Schema Category “Settings for Business Services”

in Ensemble Virtual Documents
Additional Settings | Search Table Class, Validation section in this topic

Reply Target Config Names section in this topic

The remaining settings are either common to all business services or are determined by the file adapter. For information,
see:

» “Settingsfor All Business Services” in Configuring Ensemble Productions

e “Settingsfor the File Inbound Adapter” in Using File Adapters with Ensemble

Reply Target Config Names

(Fileand FTP only) Comma-separated list of configuration itemswithin the production to which the business service should
relay any XML virtual documents reply messages. Usually the list contains one item, but it can be longer. The list can
include both business processes and business operations.

Compare to Target Config Names.

Validation

By default, validation of XML virtual documentsislimited to testing whether the DocTypeis defined. To provide additional
validation for XML virtual documents, you should subclass the EnsLib.MsgRouter.VDocRoutingEngine class and override
the OnValidate method, adding custom code to validate the XML document.

If you are validating the document, return anonzero value, which suppresses any default validation. If the document passes
validation, return 1 ($$$0K) in pStatus to indicate success. If the document fails validation, return an error code in
pStatus.

54 Ensemble XML Virtual Document Development Guide

Settings for XML Business Operations

Settings for XML Business Operations

Provides reference information for settings of XML virtual document business operations.

Summary
XML virtual document business operations provide the following settings:
Group Settings
Basic Settings Format section in this topic
Additional Settings Search Table Class “Settings for Business Operations” in

Ensemble Virtual Documents

The remaining settings are either common to all business operations or are determined by the file adapter. For information,
see

o “Settingsfor All Business Operations” in Configuring Ensemble Productions

o “Settingsfor the File Outbound Adapter” in Using File Adapters with Ensemble

Format

Specifies how to form the outbound document. You can leave this empty, in which case defaults are used. Or you can
specify astring that contains a suitable combination of the characterslisted in “ The pFormat Argument,” earlier in this
book.

For example, if you use the value C(UTF-8)q, the outbound document isin the UTF-8 character set and attributes are set
off with double quotes. For another example, if you use the value C(UTF-16)a, the outbound document isin the UTF-16
character set and attributes are alphabetized.

Ensemble XML Virtual Document Development Guide 55

	Table of Contents
	About This Book
	1 Introduction
	2 Available Tools
	2.1 Using the XML Schema Structures Page
	2.2 Using the XML Document Viewer Page
	2.3 Importing XML Schemas Programmatically
	2.4 XML Classes

	3 Configuration Steps
	3.1 Loading XML Schemas into Ensemble
	3.2 Adding a Business Service to Handle Inbound XML as Virtual Documents
	3.3 Adding a Business Process to Handle XML Virtual Documents
	3.4 Adding a Business Operation to Handle XML Virtual Documents

	4 Overview of Property Paths in XML Virtual Documents
	4.1 Orientation to Virtual Property Paths for XML Virtual Documents
	4.1.1 Basic Syntax for Schema-dependent Paths
	4.1.2 Basic Syntax for DOM-style Paths

	4.2 Viewing Path Units for XML Virtual Documents
	4.3 Redundant Inner Elements for Schema-dependent Paths
	4.4 Repeating Fields
	4.5 Duplicate Names
	4.6 Choice Structures
	4.7 Groups Included by Reference

	5 Specifying Schema-dependent Paths for XML Virtual Documents
	5.1 Getting or Setting the Contents of an XML Element
	5.2 Getting or Setting the Value of an XML Attribute
	5.3 Comments and Descriptions
	5.4 Using Mixed Content When Setting Paths
	5.5 Special Variations for Repeating Elements
	5.5.1 Iterating Through the Repeating Elements
	5.5.2 Counting Elements

	5.6 Testing Schema-dependent Paths in the Terminal

	6 Specifying DOM-style Paths for XML Virtual Documents
	6.1 Getting or Setting Nodes (Basic Paths)
	6.2 Using Mixed Content When Setting Paths
	6.3 Using the Basic Path Modifiers
	6.4 Using the Full() Function
	6.5 Getting or Setting the Value of an XML Attribute
	6.6 Using Path Modifiers to Insert or Append Nodes
	6.7 Using the element() Function
	6.8 Getting Positions of Elements
	6.9 Getting Counts of Elements
	6.10 Accessing Other Metadata
	6.11 Summary of Path Modifiers
	6.12 Variations for Documents That Use Namespaces
	6.13 Testing DOM-style Paths in the Terminal

	7 Defining Data Transformations for XML Virtual Documents
	7.1 Creating a Data Transformation
	7.2 Available Assignment Actions for XML Virtual Documents
	7.3 Using Code
	7.3.1 The pFormat Argument

	7.4 Example 1: Copying Most of the Source Document
	7.5 Example 2: Using Only a Few Parts of the Source Document
	7.6 Example 3: Using Code and SetValueAt()

	8 Defining Rule Sets for XML Virtual Documents
	8.1 Creating a Rule Set
	8.2 Example

	9 Defining Search Tables for XML Virtual Documents
	9.1 Introduction
	9.2 Example

	10 XML-Enabled Objects Compared to XML Virtual Documents
	Reference for Settings
	Settings for XML Business Services
	Settings for XML Business Operations

	Index

