
Caché Basic Reference

Version 2017.2
2020-06-26

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Caché Basic Reference
Caché Version 2017.2 2020-06-26
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

Symbols ... 3
Symbols Used in Caché Basic .. 4

Caché Basic Commands .. 7
Call ... 8
Catch ... 9
Const ... 11
Continue ... 12
Copy ... 13
Debug ... 14
Dim ... 15
Do...Loop .. 16
Erase ... 17
EraseArray .. 18
EraseValue .. 19
Exit ... 20
For Each...Next ... 22
For...Next .. 24
Function .. 26
Goto .. 28
If...Then...Else .. 29
Imports ... 30
Input ... 31
Let ... 32
Merge .. 33
New .. 34
On Error Goto ... 35
OpenId .. 37
Option Explicit ... 38
Print, Println ... 39
Randomize .. 40
Rem .. 41
Return ... 42
Select Case ... 43
Set ... 44
Sleep ... 45
Sub .. 46
TCommit .. 48
Throw ... 49
TRollback ... 51
Try .. 52
TStart .. 54
While...Wend .. 55
With .. 56

Caché Basic Functions .. 57
Abs ... 58

Caché Basic Reference iii

Asc .. 59
Atn .. 60
Case .. 61
Chr .. 63
Cos .. 64
Date .. 65
DateAdd ... 66
DateConvert .. 68
DateDiff .. 70
DatePart .. 73
DateSerial ... 76
DateTimeConvert ... 78
Day ... 80
Derived Math Functions ... 82
Exists .. 84
Exp ... 85
Fix ... 86
Hex ... 87
Hour .. 88
Increment .. 89
InStr .. 90
InStrRev .. 92
Int ... 94
IsObject .. 95
Join ... 96
LCase .. 97
Left ... 98
Len .. 100
List .. 101
ListBuild ... 105
ListExists .. 107
ListFind .. 108
ListFromString ... 109
ListGet .. 111
ListLength .. 113
ListNext .. 114
ListSame ... 116
ListToString .. 119
ListValid ... 121
Lock .. 123
Log ... 124
Mid ... 125
Minute .. 128
Month ... 129
MonthName .. 131
Now .. 132
Oct .. 133
Piece ... 134
Replace ... 138
Right ... 140
Rnd ... 142

iv Caché Basic Reference

Round ... 144
Second .. 145
Sgn .. 146
Sin ... 147
Space .. 148
Split .. 149
Sqr .. 151
StrComp ... 152
String .. 154
StrReverse ... 155
Tan .. 156
Time .. 157
TimeConvert ... 158
Timer .. 159
TimeSerial .. 160
Traverse .. 161
LTrim, RTrim, and Trim ... 163
UCase ... 164
Unlock .. 165
Weekday ... 166
WeekdayName .. 168
Year ... 170

Caché Basic Operators .. 171
Operator Summary ... 172
Operator Precedence .. 174
Addition Operator (+) ... 175
Subtraction Operator (–) ... 176
Mod Operator ... 177
Multiplication Operator (*) .. 178
Division Operator (/) .. 179
Integer Division Operator (\) .. 180
Exponent Operator (^) .. 181
Assignment Operator (=) .. 182
Comparison Operators .. 183
Concatenation Operator (&) ... 184
Is Operator .. 185
And Operator .. 186
BitAnd Operator ... 187
Eqv Operator .. 188
BitEqv Operator ... 189
Imp Operator .. 190
BitImp Operator ... 191
Not Operator ... 192
BitNot Operator .. 193
Or Operator .. 194
BitOr Operator .. 195
Xor Operator .. 196
BitXor Operator .. 197

Caché Basic Constants .. 199
Comparison Constants ... 200

Caché Basic Reference v

Date Format Constants .. 201
Date and Time Constants ... 202
Node Constants ... 203
String Constants .. 204

Caché Basic Objects .. 205
Err Object ... 206
System Object .. 208

Caché Basic General Concepts ... 209
Multidimensional Data Model ... 210
Reserved words .. 212

vi Caché Basic Reference

About This Book

This book provides reference material for various elements of Caché Basic: commands, functions, constants, operators and
symbols, and a list of the reserved words in Caché Basic.

This book contains the following sections:

• Symbols

• Caché Basic Commands

• Caché Basic Functions

• Caché Basic Operators

• Caché Basic Constants

• Caché Basic Objects

• Caché Basic General Concepts

There is also a detailed Table of Contents.

Other related topics in the Caché documentation set are:

• Using Caché Basic

For general information, see Using InterSystems Documentation.

Caché Basic Reference 1

Symbols

Caché Basic Reference 3

Symbols Used in Caché Basic
A table of characters used in Caché Basic as operators, etc.

Table of Symbols
The following are the literal symbols used in Caché Basic. (This list does not include symbols indicating format conventions,
which are not part of the language.) There is a separate table for symbols used in ObjectScript.

The name of each symbol is followed by its ASCII decimal code value.

Name and UsageSymbol

White space (Tab (9) or Space (32)): One or more whitespace characters between keywords,
identifiers, and variables.

[space] or
[tab]

Quotes (34): Used to enclose string literals.

In Dynamic SQL used to enclose the SQL code as a string argument of the Prepare method.

"

Double quotes: Used to specify an empty string. Within a string literal, used to specify a
literal double quote character.

""

Percent sign (37): Permitted first character in identifier names, such as variables, methods,
and datatypes.

%

Ampersand (38): String concatenation operator.

Numeric base prefix with Hex (&H) and Oct (&O) functions.

&

Apostrophe (39): Single-line comment indicator.'

Parentheses (40,41): Used to enclose a procedure or function parameter list.

Used to nest expressions; nesting overrides the default order of operator precedence.

Used to specify array subscripts.

Enclose a test expression for an If, While, or in-line Case command.

()

Asterisk (42): Multiplication operator.*

Plus sign (43): Addition operator.+

Comma (44): Used to separate parameters in a procedure or function parameter list.

Used to separate subscripts in an array.

With Const and Dim commands, used to separate multiple assignments.

,

Minus sign (45): Unary arithmetic negative operator.

Subtraction operator.

–

Period (46): Decimal point character.

A valid character in global or process-private global names. Cannot be used in local variable
names.

Object dot syntax used to refer to a method or property of an object: person.Name.

.

Slash (47): Division operator (keep remainder)./

4 Caché Basic Reference

Symbols

Name and UsageSymbol

Colon (58): Label suffix. For example, LabelOne:.

Statement divider, used to separate multiple statements on the same line. For example,
Print a : Print b.

With Case function, used to associate case:value pairs.

:

Less than (60): Less than operator.<

Less than or equal to: Less than or equal to operator.<=

Less than/Greater than: Inequality operator.<>

Equal sign (61): Equals comparison operator.

Assignment operator.

=

Greater than (62): Greater than operator.>

Greater than or equal to: Greater than or equal to operator.>=

Question mark (63): In Dynamic SQL, an input parameter variable supplied by the Execute
method.

?

At sign (64): Calling function syntax: func@Routine(args).@

The letter “E” (69, 101): Base-10 exponent (scientific notation) numeric literal.E, e

Backslash (92): Integer division operator (drop remainder).\

Caret (94): Global variable name prefix; for example, ^myglobal.

Exponentiation operator.

^

Caret bar: depending on the character(s) that follow, this may be either:

An extended global reference, a global reference where a pair of bars encloses a null string,
or a quoted namespace or directory name. The bars and their contents are not part of the
global name. For example: ^|""|globname, or ^|"namespace"|globname.

A process-private global with the prefix ^||. The bars are part of the process-private global
name. For example, ^||ppgname. Also valid as syntax for this process-private global:
^|"^"|ppgname.

^|

Underscore (95): Line continuation character. A line ending with an underscore continues
on next line. Commonly preceded by one or more blank spaces.

A valid character in local variable names or routine names. Cannot be used in global variable
or process-private global variable names.

_

Curly braces (123,125): Code block delimiters used in procedures.{ }

Caché Basic Reference 5

Symbols Used in Caché Basic

Caché Basic Commands

Caché Basic Reference 7

Call
Transfers control to a Sub procedure or Function procedure.

[Call] name([arglist])

Arguments

The Call statement syntax has these parts:

Call is an optional keyword. If specified, you must enclose arglist in parentheses.
For example: Call MyProc(0)

Call

Name of the procedure to call. To call a procedure in an external routine, specify
name@routine(arglist).

name

Optional — Comma-delimited list of variables, arrays, or expressions to pass to
the procedure. The parentheses are required, even when there are no arguments.

arglist

Description
You are not required to use the Call keyword when calling a procedure. However, if you use the Call keyword to call a
procedure that requires arguments, argumentlist must be enclosed in parentheses. If you omit the Call keyword, you also
must omit the parentheses around arglist. If you use either Call syntax to call any intrinsic or user-defined function, the
function's return value is discarded.

To omit an arglist argument value, you must specify an undefined variable. This is a significant difference between
ObjectScript and Caché Basic. In ObjectScript an omitted argument can be specified using a placeholder comma. In Caché
Basic you cannot use a placeholder comma; you must supply an undefined named variable.

Examples
The following example shows how to use the Call statement:

Call MyFunction("Hello World")

Function MyFunction(text)
 Println text
End Function

8 Caché Basic Reference

Caché Basic Commands

Catch
Identifies a block of code to execute when an exception occurs.

Try
 statements
Catch [exceptionvar]
 statements
End Try

Arguments

Optional — An exception variable. Specified as a local variable, with or without subscripts,
that receives a reference to a Caché Object.

exceptionvar

Description
The Catch command defines an exception handler, one or more statements to execute when an exception occurs in the
code following a Try statement. The Catch command is followed by one or more exception handling code statements. The
Catch block must immediately follow its Try, and the paired Try and Catch are terminated by an End Try statement.

The Catch command has two forms:

• Without an argument

• With an argument

Catch without an Argument

Argumentless Catch execute the series of statements between Catch and End Try.

Catch with an Argument

Catch exceptionvar receives a Caché Object reference (oref) from the Throw command or from the system runtime envi-
ronment in the event of a system error. This Object provides properties that contain information about the exception, such
as the Name of the error and the Location where it occurred. The user-written Catch exception handler code can use this
information to analyze the exception.

Arguments

exceptionvar

A local variable, used to receive the exception object reference from the Throw command or from the system runtime
environment in the event of a system error. When a system error occurs, exceptionvar receives a reference to an object of
type %Exception.SystemException. For further details, refer to the %Exception.AbstractException class in the InterSystems
Class Reference.

Examples
The following example shows a Catch invoked by a runtime error. The myvar argument receives a system-generated
exception object:

Caché Basic Reference 9

Catch

 Try
 PRINTLN "about to divide by zero"
 SET a=7/0
 PRINTLN "this should not display"
 Catch myvar
 PRINTLN "this is the exception handler"
 PRINTLN "Error is: ",Err.Description
 PRINTLN "Error code: ",myvar.Code
 End Try
 PRINTLN "this is where the code falls through"

See Also
• Throw command

• Try command

• Err object

10 Caché Basic Reference

Caché Basic Commands

Const
Declares constants for use in place of literal values.

Const constname = expression

Arguments

The Const statement syntax has these parts:

Name of the constant; follows standard variable-naming conventions.constname

Literal or any combination that includes all arithmetic or logical operators except Is.expression

Description
To combine several constant declarations on the same line, separate each constant assignment with a comma.

You cannot use variables, user-defined functions, or intrinsic Caché Basic functions (such as Chr) in constant declarations.
By definition, they cannot be constants. Constants declared in a Sub or Function procedure are local to that procedure. A
constant declared outside a procedure is defined throughout the script in which it is declared. You can use constants anywhere
you can use an expression.

Examples
The following code illustrates the use of the Const statement:

Const MyVar = 459

' Declare multiple constants on same line.
Const MyStr = "Hello", MyNumber = 3.4567

Notes
Constants can make your scripts self-documenting and easy to modify. Unlike variables, constants cannot be inadvertently
changed while your script is running.

See Also
• Dim Statement

• Function Statement

• Sub Statement

Caché Basic Reference 11

Const

Continue
Jumps to FOR or DO WHILE statements and reexecutes test and loop.

Continue Do
Continue For

Arguments

The Continue Do and Continue For statements do not have any arguments

Description
The Continue Do or Continue For statement is used within the code block following a For or Do While statement.
Continue Do or Continue For causes execution to jump back to the For or Do While statement and to evaluate its test
condition, and, based on that evaluation, reexecutes the code block loop.

Examples
The following example illustrates the use of the Continue statement:

For i = 1 to 10
 If i = 5 Then
 Continue For
 Println i
 End If
Next

See Also
• Do...Loop Statement

• Exit Statement

• For Each...Next Statement

• For...Next Statement

12 Caché Basic Reference

Caché Basic Commands

Copy
Copies array elements from source to target.

Copy target=source

Arguments

The Copy statement has the following parameters:

The name of the variable, typically an array, which should be copied.source

The name of the variable into which the contents of source should be copied.target

Description
All nodes in the target variable are deleted prior to the copy process. The only difference between Copy and Merge is the
deletion of the target nodes.

Examples
Erase source, target

target(1) = "node 1"
target(1,1) = "node 1,1"
target(2) = "node 2"
target(3,1) = "node 3,1"
source(3,2) = "node 3,2"

Copy target = source

Println Exists(target(3,1)) 'not defined anymore, returns 0
Println Exists(target(3,2)) 'does now exist, returns 1
Println Exists(target(1)) 'not defined and has no subnodes, returns 0

See Also
• Merge Statement

Caché Basic Reference 13

Copy

Debug
Interrupts program execution and enters programmer mode.

Debug

Arguments

None.

Description
The Debug statement interrupts execution of the current routine and returns control to programmer mode. Once in programmer
mode, you can perform debugging operations. A Debug statement included in code sets a breakpoint, which interrupts
routine execution and returns the process to programmer mode.

The Debug statement is functionally equivalent to the ObjectScript argumentless BREAK command.

14 Caché Basic Reference

Caché Basic Commands

Dim
Declares variables.

Dim varname[, varname] . . .

Arguments

The Dim statement syntax has these parts:

Name of the variable; follows standard variable naming conventions.varname

Description
Variables declared with Dim at the script level are available to all procedures within the script. At the procedure level,
variables are available only within the procedure.

All uninitialized variables are treated as zero-length strings ("").

Examples
The following examples illustrate the use of the Dim statement:

Dim MyStr ' Declare one variable
Dim MyVar, MyNum ' Declare two variables

Notes
Caché Basic does not require the dimension of arrays to be specified, and therefore does not implement the ReDim Statement.

See Also
• Set Statement

Caché Basic Reference 15

Dim

Do...Loop
Repeats a block of statements while a condition is True or until a condition becomes True.

Do [{While | Until} condition]
 [statements]
 [Exit Do]
 [statements]
Loop

Or, you can use this syntax:

Do
 [statements]
 [Exit Do]
 [statements]
Loop [{While | Until} condition]

Arguments

The Do...Loop statement syntax has these parts:

Numeric or string expression that is True or False.condition

One or more statements that are repeated while or until condition is True.statements

Description
The Exit Do can only be used within a Do...Loop control structure to provide an alternate way to exit a Do...Loop. Any
number of Exit Do statements may be placed anywhere in the Do...Loop. Often used with the evaluation of some condition
(for example, If...Then), Exit Do transfers control to the statement immediately following the Loop.

When used within nested Do...Loop statements, Exit Do transfers control to the loop that is nested one level above the
loop where it occurs.

Examples
The following examples illustrate use of the Do...Loop statement:

Do Until MyNum = 6
 MyNum = Int (6 * Rnd + 1) ' Generate a random integer between 1 and 6
 Println MyNum
Loop

Dim Check, Counter
Check = True: Counter = 0 ' Initialize variables.
Do ' Outer loop.
 Do While Counter < 20 ' Inner loop.
 Counter = Counter + 1 ' Increment Counter.
 If Counter = 10 Then ' If condition is True...
 Check = False ' set value of flag to False.
 Exit Do ' Exit inner loop.
 End If
 Loop
Loop Until Check = False ' Exit outer loop immediately.

See Also
• Exit Statement

• For...Next Statement

• While...Wend Statement

16 Caché Basic Reference

Caché Basic Commands

Erase
Removes the named variable and deallocates dynamic-array storage space.

Erase varname

Arguments

The Erase statement has the following argument:

The name of the variable to be erased.varname

Description
The Erase statement removes the variable and all descended nodes.

Erase may be used to insure that a variable has no defined value, such as when a named variable is used as a placeholder
in an argument list.

Examples
The following example uses Erase to remove an array and its subnodes:

array = "root node"
array("subnode") = "subnode"
array("subnode", "subnode") = "subnode, subnode"
Println Exists(array) 'returns 3; variable defined and has array elements
Erase array
Println Exists(array) 'returns 0

The following example uses Erase to specify an explicitly undefined placeholder variable:

 Erase blankvar
 tStatement = New %SQL.Statement(blankvar,"Sample")
 PrintLn "Success"

See Also
• EraseArray Statement

• EraseValue Statement

Caché Basic Reference 17

Erase

EraseArray
Removes the array elements of a variable and deallocates dynamic-array storage space.

EraseArray varname

Arguments

The EraseArray statement has the following argument:

The name of the variable for which the array elements should be erased.varname

Description
The EraseArray statement removes array elements of the variable, but not the root node.

Examples
The following example demonstrates the use of the EraseArray statement:

array = "root node"
array("subnode") = "subnode"
array("subnode", "subnode") = "subnode, subnode"
Println Exists(array) 'returns 3; variable defined and has array elements
EraseArray array
Println Exists(array) 'returns 1

See Also
• Erase Statement

• EraseValue Statement

18 Caché Basic Reference

Caché Basic Commands

EraseValue
Removes the root node of a variable.

EraseValue varname

Arguments

The EraseValue statement has the following argument:

The name of the variable for which the root node should be erased.varname

Description
The EraseValue statement removes the root nodes of the variable, but does not delete the array elements.

Examples
The following example demonstrates the use of the EraseArray statement:

array = "root node"
array("subnode") = "subnode"
array("subnode", "subnode") = "subnode, subnode"
Println Exists(array) 'returns 3; variable defined and has array elements
EraseValue array
Println Exists(array) 'returns 2

See Also
• Erase Statement

• EraseArray Statement

Caché Basic Reference 19

EraseValue

Exit
Exits a block of Do...Loop, For...Next, Function, or Sub code.

Exit Do

Exit For

Exit Function

Exit Sub

Arguments

The Exit statement syntax has these forms:

Provides a way to exit a Do...Loop statement. It can be used only inside a
Do...Loop statement. Exit Do transfers control to the statement following the
Loop statement. When used within nested Do...Loop statements, Exit Do
transfers control to the loop that is one nested level above the loop where it
occurs.

Exit Do

Provides a way to exit a For loop. It can be used only in a For...Next or For
Each...Next loop. Exit For transfers control to the statement following the Next
statement. When used within nested For loops, Exit For transfers control to the
loop that is one nested level above the loop where it occurs.

Exit For

Immediately exits the Function procedure in which it appears. Execution
continues with the statement following the statement that called the Function.

Exit Function

Immediately exits the Sub procedure in which it appears. Execution continues
with the statement following the statement that called the Sub.

Exit Sub

Examples
The following example illustrates the use of the Exit statement:

Sub RandomLoop
 Dim I, MyNum
 Do ' Set up infinite loop.
 For I = 1 To 1000 ' Loop 1000 times.
 MyNum = Int(Rnd * 100) ' Generate random numbers.
 Select Case MyNum ' Evaluate random number.
 Case 17: Print "Case 17"
 Exit For ' If 17, exit For...Next.
 Case 29: Print "Case 29"
 Exit Do ' If 29, exit Do...Loop.
 Case 54: Print "Case 54"
 Exit Sub ' If 54, exit Sub procedure.
 End Select
 Next
 Loop
End Sub

See Also
• Continue Statement

• Do...Loop Statement

• For Each...Next Statement

20 Caché Basic Reference

Caché Basic Commands

• For...Next Statement

• Function Statement

• Sub Statement

Caché Basic Reference 21

Exit

For Each...Next
Repeats a group of statements for each element in an array or collection.

For Each element In group
 [statements]
 [Exit For]
 [statements]
Next [element]

Arguments

The For Each...Next statement syntax has these parts:

Variable used to iterate through the elements of the collection or array. For collections,
element can only be a Variant variable, a generic Object variable, or any specific object
variable. For arrays, element can only be a Variant variable.

element

Name of an object collection or array.group

One or more statements that are executed on each item in group.statement

Description
The For Each block is entered if there is at least one element in group. Once the loop has been entered, all the statements
in the loop are executed for the first element in group. As long as there are more elements in group, the statements in the
loop continue to execute for each element. When there are no more elements in group, the loop is exited and execution
continues with the statement following the Next statement.

The Exit For can only be used within a For Each...Next or For...Next control structure to provide an alternate way to exit.
Any number of Exit For statements may be placed anywhere in the loop. The Exit For is often used with the evaluation
of some condition (for example, If...Then), and transfers control to the statement immediately following Next.

You can nest For Each...Next loops by placing one For Each...Next loop within another. However, each loop element
must be unique.

For Each and the Split Function

A Split function cannot be directly used as the group argument of a For Each...Next statement. You must first assign the
Split return value to an array variable. You can then specify this array variable as the group argument of the For Each...Next
statement.

Examples
The following example illustrates use of the For Each...Next statement:

Erase ^RandomData

' Generate some random nodes
For i = 65 to 90
 If Rnd(i) > .5 Then
 ^RandomData(Chr(i),"subnode")="data"
 Else
 ^RandomData(Chr(i))="data"
 End If
Next

PrintLn "Traverse forwards"

For each k1 in ^RandomData
 PrintLn k1
 For each k2 in ^RandomData(k1)
 Print k1,vbTAB,k2
 If Exists(^RandomData(k1,k2)) and vbHasValue Then

22 Caché Basic Reference

Caché Basic Commands

 Print " = ",^RandomData(k1,k2)
 End If
 PrintLn
 Next
Next

Notes
If you omit element in a Next statement, execution continues as if you had included it. If a Next statement is encountered
before its corresponding For statement, an error occurs.

See Also
• Do...Loop Statement

• Exit Statement

• For...Next Statement

• While...Wend Statement

Caché Basic Reference 23

For Each...Next

For...Next
Repeats a group of statements a specified number of times.

For counter = start To end [Step step]
 [statements]
 [Exit For]
 [statements]
Next

Arguments

The For...Next statement syntax has these parts:

Numeric variable used as a loop counter. The variable cannot be an array element or
an element of a user-defined type.

counter

Initial value of counter.start

Final value of counter.end

Amount counter is changed each time through the loop. If not specified, step defaults
to one.

step

One or more statements between For and Next that are executed the specified number
of times.

statements

Description
The step argument can be either positive or negative. The value of the step argument determines loop processing as follows:

Loop Executes IfValue

counter <= endPositive or 0

counter >= endNegative

Once the loop starts and all statements in the loop have executed, step is added to counter. At this point, either the statements
in the loop execute again (based on the same test that caused the loop to execute initially), or the loop is exited and execution
continues with the statement following the Next statement.

Exit For can only be used within a For Each...Next or For...Next control structure to provide an alternate way to exit. Any
number of Exit For statements may be placed anywhere in the loop. Exit For is often used with the evaluation of some
condition (for example, If...Then), and transfers control to the statement immediately following Next.

You can nest For...Next loops by placing one For...Next loop within another. Give each loop a unique variable name as its
counter. The following construction is correct:

For I = 1 To 10
 For J = 1 To 10
 For K = 1 To 10
 ' Some statements
 Next
 Next
Next

Notes
Changing the value of counter while inside a loop can make it more difficult to read and debug your code.

24 Caché Basic Reference

Caché Basic Commands

See Also
• Do...Loop Statement

• Exit Statement

• For Each...Next Statement

• While...Wend Statement

Caché Basic Reference 25

For...Next

Function
Declares the name, arguments, and code that form the body of a Function procedure.

[Public | Private] Function name [(arglist)] [As classname]
 [statements]
 [name = expression]
 [Exit Function]
 [statements]
 [name = expression]
End Function

Arguments

The Function statement syntax has these parts:

Optional — Keyword indicating that the Function procedure is accessible to all other
procedures in all scripts.

Public

Optional — Keyword indicating that the Function procedure is accessible only to other
procedures in the script where it is declared.

Private

Name of the Function. Follows local variable naming conventions.name

Optional — List of variables representing arguments that are passed to the Function
procedure when it is called, separated by commas.

arglist

Optional — Name of the class of the return value.classname

Any group of statements to be executed within the body of the Function procedure.statements

Optional — Return value of the Function.expression

The arglist argument has the following syntax and parts:

[ByVal | ByRef] varname[()]

Indicates that the argument is passed by value.ByVal

Indicates that the argument is passed by reference.ByRef

Name of the variable representing the argument; follows standard variable naming
conventions.

varname

Description
Function procedures are visible to all other procedures in your script. The value of local variables in a Function is not
preserved between calls to the procedure.

All executable code must be contained in the procedure. Nesting is not permitted; you cannot define a Function procedure
inside another Function or Sub procedure.

The Exit Function statement causes an immediate exit from a Function procedure. Program execution continues with the
statement following the statement that called the Function procedure. Any number of Exit Function statements can appear
anywhere in a Function procedure.

Like a Sub procedure, a Function procedure is a separate procedure that can take arguments, perform a series of statements,
and change the values of its arguments. However, unlike a Sub procedure, you can use a Function procedure on the right

26 Caché Basic Reference

Caché Basic Commands

side of an expression in the same way you use any intrinsic function, such as Sqr, Cos, or Chr, when you want to use the
value returned by the function.

You call a Function procedure using the function name, followed by the argument list in parentheses, in an expression.
See the Call statement for specific information on how to call Function procedures.

There are two ways to return a value from a function: you can specify the value on a Return statement, or you can assign
the value to the function name. Any number of such assignments can appear anywhere within the procedure. If no value
is assigned to name, the procedure returns a default value: a zero-length string (""). A function that returns an object reference
returns a zero-length string ("") if no object reference is assigned to name within the Function.

Variables used in Function procedures fall into two categories: those that are explicitly declared within the procedure and
those that are not. Variables that are explicitly declared in a procedure (using Dim or the equivalent) are always local to
the procedure. Variables that are used but not explicitly declared in a procedure are also local unless they are explicitly
declared at some higher level outside the procedure.

All variables in a Caché Basic Function procedure are private. Therefore, a Function procedure cannot access public
variables, such as SQLCODE. To use public variables, use a top-level Caché Basic routine, rather than a called function
or subroutine.

To omit an arglist argument value, you must specify an undefined variable. This is a significant difference between
ObjectScript and Caché Basic. In ObjectScript an omitted argument can be specified using a placeholder comma. In Caché
Basic you cannot use a placeholder comma; you must supply an undefined named variable.

Examples
The following example shows both ways to assign a return value. First by specifying “True” to the Return statement, then
by assigning “False” to the function named IsGreaterThan. False is assigned to the function name to indicate that an invalid
value was found.

Function IsGreaterThan(lower, upper)
If lower < upper Then Return True
IsGreaterThan = False
End Function

Notes
Function procedures can be recursive; that is, they can call themselves to perform a given task. However, recursion can
lead to stack overflow.

See Also
• Call Statement

• Dim Statement

• Return Statement

• Sub Statement

Caché Basic Reference 27

Function

Goto
Transfers program execution to the specified location.

Goto label

Arguments

A line label specifying the target of the Goto operation. A label is a valid identifier, followed by
a colon suffix. See Labels in Using Caché Basic. The Goto label reference can be specified
with or without a colon suffix.

label

Description
The Goto statement immediately shifts program execution to the line location in the program specified by the label. The
specified line must be in the same procedure as the Goto statement, or a compile-time error occurs.

The label argument specifies an existing label in the current program. Specifying the label's colon suffix is optional. Label
names are case-sensitive. Specifying a non-existent label name results in a runtime error.

Examples
The following example illustrates the use of the Goto statement. Note that the label argument can include or omit the colon
suffix:

Mod1:
 Println "Mod1"
 Goto Mod2
 Println "skipped over"
Mod2:
 Println "Mod2"
 Goto Mod4:
Mod3:
 Println "skipped Mod3"
Mod4:
 Println "Mod4"

The following example illustrates that more than one label can appear on a single line:

Mod1:
 Println "Mod1"
 Goto Mod3:
 Println "skipped over"
Mod2: Mod3:
 Println "Mods 2 and 3"
 Goto Mod4:
Mod4:
 Println "Mod4"

See Also
• Basic: On Error Goto statement

• ObjectScript: GOTO command

• Labels in the “Lexical Structure” chapter of Using Caché Basic.

28 Caché Basic Reference

Caché Basic Commands

If...Then...Else
Conditionally executes a group of statements, depending on the value of an expression.

If condition Then statements [Else elsestatements]

Or, you can use the block form syntax:

If condition Then
 [statements]
[ElseIf condition-n Then
 [elseifstatements]] . . .
[Else
 [elsestatements]]
End If

Arguments

The If...Then...Else statement syntax has these parts:

An expression that evaluates to True or False.condition

One or more statements separated by colons; executed if condition is True.statements

Same as condition.condition-n

One or more statements executed if the associated condition-n is True.elseifstatements

One or more statements executed if no previous condition or condition-n
expression is True.

elsestatements

Description
You can use the single-line form (first syntax) for short, simple tests. However, the block form (second syntax) provides
more structure and flexibility than the single-line form and is usually easier to read, maintain, and debug.

When executing a block If (second syntax), condition is tested. If condition is True, the statements following Then are
executed. If condition is False, each ElseIf (if any) is evaluated in turn. When a True condition is found, the statements
following the associated Then are executed. If none of the ElseIf statements are True (or there are no ElseIf clauses), the
statements following Else are executed. After executing the statements following Then or Else, execution continues with
the statement following End If.

The Else and ElseIf clauses are both optional. You can have as many ElseIf statements as you want in a block If, but none
can appear after the Else clause. Block If statements can be nested; that is, contained within one another.

What follows the Then keyword is examined to determine whether or not a statement is a block If. If anything other than
a comment appears after Then on the same line, the statement is treated as a single-line If statement.

A block If statement must be the first statement on a line. The block If must end with an End If statement.

Notes
With the single-line syntax, it is possible to have multiple statements executed as the result of an If...Then decision, but
they must all be on the same line and separated by colons, as in the following statement:

If A > 10 Then A = A + 1 : B = B + A : C = C + B

See Also
• Case Function

Caché Basic Reference 29

If...Then...Else

Imports
Imports a package name.

Imports package [,package2 [,...]]

Arguments

The Imports statement syntax has these parts:

A package name, or a comma-separated list of package names.package

Description
You use the Imports statement to import a package. This allows statements to append a package name to a class without
having to explicitly declare the package name each time. If the package does not exist, or if the specified class is not found
in any of the imported packages, or if the specified class is found in more than one imported package, no package name is
appended to the class name.

Examples
The following example illustrates the use of the Imports statement:

Imports %Library
MyObject = new MsgHandler

which is equivalent to:

MyObject = new %Library.MsgHandler

See Also
• System Object

30 Caché Basic Reference

Caché Basic Commands

Input
Accepts input and stores it in a variable.

Input data

Arguments

Either the name of a variable used to receive the data input, or a quoted string specifying the
data.

data

Description
The Input statement inputs a literal data value. It can interactively receives a data value from the user into a variable, or it
can input a specified quoted string.

Input with a variable cannot be used in a program running in background. Program execution is paused until the user
indicates the end of data input and submits the data value by pressing the Return key.

Input does not time out.

The ObjectScript READ command provides more extensive support for interactive user input.

Examples
The following example illustrates the interactive use of the Input statement:

Println "Type your name, then press Return"
Input namevar
Println "Thanks ",namevar

The following example illustrates the background use of the Input statement:

Println "Here's the name"
Input "Fred"
Println
Println "Thanks "

See Also
• Basic: Print statement

• ObjectScript: READ command

Caché Basic Reference 31

Input

Let
Assigns an object reference to a variable or property.

Let objectvar = objectexpression

Arguments

Name of the variable or property; follows standard variable-naming
conventions.

objectvar

Expression consisting of the name of an object, another declared variable
of the same object type, or a function or method that returns an object of
the same object type.

objectexpression

Description
In Caché Basic, the Let statement is functionally identical to the Set statement. Refer to the Set statement for further details.

32 Caché Basic Reference

Caché Basic Commands

Merge
Merges array elements from source to target.

Merge target=source

Arguments

The Merge statement has the following parameters:

The name of the variable, typically an array, which should be merged into the target variable.source

The name of the variable into which the contents of source should be merged.target

Description
Nodes in the source variable overwrite corresponding nodes in the target variable, and all descendents of source overwrite
corresponding descendents of target. All other target nodes are unchanged. The only difference between Copy and Merge
is that Copy deletes the target nodes, and Merge does not.

Examples
Erase source, target

target(1) = "node 1"
target(1,1) = "node 1,1"
target(2) = "node 2"
target(3,1) = "node 3,1"
source(3,2) = "node 3,2"

Merge target=source

Println Exists(target(3,1)) 'is still defined, returns 1
Println Exists(target(3,2)) 'does now exist, returns 1

See Also
• Copy Statement

Caché Basic Reference 33

Merge

New
Creates a new instance of an object.

New object

Arguments

The New statement has the following argument:

Name of the object for which a new instance should be created.object

Examples
The following examples demonstrate how to use the New statement:

person = New User.Person

output = New %File("\PersonList.txt")

See Also
• IsObject Function

• OpenId Statement

34 Caché Basic Reference

Caché Basic Commands

On Error Goto
Enables an error-handling routine and specifies the location of the routine within a procedure.

On Error GoTo [label | 0]

Arguments

The On Error GoTo statement has the following argument:

A line label specifying the target of the Goto operation. A label is a valid identifier, followed by a
colon suffix. See Labels in Using Caché Basic.

label

Description
Enables the error-handling routine that starts at the line specified by the label argument. If a runtime error occurs, control
branches to the specified line, making the error handler active. The specified line must be in the same procedure as the On
Error statement, or a compile-time error will occur.

The label argument specifies an existing label in the current program. Specifying the label's colon suffix is optional. Label
names are case-sensitive. Specifying a non-existent label name results in a runtime error.

Use On Error Goto 0 to disable error handling if you have previously enabled it.

When On Error Goto is triggered by an error, it is automatically disabled. This means that the occurrence of a second
error causes a program abort, rather than initiating an infinite loop.

An error-handling routine is not a Sub procedure or a Function procedure. It is a section of code marked by a line label.

Error-handling routines rely on the value in the Number property of the Err object to determine the cause of the error. The
routine should test or save relevant property values in the Err object before any other error can occur or before a procedure
that might cause an error is called. The property values in the Err object reflect only the most recent error. The error message
associated with Err.Number is contained in Err.Description.

Examples
The following example shows the use of the On Error Goto statement. Here the error is attempting to divide 6 by 0. The
ErrMod error handler displays the error number (18) and description:

Mod1:
 On Error Goto ErrMod
 PrintLn "Mod1 pre-div"
 Println "result: ",6/0
 Println "Mod1 post-div"
 Goto Done
ErrMod:
 Println "Handling an error!"
 PrintLn "Error ",Err.Number," ",Err.Description
Done:
 Println "All done"

In the following example, the ErrMod error handler corrects the division by zero problem by changing divisor to 1, and
retries the Mod1 operation. Note that invoking the ErrMod error handling module resets On Error Goto, so that the
occurrence of the second error in this program (attempting to divide 5 by 0) aborts the program, rather than calling ErrMod
again:

Caché Basic Reference 35

On Error Goto

Setup:
 On Error Goto ErrMod
 divisor=0
Mod1:
 PrintLn "Mod1 pre-div"
 Println "result: ",6/divisor
 Println "Mod1 post-div"
 Println 5/0
 Goto Done
ErrMod:
 Println "Handling an error!"
 PrintLn "Error ",Err.Number," ",Err.Description
 If Err.Number=18 Then
 divisor=1
 Goto Mod1
 Else
 Println Err.Number
 End If
Done:
 Println "All done"

The following example shows the use of the On Error GoTo statement in a user-defined function:

PrintLn ErrorTest(1)
PrintLn ErrorTest(0)

Function ErrorTest(Arg)
 On Error Goto ErrDisplay
 return 1/Arg
ErrDisplay:
 PrintLn "Error ", Err.Number, " ", Err.Description, " ", Err.Source
 Err.Clear
 Return 0
End Function

See Also
• Goto statement

• Err object

• Labels in the “Lexical Structure” chapter of Using Caché Basic.

36 Caché Basic Reference

Caché Basic Commands

OpenId
Opens a new instance of an object for a given Identifier.

OpenId object

Arguments

The OpenId statement has the following argument:

Name of the object for which a new instance should be created.object

Examples
The following example demonstrate how to use the OpenId statement:

person = OpenId User.Person(5012)
 'Instantiates a person object with the Id of 5012

See Also
• IsObject Function

• New Statement

Caché Basic Reference 37

OpenId

Option Explicit
Used at script level to force explicit declaration of all variables in that script.

Option Explicit

Arguments

none

Description
If used, the Option Explicit statement must appear in a script before any procedures.

When you use the Option Explicit statement, you must explicitly declare all variables using the Dim statement. If you
attempt to use an undeclared variable name, an error occurs.

Note: You cannot use Option Explicit inside a method.

Examples
The following example illustrates use of the Option Explicit statement:

Option Explicit ' Force explicit variable declaration.
Dim MyVar ' Declare variable.
MyInt = 10 ' Undeclared variable generates error.
MyVar = 10 ' Declared variable does not generate error.

Notes
Use Option Explicit to avoid incorrectly typing the name of an existing variable or to avoid confusion in code where the
scope of the variable is not clear.

38 Caché Basic Reference

Caché Basic Commands

Print, Println
Writes a string to the current device.

Print expr
Println expr

Arguments

An expression that is evaluated and written to the current device. This can be a single expression,
or a comma-separated list of expressions.

expr

Description
The Print statement is used to write an expression (or a list of expressions) to the current device. The Println statement is
identical to Print, except that it automatically appends vbCRLF (carriage return / line feed) after writing the last expression
in the list.

Examples
The following example demonstrate the use of the Print and Println commands with strings and string variables. To include
a quote character within a string, double the quote character. Printing the empty string ("") completes without error and can
be used with Println to insert a blank line. An undefined variable (z in this example) is treated the same as the empty string.
Note that variable names are case-sensitive.

Set a="big "
Set b="bad "
Set c="bug"
Print "Hello"
Println " world!"
Println ""
Println "this is a quote ("") character"
Println z
Println a,b
Println c
Print a,b
Print c

The following example demonstrate the use of the Print and Println commands with numeric expressions. Caché converts
numbers to canonical form, removing unnecessary signs and leading and trailing blanks. It then evaluates arithmetic
expressions. Numbers specified as string are passed as literals without conversion.

Set x="++007.9900"
Set y=++007.9900
Println 123456
Println (3+3)*2
Println 3+(3*2)
Println +007.9900
Println x
Println y

The following example demonstrate the use of the Print and Println commands with subscripted global variables:

Set ^a(1)="fruit"
Set ^a(1,1)="apple"
Println "An ",^a(1,1)," is a ",^a(1)

See Also
• Basic: Set command

• ObjectScript: WRITE command

Caché Basic Reference 39

Print, Println

Randomize
Initializes the random-number generator.

Randomize [number]

Arguments

The number argument can be any valid numeric expression.

Description
Randomize uses number to initialize the Rnd function's random-number generator, giving it a new seed value. If you omit
number, the value returned by the system timer is used as the new seed value.

If Randomize is not used, the Rnd function (with no arguments) uses the same number as a seed the first time it is called,
and thereafter uses the last generated number as a seed value.

Examples
The following example illustrates use of the Randomize statement:

Dim MyValue, Response
Randomize ' Initialize random-number generator.

MyValue = Int((6 * Rnd) + 1) ' Generate random value between 1 and 6.

Println MyValue

Notes
To repeat sequences of random numbers, call Rnd with a negative argument immediately before using Randomize with
a numeric argument. Using Randomize with the same value for number does not repeat the previous sequence.

See Also
• Rnd Function

40 Caché Basic Reference

Caché Basic Commands

Rem
Used to include explanatory remarks in a program.

Rem comment
or

' comment

Arguments

None.

The comment argument is the text of any comment you want to include. After the Rem keyword, a space is required before
comment.

Description
As shown in the syntax section, you can use an apostrophe (') instead of the Rem keyword. If the Rem keyword follows
other statements on a line, it must be separated from the statements by a colon. However, when you use an apostrophe, the
colon is not required after other statements.

Examples
The following example illustrates the use of the Rem statement:

Dim MyStr1, MyStr2
MyStr1 = "Hello" : Rem Comment after a statement separated by a colon.
MyStr2 = "Goodbye" ' This is also a comment; no colon is needed.
Rem Comment on a line with no code; no colon is needed.

Caché Basic Reference 41

Rem

Return
Exits from the current function and returns a value from that function.

Return expression

Arguments

The Return statement syntax has these parts:

Any numeric or string expression.expression

Description
You use the Return statement to stop execution of a function and return the value of expression. If no Return statement
is executed from within the function, the expression that called the current function is assigned the value undefined.

Examples
The following example illustrates the use of the Return statement:

Function IsGreaterThan(lower, upper)
If lower > upper Then
 Return False
ElseIf lower = upper Then
 Return False
Else
 Return True
End If
End Function

See Also
• Function Statement

42 Caché Basic Reference

Caché Basic Commands

Select Case
Executes one of several groups of statements, depending on the value of an expression.

Select Case testexpression
 [Case expressionlist-n
 [statements-n]] . . .
 [Case Else elsestatements]
End Select

Arguments

The Select Case statement syntax has these parts:

Any numeric or string expression.testexpression

Required if Case appears. Delimited list of one or more expressions.expressionlist-n

One or more statements executed if testexpression matches any part of
expressionlist-n.

statements-n

One or more statements executed if testexpression does not match any
of the Case clauses. There can be only one Case Else clause with only
one set of elsestatements.

elsestatements

Description
If testexpression matches (is equal to) any Case expressionlist expression, the statements following that Case clause are
executed up to the next Case clause, or for the last clause, up to End Select. Control then passes to the statement following
End Select. If testexpression matches an expressionlist expression in more than one Case clause, only the statements fol-
lowing the first match are executed.

The Case Else clause is used to indicate the elsestatements to be executed if no match is found between the testexpression
and an expressionlist in any of the other Case selections. Although not required, it is a good idea to have a Case Else
statement in your Select Case block to handle unforeseen testexpression values. If no Case expressionlist matches testex-
pression and there is no Case Else statement, execution continues at the statement following End Select.

Select Case statements can be nested. Each nested Select Case statement must have a matching End Select statement.

Examples
The following example illustrates the use of the Select Case statement:

Dim Color, MyVar
Sub ChangeBackground (Color)
 MyVar = lcase (Color)
 Select Case MyVar
 Case "red" document.bgColor = "red"
 Case "green" document.bgColor = "green"
 Case "blue","azure" document.bgColor = "blue"
 Case Else Print "pick another color"
 End Select
End Sub

See Also
• If...Then...Else Statement

Caché Basic Reference 43

Select Case

Set
Assigns an object reference to a variable or property.

Set objectvar = objectexpression

Arguments

Name of the variable or property; follows standard variable-naming
conventions.

objectvar

Expression consisting of the name of an object, another declared variable
of the same object type, or a function or method that returns an object of
the same object type.

objectexpression

Description
The Set statement is used to assign a value to a variable. This value can be a number, a string, or an object reference. The
variable can be a local variable, a process-private global variable, or a global variable, and can be subscripted. For further
details on types of variables, see Identifiers and Variables in Using Caché Basic.

Generally, when you use Set to assign an object reference to a variable, no copy of the object is created for that variable.
Instead, a reference to the object is created. More than one object variable can refer to the same object. Because these
variables are references to (rather than copies of) the object, any change in the object is reflected in all variables that refer
to it.

Examples
The following example shows two Set statements assigning a string to a variable. The second Set statement uses the con-
catenation operator to construct the string:

Set a = "the quick brown fox"
Println a
Set b = "the "&"quick "&"brown "&"fox"
Println b

The following example shows two Set statements that assign a string to a subscripted global variable:

Set ^a(1)="fruit"
Set ^a(1,1)="apple"
Println "An ",^a(1,1)," is a ",^a(1)

The following example shows how to assign an object reference to a variable:

Set person = New User.Person()
Println person

See Also
• Basic: Dim Statement

• ObjectScript: SET command

44 Caché Basic Reference

Caché Basic Commands

Sleep
Causes program execution to delay for the specified number of seconds.

Sleep time

Arguments

A number specifying the number of seconds to delay. Can be an integer specifying whole
seconds, or a decimal number specifying fractional seconds.

time

Description
The Sleep statement delays program execution for the specified duration in seconds. Program execution then resumes at
the statement immediately following Sleep. A non-numeric time value is treated as zero.

Examples
The following example illustrates the use of the Sleep statement with whole seconds:

Println now
Sleep 5
Println now

The following example illustrates the use of the Sleep statement with fractional seconds:

Println now
Sleep 0.9
Println now

See Also
• Basic: Now function, Timer function

• ObjectScript: HANG command

Caché Basic Reference 45

Sleep

Sub
Declares the name, arguments, and code that form the body of a Sub procedure.

[Public | Private]Sub name [(arglist)]
 [statements]
 [Exit Sub]
 [statements]
End Sub

Arguments

The Sub statement syntax has these parts:

Optional — Keyword indicating that the Sub procedure is accessible to all other
procedures in all scripts.

Public

Optional — Keyword indicating that the Sub procedure is accessible only to other
procedures in the script where it is declared.

Private

Name of the Sub. Follows local variable naming conventions.name

Optional — List of variables representing arguments that are passed to the Sub
procedure when it is called. Multiple variables are separated by commas.

arglist

Any group of statements to be executed within the body of the Sub procedure.statements

The arglist argument has the following syntax and parts:

[ByVal | ByRef] varname[()]

Indicates that the argument is passed by value.ByVal

Indicates that the argument is passed by reference.ByRef

Name of the variable representing the argument; follows standard variable naming
conventions.

varname

Description
The value of local variables in a Sub procedure is not preserved between calls to the procedure.

All executable code must be contained in the procedure. Nesting is not permitted; you cannot define a Sub procedure inside
another Sub or Function procedure.

The Exit Sub statement causes an immediate exit from a Sub procedure. Program execution continues with the statement
following the statement that called the Sub procedure. Any number of Exit Sub statements can appear anywhere in a Sub
procedure.

Like a Function procedure, a Sub procedure is a separate procedure that can take arguments, perform a series of statements,
and change the value of its arguments. However, unlike a Function procedure, which returns a value, a Sub procedure
cannot be used in an expression.

You call a Sub procedure using the procedure name followed by the argument list. See the Call statement for specific
information on how to call Sub procedures.

Variables used in Sub procedures fall into two categories: those that are explicitly declared within the procedure and those
that are not. Variables that are explicitly declared in a procedure (using Dim) are always local to the procedure. Variables

46 Caché Basic Reference

Caché Basic Commands

that are used but not explicitly declared in a procedure are also local unless they are explicitly declared at some higher level
outside the procedure.

All variables in a Caché Basic Sub procedure are private. Therefore, a Sub procedure cannot access public variables, such
as SQLCODE. To use public variables, use a top-level Caché Basic routine, rather than a called subroutine.

To omit an arglist argument value, you must specify an undefined variable. This is a significant difference between
ObjectScript and Caché Basic. In ObjectScript an omitted argument can be specified using a placeholder comma. In Caché
Basic you cannot use a placeholder comma; you must supply an undefined named variable.

Notes
Sub procedures can be recursive; that is, they can call themselves to perform a given task. However, recursion can lead to
stack overflow.

A procedure can use a variable that is not explicitly declared in the procedure, but a naming conflict can occur if anything
you have defined at the script level has the same name. If your procedure refers to an undeclared variable that has the same
name as another procedure, constant or variable, it is assumed that your procedure is referring to that script-level name.
Explicitly declare variables to avoid this kind of conflict. You can use an Option Explicit statement to force explicit dec-
laration of variables.

See Also
• Call Statement

• Dim Statement

• Function Statement

Caché Basic Reference 47

Sub

TCommit
Marks the successful completion of a transaction.

TCommit

Arguments

The TCommit statement does not have any arguments.

Description
TCommit marks the successful end of a transaction initiated by the corresponding TStart.

Examples
The following example illustrates the use of the TCommit statement:

TStart
If StorePerson(personobject) Then
 TCommit
Else
 TRollback
End If

See Also
• TRollback Statement

• TStart Statement

48 Caché Basic Reference

Caché Basic Commands

Throw
Throws an exception from a Try block to a Catch exception handler.

Throw [oref]

Arguments

Optional — A user-defined object reference.oref

Description
The Throw command explicitly issues an exception from within a block of code defined by a Try command. Issuing a
Throw transfers execution from the Try block to the corresponding Catch exception handler.

Throw is used to issue an explicit exception. Caché issues an implicit exception when a runtime error occurs. A runtime
error generates an exception object which it throws to a Catch exception handler.

Throw has two forms:

• Without an argument

• With an argument

Throw without an Argument

Argumentless Throw transfers error processing to the corresponding Catch error handler. No object is pushed on the stack,
but the %New() method is called.

Throw with an Argument

Throw oref specifies a user-defined object reference, which it throws to the Catch command, pushing it on the execution
stack. The calling of the %New() method is optional.

Arguments

expression

A user-defined object reference (oref). For example, Throw ##class(%Exception).%New(). The creation and pop-
ulation of this exception object is the responsibility of the programmer.

Examples
The following example shows an argumentless Throw:

 Try
 SET x=2
 PRINTLN "about to divide by ",x
 Throw
 SET a=7/x
 PRINTLN "Success: the result is ",a
 Catch myvar
 PRINTLN "this is the exception handler"
 PRINTLN "Error number: ",Err.Number
 PRINTLN "Error is: ",Err.Description
 PRINTLN "Error code: ",myvar.Code
 END Try
 PRINTLN "this is where the code falls through"

See Also
• Catch command

Caché Basic Reference 49

Throw

• Try command

• Err object

50 Caché Basic Reference

Caché Basic Commands

TRollback
Rolls back (reverts) changes made during the current transaction.

TRollback

Arguments

The TRollback statement does not have any arguments.

Description
TRollback terminates the current transaction and restores all journaled database values to the values they held at the start
of the transaction.

Caché Basic does not support nested transactions. A TRollback returns the transaction level ($TLEVEL) to 0, regardless
of how many nested TStart statements have been issued.

Examples
The following example illustrates the use of the TRollback statement:

TStart
If StorePerson(personobject) Then
 TCommit
Else
 TRollback
End If

See Also
• TCommit Statement

• TStart Statement

Caché Basic Reference 51

TRollback

Try
Identifies a block of code to monitor for errors during execution.

Try
 statements
Catch [exceptionvar]
 statements
End Try

Description
The Try command takes no arguments. It is used to identify one or more Caché Basic code statements between the Try
keyword and the Catch keyword. This block of code is protected code for structured exception handling. If an exception
occurs within this block of code, Caché sets Err, then transfers execution to an exception handler, identified by the Catch
command. This is known as throwing an exception. If no error occurs, execution continues with the next Caché Basic
statement after the End Try statement.

An exception may occur as a result of a runtime error, such as attempting to divide by 0, or it may be explicitly propagated
by issuing a Throw command.

A Try block must be immediately followed by a Catch block. The paired Try and Catch are terminated by an End Try
statement.

Examples
In the following examples, the Try code block is executed. It attempts to set the local variable a. In the first example, the
code completes successfully, and the Catch is skipped over. In the second example, the code fails an Err error indicating
division by zero, and execution is passed to the Catch command.

Try succeeds:

 Try
 SET x=2
 PRINTLN "about to divide by ",x
 SET a=7/x
 PRINTLN "Success: the result is ",a
 Catch myvar
 PRINTLN "this is the exception handler"
 PRINTLN "Error number: ",Err.Number
 PRINTLN "Error is: ",Err.Description
 PRINTLN "Error code: ",myvar.Code
 End Try
 PRINTLN "this is where the code falls through"

Try fails:

 Try
 SET x=0
 PRINTLN "about to divide by ",x
 SET a=7/x
 PRINTLN "Success: the result is ",a
 Catch myvar
 PRINTLN "this is the exception handler"
 PRINTLN "Error number: ",Err.Number
 PRINTLN "Error is: ",Err.Description
 PRINTLN "Error code: ",myvar.Code
 End Try
 PRINTLN "this is where the code falls through"

See Also
• Catch command

• Throw command

52 Caché Basic Reference

Caché Basic Commands

• Err object

Caché Basic Reference 53

Try

TStart
Marks the beginning of a transaction.

TStart

Arguments

The TStart statement does not have any arguments.

Description
TStart marks the beginning of a transaction. Following TStart, database operations are journaled to enable a subsequent
TCommit or TRollback statement.

Any locks issued within a transaction will be held until the end of the transaction even if the lock is released.

Examples
The following example illustrates the use of the TStart statement:

TStart
If StorePerson(personobject) Then
 TCommit
Else
 TRollback
End If

See Also
• TCommit Statement

• TRollback Statement

54 Caché Basic Reference

Caché Basic Commands

While...Wend
Executes a series of statements as long as a given condition is true.

While condition
 [statements]
Wend

Arguments

The While...Wend statement syntax has these parts:

Expression that evaluates to True or False.conditions

One or more statements executed while condition is True.statements

Description
If condition is True, all statements in statements are executed until the Wend statement is encountered. Control then returns
to the While statement and condition is again checked. If condition is still True, the process is repeated. If it is not True,
execution resumes with the statement following the Wend statement.

While...Wend loops can be nested to any level. Each Wend matches the most recent While.

Examples
The following example illustrates use of the While...Wend statement:

Dim Counter
Counter = 0 ' Initialize variable.
While Counter < 20 ' Test value of Counter.
 Counter = Counter + 1 ' Increment Counter.
 Print Counter
Wend ' End While loop when Counter > 19.

Notes
The Do...Loop statement provides a more structured and flexible way to perform looping.

See Also
• Do...Loop Statement

• Exit Statement

• For Each...Next Statement

• For...Next Statement

Caché Basic Reference 55

While...Wend

With
Executes a series of statements on a single object.

With object
 statements
End With

Arguments

The With statement requires the following arguments:

An expression that resolves to an object reference. object may be a function call that
returns an object reference, or a subscripted variable that contains an object reference.

object

One or more statements to be executed on the object.statements

Description
The With statement allows you to perform a series of statements on a specified object without requalifying the name of
the object. For example, to change a number of different properties on a single object, place the property assignment
statements within the With block code, referring to the object once instead of referring to it with each property assignment.

The object object reference is evaluated upon entering the With block, and is not reevaluated within the With block.
Therefore, you cannot use a single With statement to affect a number of different objects. Changing the object variable
value within the With block is permitted, but does not change which object is used for anonymous references within the
With block.

While property manipulation is an important aspect of With functionality, it is not the only use. Any legal code can be
used within a With block.

You can nest With statements by placing one With block within another. However, because members of outer With blocks
are masked within the inner With blocks, you must provide a fully qualified object reference in an inner With block to
any member of an object in an outer With block.

A Goto statement cannot be used to enter the body of a With block, or into a nested inner With block. You can, however,
issue a Goto within a With block to a label within that block, or to an outer With block label, or to a label outside the With
block.

Examples
The following example illustrates use of the With statement to assign values to several properties of the same object.

With myPerson
 .City = "Cambridge"
 .State = "MA"
 .Street = "One Memorial Drive"
End With

56 Caché Basic Reference

Caché Basic Commands

Caché Basic Functions

Caché Basic Reference 57

Abs
Returns the absolute value of a number.

Abs(number)

Arguments

The number argument can be any valid numeric expression. If number is an uninitialized variable or a non-numeric value,
Abs returns 0 (zero).

Description
The absolute value of a number is its unsigned magnitude. For example, Abs(-1) and Abs(1) both return 1. Abs removes
signs, and leading and trailing zeros from number.

Examples
The following example uses the Abs function to compute the absolute value of a number:

Println Abs(0050.300) 'Returns 50.3
Println Abs(-50.3) 'Returns 50.3
Println Abs(+50.3) 'Returns 50.3
Println Abs(0) 'Returns 0
Println Abs(-0) 'Returns 0

See Also
• Sgn function

58 Caché Basic Reference

Caché Basic Functions

Asc
Returns the ANSI character code corresponding to the first character in a string.

Asc(string)

Arguments

The string argument is any valid string expression. A number is treated as a string expression. If the string contains no
characters (an empty string), -1 is returned.

Description
The Asc function takes a character and returns the corresponding ANSI code. The Chr function takes an ANSI code and
returns the corresponding character.

In ObjectScript, the $ASCII function performs the same operation.

Examples
In the following example, Asc returns the ANSI character code of the first character of each string:

Println Asc("A") ' Returns 65
Println Asc("a") ' Returns 97
Println Asc("Apple") ' Returns 65
Println Asc(">") ' Returns 62
Println Asc(Chr(959+1)) ' Returns 960
Println Asc(12345) ' Returns 49
Println Asc("") ' Returns -1

See Also
• Basic: Chr function

• ObjectScript: $ASCII function

Caché Basic Reference 59

Asc

Atn
Returns the arctangent of a number.

Atn(number)

Arguments

The number argument can be any valid numeric expression.

Description
The Atn function takes the ratio of two sides of a right triangle (number) and returns the corresponding angle in radians.
The ratio is the length of the side opposite the angle divided by the length of the side adjacent to the angle. The range of
the result is -pi/2 to pi/2 radians.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples
The following example returns the arctangents of the integers from -4 through 4:

For x = -4 TO 4
Println "Arctangent of ",x," is: ",Atn(x)
Next

The following example uses Atn to calculate the value of pi:

Dim pi
pi = 4 * Atn(1) ' Calculate the value of pi.
Println "pi is: ",pi

Notes
Arctangent (Atn) is the inverse trigonometric function of tangent (Tan), which takes an angle as its argument and returns
the ratio of two sides of a right triangle. Do not confuse the arctangent with the cotangent; a cotangent is the simple inverse
of a tangent (1/tangent).

See Also
• Cos function

• Sin function

• Tan function

• Derived Math Functions

60 Caché Basic Reference

Caché Basic Functions

Case
Compares a target to cases and returns the value associated with the first matching case.

Case(target,case:rvalue,case:rvalue,...,:default)

Arguments

A value, variable, or expression to be compared with the case arguments.target

A value, variable, or expression, the value of which is matched with the value of target.case

The value to be returned upon a successful match of target and case.rvalue

Optional — The value to be returned if no case matches target.default

Description
The Case function compares target to a list of cases (literals or expressions), and returns the rvalue associated with the
first matching case value. An unlimited number of case:rvalue pairs can be specified. Cases are matched in the order
specified (left-to-right); matching stops when the first exact match is encountered.

If there is no matching case, the default is returned. If there is no matching case and no default is specified, an error is
returned.

Arguments

target

CASE evaluates the target expression once, then matches the result to each case value in left-to-right order.

case

A case can be a literal or an expression; matching of literals is substantially more efficient than matching expressions,
because literals can be evaluated at compile time. Each case must be paired with an rvalue. An unlimited number of case
and rvalue pairs may be specified.

rvalue

An rvalue can be a literal or an expression. Every rvalue is associated with a specific case as a pair joined with a colon (:)
and separated from other pairs by a comma (,). rvalue is the value returned when there is an exact match of the target value
with its associated case value. Only the first exact match encountered (in left-to-right order) returns an rvalue.

default

A default argument can be a literal or an expression. The default is specified like a case:rvalue pair, except that there is no
case specified between the comma separator and the colon. The default is always the final argument specified in a CASE
function. The default value is the value returned if no exact match occurs.

Examples
The following Case example takes a numeric input and writes out the appropriate explanatory string:

input "Input a number 1-3: ",x
multi=CASE(x,1:"single",2:"double",3:"triple",:"input error")
PrintLn multi

Caché Basic Reference 61

Case

See Also
• If...Then...Else statement

62 Caché Basic Reference

Caché Basic Functions

Chr
Returns the character corresponding to the specified ANSI character code.

Chr(charcode)

Arguments

The charcode argument is a decimal integer that identifies a character. For 8-bit characters, the value in charcode must
evaluate to a positive integer in the range 0 to 255. For 16-bit characters, specify integers in the range 256 through 65534.

Description
The Chr function takes an ANSI code and returns the corresponding character. The Asc function takes a character and
returns the corresponding ANSI code.

Numbers from 0 to 31 are the same as standard, nonprintable ASCII codes. For example, Chr(10) returns a linefeed char-
acter.

The Caché Basic Chr function returns a single character. The corresponding ObjectScript $CHAR function can return
multiple characters by specifying a comma-separated list of ASCII codes.

Examples
The following example uses the Chr function to return the character associated with the specified character code:

Println Chr(65) ' Returns A.
Println Chr(97) ' Returns a.
Println Chr(37) ' Returns %.
Println Chr(62) ' Returns >.
Println Chr(960) ' Returns the symbol for pi.

See Also
• Basic: Asc function

• ObjectScript: $CHAR function

Caché Basic Reference 63

Chr

Cos
Returns the cosine of an angle.

Cos(number)

Arguments

The number argument can be any valid numeric expression that expresses an angle in radians.

Description
The Cos function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side
adjacent to the angle divided by the length of the hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples
The following example uses the Cos function to return the cosine of an angle:

Dim MyAngle
MyAngle = 1.3 ' Define angle in radians.
Println Cos(MyAngle) ' Calculate cosine.

The following example uses the Cos function to return the secant of an angle:

Dim MyAngle, MySecant
MyAngle = 1.3 ' Define angle in radians.
MySecant = 1 / Cos(MyAngle) ' Calculate secant.
Println MySecant

See Also
• Atn function

• Sin function

• Tan function

• Derived Math Functions

64 Caché Basic Reference

Caché Basic Functions

Date
Returns the current system date.

Date

Arguments

none

Description
The Date function returns the current date in a format such as the following:

mm/dd/yyyy

The exact display format depends on your system configuration. Leading zeros are displayed. The year is displayed as four
digits.

Examples
The following example uses the Date function to return the current system date:

Dim MyDate
MyDate = Date
Println MyDate

See Also
• Basic: Now function, Time function

• ObjectScript: $HOROLOG special variable

• SQL: NOW function

Caché Basic Reference 65

Date

DateAdd
Returns a date to which a specified time interval has been added.

DateAdd(interval,number,date)

Arguments

A string expression code that specifies the interval type you want to add, specified as a
quoted string. The table of available codes is shown below.

interval

A numeric expression that is the number of intervals you want to add. The numeric
expression can either be positive to add intervals, or negative to subtract intervals.

number

Variable name or literal representing the date to which the specified interval is added (or
subtracted). The date can optionally have a time component; if not specified, the time
defaults to 00:00:00.

date

The DateAdd function returns the calculated date in the following format:

mm/dd/yyyy

Leading zeros are displayed. The year is displayed as four digits.

Description
The interval argument can have the following values:

DescriptionSetting

Yearyyyy

Quarterq

Monthm

Day of Year (this adds the specified number of days
to date; same as “d”).

y

Dayd

Weekday (this adds the specified number of days to
date; same as “d”).

w

Week (this adds the specified number of weeks to
date).

ww

Hourh

Minute (note this is “n”, not “m”)n

Seconds

You can use the DateAdd function to add or subtract a specified interval from a date. For example, you can use DateAdd
to calculate a date 30 days from a given date, or a date 100 hours earlier than a given date. To add days to date, you can
use Day of Year ("y"), Day ("d"), or Weekday ("w").

The DateAdd function computes the varying number of days in different months (including leap years), and avoids
returning an invalid date.

66 Caché Basic Reference

Caché Basic Functions

Examples
The following example adds one of each date interval unit to January 31, 2005:

NewDay = DateAdd("d",1,"31-Jan-2005")
NewWDay = DateAdd("w",1,"31-Jan-2005")
NewWeek = DateAdd("ww",1,"31-Jan-2005")
NewMonth = DateAdd("m",1,"31-Jan-2005")
NewQuarter = DateAdd("q",1,"31-Jan-2005")
NewYDay = DateAdd("y",1,"31-Jan-2005")
NewYear = DateAdd("yyyy",1,"31-Jan-2005")
Println NewDay
Println NewWDay
Println NewWeek
Println NewMonth
Println NewQuarter
Println NewYDay
Println NewYear

In the case of adding one month to 31-Jan-2005, DateAdd returns 02/28/2005, not 02/31/2005. If date is 31-Jan-2004, it
returns 02/29/2005, because 2004 is a leap year. If the calculated date would precede the year 100, an error occurs.

The following example adds a time interval large enough to increment the specified date:

NewHour = DateAdd("h",27, "31-Jan-2005")
NewMin = DateAdd("n",1545, "31-Jan-2005")
NewSec = DateAdd("s",91522, "31-Jan-2005")
Println NewHour
Println NewMin
Println NewSec

Note that the values returned contain both a date and a time component.

See Also
• DateDiff function

• DatePart function

Caché Basic Reference 67

DateAdd

DateConvert
Converts dates between internal and external formats.

DateConvert(date,vbToInternal)
DateConvert(date,vbToExternal)

Arguments

The date to be converted. An external date is represented as a string, such as
“10–22–1980”. An internal date is represented as a five-digit integer, which is the first
part of the Caché $HOROLOG ($H) date/time format.

date

This keyword specifies converting an external date to internal ($H) format.vbToInternal

This keyword specifies converting an internal date ($H format) to external date format.vbToExternal

Description
If you specify a date/time value, DateConvert ignores the time portion.

The DateConvert function returns an external date in the following format:

mm/dd/yyyy

Leading zeros are displayed. The year is displayed as four digits.

The DateConvert function returns an internal date/time in the following format:

ddddd

Where “d” is the date count (number of days since 12/31/1840). For further details, see $HOROLOG in the Caché
ObjectScript Reference.

An omitted year value defaults to 2000; the two-digit year defaults are 2000 through 2029 (for 00 through 29) and 1930
through 1999 (for 30 through 99).

Examples
The following example takes an external date/time value, converts the date part to an internal format ($HOROLOG) value,
then converts this internal value back to an external format date.

Dim GetDate,InDate, ExDate
GetDate = "1-12-1953 11:45:23"
Println GetDate
InDate = DateConvert(GetDate,vbToInternal)
Println InDate
ExDate = DateConvert(InDate,vbToExternal)
Println ExDate

The values printed are as follows:

1-12-1953 11:45:23
40919
01/12/1953

See Also
• Basic: DateTimeConvert function

• Basic: TimeConvert function

68 Caché Basic Reference

Caché Basic Functions

• ObjectScript: $HOROLOG special variable

Caché Basic Reference 69

DateConvert

DateDiff
Returns the number of intervals between two dates.

DateDiff(interval,date1,date2[,firstdayofweek[,firstweekofyear]])

Arguments

A string expression code that specifies the interval you want to use to calculate
the difference between date1 and date2. Specified as a quoted string. A list
of these interval codes is provided below.

interval

Two date expressions. The two dates you want to use in the calculation.
These date expressions can optionally also include a time component. If the
time is omitted, it defaults to 00:00:00.

date1, date2

Optional — Constant that specifies the day of the week. If not specified,
Sunday is assumed. A list of the available constants is provided below.

firstdayofweek

Optional — Constant that specifies the first week of the year. If not specified,
the first week is assumed to be the week in which January 1 occurs. A list of
the available constants is provided below.

firstweekofyear

Description
You can use the DateDiff function to determine how many specified time intervals exist between two dates. For example,
you might use DateDiff to calculate the number of days between two dates, or the number of weeks between today and the
end of the year. DateDiff returns a positive integer for the number of intervals if date1 is earlier than date2; otherwise it
returns a negative integer for the number of intervals. If both dates are the same, or if the time between them is less than
the specified interval, DateDiff returns zero (0).

Intervals are calculated from the specified unit itself. Thus a year interval is determined by whether the two year dates differ,
not by how many days have elapsed. Similarly, a day interval is determined by whether the two dates differ, not by how
many hours have elapsed.

The interval argument can have the following values:

DescriptionSetting

Yearyyyy

Quarterq

Monthm

Day of Yeary

Dayd

Weekday (number of seven-day units)w

Week (number of calendar weeks)ww

Hourh

Minuten

Seconds

70 Caché Basic Reference

Caché Basic Functions

To calculate the number of days between date1 and date2, you can use either Day ("d") or Day of Year ("y").

To calculate the number of weeks between date1 and date2 you can use Weekday ("w") or Week ("ww"). When interval
is Weekday ("w"), DateDiff returns the number of weeks between the two dates. If date1 falls on a Monday, DateDiff
counts the number of Mondays until date2. It counts date2 but not date1. If interval is Week ("ww"), however, the DateDiff
function returns the number of calendar weeks between the two dates. It counts the number of Sundays between date1 and
date2. DateDiff counts date2 if it falls on a Sunday; but it does not count date1, even if it does fall on a Sunday.

The firstdayofweek argument affects calculations that use the "w" and "ww" interval symbols. The firstdayofweek argument
can have the following values:

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

The firstweekofyear argument can have the following values:

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Use the week in which January 1 occurs (default).1vbFirstJan1

Use the first week that has at least four days in the new year.2bFirstFourDays

Use the first full week of the year.3vbFirstFullWeek

The Year ("yyyy") interval calculates number of years based on the year date, not the number of elapsed days. Thus, when
comparing December 31 to January 1 of the immediately succeeding year, DateDiff for Year ("yyyy") returns 1, even
though only a day has elapsed.

If date1 or date2 is a date literal, the specified year becomes a permanent part of that date. However, if date1 or date2 is
enclosed in quotation marks (" ") and you omit the year, the current year is inserted in your code each time the date1 or
date2 expression is evaluated. This makes it possible to write code that can be used in different years.

Examples
The following example uses the DateDiff function to display the number of days between a given date and today:

DiffADate = DateDiff("d","11/12/1953",Date)
Print "Days to the present day: "
Println DiffADate

The following example calculates the number of each date interval unit between November 12, 1953 and November 1,
2005:

Caché Basic Reference 71

DateDiff

NewDay = DateDiff("d","11/12/1953","11/1/2005")
NewWeek = DateDiff("w","11/12/1953","11/1/2005")
NewMonth = DateDiff("m","11/12/1953","11/1/2005")
NewQuarter = DateDiff("q","11/12/1953","11/1/2005")
NewYDay = DateDiff("y","11/12/1953","11/1/2005")
NewYear = DateDiff("yyyy","11/12/1953","11/1/2005")
Println NewDay
Println NewWeek
Println NewMonth
Println NewQuarter
Println NewYDay
Println NewYear

The following example calculates the number of each days between January 1 and March 1 on a leap year (2004) and a
non-leap year (2005):

LeapDays = DateDiff("d","1/1/2004","3/1/2004")
NLeapDays = DateDiff("d","1/1/2005","3/1/2005")
Println LeapDays
Println NLeapDays

As one would expect, the difference is 60 days in leap years, and 59 days in non-leap years.

The following example calculates the number of time intervals between two successive days. Note that if the time is not
specified, it defaults to 00:00:00:

NumH = DateDiff("h","1/1/2004","1/2/2004")
NumHNoon = DateDiff("h","1/1/2004","1/2/2004 12:00:00")
NumMin = DateDiff("n","1/1/2004","1/2/2004")
NumMinNoon = DateDiff("n","1/1/2004","1/2/2004 12:00:00")
NumSec = DateDiff("s","1/1/2004","1/2/2004")
NumSecNoon = DateDiff("s","1/1/2004","1/2/2004 12:00:00")
Println NumH
Println NumHNoon
Println NumMin
Println NumMinNoon
Println NumSec
Println NumSecNoon

See Also
• DateAdd function

• DatePart function

72 Caché Basic Reference

Caché Basic Functions

DatePart
Returns the specified part of a given date.

DatePart(interval,date[,firstdayofweek[,firstweekofyear]])

Arguments

A string expression code that is the interval of time you want to return. See
below for code values.

interval

Date expression you want to evaluate, specified as a quoted string.date

Optional — Constant that specifies the day of the week. If not specified,
Sunday is assumed. See below for values.

firstdayofweek

Optional — Constant that specifies the first week of the year. If not specified,
the first week is assumed to be the week in which January 1 occurs. See
below for values.

firstweekofyear

Description
You can use the DatePart function to evaluate a date and return a specific interval as an integer value. For example, you
might use DatePart to calculate the day of the week or the number of days since the start of the year.

The interval argument can have the following values:

DescriptionSetting

Year dateyyyy

Quarters since beginning of yearq

Month date; number of months since beginning of yearm

Day of Year; number of days since beginning of year.y

Day date; number of days since beginning of month.d

Weekday (day of the week, with Sunday counted as
1)

w

Weeks since beginning of yearww

Hour (defaults to 1).h

Minute (defaults to 0).n

Second (defaults to 0).s

The firstdayofweek argument can have the following values:

Caché Basic Reference 73

DatePart

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

The firstweekofyear argument can have the following values:

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Use the week in which January 1 occurs (default).1vbFirstJan1

Use the first week that has at least four days in the new year.2vbFirstFourDays

Use the first full week of the year.3vbFirstFullWeek

You must specify a firstdayofweek argument value in order to specify a firstweekofyear argument value. The firstdayofweek
argument affects calculations that use the "w" and "ww" intervals.

If date is a date literal, the specified year becomes a permanent part of that date. However, if date is enclosed in quotation
marks (" "), and you omit the year, the current year is inserted in your code each time the date expression is evaluated. This
makes it possible to write code that can be used in different years.

Examples
The following example takes a date and displays the corresponding interval counts:

NewDay = DatePart("d","30-Nov-2005")
NewWDay = DatePart("w","30-Nov-2005")
NewWeek = DatePart("ww","30-Nov-2005")
NewMonth = DatePart("m","30-Nov-2005")
NewQuarter = DatePart("q","30-Nov-2005")
NewYDay = DatePart("y","30-Nov-2005")
NewYear = DatePart("yyyy","30-Nov-2005")
NewHour = DatePart("h","30-Nov-2005")
NewMin = DatePart("n","30-Nov-2005")
NewSec = DatePart("s","30-Nov-2005")
Println NewDay
Println NewWDay
Println NewWeek
Println NewMonth
Println NewQuarter
Println NewYDay
Println NewYear
Println NewHour
Println NewMin
Println NewSec

The following example shows the effects of the firstdayofweek argument:

74 Caché Basic Reference

Caché Basic Functions

MyDay0 = DatePart("w","11/1/2005",vbUseSystem)
MyDay1 = DatePart("w","11/1/2005",vbSunday)
MyDay2 = DatePart("w","11/1/2005",vbMonday)
MyDay3 = DatePart("w","11/1/2005",vbTuesday)
MyDay4 = DatePart("w","11/1/2005",vbWednesday)
MyDay5 = DatePart("w","11/1/2005",vbThursday)
MyDay6 = DatePart("w","11/1/2005",vbFriday)
MyDay7 = DatePart("w","11/1/2005",vbSaturday)
Println "Day is: ",MyDay0," Week begins System Default"
Println "Day is: ",MyDay1," Week begins Sunday"
Println "Day is: ",MyDay2," Week begins Monday"
Println "Day is: ",MyDay3," Week begins Tuesday"
Println "Day is: ",MyDay4," Week begins Wednesday"
Println "Day is: ",MyDay5," Week begins Thursday"
Println "Day is: ",MyDay6," Week begins Friday"
Println "Day is: ",MyDay7," Week begins Saturday"

Nov. 1, 2005 is a Tuesday. DatePart("w","11/1/2005",vbTuesday) returns 1.

The following example returns the week of the year count for February 29, 2008, based on different firstdayofweek and
firstweekofyear argument values:

Println "Week is: ",DatePart("ww","2/29/2008",vbUseSystem,vbUseSystem)
Println "Week is: ",DatePart("ww","2/29/2008",vbThursday,vbUseSystem)
Println "Week is: ",DatePart("ww","2/29/2008",vbUseSystem,vbFirstJan1)
Println "Week is: ",DatePart("ww","2/29/2008",vbThursday,vbFirstJan1)
Println "Week is: ",DatePart("ww","2/29/2008",vbUseSystem,vbFirstFourDays)
Println "Week is: ",DatePart("ww","2/29/2008",vbThursday,vbFirstFourDays)
Println "Week is: ",DatePart("ww","2/29/2008",vbUseSystem,vbFirstFullWeek)
Println "Week is: ",DatePart("ww","2/29/2008",vbThursday,vbFirstFullWeek)

Note that both firstweekofyear and firstdayofweek can affect the week of the year count.

See Also
• DateAdd function

• DateDiff function

Caché Basic Reference 75

DatePart

DateSerial
Returns the date for a specified year, month, and day.

DateSerial(year,month,day)

Arguments

A four-digit integer between 1841 and 9999, inclusive, a two-digit integer, or a numeric expression
that evaluates to an integer within these ranges.

year

A positive or negative integer or a numeric expression that evaluates to an integer. A month value
of 0 or the empty string ("") is interpreted as the last month of the previous year. A negative month
value backs up the specified number of months from the last month of the previous year. Thus
-1 is the 11th month of the previous year.

month

A positive or negative integer or a numeric expression that evaluates to an integer. A day value
of 0 or the empty string ("") is interpreted as the last day of the previous month. A negative day
value backs up the specified number of days from the last day of the previous month. Thus, a
day value of -1 is interpreted as the day before the last day of the previous month.

day

Description
DateSerial takes the input arguments and generates a valid date in the format:

mm/dd/yyyy

The range of numbers for each DateSerial argument can be an exact date value or a relative date value. A relative date
value is an integer value outside the accepted range for the unit; that is, 1–31 for days and 1–12 for months. In this case,
DateSerial uses these numbers to calculate a valid date. Any numeric expression can be used to represent some number
of days, months, or years before or after a certain date.

Year values between 0 and 99, inclusive, are interpreted as the years 1900–1999. The empty string ("") is interpreted as the
year 1900. For all other year arguments, use a complete four-digit year (for example, 2005). The earliest allowed year value
is 1841.

Examples
The following example uses numeric expressions instead of absolute date numbers. Here the DateSerial function returns
a date that is the day before the first day (1 – 1) of two months before August (8 – 2) of 10 years before 1990 (1990 – 10);
in other words, May 31, 1980.

Dim MyDate1, MyDate2
MyDate1 = DateSerial(1970, 1, 1)
MyDate2 = DateSerial(1990 - 10, 8 - 2, 1 - 1)
Println MyDate1 ' Returns 01/01/1970 (January 1, 1970)
Println MyDate2 ' Returns 05/31/1980

The following example uses month values of 0, the empty string (""), and negative numbers:

Println DateSerial(2009,"",3) ' Returns 12/03/2008
Println DateSerial(2009,0,3) ' Returns 12/03/2008
Println DateSerial(2009,-1,3) ' Returns 11/03/2008
Println DateSerial(2009,-2,3) ' Returns 10/03/2008

The following example uses day value that is not valid for the specified month. DateSerial is aware of leap year values
and adjusts the month accordingly:

Println DateSerial(2009,2,29) ' Returns 03/01/2008

76 Caché Basic Reference

Caché Basic Functions

The following example uses day and month values that are larger than the number of days in the specified month and
monthsd in a year. DateSerial adjusts the day, month, and year accordingly:

Println DateSerial(2009,13,40) ' Returns 02/09/2010

Notes
When any argument exceeds the accepted range for that argument, it increments to the next larger unit as appropriate. For
example, if you specify 35 days, it is evaluated as one month and some number of days, depending on where in the year it
is applied. However, if any single argument is outside the range -32,768 to 32,767, or if the date specified by the three
arguments, either directly or by expression, falls outside the acceptable range of dates (12/31/1840 through 12/31/9999),
an error occurs.

See Also
• Date function

• Day function

• Month function

• Now function

• TimeSerial function

• Weekday function

• Year function

Caché Basic Reference 77

DateSerial

DateTimeConvert
Converts date/time between internal and external formats.

DateTimeConvert(datetime,vbToInternal)
DateTimeConvert(datetime,vbToExternal)

Arguments

The date and time to be converted. An external date/time is represented as a string,
such as “10–22–1980 12:35:56”. An internal date/time is represented by the Caché
$HOROLOG ($H) date/time format: two five-digit integer values separated by a comma.

datetime

This keyword specifies converting an external date/time to internal ($H) format.vbToInternal

This keyword specifies converting an internal date/time ($H format) to external date
and time format.

vbToExternal

Description
The DateTimeConvert function returns an external date/time in the following format:

mm/dd/yyyy hh:mm:ss

Leading zeros are displayed. The year is displayed as four digits.

The DateTimeConvert function returns an internal date/time in the following format:

ddddd,sssss.ff

Where “ddddd” is the date count (number of days since 12/31/1840), “sssss” is the time count (number of elapsed seconds
in the specified day), and “ff” is optional fractional seconds. Fractional seconds are preserved in converting from external
to internal format; fractional seconds are truncated when converting from internal to external format. For further details,
see $HOROLOG in the Caché ObjectScript Reference.

An omitted year value defaults to 2000; the two-digit year defaults are 2000 through 2029 (for 00 through 29) and 1930
through 1999 (for 30 through 99).

An omitted time value defaults to 00:00:00.

Examples
In the following example the DateTimeConvert function returns a date/time in internal format.

Dim InDateTime
InDateTime = DateTimeConvert("Nov 11 1953 12:35:00",vbToInternal)
Println InDateTime

The following example takes an external date/time value with fractional seconds, converts it to an internal format
($HOROLOG) value, then converts this internal value back to an external format date and time.

Dim GetDate,InDate, ExDate
GetDate = "1-12-1953 11:45:23.99"
Println GetDate
InDate = DateTimeConvert(GetDate,vbToInternal)
Println InDate
ExDate = DateTimeConvert(InDate,vbToExternal)
Println ExDate

The values printed are as follows:

78 Caché Basic Reference

Caché Basic Functions

1-12-1953 11:45:23.99
40919,42323.99
01/12/1953 11:45:23

See Also
• Basic: DateConvert function

• Basic: TimeConvert function

• ObjectScript: $HOROLOG special variable

Caché Basic Reference 79

DateTimeConvert

Day
Returns the day of the month as an integer between 1 and 31, inclusive.

Day(date)

Arguments

The date argument is any expression that represents a date as a string.

Description
The Day function locates and returns the numeric day portion of a date string as an integer. It performs no range validation
on this number. The Day function accepts blanks, slashes (/), hyphens (-), or commas (,) (in any combination) as date
component separators. Leading zeros and plus or minus signs may be included or omitted in the input string; leading zeros
and signs are omitted from the output integer. The Day function locates the day portion in either of two ways:

• In American format, the month precedes the day. For example, “9/27/2005” or “September 27, '05.” In this format,
the Day function identifies the day portion by position. It does not parse the month or year components of the date
string. These can be any alphanumeric value, and can include or omit punctuation characters such as periods or apos-
trophes. The year component may be 4-digits, less than 4 digits, or omitted.

• In European written format, the day precedes the name of the month. For example, “27 September 2005” or “27 Sept”
In this case, the month name is validated; the first three letters must correspond to a valid month name. Validation is
not case-sensitive.

If the Day function is unable to identify a day portion of a string, it returns 0.

Examples
The following example uses the Day function to return the current day of the month:

Dim MyDay
MyDay = Day(Date)
Print MyDay

The following examples use the Day function to obtain the day of the month from a specified date:

Dim MyDay
MyDay = Day("09-19-2005") 'MyDay contains 19.
Print MyDay

Dim MyDay
MyDay = Day("09/19/05") 'MyDay contains 19.
Print MyDay

Dim MyDay
MyDay = Day("Sept 19, 2005") 'MyDay contains 19.
Print MyDay

Dim MyDay
MyDay = Day("19 October") 'MyDay contains 19.
Print MyDay

Dim MyDay
MyDay = Day("19 Feb") 'MyDay contains 19.
Print MyDay

See Also
• Basic: Date function, Hour function, Minute function, Month function, Now function, Second function, Weekday

function, Year function

80 Caché Basic Reference

Caché Basic Functions

• ObjectScript: $ZDATE function

• SQL: DAYOFMONTH function

Caché Basic Reference 81

Day

Derived Math Functions
The following non-intrinsic math functions can be derived from the intrinsic math functions:

Description
Caché Basic supplies four trigonometric functions: Sin (sine), Cos (cosine), Tan (tangent), and Atn (arctangent); two
logarithmic functions: Log (natural e logarithm) and Exp (e exponential); the Sqr (square root) function and the Sgn (sign)
function. From these many other functions and constants can be derived.

Derived EquivalentsFunction

Sec(X) = 1 / Cos(X)Secant

Cosec(X) = 1 / Sin(X)Cosecant

Cotan(X) = 1 / Tan(X)Cotangent

Arcsin(X) = Atn(X / Sqr(-X * X + 1))Inverse Sine

Arccos(X) = Atn(-X / Sqr(-X * X + 1)) + 2 * Atn(1)Inverse Cosine

Arcsec(X) = Atn(X / Sqr(X * X - 1)) + Sgn((X) -1) * (2 * Atn(1))Inverse Secant

Arccosec(X) = Atn(X / Sqr(X * X - 1)) + (Sgn(X) - 1) * (2 * Atn(1))Inverse Cosecant

Arccotan(X) = Atn(X) + 2 * Atn(1)Inverse Cotangent

HSin(X) = (Exp(X) - Exp(-X)) / 2Hyperbolic Sine

HCos(X) = (Exp(X) + Exp(-X)) / 2Hyperbolic Cosine

HTan(X) = (Exp(X) - Exp(-X)) / (Exp(X) + Exp(-X))Hyperbolic Tangent

HSec(X) = 2 / (Exp(X) + Exp(-X))Hyperbolic Secant

HCosec(X) = 2 / (Exp(X) - Exp(-X))Hyperbolic Cosecant

HCotan(X) = (Exp(X) + Exp(-X)) / (Exp(X) - Exp(-X))Hyperbolic Cotangent

HArcsin(X) = Log(X + Sqr(X * X + 1))Inverse Hyperbolic Sine

HArccos(X) = Log(X + Sqr(X * X - 1))Inverse Hyperbolic
Cosine

HArctan(X) = Log((1 + X) / (1 - X)) / 2Inverse Hyperbolic
Tangent

HArcsec(X) = Log((Sqr(-X * X + 1) + 1) / X)Inverse Hyperbolic
Secant

HArccosec(X) = Log((Sgn(X) * Sqr(X * X + 1) +1) / X)Inverse Hyperbolic
Cosecant

HArccotan(X) = Log((X + 1) / (X - 1)) / 2Inverse Hyperbolic
Cotangent

Log10(X) = Log(X) / Log(10)Base-10 Logarithm

LogN(X) = Log(X) / Log(N)Logarithm to base N

82 Caché Basic Reference

Caché Basic Functions

ObjectScript Equivalents
ObjectScript supplies the following nine trigonometric functions: $ZSIN sine function; $ZCOS cosine function; $ZARCSIN
inverse (arc) sine function; $ZARCCOS inverse (arc) cosine function; $ZTAN tangent function; $ZARCTAN inverse (arc)
tangent function; $ZCOT cotangent function; $ZSEC secant function; and $ZCSC cosecant function.

ObjectScript supplies the following three logarithmic functions: $ZEXP e exponential function; $ZLN natural logarithm
function; and $ZLOG base-10 logarithm function.

ObjectScript supplies the following two exponential functions: $ZPOWER exponent function; and $ZSQR square root
function.

See Also
• Atn function

• Cos function

• Exp function

• Log function

• Sgn function

• Sin function

• Sqr function

• Tan function

Caché Basic Reference 83

Derived Math Functions

Exists
Returns the existence status of variables and their array subnodes.

Exists(varname)

Arguments

Name of a variable to test for existence, and/or the presence of array subnodes.varname

Description
The Exists function returns an integer code indicating whether a variable is defined (1) or not (0). If the variable is an array,
Exists returns an integer code indicating that the specified node’s value is undefined but the node has defined subnodes
(2), or that the specified node’s value is defined and the node has defined subnodes (3).

These values can also be represented by the following constants: 0 = vbUndef; 1 = vbHasValue; 2 = vbHasArray. The 3
value is equivalent to vbHasValue and vbHasArray. Refer to the Node Constants page of this manual.

The varname argument must contain a variable, not an expression. For example, ME is an expression, so Exists(ME)
generates a compile error. However, Exists(ME.Property) is a valid use of Exists.

Examples
The following example demonstrates the use of the Exists function:

Println "x is: ",Exists(x) ' x is undefined
x = 7
Println "x is: ",Exists(x) ' x is defined
x(1) = 6
Println "x(1) is: ",Exists(x) ' x & x(1) defined
y(1) = 55
Println "y(1) is: ",Exists(y) ' y(1) defined, y not

The above example returns (in sequence): 0, 1, 3, 2.

The following example further demonstrate use of the Exists function with array nodes:

' Erase previously existing data
Erase ^User.TestData

' Create some demonstration global data
^User.TestData(1)="data" ' Node 1 is defined but no subnodes
^User.TestData(2,1)="data" ' Node 2 is not defined but has subnodes
^User.TestData(3)="data" ' Node 3 is defined and has subnodes
^User.TestData(3,1)="data"

Status = Exists(^User.TestData(1,1)) ' prints vbUndef 0
Println Status," Undefined subnode"
Status = Exists(^User.TestData(1)) ' prints vbHasValue 1
Println Status," Defined node without subnodes"
Status = Exists(^User.TestData(2,1)) ' prints vbHasValue 1
Println Status," Defined subnode without subnodes"
Status = Exists(^User.TestData(2)) ' prints vbHasArray 2
Println Status," Valueless node with defined subnode(s)"
Status = Exists(^User.TestData(3)) ' prints 3,
 ' (vbHasValue + vbHasArray)
Println Status," Defined node with defined subnode(s)"

See Also
• Node Constants

84 Caché Basic Reference

Caché Basic Functions

Exp
Returns e (the base of natural logarithms) raised to a power.

Exp(number)

Arguments

The number argument can be any valid numeric expression. On a Windows system, if the value of number is greater than
335, a runtime error occurs; if the value of number is less than -295, Exp returns zero (0).

Description
The Exp function takes the natural log constant e and raises it to the power specified by the number argument. The constant
e (Exp(1)) is approximately 2.718282.

The Exp function complements the action of the Log function and is sometimes referred to as the antilogarithm.

In ObjectScript, the corresponding function is $ZEXP.

Examples
The following example uses the Exp function to calculate e raised to the power of each of the integers -10 through 10:

For x = -10 To 10
Println "Natural log of ",x," = ",Exp(x)
Next

The following example uses the Exp function to return the hyperbolic sine of an angle:

Dim MyAngle, MyHSin ' Define angle in radians.
MyAngle = 1.3 ' Calculate hyperbolic sine.
MyHSin = (Exp(MyAngle) - Exp(-1 * MyAngle)) / 2
Println MyHSin

See Also
• Log function

• Derived Math Functions

Caché Basic Reference 85

Exp

Fix
Returns the integer portion of a number.

Fix(number)

Arguments

The number argument can be any valid numeric expression.

Description
Fix removes the fractional part of number and returns the resulting integer value. The Fix and Int functions are almost
functionally identical:

For positive values, both Fix and Int truncate number. If you wish to round a number to the nearest integer, use the Round
function.

For negative values, Fix returns the first negative integer greater than or equal to number. Int returns the first negative
integer less than or equal to number. For example, Fix converts -8.4 to -8 and Int converts -8.4 to -9.

Both Fix and Int remove leading zeros and plus signs from number.

Examples
The following examples illustrate how the Fix and Int functions return integer portions of numbers:

Println Int(99.8) ' Returns 99.
Println Fix(99.8) ' Returns 99.
Println Int(+99.20) ' Returns 99.
Println Fix(+0099.2) ' Returns 99.
Println Int(0.00) ' Returns 0.
Println Fix(0.00) ' Returns 0.
Println Int(-99.8) ' Returns -100.
Println Fix(-99.8) ' Returns -99.
Println Int(-99.2) ' Returns -100.
Println Fix(-99.2) ' Returns -99.

See Also
• Abs function

• Int function

• Round function

86 Caché Basic Reference

Caché Basic Functions

Hex
Returns a string representing the hexadecimal value of a number.

Hex(number)

Arguments

The number argument is any valid expression that resolves to a positive or negative number. If number is a decimal fraction,
it is truncated to a whole number before being evaluated.

Description
The Hex function converts a number from decimal (base 10) to hexadecimal (base 16). To convert a number from hexadec-
imal to decimal, represent hexadecimal numbers directly by preceding numbers in the proper range with &H For example,
&H10 is the hexadecimal notation for decimal 16.

Hex ReturnsIf Number Is

Zero (0).Empty

Up to eight hexadecimal characters.Any other number

Examples
The following example uses the Hex function to return the hexadecimal value of a decimal (base-10) number:

Println Hex(0) ' Returns 0.
Println Hex(4) ' Returns 4.
Println Hex(10) ' Returns A.
Println Hex(16) ' Returns 10.
Println Hex(459) ' Returns 1CB.

The following example uses the &H prefix to return the decimal (base-10) value for a hexadecimal number:

Println &H000 ' Returns 0.
Println &H4 ' Returns 4.
Println &HA ' Returns 10.
Println &H10 ' Returns 16.

See Also
• Oct function

Caché Basic Reference 87

Hex

Hour
Returns a whole number between 0 and 23, inclusive, representing the hour of the day.

Hour(time)

Arguments

The time argument is any expression that can represent a time. This includes a time value such as “12:30” or “1:27:55”, a
time/date value such as “11/12/1999 12:33:00”, or a date value such as “11/12/1999”. If only a date is specified, the time
defaults to 00:00:00. Fractional seconds are permitted, but ignored; they are truncated, not rounded.

Examples
The following example uses the Hour function to obtain the hour from the current time:

Dim MyTime, MyHour
MyTime = Now
MyHour = Hour(MyTime) ' MyHour contains the number representing
 ' the current hour.
Println MyHour

The following example returns an hour value of 13:

Dim MyHour
MyHour = Hour("13:59:59.999")
Println MyHour

See Also
• Day function

• Minute function

• Now function

• Second function

• Time function

88 Caché Basic Reference

Caché Basic Functions

Increment
Atomically increments the value of a variable and returns the new value.

Increment(varname[,change])

Arguments

The name of the variable to be incremented (or decremented).varname

Optional — A numeric that specifies by how much the value should be incremented. The
value of change can be negative for decrements. This value can be a fractional number. If
specified as 0 (zero), no increment or decrement occurs. If not specified, varname is
incremented by 1.

change

Description
The virtual machine ensures that during the increment the variable is locked and after the increment unlocked. Because of
the atomic nature of this function, this operation is very efficient especially in network environments.

Examples
The following example demonstrates the use of the Increment function:

^PersonRecords = 1000
NewPersId = Increment(^PersonRecords)
Println NewPersId 'prints 1001
NewPersId = Increment(^PersonRecords, 10)
Println NewPersId 'prints 1011

The following example demonstrates the use of the Increment function to decrement a number:

countdown = 10
While countdown > 0
 Println countdown
 countdown = Increment(countdown,-1)
Wend
 Println "Blast off!"

The following example demonstrates the use of the Increment function with a fractional value to represent successive
sevenths of a circle:

angle = 0
sevenths = 51.428572
While angle < 360
 angle = Increment(angle,sevenths)
 Println angle," degrees"
Wend

Caché Basic Reference 89

Increment

InStr
Returns the position of the first occurrence of one string within another.

InStr([start,]string1,string2[,compare])

Arguments

Optional — Numeric expression that sets the starting position for each search. If omitted,
search begins at the first character position. The start argument is required if compare is
specified.

start

String expression being searched.string1

String expression being searched for.string2

Optional — Numeric value indicating the kind of comparison to use when evaluating substrings.
See Description section for values. If omitted, a binary comparison is performed.

compare

Note: The order of the arguments in the syntax for the InStr function is not the same as the InStrRev function syntax.

Description
The InStr function searches a string from left-to-right, and returns the location of the first occurrence of string2 encountered.
The location returned is a positive integer counting from left-to-right, with the first (leftmost) character of the string being
location 1.

If the start value is equal to or less than the location of the first (leftmost) character of string2, InStr finds the first instance
of string2, searching forewards from that point, and returns the location of the first (leftmost) character of string2. If the
start value is greater than the location of the first (leftmost) character of string2, InStr returns 0. If the start value is omitted,
InStr searches the entire string and returns the first string2 location found. If the start value is greater than the string1
length, InStr returns 0. If the start value is a negative number, InStr returns 0.

The compare argument can have the following values:

DescriptionValueConstant

Perform a binary comparison.0vbBinaryCompare

Perform a textual comparison.1vbTextCompare

The InStr function returns the following values:

InStr ReturnsIf

0string1 is zero-length

startstring2 is zero-length

0string2 is not found

Position at which match is foundstring2 is found within string1

0start > Len(string2)

Examples
The following examples use InStr to search a string:

90 Caché Basic Reference

Caché Basic Functions

Dim SearchString, SearchChar
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".

' A textual comparison starting at position 4. Returns 6.
PRintln Instr(4, SearchString, SearchChar, 1)

' A binary comparison starting at position 1. Returns 9.
Println Instr(1, SearchString, SearchChar, 0)

' Comparison is binary by default (last argument is omitted).
Println Instr(SearchString, SearchChar) ' Returns 9.

' A binary comparison starting at position 1. Returns 0 ("W" is not found).
Println Instr(1, SearchString, "W")

The following example shows the use of the start argument.

Println "-1: ",InStr(-1,"abcdefg","bc") ' Returns 2
Println "0: ",InStr(0,"abcdefg","bc") ' Returns 2
Println "1: ",InStr(1,"abcdefg","bc") ' Returns 2
Println "2: ",InStr(2,"abcdefg","bc") ' Returns 2
Println "3: ",InStr(3,"abcdefg","bc") ' Returns 0
Println "6: ",InStr(6,"abcdefg","bc") ' Returns 0
Println "7: ",InStr(7,"abcdefg","bc") ' Returns 0
Println "8: ",InStr(8,"abcdefg","bc") ' Returns 0

See Also
• InStrRev function

Caché Basic Reference 91

InStr

InStrRev
Returns the position of the first occurrence of one string within another, searching from the end of string.

InStrRev(string1,string2[,start[,compare]])

Arguments

String expression being searched.string1

String expression being searched for.string2

Optional —An integer that sets the starting position for the reverse direction search. The
start position is counted from left to right (counting from 1); the search is done from right to
left. Thus you should specify a positive integer specifying a start position to the right of the
expected location of string2.The start position can be the actual position of string2.To search
the entire string, from right to left, specify -1. If start is omitted, -1 is the default.

start

Optional — Numeric value indicating the kind of comparison to use when evaluating
substrings. If omitted, a binary comparison is performed. See Description section for values.

compare

Note: The order of the arguments in the syntax for the InStrRev function is not the same as the InStr function syntax.

Description
The InStrRev function searches a string from right-to-left, and returns the location of the first occurrence of string2
encountered. The location returned is a positive integer counting from left-to-right, with the first (leftmost) character of the
string being location 1. The location returned specifies the beginning (leftmost) character of string2.

If the start value is equal to or greater than the location of the last (rightmost) character of string2, InStrRev finds the first
instance of string2, searching backwards from that point, and returns the location of the first (leftmost) character of string2.
If the start value is less than the location of the last (rightmost) character of string2, InStrRev returns 0. If the start value
is -1 or omitted, InStrRev searches the entire string and returns the first string2 location found, searching backwards from
the end of the string. If the start value is greater than the string1 length, InStrRev returns 0. If the start value is a negative
number other than -1, InStrRev returns 0.

The compare argument can have the following values:

DescriptionValueConstant

Perform a binary comparison.0vbBinaryCompare

Perform a textual comparison.1vbTextCompare

The InStrRev function returns the following values:

InStr ReturnsIf

0string1 is zero-length

startstring2 is zero-length

0string2 is not found

Position at which match is foundstring2 is found within string1

0start > Len(string2)

92 Caché Basic Reference

Caché Basic Functions

Examples
The following examples use InStrRev to search a string:

Dim SearchString, SearchChar, MyPos
SearchString ="XXpXXpXXPXXP" ' String to search in.
SearchChar = "P" ' Search for "P".

' A binary comparison starting at position 10. Returns 9.
Println InstrRev(SearchString, SearchChar, 10, 0)

' A textual comparison starting at the last position. Returns 12.
Println InstrRev(SearchString, SearchChar, -1, 1)

' Comparison is binary by default (last argument is omitted). Returns 0.
Println InstrRev(SearchString, SearchChar, 8)

The following example shows the use of the start argument.

Println "-1: ",InStrRev("abcdefg","bc",-1) ' Returns 2
Println "0: ",InStrRev("abcdefg","bc",0) ' Returns 0
Println "1: ",InStrRev("abcdefg","bc",1) ' Returns 0
Println "2: ",InStrRev("abcdefg","bc",2) ' Returns 0
Println "3: ",InStrRev("abcdefg","bc",3) ' Returns 2
Println "6: ",InStrRev("abcdefg","bc",6) ' Returns 2
Println "7: ",InStrRev("abcdefg","bc",7) ' Returns 2
Println "8: ",InStrRev("abcdefg","bc",8) ' Returns 0

See Also
• InStr function

Caché Basic Reference 93

InStrRev

Int
Returns the integer portion of a number.

Int(number)

Arguments

The number argument can be any valid numeric expression.

Description
Int removes the fractional part of number and returns the resulting integer value. The Int and Fix functions are almost
functionally identical:

For positive values, both Int and Fix truncate number. If you wish to round a number to the nearest integer, use the Round
function.

For negative values, Int returns the first negative integer less than or equal to number. Fix returns the first negative integer
greater than or equal to number. For example, Int converts -8.4 to -9, and Fix converts -8.4 to -8.

Both Int and Fix remove leading zeros and plus signs from number.

Examples
The following examples illustrate how the Int and Fix functions return integer portions of numbers:

Println Int(99.8) ' Returns 99.
Println Fix(99.8) ' Returns 99.
Println Int(+99.20) ' Returns 99.
Println Fix(+0099.2) ' Returns 99.
Println Int(0.00) ' Returns 0.
Println Fix(0.00) ' Returns 0.
Println Int(-99.8) ' Returns -100.
Println Fix(-99.8) ' Returns -99.
Println Int(-99.2) ' Returns -100.
Println Fix(-99.2) ' Returns -99.

See Also
• Abs function

• Fix function

• Round function

94 Caché Basic Reference

Caché Basic Functions

IsObject
Returns a value indicating whether an expression references a valid Automation object.

IsObject(expression)

Arguments

The expression argument can be any kind of expression (such as a numeric or string expression).

Description
IsObject ReturnsExpression Evaluates To

1valid Object Reference

–1invalid Object Reference

0not an Object Reference

IsObject returns a –1 value if expression is a reference to an invalid object. Invalid objects should not occur in normal
operations; an invalid object could be caused, for example, by recompiling the class while instances of the class are active.

Examples
The following example uses the IsObject function to determine if an identifier represents an object variable:

o = New Sample.Person
Println IsObject(o) ' Returns 1.
Println IsObject("hello") ' Returns 0.
o = ""
Println IsObject(o) ' Returns 0.

See Also
• New statement

• OpenId statement

Caché Basic Reference 95

IsObject

Join
Returns a string created by joining a number of array elements.

Join(list[,delimiter])

Arguments

A one-dimensional array containing substrings to be joined.list

Optional — String character used to separate the substrings in the returned string.
Usually a single character, but can be a multi-character string. If omitted, the space
character (" ") is used. If delimiter is a zero-length string, all items in the list are
concatenated with no delimiters.

delimiter

Description
The Join function joins array elements into a string. The Split function does the opposite; it splits a string into array elements.

The array elements in list must be one-dimensional (for example, A(1), A(6), etc.). Elements are returned in ascending
numeric order; elements do not have to be sequential.

Examples
The following example uses the Join function to join the substrings of MyArray. By default, it supplies blank spaces
between elements.

Dim MyString, MyString2
Dim MyArray
MyArray(0) = "Mr."
MyArray(1) = "John"
MyArray(2) = "Doe"
MyArray(3) = "III"
Println Join(MyArray) ' Returns "Mr. John Doe III".

The following example demonstrates the delimiter argument. The first Join function specifies a empty string; resulting in
concatenated elements. The second Join function specifies a single-character delimiter. The third Join function specifies
a multi-character delimiter.

Dim MyString, MyString2
Dim MyArray
MyArray(0) = "Mr."
MyArray(1) = "John"
MyArray(2) = "Doe"
MyArray(3) = "III"
Println Join(MyArray,"") ' Returns "Mr.JohnDoeIII".
Println Join(MyArray,"^") ' Returns "Mr.^John^Doe^III".
Println Join(MyArray,"^x^") ' Returns "Mr.^x^John^x^Doe^x^III".

The following example demonstrate non-sequential array elements:

Dim MyString, MyString2
Dim MyArray
MyArray(6) = "Mr."
MyArray(4) = "John"
MyArray(3) = "Doe"
MyArray(7) = "III"
Println Join(MyArray,",") ' Returns "Doe,John,Mr.,III".

See Also
• Split function

96 Caché Basic Reference

Caché Basic Functions

LCase
Returns a string that has been converted to lowercase.

LCase(string)

Arguments

The string argument is any valid string expression.

Description
Only uppercase letters are converted to lowercase. Lowercase letters and non-letter characters remain unchanged.

Examples
The following example uses the LCase function to convert uppercase letters to lowercase:

Dim MyString
MyString = "Caché from InterSystems"
Println LCase(MyString) ' Returns "caché from intersystems"

The following example converts the first four letters of the Greek alphabet from uppercase to lowercase:

Dim MyString
MyString = Chr(913)&Chr(914)&Chr(915)&Chr(916)
Println MyString
Println LCase(MyString)

(Note that the above example requires a Unicode installation of Caché.)

See Also
• UCase function

Caché Basic Reference 97

LCase

Left
Returns or replaces a specified number of characters from the left end of a string.

Left(string,length)

Left(string,length)=value

Arguments

String expression from which the leftmost characters are returned.string

Numeric expression that evaluates to a positive integer indicating how many characters from
the beginning of string to return or replace. Fractional numbers are truncated to an integer. If
length is 0 or a negative number, Left returns a zero-length string (""). If length is 0 or a negative
number, Left performs no replacement. If length is greater than or equal to the number of
characters in string, the entire string is returned (or replaced). No padding is performed.

length

The value used to replace the specified character(s) at the beginning of string. An expression
that evaluates to a string.

value

Description
The Left function can be used in two ways:

• To return a substring from the beginning (left end) of string. This uses the Left(string,length) syntax.

• To replace a substring from the beginning (left end) of string. The replacement substring may be the same length,
longer, or shorter than the original substring. This uses the Left(string,length)=value syntax.

Left(string,length) returns the leftmost character(s) of string. The length argument specifies how many characters
of string to return. If length is 0 or a negative number, Left returns the empty string (""). If you specify a length greater
than the length of string, the entire string is returned.

Left(string,length)=value replaces the leftmost character(s) of string with value. The length argument specifies
how many characters of string to replace. If length is 0 or a negative number, string is unchanged. This is true even when
string is the empty string (""). If length is greater than the length of string, string is replaced by value.

To determine the number of characters in string, use the Len function.

The Right function returns (or replaces) the specified number of characters from the end (right end) of a string. The Mid
function returns (or replaces) the specified number of characters from a specified starting point within a string.

Examples
The following example uses the Left function to return the first three characters of mystr, the first 99 characters (in this
case, all of the characters), and the first 0 characters:

Dim mystr
mystr = "InterSystems"
Println "length 3:",Left(mystr,3) ' Returns "Int"
Println "length 99:",Left(mystr,99) ' Returns "InterSystems"
Println "length 0:",Left(mystr,0) ' Returns ""

The following example uses the Left function to replace the first three characters of mystr with a five-character string:

Dim mystr
mystr = "NtrSystems"
PrintLn mystr
Left(mystr,3)="Inter"
PrintLn mystr

98 Caché Basic Reference

Caché Basic Functions

The following example deletes (replaces with the null string) the first three characters of mystr:

Dim mystr
mystr = "NtrSystems"
PrintLn mystr
Left(mystr,3)=""
PrintLn mystr

The following example replaces all of the characters of mystr, because length is greater than the length of mystr:

Dim mystr
mystr = "Oracle"
PrintLn mystr
Left(mystr,99)="InterSystems"
PrintLn mystr

The following example shows that length=0 has no effect on mystr:

Dim mystr
Dim empstr
mystr = "InterSystems"
empstr = ""
PrintLn mystr
Left(mystr,0)="Bongo"
PrintLn "string out:",mystr
Left(empstr,0)="BongoSystems"
PrintLn "string out:",empstr

See Also
• Len function

• Mid function

• Right function

Caché Basic Reference 99

Left

Len
Returns the number of characters in a string or the number of bytes required to store a variable.

Len(string | varname [,delimiter])

Arguments

Any valid string expression.string

Any valid variable name.varname

Optional — A valid string expression which demarcates separate substrings in the target
string. If the delimiter is specified but is not part of the string, the Len function returns
1.

delimiter

Description
The Len function returns the number of characters in a specified string or in the value of a specified variable. Numbers are
converted to canonical form, with leading and trailing zeroes and plus signs removed. An empty string ("") returns a length
of 0. An undefined variable returns a length of 0.

Examples
The following example uses the Len function to return the number of characters in a string:

Println Len("InterSystems") ' Returns 12
Println Len(+0099.900) ' Returns 4
Println Len("0099.900") ' Returns 8
Println Len("") ' Returns 0

The following example uses the Len function to return the number bytes required to store a variable.

x = 0099.900
y = Now
Println Len(x) ' Returns 4
Println Len(y) ' Returns 21:
 ' mm/dd/yyyy 00:00:00PM
Println Len(z) ' Returns 0

The following example uses the Len function to return the number of substrings delimited by the “/” character in a string:

Dim MyPieces
MyPieces = Len("09/02/1994", "/") 'MyPieces contains 3
Println MyPieces," pieces of the string"

See Also
• InStr function

• Piece function

100 Caché Basic Reference

Caché Basic Functions

List
Returns elements from a list.

List(list[,position[,end]])

List(list[,position[,end]])=value

Arguments

An expression that evaluates to a valid list. A Caché list must be created using ListBuild
or ListFromString, or extracted from another list using List.

list

Optional — An integer that specifies the position of the list element to return, or the beginning
of a sublist range if end is specified. Specify an expression that evaluates to a non-zero
positive integer.You can use –1 to specify the last element in the list. If position is not
specified, it defaults to 1 (the first element in list).

position

Optional — An integer that specifies the position of the list element which is the final element
in the sublist range. Specify an expression that evaluates to an integer. Use –1 to specify
the last element in the list.

end

Description
List returns elements from a list. The elements returned depend on the specified arguments.

• List(list) returns the first element string in the list.

• List(list,position) returns the element indicated by the specified position. The position argument must evaluate to an
integer. List elements are numbered beginning with 1.

• List(list,position,end) returns a “sublist” containing the elements of the list from the specified start position through
the specified end position, inclusive.

You can also use ListNext to sequentially return elements from a list.

Arguments

list

An encoded list string containing one or more elements. Lists can be created using ListBuild or ListFromString, or
extracted from another list by using the List function. The following are valid list arguments:

myList = ListBuild("Red", "Blue", "Green", "Yellow")
Println List(myList, 2) 'prints Blue
subList = List(myList,2,4)
Println List(subList, 2) 'prints Green

In the following example, subList is not a valid list argument, because a List returns a single element as an ordinary string,
not an encoded list string:

myList = ListBuild("Red", "Blue", "Green", "Yellow")
subList = List(myList,2)
Println List(subList,1) ' INVALID OPERATION

Attempting to use the List function on an ordinary string generates a runtime error.

Caché Basic Reference 101

List

position

The position of a list element to return. List elements are counted from 1. If position is omitted, the first element is returned.
If the value of position is 0 or greater than the number of elements in the list, Caché issues a <NULL VALUE> error. If
the value of position is negative one (–1), List returns the final element in the list.

If the end argument is specified, position specifies the first element in a range of elements. Even when only one element
is returned (when position and end are the same number) this value is returned as an encoded list string. Thus, List(x,2) is
not identical to List(x,2,2), as shown in the following example:

MyList = ListBuild("A","B","C")
x = List(MyList,2)
y = List(MyList,2,2)
If x=y Then
 Println "Lists are identical"
Else
 Println "Lists not identical"
End If

end

The position of the last element in a range of elements. You must specify position to specify end. When end is specified,
the value returned is an encoded list string. Because of this encoding, such strings should only be processed by other List
functions.

If the value of end is:

• greater than position, an encoded string containing a list of elements is returned.

• equal to position, an encoded string containing the one element is returned.

• less than position, the null string ("") is returned.

• greater than the number of elements in list, it is equivalent to specifying the final element in the list.

• negative one (–1), it is equivalent to specifying the final element in the list.

When specifying end, you can specify a position value of zero (0). In this case, 0 is equivalent to 1.

Note that List(list,1) is not equivalent to List(list,1,1) because the former returns a string, while the latter returns a single-
element list. Furthermore, the first can receive a <NULL VALUE> error, whereas the second cannot; if there are no elements
to return, it returns a null string.

fruit = ListBuild("apple","banana","pear")
PrintLn List(fruit,1)
PrintLn List(fruit,1,1)

List Errors
The following List argument values generate an error:

• If the list parameter does not evaluate to a valid list, List generates a <LIST> error. You can use the ListValid function
to determine if a list is valid.

• If the list parameter evaluate to a valid list that contains a null value, or concatenates a list and a null value, List gen-
erates a <NULL VALUE> error. All of the following are valid lists (according to ListValid) for which List generate
a <NULL VALUE> error:

PrintLn List("")
PrintLn List(ListBuild())
PrintLn LIST(ListBuild(NULL))
PrintLn LIST(ListBuild(,))
PrintLn LIST(ListBuild() & ListBuild("a","b","c"))

• If the position parameter is 0 or a fractional number less than 1 and no end parameter is used, List generates a <NULL
VALUE> error.

102 Caché Basic Reference

Caché Basic Functions

• If the value of the position parameter refers to a nonexistent list member and no end parameter is used, List generates
a <NULL VALUE> error.

• If the value of the position parameter identifies an element with an undefined value, and no end parameter is used, List
generates a <NULL VALUE> error.

• If the value of the position parameter or the end parameter is less than -1, List generates a <RANGE> error.

Setting List
You can use List on the left of the equal sign to replace a specified element in a list with another element value. You can
perform the following operations:

• Replace one element value with a new value:

fruit = ListBuild("apple","banana","pear")
PrintLn List(fruit,2)
List(fruit,2) = "orange"
PrintLn List(fruit,2)

• Replace a range of element values with the same number of new values:

fruit = ListBuild("apple","peach","pear","plum")
PrintLn List(fruit,2)," ",List(fruit,3)
List(fruit,2,3)=ListBuild("orange","banana")
PrintLn List(fruit,2)," ",List(fruit,3)

• Replace a range of element values with a larger or smaller number of new values:

fruit = ListBuild("apple","pear","plum","tangerine")
PrintLn List(fruit,2)," ",List(fruit,3)," ",List(fruit,4)
List(fruit,2,3)=ListBuild("orange","banana","peach")
PrintLn List(fruit,2)," ",List(fruit,3)," ",List(fruit,4)," ",List(fruit,5)

• Remove an element or a range of element values:

fruit = ListBuild("apple","pear","plum","tangerine")
PrintLn List(fruit,2)," ",List(fruit,3)," ",List(fruit,4)
List(fruit,2,3)=""
PrintLn List(fruit,2)

To replace the final element in a list use a position of -1. Note that List(inlint,-1)=value and
List(inlint,-1,-1)=value perform different operations: List(inlint,-1)=value replaces the value of the
last element; List(inlint,-1,-1)=value deletes the last element, then appends the specified list.

To remove the final element of a list, use List(inlint,-1,-1)="".

Examples
The following examples demonstrates how to use the List function:

myList = ListBuild("Red","Blue","Green","Yellow")
color4 = List(myList,4) ' returns value of the 4th element
Println color4 ' prints Yellow
sublist = List(myList,2,3) ' returns the 2nd and 3rd elements as a list
Println List(sublist,1) ' prints Blue

Because multi-element lists contain non-printing list encoding characters, Println should only be used to display single
list items.

See Also
• ListBuild function

• ListExists function

Caché Basic Reference 103

List

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

104 Caché Basic Reference

Caché Basic Functions

ListBuild
Creates a list of elements.

ListBuild(element[,element][,element][...])

Arguments

Any expression or comma-separated list of expressions. To include a comma within an
element, make the element a quoted string.

element

Description
ListBuild takes one or more expressions and returns a list with one element for each expression.

Omitting an element expression yields an element whose value is undefined. For example, the following ListBuild statement
produces a three-element list whose second element has an undefined value; referencing the second element with the List
function will produce a Null Value error.

Println List(ListBuild("Red",,"Green"),2)

Invoking the ListBuild function with no arguments returns a list with one element whose data value is undefined.

An element of a list may itself be a list. For example, the following statement produces a three-element list whose third
element is the two-element list, “Walnut,Pecan”:

MyList = ListBuild("Apple","Pear",ListBuild("Walnut","Pecan"))
Println List(MyList,3)

Note that multi-element lists contain non-printing list encoding characters.

The result of concatenating two lists with the Binary Concatenate operator is another list. For example, the following two
ListBuild statements produce the same list, “A,B,C”:

x = ListBuild("A","B") & ListBuild("C")
y = ListBuild("A","B","C")
If x=y Then
 Println "Lists are identical"
Else
 Println "Lists not identical"
End If

However, concatenating a string to a list does not create a valid list.

ListBuild uses an optimized binary representation to store data elements. For this reason, equivalency tests may not work
as expected with some list data. Data that might, in other contexts, be considered equivalent, may have a different internal
representation. For example, ListBuild(1) is not equal to ListBuild(“1”). This is shown in the following example:

x = ListBuild("1","2")
y = ListBuild(1,2)
If x=y Then
 Println "Lists are identical"
Else
 Println "Lists not identical"
End If

A Caché list can also be created using the ListFromString function, or extracted from another list using the List function.

Examples
The following examples demonstrates how to use the ListBuild function:

Caché Basic Reference 105

ListBuild

myList = ListBuild("Red","Blue","Green","Yellow")
color4 = List(myList,4) 'returns value of the 4th element
Println color4
sublist = List(myList,2,3) 'returns the 2nd and 3rd elements as a list
Println List(sublist,1) 'prints Blue

Because multi-element lists contain non-printing list encoding characters, Println should only be used to display single
list items.

See Also
• List function

• ListExists function

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

106 Caché Basic Reference

Caché Basic Functions

ListExists
Indicates whether an element is present in the list and has a value.

ListExists(list,position)

Arguments

An expression that evaluates to a valid list. A Caché list must be created using ListBuild
or ListFromString, or extracted from another list using List.

list

An integer specifying a position in list (counting from 1).position

Description
The ListExists function returns a value of 1 if the element at the indicated position in the list exists and has a data value.
Otherwise ListExists returns zero.

Examples
The following example demonstrates the ListExists function. It defines a six-element list, in which the third and fourth
elements do not have a defined value:

Erase Y ' Y is now undefined
myList = ListBuild("Red","Blue",,Y,"Yellow","")
Println ListExists(myList,0) ' 0: positions are numbered from 1
Println ListExists(myList,1) ' 1: "Red"
Println ListExists(myList,2) ' 1: "Blue"
Println ListExists(myList,3) ' 0: missing element
Println ListExists(myList,4) ' 0: undefined element
Println ListExists(myList,5) ' 1: "Yellow"
Println ListExists(myList,6) ' 1: empty string OK
Println ListExists(myList,7) ' 0: beyond end of list
Println ListExists(myList,-1) ' 1: last element in list

See Also
• List function

• ListBuild function

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

Caché Basic Reference 107

ListExists

ListFind
Finds an element in a list.

ListFind(list,value[,startafter])

Arguments

An expression that evaluates to a valid list. A Caché list must be created using
ListBuild or ListFromString, or extracted from another list using List.

list

An expression which evaluates to the value of the element to find.value

Optional — An expression interpreted as a list position. The search starts with the
element after this position.

startafter

Description
The ListFind function searches the specified list for the first instance of the requested value. The search begins with the
element after the position indicated by the startafter argument. If you omit the startafter argument, ListFind assumes a
startafter value of 0 and starts the search with the first element. If the value is found, ListFind returns the position of the
first matching element. If the value is not found, ListFind returns zero (0). The ListFind function will also return a 0 if
the value of the startafter argument refers to a nonexistent list member.

The ListFind function only matches complete elements. Thus, the following example returns 0 because no element of the
list is equal to the string “B”, though all of the elements contain “B”:

mylist = ListBuild("ABC","BCD","BBB")
Println ListFind(mylist,"B")

Examples
The following example demonstrates how to use the ListFind function:

myList = ListBuild("Red", "Blue", "Green", "Yellow","Green")
Println ListFind(myList,"Green") ' prints 3
Println ListFind(myList,"Green",3) ' prints 5
Println ListFind(myList,"Red") ' prints 1
Println ListFind(myList,"Red",1) ' prints 0 (not found)

See Also
• List function

• ListBuild function

• ListExists function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

108 Caché Basic Reference

Caché Basic Functions

ListFromString
Creates a list from a string.

ListFromString(string[,delimiter])

Parameters

A string to be converted into a Caché list.This string contains one or more elements, separated
by a delimiter. The delimiter does not become part of the resulting Caché list.

string

Optional — The delimiter used to separate substrings (elements) in string. Specify delimiter
as a quoted string. If no delimiter is specified, the default is the comma (,) character.

delimiter

Description
ListFromString takes a quoted string containing delimited elements and returns a list. A list represents data in an encoded
format which does not use delimiter characters. Thus a list can contain all possible characters, and is ideally suited for bitstring
data. Lists are handled using the Caché Basic List functions.

A Caché list can also be created using the ListBuild function, or extracted from another list using the List function.

Parameters

string

A string literal (enclosed in quotation marks), a numeric, or a variable or expression that evaluates to a string. This string
can contain one or more substrings (elements), separated by a delimiter. The string data elements must not contain the
delimiter character (or string), because the delimiter character is not included in the output list.

delimiter

A character (or string of characters) used to delimit substrings within the input string. It can be a numeric or string literal
(enclosed in quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

If you specify no delimiter, the default delimiter is the comma (,) character. You cannot specify a null string ("") as a
delimiter.

Example
The following example takes a string containing names that are separated by blank spaces, and creates a list:

namestring="Deborah Noah Martha Bowie"
namelist=ListFromString(namestring," ")
Println "1st element: ",List(namelist,1)
Println "2nd element: ",List(namelist,2)
Println "3rd element: ",List(namelist,3)

The blank spaces are the string delimiter and are not included in the newly created list.

The following example takes a string containing names that are separated by a <sp> delimiter, and creates a list:

namestring="Deborah<sp>Noah<sp>Martha<sp>Bowie"
namelist=ListFromString(namestring,"<sp>")
Println "1st element: ",List(namelist,1)
Println "2nd element: ",List(namelist,2)
Println "3rd element: ",List(namelist,3)

Caché Basic Reference 109

ListFromString

The following example uses the default delimiter (a comma) and creates a list. Note that the second element of this list
contains no value:

namestring="Deborah,,Noah,Martha"
namelist=ListFromString(namestring)
Println "1st element: ",List(namelist,1)
Println "2nd element: ",List(namelist,2)
Println "3rd element: ",List(namelist,3)

See Also
• List function

• ListBuild function

• ListExists function

• ListFind function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

• Piece function

110 Caché Basic Reference

Caché Basic Functions

ListGet
Returns an element from a list.

ListGet(list[,position[,default]])

Arguments

An expression that evaluates to a valid list. A Caché list must be created using ListBuild
or ListFromString, or extracted from another list using List.

list

Optional — An integer specifying the position of the element (counting from 1).position

Optional — An expression that provides the value to return if the list element has an
undefined value.

default

Description
ListGet returns the requested element in the specified list. If the value of position refers to a nonexistent member or iden-
tifies an element with an undefined value, the specified default value is returned.

The ListGet function is identical to the one- and two-argument forms of the List function except that, under conditions
that would cause List to produce a <NULL VALUE> error, ListGet returns a default value. See the description of the List
function for more information on conditions that return <NULL VALUE> errors.

Arguments

position

An integer that specifies the target list element. If it is omitted, the function defaults to examine the first element of the list.
If the value of position is -1, ListGet examines the last element of the list.

default

Supplies a default value to return when the element has no value. For example, an omitted element (1,,3) or an undefined
variable (1,x,3). The default is not returned for an empty (zero-length) string value. If you omit the default argument, a
zero-length string is assumed for the default value.

Examples
The following example demonstrates how to use the ListGet function:

myList = ListBuild("Red","Blue",,"Yellow")
Println ListGet(myList) ' prints Red
Println ListGet(myList,2,"White") ' prints Blue
Println ListGet(myList,3,"White") ' prints White

The following example shows the difference between an undefined value and an empty string value:

myList = ListBuild("Red","",,"Yellow")
Println "Empty: ",ListGet(myList,2,"White") ' prints empty string
Println "Default: ",ListGet(myList,3,"White") ' prints White

See Also
• List function

• ListBuild function

• ListExists function

Caché Basic Reference 111

ListGet

• ListFind function

• ListFromString function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

112 Caché Basic Reference

Caché Basic Functions

ListLength
Returns the number of elements in a list.

ListLength(list)

Arguments

An expression that evaluates to a valid list. A Caché list must be created using ListBuild or
ListFromString, or extracted from another list using List. The null string ("") is also treated as a
valid list.

list

Description
ListLength returns the number of elements in list. It counts all elements in a list, regardless of whether the element has a
data value.

Examples
The following example demonstrates how to use the ListLength function:

myList = ListBuild("Red","Blue","Green","Yellow")
Println ListLength(myList) 'prints 4

The following example shows that ListLength counts all list elements:

GapList = ListBuild("Red",, "Green", "Yellow")
UndefVarList = ListBuild("Red",x, "Green", "Yellow")
NullStrList = ListBuild("Red","", "Green", "Yellow")
Println ListLength(GapList) ' prints 4
Println ListLength(UndefVarList) ' prints 4
Println ListLength(NullStrList) ' prints 4

The following example shows how ListLength handles the null string and a list containing only a null string element:

Println ListLength("") ' prints 0
NullList = ListBuild("")
Println ListLength(NullList) ' prints 1

See Also
• List function

• ListBuild function

• ListExists function

• ListFind function

• ListFromString function

• ListGet function

• ListNext function

• ListSame function

• ListToString function

• ListValid function

Caché Basic Reference 113

ListLength

ListNext
Retrieves elements sequentially from a list.

ListNext(list,ptr,value)

Parameters

An expression that evaluates to a valid list. A Caché list must be created using ListBuild or
ListFromString, or extracted from another list using List.

list

A pointer to the next element in the list.You must specify ptr as a local variable initialized to 0
to point to the beginning of list. Caché increments ptr using an internal address value algorithm
(not a predictable integer counter). Therefore, the only value you can use to set ptr is 0. ptr
cannot be a global variable or a subscripted variable.

ptr

A local variable used to hold the data value of a list element. value does not have to be initialized
before invoking ListNext. value cannot be a global variable or a subscripted variable.

value

Description
ListNext sequentially returns elements from list. You initialize ptr to 0 before the first invocation of ListNext. This causes
ListNext to begin returning elements from the beginning of the list. Each successive invocation of ListNext advances ptr
and returns the next list element value to value. The ListNext function returns 1, indicating that a list element has been
successfully retrieved.

When ListNext reaches the end of the list, it returns 0, resets ptr to 0, and leaves value unchanged from the previous
invocation. Because ptr has been reset to 0, the next invocation of ListNext would start at the beginning of the list.

Caché Basic increments ptr using an internal address algorithm. Therefore, the only value you should use to set ptr is 0.

You can use ListValid to determine if list is a valid list. An invalid list causes ListNext to generate a <LIST> error.

Not all lists validated by ListValid can be used successfully with ListNext. When ListNext encounters a list element with
a null value, it returns 1 indicating that a list element has been successfully retrieved, advances ptr to the next element, and
resets value to be an undefined variable. This can happen with any of the following valid lists: value=ListBuild(),
value=ListBuild(NULL), value=ListBuild(,), or when encountering an omitted list element, such as the second invocation
of ListNext on value=ListBuild("a",,"b").

ListNext("",ptr,value) returns 0, and does not advance the pointer or set value.
ListNext(ListBuild(""),ptr,value) returns 1, advances the pointer, and set value to the null string ("").

ListNext and Nested Lists

The following example returns three elements, because ListNext does not recognize the individual elements in nested lists:

mylist = ListBuild("Apple","Pear",ListBuild("Walnut","Pecan"))
ptr = 0
count = 0
 While ListNext(mylist,ptr,value)
 count=count+1
 PrintLn value
 Wend
 PrintLn "End of list: ",count," elements found"

Examples
The following example sequentially returns all the elements in the list:

114 Caché Basic Reference

Caché Basic Functions

mylist = ListBuild("Red","Blue","Green")
ptr = 0
count = 0
 While ListNext(mylist,ptr,value)
 count = count+1
 PrintLn value
 Wend
 PrintLn "End of list: ",count," elements found"

See Also
• List function

• ListBuild function

• ListExists function

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListSame function

• ListToString function

• ListValid function

Caché Basic Reference 115

ListNext

ListSame
Compares two lists and returns a boolean value.

ListSame(list1,list2)

Parameters

An expression that evaluates to a valid list. A Caché list must be created using ListBuild or
ListFromString, or extracted from another list using List. The null string ("") is also treated as
a valid list.

list1

An expression that evaluates to a valid list. A Caché list must be created using ListBuild or
ListFromString, or extracted from another list using List. The null string ("") is also treated as
a valid list.

list2

Description
ListSame compares the contents of two lists and returns 1 if the lists are identical. If the lists are not identical, ListSame
returns 0. ListSame compares list elements using their string representations. ListSame comparisons are case-sensitive.

ListSame compares the two lists element-by-element in left-to-right order. Therefore ListSame returns a value of 0 when
it encounters the first non-identical pair of list elements; it does not check subsequent items to determine if they are valid
list elements. If a ListSame comparison encounters an invalid item, it issues a <LIST> error.

Examples
The following example returns 1, because the two lists are identical:

x = ListBuild("Red","Blue","Green")
y = ListBuild("Red","Blue","Green")
 PrintLn ListSame(x,y)

The following example returns 0, because the two lists are not identical:

 x = ListBuild("Red","Blue","Yellow")
 y = ListBuild("Red","Yellow","Blue")
 PrintLn ListSame(x,y)

Identical Lists
ListSame considers two lists to be identical if the string representations of the two lists are identical.

When comparing a numeric list element and a string list element, the string list element must represent the numeric in
canonical form; this is because Caché always reduces numerics to canonical form before performing a comparison. In the
following example, ListSame compares a string and a numeric. The first three ListSame functions return 1 (identical); the
fourth ListSame function returns 0 (not identical) because the string representation is not in canonical form:

PrintLn ListSame(ListBuild("365"),ListBuild(365))
PrintLn ListSame(ListBuild("365"),ListBuild(365.0))
PrintLn ListSame(ListBuild("365.5"),ListBuild(365.5))
PrintLn ListSame(ListBuild("365.0"),ListBuild(365.0))

ListSame comparison is not the same equivalence test as the one used by other list operations, which test using the internal
representation of a list. This distinction is easily seen when comparing a number and a numeric string, as in the following
example:

116 Caché Basic Reference

Caché Basic Functions

 x = ListBuild("365")
 y = ListBuild(365)
 If x=y Then
 PrintLn "Equal sign: number/numeric string identical"
 Else
 PrintLn "Equal sign: number/numeric string differ"
 End If
 If 1=ListSame(x,y) Then
 PrintLn "ListSame: number/numeric string identical"
 Else
 PrintLn "ListSame: number/numeric string differ"
 End If

The equality (=) comparison tests the internal representations of these lists (which are not identical). ListSame performs
a string conversion on both lists, compares them, and finds them identical.

The following example shows two lists with various representations of numeric elements. ListSame considers these two
lists to be identical:

 x = ListBuild("360","361","362","363","364","365","366")
 y = ListBuild(00360.000,(19*19),+"362",363,364.0,+365,"3" & "66")
 PrintLn ListSame(x,y)," lists are identical"

Null String and Null List

A list containing the null string (an empty string) as its sole element is a valid list. The null string by itself is also considered
a valid list. However these two (a null string and a null list) are not considered identical, as shown in the following example:

 PrintLn ListSame(ListBuild(""),ListBuild(""))," null lists"
 PrintLn ListSame("","")," null strings"
 PrintLn ListSame(ListBuild(""),"")," null list and null string"

Normally, a string is not a valid ListSame argument, and ListSame issues a <LIST> error. However, the following ListSame
comparisons complete successfully and return 0 (values not identical). The null string and the string “abc” are compared
and found not to be identical. These null string comparisons do not issue a <LIST> error:

 PrintLn ListSame("","abc")
 PrintLn ListSame("abc","")

The following ListSame comparisons do issue a <LIST> error, because a list (even a null list) cannot be compared with a
string:

 x = ListBuild("")
 PrintLn ListSame("abc",x)
 PrintLn ListSame(x,"abc")

Comparing “Empty” Lists

ListValid considers all of the following as valid lists:

PrintLn ListValid("")
PrintLn ListValid(ListBuild())
PrintLn ListValid(ListBuild(NULL))
PrintLn ListValid(ListBuild(""))
PrintLn ListValid(ListBuild(Chr(0)))
PrintLn ListValid(ListBuild(,))

ListSame considers only the following pairs as identical:

PrintLn ListSame(ListBuild(),ListBuild(NULL))
PrintLn ListSame(ListBuild(,),ListBuild(NULL,NULL))
PrintLn ListSame(ListBuild(,),ListBuild() & ListBuild())

Empty Elements

A ListBuild can create empty elements by including extra commas between elements or appending one or more commas
to either end of the element list. ListSame is aware of empty elements, and does not treat them as equivalent to null string
elements.

Caché Basic Reference 117

ListSame

The following ListSame examples all return 0 (not identical):

PrintLn ListSame(ListBuild(365,,367),ListBuild(365,367))
PrintLn ListSame(ListBuild(365,366,),ListBuild(365,366))
PrintLn ListSame(ListBuild(365,366,,),ListBuild(365,366,))
PrintLn ListSame(ListBuild(365,,367),ListBuild(365,"",367))

Nested and Concatenated Lists

ListSame does not support nested lists. It cannot compare two lists that contain lists, even if their contents are identical.

 x = ListBuild("365")
 y = ListBuild(365)
 PrintLn ListSame(x,y)," lists identical"
 PrintLn ListSame(ListBuild(x),ListBuild(y))," nested lists not identical"

In the following example, both ListSame comparisons returns 0, because these lists are not considered identical:

 x=ListBuild("Apple","Pear","Walnut","Pecan")
 y=ListBuild("Apple","Pear",ListBuild("Walnut","Pecan"))
 z=ListBuild("Apple","Pear","Walnut","Pecan","")
 PrintLn ListSame(x,y)," nested list"
 PrintLn ListSame(x,z)," null string is list item"

ListSame does support concatenated lists. The following example returns 1, because the lists are considered identical:

 x=ListBuild("Apple","Pear","Walnut","Pecan")
 y=ListBuild("Apple","Pear") & ListBuild("Walnut","Pecan")
 PrintLn ListSame(x,y)," concatenated list"

See Also
• List function

• ListBuild function

• ListExists function

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListToString function

• ListValid function

118 Caché Basic Reference

Caché Basic Functions

ListToString
Creates a string from a list.

ListToString(list[,delimiter])

Parameters

An expression that evaluates to a valid list. A Caché list must be created using ListBuild
or ListFromString, or extracted from another list using List. The null string ("") is also
treated as a valid list.

list

Optional — A delimiter used to separate substrings. Specify delimiter as a quoted string.
If no delimiter is specified, the default is the comma (,) character.

delimiter

Description
ListToString takes a Caché list and converts it to a string. In the resulting string, the elements of the list are separated by
the delimiter.

A list represents data in an encoded format which does not use delimiter characters. Thus a list can contain all possible
characters, and is ideally suited for bitstring data. ListToString converts this list to a string with delimited elements. It sets
aside a specified character (or character string) to serve as a delimiter. These delimited elements can be handled using the
Piece function.

Note: The delimiter specified here must not occur in the source data. Caché makes no distinction between a character
serving as a delimiter and the same character as a data character.

Parameters

list

A Caché list, which contains one or more elements. A list is created using ListBuild or ListFromString, or extracted from
another list using List.

delimiter

A character (or string of characters) used to delimit substrings within the output string. It can be a numeric or string literal
(enclosed in quotation marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character string, the individual characters of which can be
used within string data.

If you specify no delimiter, the default delimiter is the comma (,) character. You can specify a null string ("") as a delimiter;
in this case, substrings are concatenated with no delimiter. To specify a quote character as a delimiter, specify the quote
character twice ("""") or use Char(34).

Examples
The following example creates a list of four elements, then converts it to a string with the elements delimited by the colon
(:) character:

namelist=ListBuild("Deborah","Noah","Martha","Bowie")
PrintLn ListToString(namelist,":")

returns "Deborah:Noah:Martha:Bowie"

Caché Basic Reference 119

ListToString

The following example creates a list of four elements, then converts it to a string with the elements delimited by the *sp*
string:

namelist=ListBuild("Deborah","Noah","Martha","Bowie")
PrintLn ListToString(namelist,"*sp*")

returns "Deborah*sp*Noah*sp*Martha*sp*Bowie"

See Also
• List function

• ListBuild function

• ListExists function

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListValid function

• Piece function

120 Caché Basic Reference

Caché Basic Functions

ListValid
Determines if an expression is a list.

ListValid(exp)

Parameters

Any valid expression. A valid list must be created using ListBuild or ListFromString, or extracted
from another list using List. The null string ("") is also treated as a valid list.

exp

Description
ListValid determines whether exp is a list, and returns a Boolean value: If exp is a list, ListValid returns 1; if exp is not a
list, ListValid returns 0.

A list can be created using ListBuild or ListFromString, or extracted from another list using List. A list containing the
empty string ("") as its sole element is a valid list. The empty string ("") by itself is also considered a valid list.

Examples
The following examples all return 1, indicating a valid list:

 w = ListBuild("Red","Blue","Green")
 x = ListBuild("Red")
 y = ListBuild(365)
 z = ListBuild("")
 Println ListValid(w)
 Println ListValid(x)
 Println ListValid(y)
 Println ListValid(z)

The following examples all return 0. Numbers and strings (with the exception of the null string) are not valid lists:

 x = "Red"
 y = 44
 Println ListValid(x)
 Println ListValid(y)

The following examples all return 1. Concatenated, nested, and omitted value lists are all valid lists:

 w = ListBuild("Apple","Pear")
 x = ListBuild("Walnut","Pecan")
 y = ListBuild("Apple","Pear",ListBuild("Walnut","Pecan"))
 z = ListBuild("Apple","Pear",,"Pecan")
 Println ListValid(w & x) ' concatenated
 Println ListValid(y) ' nested
 Println ListValid(z) ' omitted element

The following examples all return 1. ListValid considers all of the following “empty” lists as valid lists:

Println ListValid("")
Println ListValid(ListBuild())
Println ListValid(ListBuild(NULL))
Println ListValid(ListBuild(""))
Println ListValid(ListBuild(Chr(0)))
Println ListValid(ListBuild(,))

See Also
• List function

• ListBuild function

• ListExists function

Caché Basic Reference 121

ListValid

• ListFind function

• ListFromString function

• ListGet function

• ListLength function

• ListNext function

• ListSame function

• ListToString function

122 Caché Basic Reference

Caché Basic Functions

Lock
Obtains a logical lock on a variable name.

Lock(varname[,timeout])

Arguments

Name of the variable to be locked.varname

Optional — A numeric expression indicating the number of seconds to wait to obtain the
lock.

timeout

Description
Returns true if the lock was obtained, false otherwise.

Each time a lock is obtained on a varname a lock count is incremented for this varname. Unlock decrements this count.
Only when the lock count falls to zero will the logical lock be released. For this reason, you should balance each call to
Lock with a corresponding call to Unlock.

If a timeout is not specified, Lock will wait indefinitely for the lock to be obtained. Specifying a timeout causes the lock
attempt to wait up to the timeout number of seconds to obtain the lock.

Example
The following example uses the Lock function to obtain a logical lock on a varname with a timeout of 10 seconds.

If Lock(^PatientData(PatientID), 10) = True Then
 Println "Got the Lock"
 Unlock(^PatientData(PatientID))
Else
 Println "Couldn't get the lock"
End If

See Also
• Unlock function

Caché Basic Reference 123

Lock

Log
Returns the natural logarithm of a number.

Log(number)

Arguments

The number argument can be any valid numeric expression greater than 0. Specifying 0 or a negative number results in a
runtime error.

Description
The natural logarithm is the logarithm to the base e. The constant e (Exp(1)) is approximately 2.718282.

You can calculate base-n logarithms for any number x by dividing the natural logarithm of x by the natural logarithm of n
as follows:

Logn(x) = Log(x) / Log(n)

Note: In ObjectScript, the equivalent function is the $ZLN function, which returns the natural logarithm. The $ZLOG
function returns the base-10 logarithm. Please note that Log and $ZLOG are not equivalent functions.

Examples
The following example uses the Log function to calculate the natural logarithm for each of the integers 1 through 10:

For x = 1 To 10
Println "Natural log of ",x," = ",Log(x)
Next

The following example uses the Log function to calculate the base-10 logarithms for the numbers 10 through 100, counting
by tens. For 100, it returns 2 (10 to the power of x = 100).

x = 10
For y = 1 To 10
Base10 = Log(x) / Log(10)
Println "Base-10 log of ",x," = ",Base10
x = x + 10
Next

See Also
• Exp function

• Derived Math Functions

124 Caché Basic Reference

Caché Basic Functions

Mid
Returns or replaces a specified number of characters from a string.

Mid(string,start[,length])

Mid(string,start[,length])=value

Arguments

String expression from which characters are returned.string

A positive integer specifying the character position in string (counting from 1) at which the
substring begins.

start

Optional — A positive integer specifying the number of characters to return (or replace) from
the start location (inclusive). If length is omitted, all characters from the start position to the
end of the string are returned (or replaced).

length

The value used to replace the specified character(s) in string. An expression that evaluates to
a string.

value

Description
The Mid function can be used in two ways:

• To return a substring from string. The substring is determined by specifying the start position and, optionally, the
length. This uses the Mid(string,start,length) syntax.

• To replace a substring within string. The replacement substring may be the same length, longer, or shorter than the
original substring. The substring is determined by specifying the start position and, optionally, the length. This uses
the Mid(string,start,length)=value syntax.

Mid(string,start,length) returns the character(s) of string specified by the start and length arguments. The length
argument specifies how many characters of string to return. If length is 0 or a negative number, Mid returns the empty
string (""). If you specify a length greater than the number of available characters, all of the characters to the right of start
are returned.

Mid(string,start,length)=value replaces the specified character(s) of string with value.

The start argument specifies where to begin the replacement. If start is 1, begin at the beginning of string. If start is greater
than the length of string, the string is padded with blank spaces until start is reached, then value is appended. If start is 0
or a negative number, the number of characters replaced is start plus length minus 1.

The optional length argument specifies how many characters of string to replace. If length is omitted, all of the characters
to the right of start are replaced. If length is 0 or a negative number, string is unchanged. This is true even when string is
the empty string ("").

To determine the number of characters in string, use the Len function.

Note that the length argument refers to the source length, not the replacement length, which may be longer or shorter than
the substring replaced.

You can perform similar substring return and replace operations in ObjectScript using the $EXTRACT function.

Examples
The following example returns a substring without specifying a length. It begins with the twelfth character (inclusive) and
returns the rest of the string:

Caché Basic Reference 125

Mid

Dim MyVar
MyVar = Mid("Caché is a powerful database!",12)
Println MyVar ' Returns "powerful database!"

The following example returns a substring specifying a length. It begins with the twelfth character in a string, and returns
eight characters:

Dim MyVar
MyVar = Mid("Caché is a powerful database!",12,8)
Println MyVar ' Returns "powerful"

In the following example, all of the Mid functions return the empty string:

Dim MyVar
MyVar = Mid("Caché is a powerful database!",0,8)
Println "0,n=",MyVar
MyVar = Mid("Caché is a powerful database!",8,0)
Println "n,0=",MyVar
MyVar = Mid("Caché is a powerful database!",8,-1)
Println "n,-1=",MyVar

The following example show the difference between specifying a numeric as the string argument, and specifying the same
value as a string. Numerics are converted to canonical form, which in this case means that leading zeros are omitted.

Println Mid(00123456,3,2) ' Returns 34
Println Mid("00123456",3,2) ' Returns 12

Replacement Examples

The following example replaces characters starting with specified start location to the end of the string:

var1="ABCD"
var2="ABCD"
var3="ABCD"
var4="ABCD"
var5="ABCD"
PrintLn var
Mid(var1,2)="Z"
PrintLn "start 2: ",var1
Mid(var2,8)="Z"
PrintLn "start 8: ",var2
Mid(var3,1)="Z"
PrintLn "start 1: ",var3
Mid(var4,0)="Z"
PrintLn "start 0: ",var4
Mid(var5,-1)="Z"
PrintLn "start -1: ",var5

The following example starts at various specified start locations and replaces length=2 characters:

var1="ABCD"
var2="ABCD"
var3="ABCD"
Mid(var1,2,2)="xyz"
PrintLn "start 2: ",var1
Mid(var2,8,2)="xyz"
PrintLn "start 8: ",var2
Mid(var3,1,2)="xyz"
PrintLn "start 1: ",var3

The following example starts at start=2 and replaces various length values:

126 Caché Basic Reference

Caché Basic Functions

var1="ABCD"
var2="ABCD"
var3="ABCD"
var4="ABCD"
var5="ABCD"
Mid(var1,2,2)="xyz"
PrintLn "length 2: ",var1
Mid(var2,2,8)="xyz"
PrintLn "length 8: ",var2
Mid(var3,2,1)="xyz"
PrintLn "length 1: ",var3
Mid(var4,2,0)="xyz"
PrintLn "length 0: ",var4
Mid(var5,2,-1)="xyz"
PrintLn "length -1: ",var5

The following example demonstrates replacement with start locations less than 1. The formula is start+length-1:

var1="ABCD"
var2="ABCD"
var3="ABCD"
Mid(var1,-2,5)="xyz"
PrintLn "start -2 for 5: ",var1
Mid(var2,0,1)="xyz"
PrintLn "start 0 for 1: ",var2
Mid(var3,0,2)="xyz"
PrintLn "start 0 for 2: ",var3

See Also
• Left function

• Len function

• LTrim, RTrim and Trim functions

• Right function

Caché Basic Reference 127

Mid

Minute
Returns a whole number between 0 and 59, inclusive, representing the minute of the hour.

Minute(time)

Arguments

The time argument is any expression that can represent a time. This includes a time value such as “12:30” or “1:27:55”, a
time/date value such as “11/12/1999 12:33:00”, or a date value such as “11/12/1999”. If only a date is specified, the time
defaults to 00:00:00. Fractional seconds are permitted, but ignored; they are truncated, not rounded.

Examples
The following example uses the Minute function to obtain the minute from the current time:

Dim MyTime, MyMin
MyTime = Now
MyMin = Minute(MyTime)
Println MyMin

The following example returns a minute value of 59:

Dim MyMin
MyMin = Minute("13:59:59.999")
Println MyMin

See Also
• Day function

• Hour function

• Now function

• Second function

• Time function

128 Caché Basic Reference

Caché Basic Functions

Month
Returns the month of the year as an integer between 1 and 12, inclusive.

Month(date)

Arguments

The date argument is any expression that represents a date as a string.

Description
The Month function locates and returns the month portion of a date string as an integer. It performs no range validation
on this number. The Month function accepts blanks, slashes (/), hyphens (-), or commas (,) (in any combination) as date
component separators. Leading zeros and plus and minus signs may be included or omitted in the input string; leading zeros
and signs are omitted from the output integer. The Month function locates the month portion in one of the following three
ways:

• In American numeric format, the month precedes the day. For example, “9/27/2005” or “9–27.” In this format, the
Month function identifies the month portion by position. It accepts any non-numeric character as a date component
separator and returns the number that precedes this first non-numeric character. It does not parse the day or year com-
ponents of the date string. However, there must be at least one non-numeric character following the number specifying
the month. The day and year can be any alphanumeric value, and can include or omit punctuation characters such as
periods or apostrophes. The year component may be 4-digits, less than 4 digits, or omitted. If the Month function is
unable to identify the month portion of the string, it returns 0.

• In American written format, the name of the month precedes the day. For example, “September 27 2005” or “Sept 27”
In this case, the month name is validated; the first three letters must correspond to a valid month name. Validation is
not case-sensitive. The month name must be followed by a valid date component separator; it cannot be followed by
a period; thus “Sep” or “Sept”, but not “Sept.” If the Month function is unable to identify the month portion of the
string, it returns 0.

• In European written format, the day precedes the name of the month. For example, “27 September 2005” or “27 Sept”
In this case, the month name is validated; the first three letters must correspond to a valid month name. Validation is
not case-sensitive. If the Month function is unable to identify the month portion of the string, it returns the day portion
of the string.

Examples
The following example uses the Month function to return the current month:

Dim MonthNum
MonthNum = Month(Now)
Print MonthNum

The following examples uses the Month function to return the month from the specified date:

Dim MyMonth
MyMonth = Month("09/19/05") 'MyMonth contains 9.
Print MyMonth

Dim MyMonth
MyMonth = Month("Sept 19, 2005") 'MyMonth contains 9.
Print MyMonth

Dim MyMonth
MyMonth = Month("19 October 2005") 'MyMonth contains 10.
Print MyMonth

Caché Basic Reference 129

Month

Dim MyMonth
MyMonth = Month("19 Feb") 'MyMonth contains 2.
Print MyMonth

See Also
• Basic: Date function, Day function, Hour function, Minute function, Now function, Second function, Weekday function,

Year function

• ObjectScript: $ZDATE function

• SQL: MONTH function

130 Caché Basic Reference

Caché Basic Functions

MonthName
Returns a string indicating the specified month.

MonthName(month[,abbreviate])

Arguments

The numeric designation of the month. For example, January is 1, February is 2, and
so on.

month

Optional — Boolean value that indicates if the month name is to be abbreviated. If
omitted, the default is False (0), which means that the month name is not abbreviated.

abbreviate

Examples
The following example uses the MonthName and Month functions to return the month name for a date expression:

Dim MName
Mydate = "1/12/1953"
MName = MonthName(Month(Mydate))
Println MName

The following example uses the MonthName and Date functions to return the abbreviated month name for the current
date:

Dim MName
CurrDate = Date
MNum = Month(CurrDate)
MName = MonthName(MNum,1)
Println MName

In the following example, a month number is out of the range of 1 through 12. MonthName returns a question mark:

Dim MyVar
MyVar = MonthName(13)
Println MyVar

See Also
• Month function

• WeekdayName function

Caché Basic Reference 131

MonthName

Now
Returns the current date and time according to the setting of your computer's system date and time.

Now

Arguments

none

Description
The Now function returns the current date and time in a format such as the following:

mm/dd/yyyy 00:00:00PM

The exact display format depends on your system configuration. Leading zeros are displayed. The year is displayed as four
digits.

To return just the current date, use the Date function. To return just the current time, use the Time function.

Examples
The following example uses the Now function to return the current date and time:

Dim MyVar
MyVar = Now
Println MyVar

See Also
• Basic: Sleep statement, Date function, Time function

• ObjectScript: $HOROLOG special variable

• SQL: NOW function

132 Caché Basic Reference

Caché Basic Functions

Oct
Returns a string representing the octal value of a number.

Oct(number)

Arguments

The number argument is any valid expression that resolves to a positive or negative number. If number is a decimal fraction,
it is truncated to a whole number before being evaluated.

Description
The Oct function converts a number from decimal (base 10) to octal (base 8). To convert a number from octal to decimal,
represent octal numbers directly by preceding numbers in the proper range with &O For example, &O10 is the octal notation
for decimal 8.

Oct ReturnsIf Number Is

Zero (0).Empty

Up to 11 octal characters.Any other number

Examples
The following example uses the Oct function to return the octal value of a decimal (base-10) number:

Println Oct(4) ' Returns 4.
Println Oct(8) ' Returns 10.
Println Oct(459) ' Returns 713.

The following example uses the &O prefix to return the decimal (base-10) value for an octal number:

Println &O4 ' Returns 4.
Println &O10 ' Returns 8.
Println &O713 ' Returns 459.

See Also
• Hex function

Caché Basic Reference 133

Oct

Piece
Returns the specified substring, using a delimiter.

Piece(string,delimiter[,from[,to]])

Piece(string,delimiter[,from[,to]])=value

Arguments

String expression containing substrings to be extracted.string

A delimiter used to identify substrings within string.delimiter

Optional — An integer that specifies the substring, or the beginning of a range of
substrings, to return from the target string. Specified as a substring count from the
beginning of string. Substrings are separated by a delimiter, and counted from 1. If omitted,
the first substring is returned.

from

Optional — An integer that specifies the ending substring for a range of substrings to
return from the target string. Specified as a substring count from the beginning of string.
Must be used with from.

to

Description
The Piece function can be used in two ways:

• To return a substring or a range of substrings from string. The substring is determined by specifying a delimiter char-
acter (or character string) that is found in string. This uses the Piece(string,delimiter,from,to) syntax.

• To replace a substring within string. The replacement substring may be the same length, longer, or shorter than the
original substring. The substring is determined by specifying a delimiter character (or character string) that is found
in string. This uses the Piece(string,delimiter,from,to)=value syntax.

When returning a specified substring (piece) from string, the substring returned depends on the arguments used:

• Piece(string,delimiter) returns the first substring in string. If delimiter occurs in string, this is the substring that precedes
the first occurrence of delimiter. If delimiter does not occur in string, the returned substring is string.

• Piece(string,delimiter,from) returns the substring which is the nth piece of string, where the integer n is specified by
the from argument, and pieces are separated by a delimiter. The delimiter is not returned.

• Piece(string,delimiter,from,to) returns a range of substrings including the substring specified in from through the substring
specified in to. This four-argument form of Piece returns a string that includes any intermediate occurrences of delimiter
that occur between the from and to substrings. If to is greater than the number of substrings, the returned substring
includes all substrings to the end of string.

The values for from and to must be positive integers when specified, otherwise the Piece function will return an empty
string.

Arguments

string

The target string from which the substring is to be returned. It can be a string literal, a variable name, or any valid Caché
Basic expression that evaluates to a string. If you specify a null string ("") as the target string, Piece returns the null string.

134 Caché Basic Reference

Caché Basic Functions

A target string usually contains instances of a character (or character string) which are used as delimiters. This character
or string cannot also be used as a data value within string.

When Piece is used on the left hand side of the equals sign, string must evaluate to a valid variable name.

delimiter

The search string to be used to delimit substrings within string. It can be a numeric or string literal (enclosed in quotation
marks), the name of a variable, or an expression that evaluates to a string.

Commonly, a delimiter is a designated character which is never used within string data, but is set aside solely for use as a
delimiter separating substrings. A delimiter can also be a multi-character search string, the individual characters of which
can be used within string data.

If the specified delimiter is not in string, Piece returns the entire the string string. If the specified delimiter is the null string
(""), Piece returns the null string.

from

The number of a substring within string, counting from 1. It must be a positive integer, the name of an integer variable, or
an expression that evaluates to a positive integer. Substrings are separated by delimiters.

• If the from argument is omitted or set to 1, Piece returns the first substring of string. If string does not contain the
specified delimiter, a from value of 1 returns string.

• If the from argument identifies by count the last substring in string, this substring is returned, regardless of whether it
is followed by a delimiter.

• If the value of from is the null string (""), zero, a negative number, or greater than the number of substrings in string,
Piece returns a null string.

If the from argument is used with the to argument, it identifies the start of a range of substrings to be returned as a string,
and should be less than the value of to.

to

The number of the substring within string that ends the range initiated by the from argument. The returned string includes
both the from and to substrings, as well as any intermediate substrings and the delimiters separating them. The to argument
must be a positive integer, the name of an integer variable, or an expression that evaluates to a positive integer. The to
argument must be used with from and should be greater than the value of from.

• If from is less than to, Piece returns a string consisting of all of the delimited substrings within this range, including
the from and to substrings. This returned string contains the substrings and the delimiters within this range.

• If to is greater than the number of delimited substrings, the returned string contains all the string data (substrings and
delimiters) beginning with the from substring and continuing to the end of the string string.

• If from is equal to to, the from substring is returned.

• If from is greater than to, Piece returns a null string.

• If to is the null string (""), Piece returns a null string.

Replacing a Substring Using Piece
You can use Piece to the left of the equals sign to replace a substring within string. When used to the left of the equals sign,
Piece designates a substring to be replaced by the assigned value.

The use of Piece (and List) in this context differs from other standard functions because it modifies an existing value,
instead of just returning a value.

Caché Basic Reference 135

Piece

Replacing a Delimited Substring

The following example changes the value of colorlist to "Red,Cyan,Yellow,Green,Orange,Purple,Black":

colorlist="Red,Blue,Yellow,Green,Orange,Purple,Black"
PrintLn colorlist
Piece(colorlist,",",2)="Cyan"
PrintLn colorlist

The replacement substring may, of course, be longer or shorter than the original.

If you do not specify a from argument, the first substring is replaced:

colorlist="Red,Blue,Yellow,Green,Orange,Purple,Black"
PrintLn colorlist
Piece(colorlist,",")="Crimson"
PrintLn colorlist

If you specify a from and to argument, the included substrings are replaced by the specified value, in this case the 4th, 5th,
and 6th delimited substrings:

colorlist="Red,Blue,Yellow,Green,Orange,Purple,Black"
PrintLn colorlist
Piece(colorlist,",",4,6)="non-primary colors"
PrintLn colorlist

If Piece specifies more occurrences of the delimiter than exist in the target variable, it appends additional delimiters to the
end of the value, up to one less than the specified number. The following example changes the value of smallcolor to
"Green;Blue;;Red". The number of delimiter characters added is equal to the from value, minus the number of existing
delimiters, minus one:

smallcolor="Green;Blue"
PrintLn smallcolor
Piece(smallcolor,";",4)="Red"
PrintLn smallcolor

If delimiter doesn't appear in string, Piece treats string as a single piece and performs the same substitutions described
above. If there is no from argument specified, the new value replaces the original string:

colorlist="Red,Green,Blue"
PrintLn colorlist
Piece(colorlist,"^")="Purple^Orange"
PrintLn colorlist

If delimiter doesn't appear in string, and from is specified, Piece may append delimiters to the end of string and append the
new value to string, to fulfill the from value:

colorlist="Red,Green,Blue"
PrintLn colorlist
Piece(colorlist,"^",3)="Purple^Orange"
PrintLn colorlist

Delimiter is Null String

If the delimiter is the null string, the new value replaces the original string, regardless of the values of the from and to
arguments.

The following two examples both set colorlist to “Purple”:

colorlist="Red,Green,Blue"
PrintLn colorlist
Piece(colorlist,"")="Purple"
PrintLn colorlist

colorlist="Red,Green,Blue"
PrintLn colorlist
Piece(colorlist,"",3,5)="Purple"
PrintLn colorlist

136 Caché Basic Reference

Caché Basic Functions

Initializing a String Variable

The string variable does not need to be defined before being assigned a value. The following example initializes newvar
to the character pattern ">>>>>>TOTAL":

Piece(newvar,">",7)="TOTAL"
PrintLn newvar

Piece with Parameters over 32,768 Characters

If you wish to use Piece with a parameter greater than 32767 characters, long strings must be enabled. Long string support
is enabled by default. In the Management Portal navigate to [System] > [Configuration] > [Memory and Startup] from the
System Administration > Configuration > System Configuration menu. To enable support for long strings system-wide, select
the Enable Long Strings check box. Then click the Save button.

Examples
The following example returns designated substrings from a string using the “|” character as a delimiter:

MyString = "InterSystems|One Memorial Drive|Cambridge|MA 02142"
Println Piece(MyString, "|") 'InterSystems
Println Piece(MyString, "|", 2) 'One Memorial Drive
Println Piece(MyString, "|", 3, 4) 'Cambridge|MA 02142
Println Piece(Piece(MyString, "|", 4), " ") 'MA

The following example performs the same operation using a multicharacter delimiter string:

MyString = "InterSystemslinebreakOne Memorial DrivelinebreakCambridge MAlinebreak02142"
Println Piece(MyString, "linebreak") 'InterSystems
Println Piece(MyString, "linebreak", 2) 'One Memorial Drive
Println Piece(MyString, "linebreak", 3) 'Cambridge MA
Println Piece(MyString, "linebreak", 4,4) '02142

See Also
• Split function

Caché Basic Reference 137

Piece

Replace
Returns a string in which a specified substring has been replaced with another substring a specified number of times.

Replace(string,find,replacewith[,start[,count[,compare]]])

Arguments

String expression containing substring to replace.string

Substring being searched for. If found, it is replaced by replacewith.find

Replacement substring.replacewith

Optional — Position within string where substring search is to begin. If omitted, 1 is
assumed.

start

Optional — Number of substring substitutions to perform. If omitted, the default value
is -1, which means make all possible substitutions. Must be used in conjunction with
start.

count

Optional — Numeric value indicating the kind of comparison to use when evaluating
substrings. See Description section for values. If omitted, the default value is 0, which
means perform a binary comparison.

compare

Description
The compare argument can have the following values:

DescriptionValueConstant

Perform a case-sensitive (binary) comparison.0vbBinaryCompare

Perform a not case-sensitive textual comparison.1vbTextCompare

Note: The not case-sensitive comparison works as expected for all Caché-supported locales.

The Replace function returns the following values:

Replace ReturnsIf

A zero-length string ("").string is zero-length

A copy of string.find is zero-length

A copy of string with all occurrences of find removed.replacewith is zero-length

A zero-length string ("").start > Len(string)

A copy of string.count is 0

The return value of the Replace function is a substring, with substitutions made, that begins at the position specified by
start and concludes at the end of the expression string.

Examples
The following example starts at the beginning of the string and replaces all (by default), or the specified number of find
substrings:

138 Caché Basic Reference

Caché Basic Functions

Println Replace("To ski or not to ski","ski","be")
Println Replace("To ski or not to ski","ski","be",1,2)
Println Replace("To ski or not to ski","ski","be",1,1)

The following example starts at the specified location in the string and replaces all (by default), or the specified number of
find substrings:

Println Replace("To ski or not to ski","ski","be",4,2)
Println Replace("To ski or not to ski","ski","be",4,1)

Note that the returned value is not the original string with substitutions; it is a substring that starts at the point specified by
the fourth (start) parameter.

The following example performs binary and textual comparisons:

' A binary comparison starting at the beginning
' of the string. Returns "XXYXXPXXY".
Println Replace("XXpXXPXXp", "p", "Y")

' A textual comparison starting at position 3.
' Returns "YXXYXXY".
Println Replace("XXpXXPXXp", "p", "Y", 3, -1, 1)

Caché Basic Reference 139

Replace

Right
Returns or replaces a specified number of characters from the right end of a string.

Right(string,length)

Right(string,length)=value

Arguments

String expression from which the rightmost characters are returned.string

Numeric expression that evaluates to an integer indicating how many characters from the end
of string to return or replace. Fractional numbers are truncated to an integer. If length is greater
than or equal to the number of characters in string, the entire string is returned (or replaced).
No padding is performed. For length=0, see below.

length

An expression that evaluates to a string. Specifies the value used to either replace or append.
If length is 0, value is appended to the end of string. If length is greater than zero, value replaces
the specified character(s) at the end of string.

value

Description
The Right function can be used in three ways:

• To return a substring from the end (right end) of string. This uses the Right(string,length) syntax.

• To replace a substring from the end (right end) of string. The replacement substring may be the same length, longer,
or shorter than the original substring. This uses the Right(string,length)=value syntax, with value>0.

• To append a substring to the end (right end) of string. This uses the Right(string,length)=value syntax, with
value=0.

Right(string,length) returns the rightmost character(s) of string. The substring is determined by counting length
characters backwards from the end (right end) of the string. If length is 0 or a negative number, Right returns the empty
string (""). If you specify a length greater than the length of string, the entire string is returned.

Right(string,length)=value replaces the rightmost character(s) of string with value. The length argument specifies
how many characters of string to replace by counting length characters backwards from the end (right end) of the string.
If length is a negative number, string is unchanged. This is true even when string is the empty string (""). If length is greater
than the length of string, string is replaced by value. If length=0, the value is appended to the end (right end) of string.

To determine the number of characters in string, use the Len function.

The Left function returns the specified number of characters from the beginning (left end) of a string. The Mid function
returns the specified number of characters from a specified starting point within a string.

Examples
The following example uses the Right function to return the last seven characters of mystr, the last 99 characters (in this
case, all of the characters), and the last 0 characters:

Dim mystr
mystr = "InterSystems"
Println "length 7:",Right(mystr,7) ' Returns "Systems"
Println "length 99:",Right(mystr,99) ' Returns "InterSystems"
Println "length 0:",Right(mystr,0) ' Returns ""

The following example uses the Right function to replace the last three characters of mystr with a seven-character string:

140 Caché Basic Reference

Caché Basic Functions

Dim mystr
mystr = "Interest"
PrintLn mystr
Right(mystr,3)="Systems"
PrintLn mystr

The following example deletes (replaces with the null string) the last three characters of mystr:

Dim mystr
mystr = "Interest"
PrintLn mystr
Right(mystr,3)=""
PrintLn mystr

The following example replaces all of the characters of mystr, because length is greater than the length of mystr:

Dim mystr
mystr = "Oracle"
PrintLn mystr
Right(mystr,99)="InterSystems"
PrintLn mystr

The following example appends a string to mystr. To append a string, length must be equal to zero (0):

Dim mystr
mystr = "Inter"
PrintLn mystr
Right(mystr,0)="Systems"
PrintLn mystr

The following example shows that a length less than 0 has no effect on mystr:

Dim mystr
Dim empstr
mystr = "InterSystems"
empstr = ""
PrintLn mystr
Right(mystr,-1)="Bongo"
PrintLn "string out:",mystr
Right(empstr,-1)="BongoSystems"
PrintLn "string out:",empstr

See Also
• Left function

• Len function

• Mid function

Caché Basic Reference 141

Right

Rnd
Returns a random number.

Rnd[(number)]

Arguments

The optional number argument can be any valid numeric expression.

Description
The Rnd function returns a value less than 1 but greater than or equal to 0. The number of digits in this number is platform-
dependent. Trailing zeros are deleted.

Rnd generates a pseudo-random number by calculating successive numbers from a seed number supplied by the number
argument. Thus, the value of number determines how Rnd generates a random number. Rnd with no argument or Rnd
with a positive number generate random numbers from a randomized seed. Therefore, successive executions of Rnd with
the same positive number return different values. However, if number is zero or a negative number, each successive call
to the Rnd function uses the same seed, and thus generates a predictable value.

Rnd GeneratesIf Number Is

The same number every time, using number as the seed. Thus, for example, -7
always generates .5976062.

Less than zero

The next random number in the sequence.Greater than zero

The most recently generated random number.Equal to zero

The next random number in the sequence.Not supplied

To maximize randomness, use the Randomize statement without an argument to initialize the random-number generator
with a seed based on the system timer. Then call Rnd.

Notes
To repeat sequences of random numbers, call Rnd with a negative argument immediately before using Randomize with
a numeric argument. Using Randomize with the same value for number does not repeat the previous sequence.

Examples
The following example generates twenty random numbers.

 For I = 1 To 20
 Println Rnd
 Next
Println "Done"

The following example generates a random integer in the range 1 through 10, inclusive:

Dim upperbound,lowerbound
upperbound = 10
lowerbound = 1
Println Int((upperbound - lowerbound + 1) * Rnd + lowerbound)

The following example shows the effects of specifying 0 as the number argument:

142 Caché Basic Reference

Caché Basic Functions

 For I = 1 To 10
 Println Rnd
 Println Rnd(0)
 Next
Println "Done"

In this case, the argumentless Rnd generates a random number, and the Rnd(0) repeats the most-recently-generated random
number.

The following example shows the effects of specifying a negative number as the number argument:

 For I = 1 To 10
 Println Rnd
 Println Rnd(-7)
 Next
Println "Done"

In this case, the first argumentless Rnd generates a random number, and the Rnd(-7) calculates its corresponding value
and provides this as the seed for the next random number. Thus in the above example, the first call to Rnd is actually random;
all subsequent calls are based on the seed of -7, and therefore repeat predictably in each loop.

See Also
• Randomize statement

Caché Basic Reference 143

Rnd

Round
Returns a number rounded to a specified number of decimal places.

Round(expression[,numdecimalplaces])

Arguments

The numeric expression being rounded.expression

Optional — Number indicating how many places to the right of the decimal
are included in the rounding. If omitted, expression rounded to an integer
is returned.

numdecimalplaces

Description
The Round function always rounds the number 5 up. Leading and trailing zeros are deleted.

Round returns expression rounded to:

• An integer if the numdecimalplaces argument is omitted, or specified as 0, the empty string (""), or a negative number.

• The specified number of decimal places (excluding trailing zeros). A fractional value for numdecimalplaces is truncated
to an integer.

• The actual number of decimal places (excluding trailing zeros) if the numdecimalplaces argument is greater than or
equal to the actual number of decimal places

Examples
The following example uses the Round function to round a number to three decimal places:

Dim MyVar, pi
pi = 3.14159
MyVar = Round(pi,3) ' MyVar contains 3.142.
Println MyVar

See Also
• Int, Fix functions

144 Caché Basic Reference

Caché Basic Functions

Second
Returns a whole number between 0 and 59, inclusive, representing the second of the minute.

Second(time)

Arguments

The time argument is any expression that can represent a time. This includes a time value such as “12:30” or “1:27:55”, a
time/date value such as “11/12/1999 12:33:00”, or a date value such as “11/12/1999”. If only a date is specified, the time
defaults to 00:00:00. Fractional seconds are permitted, but ignored; they are truncated, not rounded.

Examples
The following example uses the Second function to obtain the second from the current time:

Dim MyTime, MySec
MyTime = Now
MySec = Second(MyTime)
Println MySec

The following example returns a second value of 59:

Dim MySec
MySec = Second("13:59:59.999")
Println MySec

See Also
• Day function

• Hour function

• Minute function

• Now function

• Time function

Caché Basic Reference 145

Second

Sgn
Returns an integer indicating the sign of a number.

Sgn(number)

Arguments

The number argument can be any valid numeric expression.

Description
The Sgn function has the following return values:

Sgn ReturnsIf Number Is

1Greater than zero

0Equal to zero

–1Less than zero

The sign of the number argument determines the return value of the Sgn function. If number is the empty string ("") or a
non-numeric value, Sgn returns 0. Sgn resolves multiple sign values; for example, --7 is equivalent to +7, and thus returns
1.

Examples
The following example uses the Sgn function to determine the sign of a number:

Dim MyVar1, MyVar2, MyVar3
MyVar1 = 12: MyVar2 = -2.4: MyVar3 = 0
Println Sgn(MyVar1) ' Returns 1.
Println Sgn(MyVar2) ' Returns -1.
Println Sgn(MyVar3) ' Returns 0.
Println Sgn("") ' Returns 0.
Println Sgn("a") ' Returns 0.

See Also
• Abs function

146 Caché Basic Reference

Caché Basic Functions

Sin
Returns the sine of an angle.

Sin(number)

Arguments

The number argument can be any valid numeric expression that expresses an angle in radians.

Description
The Sin function takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side
opposite the angle divided by the length of the hypotenuse. The result lies in the range -1 to 1.

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples
The following example uses the Sin function to return the sine of an angle:

Dim MyAngle
MyAngle = 1.3 ' Define angle in radians.
Println Sin(MyAngle)

The following example uses the Sin function to return the cosecant of an angle:

Dim MyAngle, MyCosecant
MyAngle = 1.3 ' Define angle in radians.
MyCosecant = 1 / Sin(MyAngle) ' Calculate cosecant.
Println MyCosecant

See Also
• Atn function

• Cos function

• Tan function

• Derived Math Functions

Caché Basic Reference 147

Sin

Space
Returns a string consisting of the specified number of spaces.

Space(number)

Arguments

The number argument is the number of spaces you want in the string.

Examples
The following example uses the Space function to return a string consisting of a specified number of spaces:

Dim MyString
MyString = Space(10) ' Defines a string of 10 spaces.
Println "Hello" & MyString & "World"
 ' Insert 10 spaces between two strings.

See Also
• String function

148 Caché Basic Reference

Caché Basic Functions

Split
Returns a zero-based, one-dimensional array containing a specified number of substrings.

Split(string[,delimiter[,count[,compare]]])

Arguments

String expression containing substrings and delimiters. If expression is a zero-length
string, Split returns an empty array, that is, an array with no elements and no data.

string

Optional — String character used to identify substring limits. Usually a single character,
but can be a multi-character string. If omitted, the space character (" ") is assumed to
be the delimiter. If delimiter is a zero-length string, a single-element array containing
the entire expression string is returned.

delimiter

Optional — Number of substrings to be returned. If -1, or an integer equal to or greater
than number of substrings in string, all substrings are returned.

count

Optional — Numeric value indicating the kind of comparison to use when evaluating
substrings. See Description section for values.

compare

Description
The Split function splits a string into array elements. The Join function does the opposite; it joins array elements into a
string.

The compare argument can have the following values:

DescriptionValueConstant

Perform a binary comparison.0vbBinaryCompare

Perform a textual comparison.1vbTextCompare

Split and For Each

A Split function cannot be directly used as an argument of a For Each...Next statement. You must first assign the Split
return value to an array variable. You can then specify this array variable as the group argument of the For Each...Next
statement.

Examples
The following example uses the Split function to return an array from a string. By default, it uses the blank space as the
string delimiter character.

Dim MyString,MyArray
MyString = "Caché is fun!"
MyArray = Split(MyString)
Println MyArray(0) ' contains "Caché".
Println MyArray(1) ' contains "is".
Println MyArray(2) ' contains "fun!".

The following example demonstrates the delimiter argument. It uses a two-character delimiter. The string is split at each
occurrence of the “aa” delimiter. A single “a” is treated as a literal, as is the third “a” in the substring “aaa”.

Caché Basic Reference 149

Split

Dim MyString,MyArray
MyString = "Cachéaaisaaafun!"
MyArray = Split(MyString,"aa")
Println MyArray(0) ' contains "Caché".
Println MyArray(1) ' contains "is".
Println MyArray(2) ' contains "afun!".

The following example demonstrates the use of the count argument. It returns only the specified number of substrings (in
this case, 2) into array elements. Note that in this case only part of the string is returned.

Dim MyString, MyArray, Msg
MyString = "Caché;is;fun!"
MyArray = Split(MyString,";",2)
Println MyArray(0) ' contains "Caché".
Println MyArray(1) ' contains "is".
Println MyArray(2) ' contains "".

The following example demonstrates the compare argument. It shows the difference between a binary comparison and a
textual comparison. In a binary comparison, only the lowercase “x” is considered to be the delimiter; in a textual comparison,
both “x” and “X” are treated as the delimiter character.

Dim MyString,MyArray
MyString = "CachéXisxfun!"
MyArray = Split(MyString,"x",-1,0)
Println "Binary: ",MyArray(0) ' contains "CachéXis".
Println "Binary: ",MyArray(1) ' contains "fun!".
MyArray = Split(MyString,"x",-1,1)
Println "Textual: ",MyArray(0) ' contains "Caché".
Println "Textual: ",MyArray(1) ' contains "is".
Println "Textual: ",MyArray(2) ' contains "fun!".

See Also
• Join function

150 Caché Basic Reference

Caché Basic Functions

Sqr
Returns the square root of a number.

Sqr(number)

Arguments

The number argument can be any valid numeric expression greater than or equal to 0. You cannot return the square root
of a negative number. Attempted to do so results in a runtime error.

Examples
The following example uses the Sqr function to calculate the square roots of the integers 0 through 16:

For x = 0 To 16
Println "Square root of ",x," = ",Sqr(x)
Next

The following example uses the Sqr function to calculate the square root of pi:

pi = 4 * Atn(1)
Println "Square root of pi = ",Sqr(pi)

See Also
• Derived Math Functions

Caché Basic Reference 151

Sqr

StrComp
Returns a value indicating the result of a string comparison.

StrComp(string1,string2[,compare])

Arguments

Any valid string expression.string1

Any valid string expression.string2

Optional — Numeric value indicating the kind of comparison to use when evaluating strings.
If omitted, a binary comparison is performed. See Description section for values.

compare

Description
The StrComp function compares two strings character-by-character and returns a value when the first non-matching
character is encountered, or when the end of the string has been encountered. StrComp returns one of the following values:

• 0 if the two strings are identical, or if compare=1 and the strings differ only in the case of letters.

• 1 if string1 contains a non-matching character that has a higher ANSI character code value than the corresponding
character in string2. If compare=1 letters that differ in case are treated as identical. If string1 is longer than string2,
StrComp returns 1.

• -1 if string1 contains a non-matching character that has a lower ANSI character code value than the corresponding
character in string2. If compare=1 letters that differ in case are treated as identical. If string1 is shorter than string2,
StrComp returns -1.

The compare argument can have the following values:

DescriptionValueConstant

Perform a binary comparison. This is the default.0vbBinaryCompare

Perform a textual comparison. Uppercase and lowercase letters
are equivalent.

1vbTextCompare

The StrComp function has the following return values:

StrComp ReturnsIf

-1string1 is less than string2

0string1 is equal to string2

1string1 is greater than string2

Examples
The following example compares two strings that differ only in the case of letters:

Println "default: ",StrComp("abcd","ABCD") ' Returns 1
Println "binary: ",StrComp("abcd","ABCD",0) ' Returns 1
Println "textual: ",StrComp("abcd","ABCD",1) ' Returns 0
Println "default: ",StrComp("ABCD","abcd") ' Returns -1
Println "binary: ",StrComp("ABCD","abcd",0) ' Returns -1
Println "textual: ",StrComp("ABCD","abcd",1) ' Returns 0

152 Caché Basic Reference

Caché Basic Functions

The following example compares two strings that differ only in length:

Println "binary: ",StrComp("abcde","abcd",0) ' Returns 1
Println "textual: ",StrComp("abcde","abcd",1) ' Returns 1
Println "binary: ",StrComp("abcd","abcde",0) ' Returns -1
Println "textual: ",StrComp("abcd","abcde",1) ' Returns -1

Caché Basic Reference 153

StrComp

String
Returns a repeating character string of the length specified.

String(length,character)

Arguments

A positive integer specifying the length of the generated string. A zero length returns an
empty string; a negative length returns no value. Fractional numbers are truncated.

length

Character code specifying the character, or a string expression whose first character is
used to build the return string.

character

Description
The String function returns a string consisting of a single repeated character; length specifies the number of times to repeat
the character. Use the Space function to return a string consisting of blank spaces.

A character code value must evaluate to a positive integer in the range 0 to 255 (inclusive). If you specify a character code
for character greater than 255, String converts the number to a character code in the range 0 through 255 using the formula:

character Mod 256

For 16-bit characters, you can use the Chr function, as shown in the example below.

Examples
The following example uses the String function to return repeating character strings of the length specified:

Println String(5,"*") ' Returns "*****".
Println String(5,42) ' Returns "*****".
Println String(10,"ABC") ' Returns "AAAAAAAAAA".

The following example uses character code values and the Chr function to specify the repeating character. Note that you
must use the Chr function for character codes beyond 255.

Println String(10,65) ' Returns "AAAAAAAAAA"
Println String(10,321) ' Returns "AAAAAAAAAA"
Println String(10,577) ' Returns "AAAAAAAAAA"
Println String(5,Chr(960)) ' Returns five pi symbols

See Also
• Chr function

• Space function

154 Caché Basic Reference

Caché Basic Functions

StrReverse
Returns a string in which the character order of a specified string is reversed.

StrReverse(string1)

Arguments

The string1 argument is the string whose characters are to be reversed. If string1 is a zero-length string (""), a zero-length
string is returned.

Examples
The following example uses the StrReverse function to return a string in reverse order:

Dim RevStr
RevStr = StrReverse("Caché") ' RevStr contains "éhcaC"
Println "backwards: ",RevStr
Println "forewards: ",StrReverse(RevStr)

Caché Basic Reference 155

StrReverse

Tan
Returns the tangent of an angle.

Tan(number)

Arguments

The number argument can be any valid numeric expression that expresses an angle in radians.

Description
Tan takes an angle and returns the ratio of two sides of a right triangle. The ratio is the length of the side opposite the angle
divided by the length of the side adjacent to the angle

To convert degrees to radians, multiply degrees by pi/180. To convert radians to degrees, multiply radians by 180/pi.

Examples
The following example uses the Tan function to return the tangent of an angle:

Dim MyAngle
MyAngle = 1.3 ' Define angle in radians.
Println Tan(MyAngle) ' Calculate tangent.

The following example uses the Tan function to return the cotangent of an angle:

Dim MyAngle, MyCotangent
MyAngle = 1.3 ' Define angle in radians.
MyCotangent = 1 / Tan(MyAngle) ' Calculate cotangent.
Println MyCotangent

See Also
• Atn function

• Cos function

• Sin function

• Derived Math Functions

156 Caché Basic Reference

Caché Basic Functions

Time
Returns the current system time.

Time

Arguments

none

Description
The Time function returns the current time in a format such as the following:

00:00:00PM

In this case, time is represented by a 12–hour clock with an AM/PM indicator and no fractional seconds. The exact display
format depends on your system configuration. Leading zeros are displayed.

Examples
The following example uses the Time function to return the current system time:

Dim MyTime
MyTime = Time
Println MyTime

See Also
• Basic: Date function, Now function

• ObjectScript: $HOROLOG special variable

• SQL: NOW function

Caché Basic Reference 157

Time

TimeConvert
Converts time between internal and external formats.

TimeConvert(time,vbToInternal)
TimeConvert(time,vbToExternal)

Arguments

The time to be converted. An external time is represented as a string, such as
“10:23:54”. An internal time is represented as a numeric value, which is the second
part of the Caché $H date/time format.

time

This keyword specifies converting an external time to internal ($H) format.vbToInternal

This keyword specifies converting an internal time ($H format) to external time format.vbToExternal

Description
The TimeConvert function returns an external time in the following format:

00:00:00

Leading zeros are displayed.

The TimeConvert function returns an internal date/time in the following format:

sssss.ff

Where “sssss” is the time count (number of elapsed seconds in the specified day), and “ff” is optional fractional seconds.
Fractional seconds are preserved in converting from external to internal format; fractional seconds are truncated when
converting from internal to external format. For further details, see $HOROLOG in the Caché ObjectScript Reference.

Examples
The following example takes an external time value, converts the time to an internal format ($HOROLOG) value, then
converts this internal value back to an external format time.

Dim GetDT,InTime, ExTime
GetDT = "21:45:23.99"
Println GetDT
InTime = TimeConvert(GetDT,vbToInternal)
Println InTime
ExTime = TimeConvert(InTime,vbToExternal)
Println ExTime

See Also
• DateConvert function

• DateTimeConvert function

158 Caché Basic Reference

Caché Basic Functions

Timer
Returns the number of seconds that have elapsed since midnight UTC.

Timer

Arguments

none

Description

Timer is commonly used to determine elapsed time. However, because Timer resets to zero at midnight UTC, a robust
timer program cannot simply subtract the start time from the end time.

Timer returns the elapsed number of seconds since midnight in Coordinated Universal Time (UTC), which is independent
of time zone. Consequently, Timer provides a time value that is uniform across time zones. This may differ from the local
time value. The Timer returned value is a decimal numeric value that counts the time in seconds and fractions thereof. The
number of digits in the fractional seconds may vary from zero to nine, depending on the precision of your computer’s time-
of-day clock. On Windows systems the fractional precision is three decimal digits; on UNIX® systems it is six decimal
digits. Timer suppresses leading and trailing zeroes. If the fractional portion is exactly zero, the trailing decimal point is
also suppressed.

Example
The following example compares two Timer function values to determine the time it takes to iterate a For...Next loop 50
times. In this example, each iteration through the loop prints out the ASCII character set. (For the purpose of demonstration,
a Sleep statement is included so that the elapsed time is not smaller than the available fractional precision.) The before and
after timer values are compared, and the elapsed time displayed. The Else clause is provided to handle the midnight reset
situation.

Dim StartTime,EndTime,TimeIt
StartTime = Timer
For I = 1 To 50
 Sleep .05
 x = 32
 Print I
 For N = 1 To 94
 Print Chr(x)
 x = x + 1
 Next
 Println ""
Next
EndTime = Timer
Println "start time: ",StartTime
Println "end time: ",EndTime
If EndTime >= StartTime Then
 TimeIt = EndTime - StartTime
Else
 EndTime = EndTime + 86400
 TimeIt = EndTime - StartTime
End If
 Println "elapse time: ",TimeIt

See Also
• Randomize statement

• Sleep statement

Caché Basic Reference 159

Timer

TimeSerial
Returns the time for a specific hour, minute, and second.

TimeSerial(hour,minute,second)

Arguments

Number between 0 (12:00AM) and 23 (11:00PM), inclusive, or a numeric expression the
evaluates to a number in the range 0 through 23.

hour

Any numeric expression.minute

Any numeric expression.second

Description
To specify a time, such as 11:59:59, the range of numbers for each TimeSerial argument should be in the accepted range
for the unit; that is, 0–23 for hours and 0–59 for minutes and seconds. However, you can also specify relative times for
each argument using any numeric expression that represents some number of hours, minutes, or seconds before or after a
certain time. When any argument exceeds the accepted range for that argument, it increments to the next larger unit as
appropriate. For example, if you specify 75 minutes, it is evaluated as one hour and 15 minutes. However, you cannot
specify an hour value greater than 23.

The TimeSerial function, by default, returns a 12-hour clock time value with an AM or PM suffix. Leading zeros are dis-
played. Fractional seconds are truncated.

Examples
The following example uses expressions instead of absolute time numbers. The TimeSerial function returns a time for 15
minutes before (-15) six hours before noon (12 - 6), or 5:45:00AM

Dim MyTime
MyTime = TimeSerial(12 - 6, -15, 0) ' Returns 5:45:00 AM.
Println MyTime

See Also
• DateSerial function

• Hour function

• Minute function

• Now function

• Second function

160 Caché Basic Reference

Caché Basic Functions

Traverse
Traverses an array and returns the next subscript.

Traverse(varname[,direction[,target]])

Arguments

The name of a variable representing an array. varname must specify a subscript level.varname

Optional — Numeric value, which specifies either forward (1) or backward (-1). If this
parameter is omitted the Traverse function will move forward to the next subscript.

direction

Optional — Variable which contains the data of the resulting node.target

Description
The Traverse function returns the name of the next or previous subscript on the specified subscript level. Using the optional,
target argument you can also return the data value of the located subscript.

To start a search from the beginning of the current level, specify a empty string ("") for the subscript. The following
example returns the first subscript on the first subscript level:

subscript = Traverse(^Person(""))

When the Traverse reaches the end of the subscripts for the given level, it returns an empty string ("") .

The following example demonstrates how to use the Traverse function within a loop:

subscript = ""
subscript = Traverse(^Person(subscript))
While subscript <> ""
 subscript = Traverse(^Person(subscript))
 Println subscript
wend

If a target variable is specified and the node is defined (vbHasValue) the target variable will contain the data for this node.
If the resulting node does not have a value the value of the target variable is unchanged.

Caché Basic provides two constants, vbForward and vbBackward to specify the direction.

Examples
The following example demonstrates the use of the Traverse function to return the subscript name of the next node. The
first Traverse specifies the empty string as the subscript, and returns the name of the first subscript (“A”) in the array. The
second and third Traverse functions specify a subscript name and return the name of the next subscript. The fourth Traverse
specifies a subscript of “C” and a direction of -1 (backwards); it returns the name of the previous subscript (“B”). The final
Traverse specifies the empty string as the subscript, and a direction of -1; it returns the name of the final subscript (the
first subscript reading backwards from the end of the array), in this case “D”.

array("A") = "A node"
array("B") = "B node"
array("B", 1) = "B,1 node"
array("B", 2) = "B,2 node"
array("C", 1) = "C node"
array("D") = "D node"

Println Traverse(array("")) ' prints A
Println Traverse(array("A")) ' prints B
Println Traverse(array("B")) ' prints C
Println Traverse(array("C"),-1) ' prints B
Println Traverse(array(""),-1) ' prints D

Caché Basic Reference 161

Traverse

The following example demonstrates the use of the target argument. The first myString contains the data value of the “A”
node. The second myString references a node (“C”) which contains on data value at this level. In this case, myString con-
tinues to contain its previous value.

array("A") = "A node"
array("B") = "B node"
array("C", 1) = "C1 node"
array("D") = "D node"

Println Traverse(array(""),1,myString) ' prints A
Println myString ' prints A node
Println Traverse(array("B"),1,myString) ' prints C
Println myString ' prints A node

See Also
• Exists function

162 Caché Basic Reference

Caché Basic Functions

LTrim, RTrim, and Trim
Returns a copy of a string without leading spaces (LTrim), trailing spaces (RTrim), or both leading and trailing spaces
(Trim).

LTrim(string)

RTrim(string)

Trim(string)

Arguments

The string argument is any valid string expression.

Examples
The following example uses the LTrim, RTrim, and Trim functions to trim leading spaces, trailing spaces, and both
leading and trailing spaces, respectively:

Dim MyVar
MyVar = LTrim(" Caché ") 'MyVar contains "Caché ".
Println Len(MyVar),":",MyVar,":"
MyVar = RTrim(" Caché ") 'MyVar contains " Caché".
Println Len(MyVar),":",MyVar,":"
MyVar = Trim(" Caché ") 'MyVar contains "Caché".
Println Len(MyVar),":",MyVar,":"

See Also
• Left function

• Right function

Caché Basic Reference 163

LTrim, RTrim, and Trim

UCase
Returns a string that has been converted to uppercase.

UCase(string)

Arguments

The string argument is any valid string expression.

Description
Only lowercase letters are converted to uppercase. Uppercase letters and non-letter characters remain unchanged.

Examples
The following example uses the UCase function to convert lowercase letters to uppercase:

Dim MyString
MyString = "Caché from InterSystems"
Println UCase(MyString) ' Returns "CACHÉ FROM INTERSYSTEMS"

The following example converts the first four letters of the Greek alphabet from lowercase to uppercase:

Dim MyString
MyString = Chr(945)&Chr(946)&Chr(947)&Chr(948)
Println MyString
Println UCase(MyString)

(Note that the above example requires a Unicode installation of Caché.)

See Also
• LCase function

164 Caché Basic Reference

Caché Basic Functions

Unlock
Releases a logical lock on a variable name.

Unlock(varname)

Arguments

Name of the variable to be unlocked.varname

Description
Each time a lock is obtained on a varname a lock count is incremented. Unlock decrements this count. Only when the lock
count falls to zero will the logical lock be released. For this reason, you should balance each call to Lock with a corresponding
call to Unlock.

Examples
The following example uses the Lock function to obtain a logical lock on a global variable name (glvn) with a timeout of
10 seconds, and then uses the Unlock function to release the logical lock.

If Lock(^PatientData(PatientID),10) = True Then
 Println "Got the Lock"
 Unlock(^PatientData(PatientID)) 'Release the logical lock
Else
 Println "Couldn't get the lock"
End If

See Also
• Lock function

Caché Basic Reference 165

Unlock

Weekday
Returns a whole number representing the day of the week.

Weekday(weekday[,firstdayofweek])

Arguments

Any expression that can represent a date.weekday

Optional — A constant that specifies the first day of the week. If omitted,
vbSunday is assumed. See Description section for values.

firstdayofweek

Description
The Weekday function returns an integer between 1 and 7 (inclusive) specifying the day of the week represented by
weekday. The first day of the week is, by default, Sunday, or the current NLS day of week setting overriding this default
system-wide.

The firstdayofweek argument can be used to set the first day of the week for this statement to the day of your choosing.
The firstdayofweek argument can have the following values:

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

The Weekday function can return any of these values:

DescriptionValueConstant

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

166 Caché Basic Reference

Caché Basic Functions

Examples
The following example uses the Weekday function to obtain the default day of the week for the specified date:

MyDay0 = Weekday("11/1/2005")
Println MyDay0

Nov. 1, 2005 is a Tuesday, so Weekday("11/1/2005") returns 3.

The following example shows the effects of the firstdayofweek argument:

MyDay1 = Weekday("11/1/2005",vbSunday)
MyDay2 = Weekday("11/1/2005",vbMonday)
MyDay3 = Weekday("11/1/2005",vbTuesday)
MyDay4 = Weekday("11/1/2005",vbWednesday)
MyDay5 = Weekday("11/1/2005",vbThursday)
MyDay6 = Weekday("11/1/2005",vbFriday)
MyDay7 = Weekday("11/1/2005",vbSaturday)
Println "Day is: ",MyDay1," Week begins Sunday"
Println "Day is: ",MyDay2," Week begins Monday"
Println "Day is: ",MyDay3," Week begins Tuesday"
Println "Day is: ",MyDay4," Week begins Wednesday"
Println "Day is: ",MyDay5," Week begins Thursday"
Println "Day is: ",MyDay6," Week begins Friday"
Println "Day is: ",MyDay7," Week begins Saturday"

See Also
• Date function

• Day function

• Month function

• Now function

• Year function

Caché Basic Reference 167

Weekday

WeekdayName
Returns a string indicating the specified day of the week.

WeekdayName(weekday[,abbreviate[,firstdayofweek]])

Arguments

An integer 1 through 7, inclusive, designating the day of the week.The numeric
value of each day depends on the firstdayofweek setting.

weekday

Optional — Boolean value that indicates if the weekday name is to be returned
fully spelled out, or abbreviated. If omitted, the default is False, which means
that the weekday name is returned fully spelled out.

abbreviate

Optional — Numeric value indicating the first day of the week. See Description
section for values.

firstdayofweek

Description
The WeekdayName function returns a day name corresponding to the day of the week represented by weekday. The first
day of the week is, by default, Sunday, or the current NLS day of week setting overriding this default system-wide.

The firstdayofweek argument can be used to set the first day of the week for this statement to the day of your choosing.
The firstdayofweek argument can have the following values:

DescriptionValueConstant

Use National Language Support (NLS) API setting.0vbUseSystem

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

Examples
The following example uses the WeekDay and WeekDayName functions to return the name of the day of the week for
the specified date:

Dim WDayNum,WDayName
WDayNum = Weekday("11/1/2005")
Println WDayNum
WDayName = WeekdayName(3)
Println WDayName

November 1, 2005 is a Tuesday.

See Also
• MonthName function

168 Caché Basic Reference

Caché Basic Functions

• WeekDay function

Caché Basic Reference 169

WeekdayName

Year
Returns the year as a four-digit integer.

Year(date)

Arguments

The date argument is any expression that represents a date as a string.

Description
The Year function locates and returns the year portion of a date string as a four-digit integer. The Year function accepts
blanks, slashes (/), hyphens (-), or commas (,) (in any combination) as date component separators.

The Year function locates the year portion, by position, as the third portion of a date. For example, “9/27/2005” or
“September 27, 2005” or “27 September 2005”. It does not validate the day or month components of the date string.

If the Year function is unable to identify a year portion of the string, it returns a default value of “2000”. If the year portion
is provided as a two-digit year, the Year function returns a four-digit year. If the two-digit year is 29 or less, it supplies
”20” for the missing century digits. If the two-digit year is greater than 29, it supplies 19” for the missing century digits.

Examples
The following example uses the Year function to return the current year:

Dim CurrYear
CurrYear = Year(Date)
Print CurrYear

The following example uses the Year function to obtain the year from a series of specified dates. In every case except the
last, it returns the string “2005”. In the last case, the third portion of the string cannot be parsed as a year; this Year function
instead returns the default value “2000”.

Dim YearA, YearB, YearC, YearD, YearE,YearF,YearG
YearA = Year("August 12 2005")
YearB = Year("Agosto 12 2005 11:35am")
YearC = Year("Aug 12 05 11:35am")
YearD = Year("12 Agosto 2005")
YearE = Year("8/12/2005")
YearF = Year("8-12-05 11:35am")
YearG = Year("August 12 11:35am")
Println YearA
Println YearB
Println YearC
Println YearD
Println YearE
Println YearF
Println YearG

See Also
• Basic: Date function, Day function, Hour function, Minute function, Month function, Now function, Second function,

Weekday function,

• ObjectScript: $ZDATE function

• SQL: YEAR function

170 Caché Basic Reference

Caché Basic Functions

Caché Basic Operators

Caché Basic Reference 171

Operator Summary
A list of Caché Basic operators by type.

Arithmetic Operators
• Addition: + Operator

• Subtraction: – Operator

• Multiplication: * Operator

• Division: / Operator

• Integer Division: \ Operator

• Exponentiation: ^ Operator

• Modulus: Mod Operator

Assignment Operator
• = Operator

Comparison Operators
• Less Than/Greater Than: Comparison Operators

• Object Reference Comparison: Is Operator

Concatenation Operator
• & Operator

Logical Operators
• And Operator

• Not Operator

• Or Operator

• Xor Operator

• Eqv Operator

• Imp Operator

Bitwise Logical Operators
• BitAnd Operator

• BitNot Operator

• BitOr Operator

• BitXor Operator

• BitEqv Operator

172 Caché Basic Reference

Caché Basic Operators

• BitImp Operator

Caché Basic Reference 173

Operator Summary

Operator Precedence
Operator Precedence

Description
When several operations occur in an expression, each part is evaluated and resolved in a predetermined order called operator
precedence. Parentheses can be used to override the order of precedence and force some parts of an expression to be eval-
uated before other parts. Operations within parentheses are always performed before those outside. Within parentheses,
however, normal operator precedence is maintained.

When expressions contain operators from more than one category, arithmetic operators are evaluated first, comparison
operators are evaluated next, and logical operators are evaluated last. Comparison operators all have equal precedence; that
is, they are evaluated in the left-to-right order in which they appear. Arithmetic and logical operators are evaluated in the
following order of precedence:

BitwiseLogicalComparisonArithmetic

BitNotNotEquality (=)Negation (-)

BitAndAndInequality (<>)Exponentiation (^)

BitOrOrLess than (<)Multiplication and division (*, /)

BitXorXorGreater than (>)Integer division (\)

BitEqvEqvLess than or equal to (<=)Modulus arithmetic (Mod)

BitImpImpGreater than or equal to (>=)Addition and subtraction (+, -)

&IsString concatenation (&)

Note: Caché Basic gives the And logical operator precedence over the Or logical operator. This order of evaluation
differs from ObjectScript and Caché MultiValue Basic, both of which give And and Or equal precedence.

When multiplication and division occur together in an expression, each operation is evaluated as it occurs from left to right.
Likewise, when addition and subtraction occur together in an expression, each operation is evaluated in order of appearance
from left to right.

The string concatenation operator (&) is not an arithmetic operator, but in precedence it does fall after all arithmetic oper-
ators and before all comparison operators. The Is operator is an object reference comparison operator. It does not compare
objects or their values; it checks only to determine if two object references refer to the same object.

See Also
• Is Operator

• Operator Summary

174 Caché Basic Reference

Caché Basic Operators

Addition Operator (+)
Used to sum two numbers.

result = expression1 + expression2

Arguments

The + operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
Although you can also use the + operator to concatenate two character strings, you should use the & operator for concate-
nation to eliminate ambiguity and provide self-documenting code.

When you use the + operator, you may not be able to determine whether addition or string concatenation will occur.

The underlying subtype of the expressions determines the behavior of the + operator in the following way:

ThenIf

Add.Both expressions are numeric

Concatenate.Both expressions are strings

Add.One expression is numeric and the other is a string

Notes
If both expressions are Empty, result is an Integer subtype. However, if only one expression is Empty, the other expression
is returned unchanged as result.

See Also
• Operator Summary

• Operator Precedence

• Subtraction Operator (–)

Caché Basic Reference 175

Addition Operator (+)

Subtraction Operator (–)
Used to find the difference between two numbers or to indicate the negative value of a numeric expression.

Syntax 1

result = number1-number2

Syntax 2

-number

Arguments

The – operator syntax has these parts:

Any numeric variable.result

Any numeric expression.number

Any numeric expression.number1

Any numeric expression.number2

Description
In Syntax 1, the – operator is the arithmetic subtraction operator used to find the difference between two numbers. In Syntax
2, the – operator is used as the unary negation operator to indicate the negative value of an expression.

If an expression is Empty, it is treated as if it were 0.

See Also
• Operator Summary

• Operator Precedence

• Addition Operator (+)

176 Caché Basic Reference

Caché Basic Operators

Mod Operator
Used to divide two numbers and return only the remainder.

result = number1 Mod number2

Arguments

The Mod operator syntax has these parts:

Any numeric variable.result

Any numeric expression.number1

Any numeric expression.number2

Description
The modulus, or remainder, operator divides number1 by number2 (rounding floating-point numbers to integers) and returns
only the remainder as result. For example, in the following expression, A (which is result) equals 5.

A = 19 Mod 6.7

Any expression that is Empty is treated as 0.

See Also
• Operator Precedence

• Operator Summary

Caché Basic Reference 177

Mod Operator

Multiplication Operator (*)
Used to multiply two numbers.

result = number1*number2

Arguments

The * operator syntax has these parts:

Any numeric variable.result

Any numeric expression.number1

Any numeric expression.number2

Description
If an expression is Empty, it is treated as if it were 0.

See Also
• Operator Summary

• Operator Precedence

• Division Operator (/)

178 Caché Basic Reference

Caché Basic Operators

Division Operator (/)
Used to divide two numbers and return a floating-point result.

result = number1/number2

Arguments

The / operator syntax has these parts:

Any numeric variable.result

Any numeric expression.number1

Any numeric expression.number2

Description
Any expression that is Empty is treated as 0.

See Also
• Operator Summary

• Operator Precedence

• Multiplication Operator (*)

• Integer Division Operator (\)

Caché Basic Reference 179

Division Operator (/)

Integer Division Operator (\)
Used to divide two numbers and return an integer result.

result = number1 \ number2

Arguments

The \ operator syntax has these parts:

Any numeric variable.result

Any numeric expression.number1

Any numeric expression.number2

Description
Before division is performed, numeric expressions are rounded to Byte, Integer, or Long subtype expressions.

Any expression that is Empty is treated as 0.

See Also
• Operator Summary

• Operator Precedence

• Multiplication Operator (*)

• Division Operator (/)

180 Caché Basic Reference

Caché Basic Operators

Exponent Operator (^)
Used to raise a number to the power of an exponent.

result = number ^ exponent

Arguments

Any numeric variable.result

Any numeric expression.number

Any numeric expression. An exponent value is required.exponent

Description
The caret (^) is used as the exponentiation operator.

Note: The exponent operator should not be confused with the base-10 exponent symbol. An uppercase letter “E”, or
lowercase letter “e” can be used as a base-10 exponent (scientific notation) symbol in a numeric literal. These
letters cannot be used as operators.

The number argument can be negative only if exponent is an integer value. When more than one exponentiation is performed
in a single expression, the ^ operator is evaluated as it is encountered from left to right.

Caché Basic exponentiation is functionally identical to ObjectScript exponentiation. For details on valid argument values
and the value returned for specific combinations of argument values, see Exponentiation Operator in the “Operators and
Expressions” chapter of Using Caché ObjectScript.

Example
The following example shows valid uses of the exponent operator (^) and the base-10 exponent symbol (E). Note that the
usage x E y is not valid, because E is a numeric literal character, not an operator.

SET x=3
SET y=4
Println x ^ y ' Returns 81
Println 3E4 ' Returns 30000

See Also
• Operator Summary

• Operator Precedence

• Multiplication Operator (*)

Caché Basic Reference 181

Exponent Operator (^)

Assignment Operator (=)
Used to assign a value to a variable or property.

variable = value

Arguments

The = operator syntax has these parts:

Any variable or any writable property.variable

Any numeric or string literal, constant, or expression.value

Description
The name on the left side of the equal sign can be a simple scalar variable or an element of an array. Properties on the left
side of the equal sign can only be those properties that are writable at runtime.

See Also
• Operator Summary

• Operator Precedence

• Set Statement

182 Caché Basic Reference

Caché Basic Operators

Comparison Operators
Used to compare expressions.

result = expression1 comparisonoperator expression2
result = object1 Is object2

Arguments

Comparison operators have these parts:

Any numeric variable.result

Any expression.expression

Any comparison operator.comparisonoperator

Any object name.object

Description
The Is operator has specific comparison functionality that differs from the operators in the following table. The following
table contains a list of the comparison operators and the conditions that determine whether result is True or False:

False ifTrue IfDescriptionOperator

expression1 >=
expression2

expression1 < expression2Less than<

expression1 >
expression2

expression1 <= expression2Less than or equal to<=

expression1 <=
expression2

expression1 > expression2Greater than>

expression1 <
expression2

expression1 >= expression2Greater than or equal to>=

expression1 <>
expression2

expression1 = expression2Equal to=

expression1 =
expression2

expression1 <> expression2Not equal to<>

When comparing two expressions, you may not be able to easily determine whether the expressions are being compared
as numbers or as strings.

The following table shows how expressions are compared or what results from the comparison, depending on the underlying
subtype:

ThenIf

Perform a numeric comparison.Both expressions are numeric

Perform a string comparison.Both expressions are strings

The numeric expression is less than the string expression.One expression is numeric and the other is a
string

Caché Basic Reference 183

Comparison Operators

Concatenation Operator (&)
Used to force string concatenation of two expressions.

result = expression1 & expression2

Arguments

The & operator syntax has these parts:

Any variable.result

Any expression.expression1

Any expression.expression2

Description
Whenever an expression is not a string, it is converted to a String subtype. Any expression that is Empty is also treated as
a zero-length string.

See Also
• Operator Summary

• Operator Precedence

184 Caché Basic Reference

Caché Basic Operators

Is Operator
Used to compare two object reference variables.

result = object1 Is object2

Arguments

The Is operator syntax has these parts:

Any numeric variable.result

Any object name.object1

Any object name.object2

Description
If object1 and object2 both refer to the same object, result is True; if they do not, result is False. Two variables can be made
to refer to the same object in several ways:

In the following example, A has been set to refer to the same object as B:

Set A = B

The following example makes A and B refer to the same object as C:

Set A = C
Set B = C

See Also
• Operator Summary

• Operator Precedence

• And operator

• Not operator

• Xor operator

Caché Basic Reference 185

Is Operator

And Operator
Used to perform a logical conjunction on two expressions.

result = expression1 And expression2

Arguments

The And operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
If, and only if, both expressions evaluate to True, result is True. If either expression evaluates to False, result is False. The
following table illustrates how result is determined:

The result IsIf expression2 IsIf expression1 Is

TrueTrueTrue

FalseFalseTrue

FalseTrueFalse

FalseFalseFalse

See Also
• Operator Summary

• Operator Precedence

• BitAnd operator

• Not operator

• Or operator

• Xor operator

186 Caché Basic Reference

Caché Basic Operators

BitAnd Operator
Used to perform a bitwise conjunction on two numeric expressions.

result = expression1 BitAnd expression2

Arguments

The BitAnd operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The BitAnd operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

The result isIf bit in expression2 isIf bit in expression1 is

000

010

001

111

See Also
• Operator Summary

• Operator Precedence

• And operator

• BitNot operator

• BitOr operator

• BitXor operator

Caché Basic Reference 187

BitAnd Operator

Eqv Operator
Used to perform a logical equivalence on two expressions.

result = expression1 Eqv expression2

Arguments

The Eqv operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The result is determined according to the following table:

The result isIf expression2 isIf expression1 is

TrueTrueTrue

FalseFalseTrue

FalseTrueFalse

TrueFalseFalse

See Also
• Operator Summary

• Operator Precedence

• BitEqv operator

• And operator

• Not operator

• Xor operator

188 Caché Basic Reference

Caché Basic Operators

BitEqv Operator
Used to perform a bitwise equivalence on two numeric expressions.

result = expression1 BitEqv expression2

Arguments

The BitEqv operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The BitEqv operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

The result isIf bit in expression2 isIf bit in expression1 is

100

010

001

111

See Also
• Operator Summary

• Operator Precedence

• Eqv operator

• BitAnd operator

• BitNot operator

• BitXor operator

Caché Basic Reference 189

BitEqv Operator

Imp Operator
Used to perform a logical implication on two expressions.

result = expression1 Imp expression2

Arguments

The Imp operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The following table illustrates how result is determined:

The result isIf expression2 isIf expression1 is

TrueTrueTrue

FalseFalseTrue

TrueTrueFalse

TrueFalseFalse

See Also
• Operator Summary

• Operator Precedence

• BitImp operator

• And operator

• Not operator

• Xor operator

190 Caché Basic Reference

Caché Basic Operators

BitImp Operator
Used to perform a bitwise implication on two numeric expressions.

result = expression1 BitImp expression2

Arguments

The BitImp operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The BitImp operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

The result isIf bit in expression2 isIf bit in expression1 is

100

110

001

111

See Also
• Operator Summary

• Operator Precedence

• Imp operator

• BitAnd operator

• BitNot operator

• BitXor operator

Caché Basic Reference 191

BitImp Operator

Not Operator
Used to perform logical negation on an expression.

result = Not expression

Arguments

The Not operator syntax has these parts:

Any numeric variable.result

Any expression.expression

Description
The following table illustrates how result is determined:

Then result isIf expression is

FalseTrue

TrueFalse

See Also
• Operator Summary

• Operator Precedence

• BitNot operator

• And operator

• Or operator

• Xor operator

192 Caché Basic Reference

Caché Basic Operators

BitNot Operator
Used to perform bitwise negation on a numeric expression.

result = BitNot expression

Arguments

The BitNot operator syntax has these parts:

Any numeric variable.result

Any expression.expression

Description
The BitNot operator inverts the bit values of any variable and sets the corresponding bit in result according to the following
table:

Bit in resultBit in expression

10

01

See Also
• Operator Summary

• Operator Precedence

• Not operator

• BitAnd operator

• BitOr operator

• BitXor operator

Caché Basic Reference 193

BitNot Operator

Or Operator
Used to perform a logical disjunction on two expressions.

result = expression1 Or expression2

Arguments

The Or operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
If either or both expressions evaluate to True, result is True. The following table illustrates how result is determined:

The result isIf expression2 isIf expression1 is

TrueTrueTrue

TrueFalseTrue

TrueTrueFalse

FalseFalseFalse

See Also
• Operator Summary

• Operator Precedence

• BitOr operator

• And operator

• Not operator

• Xor operator

194 Caché Basic Reference

Caché Basic Operators

BitOr Operator
Used to perform a bitwise disjunction on two numeric expressions.

result = expression1 BitOr expression2

Arguments

The BitOr operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The BitOr operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

The result isIf bit in expression2 isIf bit in expression1 is

000

110

101

111

See Also
• Operator Summary

• Operator Precedence

• Or operator

• BitAnd operator

• BitNot operator

• BitXor operator

Caché Basic Reference 195

BitOr Operator

Xor Operator
Used to perform a logical exclusion on two expressions.

result = expression1 Xor expression2

Arguments

The Xor operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The result is determined according to the following table:

The result isIf expression2 isIf expression1 is

FalseTrueTrue

TrueFalseTrue

TrueTrueFalse

FalseFalseFalse

See Also
• Operator Summary

• Operator Precedence

• BitXor operator

• And operator

• Not operator

• Or operator

196 Caché Basic Reference

Caché Basic Operators

BitXor Operator
Used to perform a bitwise exclusion on two numeric expressions.

result = expression1 BitXor expression2

Arguments

The BitXor operator syntax has these parts:

Any numeric variable.result

Any expression.expression1

Any expression.expression2

Description
The BitXor operator performs a bitwise comparison of identically positioned bits in two numeric expressions and sets the
corresponding bit in result according to the following table:

The result isIf bit in expression2 isIf bit in expression1 is

000

110

101

011

See Also
• Operator Summary

• Operator Precedence

• Xor operator

• BitAnd operator

• BitNot operator

• BitOr operator

Caché Basic Reference 197

BitXor Operator

Caché Basic Constants

Caché Basic Reference 199

Comparison Constants
These constants are always available.

Predefined Constants
DescriptionValueConstant

Perform a binary comparison.0vbBinaryCompare

Perform a textual comparison.1vbTextCompare

200 Caché Basic Reference

Caché Basic Constants

Date Format Constants
These constants are always available.

Predefined Constants
DescriptionValueConstant

Display a date and/or time. For real numbers, display a date
and time. If there is no fractional part, display only a date. If
there is no integer part, display time only. Date and time display
is determined by your system settings.

0vbGeneralDate

Display a date using the long date format specified in your
computer's regional settings.

1vbLongDate

Display a date using the short date format specified in your
computer's regional settings.

2vbShortDate

Display a time using the long time format specified in your
computer's regional settings.

3vbLongTime

Display a time using the short time format specified in your
computer's regional settings.

4vbShortTime

Caché Basic Reference 201

Date Format Constants

Date and Time Constants
These constants are always available.

Predefined Constants
DescriptionValueConstant

Sunday1vbSunday

Monday2vbMonday

Tuesday3vbTuesday

Wednesday4vbWednesday

Thursday5vbThursday

Friday6vbFriday

Saturday7vbSaturday

202 Caché Basic Reference

Caché Basic Constants

Node Constants
These constants are always available.

Predefined Constants
DescriptionValueConstant

Indicates that the referenced variable or node is undefined.0vbUndef

Indicates that the referenced variable or node has a data value.1vbHasValue

Indicates that the referenced variable or node has sub-nodes.2vbHasArray

Caché Basic Reference 203

Node Constants

String Constants
These constants are always available.

Predefined Constants
The following string constants can be used anywhere in your code in place of actual values:

DescriptionValueConstant

Carriage returnChr(13)vbCr

Carriage return–linefeed combinationChr(13) & Chr(10)vbCrLf

Form feedChr(12)vbFormFeed

Line feedChr(10)vbLf

Platform-specific newline character; whatever is
appropriate for the platform

Chr(13) & Chr(10)

or

Chr(10)

vbNewLine

Character having the value 0Chr(0)vbNullChar

Not the same as a zero-length string (""); used
for calling external procedures

String having value 0vbNullString

Horizontal tabChr(9)vbTab

Vertical tabChr(11)vbVerticalTab

204 Caché Basic Reference

Caché Basic Constants

Caché Basic Objects

Caché Basic Reference 205

Err Object
Contains information about runtime errors.

Description
The Err object is an intrinsic object with global scope. There is no need to create an instance of it. The Err object contains
information about runtime errors and it provides Raise and Clear methods for generating and clearing runtime errors.

The properties of the Err object are set by the generator of an error, either the Caché Basic runtime system in response to
an error condition or by the program calling the Raise method.

When a runtime errors occurs, the properties of the Err object are filled with information that uniquely identifies and
describes the error condition.

The Err object may be referenced anywhere in the Basic program but will only contain data for the last error.

Properties
These properties can contain a numeric or string literal, or an expression that resolves to a literal.

Number

A number that uniquely defines the error code. Numbers from 1 to 512 are reserved by Caché Basic for indication of runtime
errors generated by the system. Numbers from 513 and up are reserved for use by the programmer.

Description

A textual description that describes the nature of the error.

Source

A textual description of the source of the error. This may be the name of the program within which the error occurred or
it may be the name of an object. If possible, the location within the code where the error occurred might be included.

Methods

Clear()

This clears the error condition and sets the properties of the object to the empty string. The Clear method takes no arguments;
the parentheses are optional.

Raise(number [,description [,source]])

The method generates a user-defined exception.

The Raise method has the following arguments:

The error number.number

Optional — A description of the error.description

Optional — A location associated with the error.source

When an exception is generated using the Raise method, the properties of the Err object are first cleared and then set with
the corresponding arguments.

The Raise method and the Err object are commonly used with the TRY and CATCH statements.

206 Caché Basic Reference

Caché Basic Objects

Examples
The following example issues an error using the Err.Raise method. After displaying the error arguments, it uses the
Err.Clear method to clear these error argument values:

Main:
 On Error Goto ErrorHandler
 Println "before the error"
 Err.Raise(100,"Deliberate Error","Main line 3")
 Println "after the error" ' should not print
ErrorHandler:
 Println "Error1: ", Err.Number, " ", Err.Description," ", Err.Source
 Err.Clear()
 Println "Error2: ", Err.Number, " ", Err.Description," ", Err.Source

The following example demonstrates how to use the Err object in a function:

Println ErrorTest(1)
Println ErrorTest(0)

Function ErrorTest(Arg)
 On Error Goto ErrorHandler
 return 1/Arg
ErrorHandler:
 Println "Error ", Err.Number, " ", Err.Description," ", Err.Source
 Err.Clear()
 return 0
End Function

See Also
• TRY statement

• CATCH statement

• On Error function

Caché Basic Reference 207

Err Object

System Object
The System object provides access to properties and methods of Caché components.

Description
The System object is an intrinsic object with global scope. There is no need to create an instance of it.

Through the System object programs have access to properties and methods related to the following components: Activate,
CSP, Encryption, Help, OBJ, SQL and Version.

For detailed information on the System object, look at the class definitions in the %SYSTEM package.

Examples
The following example demonstrates how to use the System object:

Println System.Version.GetCompBuildOS()
 ' prints the OS version
 ' for which this Caché Version was built
Println System.Version.GetNumber() 'prints the Version number
Println System.Version.GetVersion() 'prints the Version string

Please note that the System object in ObjectScript is referenced by $System and in Caché Basic by System.

Note
The System object may be referenced anywhere in the basic program.

208 Caché Basic Reference

Caché Basic Objects

Caché Basic General Concepts

Caché Basic Reference 209

Multidimensional Data Model
Introduction to the Multidimensional Data Model in Caché

Rich Multidimensional Data Structure
Caché’s high-performance database uses a multidimensional data model that allows efficient and compact storage of data
in a rich data structure. With Caché, it is possible to access or update data without performing the complicated and time
consuming joins required by relational databases.

Although sometimes described as a “hyper-cube” or “n-dimensional space,” a more accurate description of the Caché
storage model is a collection of sparse multidimensional arrays called “globals.” Data can be stored in a global with any
number of subscripts. What’s more, subscripts are typeless and hence can be anything – string, integer, floating point, etc.
This means one subscript might be an integer, such as 34, while another could be a meaningful name, like “LineItems”–
even at the same subscript level.

For example, a stock inventory application that provides information about item, size, color, and pattern might have a
structure like this:

^Stock(item,size,color,pattern) = quantity

Here’s some sample data:

^Stock(“slip dress”,4,”blue”,”floral”)=3

With this structure, it is very easy to determine if there are any size 4 blue slip dresses with a floral pattern – simply by
accessing that data node. If a customer wants a size 4 slip dress and is uncertain about color and pattern, it is easy to display
a list of all of those by cycling through all of the data nodes below ^Stock(“slip dress”,4).

In this example, all the data nodes were of a similar nature (they stored a quantity), and they were all stored at the same
subscript level (4 subscripts) with similar subscripts (the 3rd subscript was always text representing a color). However,
they do not have to be. Not all data nodes have to have the same number or type of subscripts, and they may contain different
types of data.

Here is an example of a more complex global with invoice data that has different types of data stored at different subscript
levels:

^Invoice(invoice #,”Customer”) = Customer information
^Invoice(invoice #,”Date”) = Invoice date
^Invoice(invoice #,”Items”) = # of Items in the invoice
^Invoice(invoice #,”Items”,1,”PartNum”) = part number of 1st Item
^Invoice(invoice #,”Items”,1,”Quantity”) = quantity of 1st Item
^Invoice(invoice #,”Items”,1,”Price”) = price of 1st Item
^Invoice(invoice #,”Items”,2,”PartNum”) = part number of 2nd Item

Multiple Data Elements per Node
Often only a single data element is stored in a data node, such as a date or quantity, but sometimes it is useful to store
multiple data elements together as a single data node. This is particularly useful when there is a set of related data that is
often accessed together. It can also improve performance by requiring fewer accesses of the database, especially when
networks are involved.

For example, in the previous invoice, each item included a part number, quantity, and price all stored as separate nodes,
but they could be stored in a single node:

^Invoice(invoice #,”LineItems”,item #) = $LB(PartNum,Quantity,Price)

To make this simple, Caché supports a list functions which can assemble multiple data elements into a length delimited
byte string and later de-assemble them, preserving datatype.

210 Caché Basic Reference

Caché Basic General Concepts

Transaction Processing with a Large Number of Users
Efficient access to data makes the multidimensional model a natural for transaction processing. Caché processes do not
have to spend time joining multiple tables, so they run faster.

Logical Locking Promotes High Concurrency
In systems with thousands of users, reducing conflicts between competing processes is critical to providing high performance.
One of the biggest conflicts is between transactions wishing to access the same data.

Caché processes do not lock entire pages of data while performing updates. Because transactions require frequent access
or changes to small quantities of data, database locking in Caché is done at a logical level. Database conflicts are further
reduced by using atomic addition and subtraction operations, which do not require locking. (These operations are particularly
useful in incrementing counters used to allocate ID numbers and for modifying statistics counters, both of which are common
“hot spots” in a database that would otherwise cause frequent conflicts between competing transactions.)

With Caché, individual transactions run faster, and more transactions can run concurrently.

Multidimensional Model Enables Realistic Description of Data
The multidimensional model is also a natural fit for describing and storing complex data. Developers can create data
structures that accurately represent real-world data, thus making it faster to develop applications and easier to maintain
them.

Variable Length Data in Sparse Arrays
Because Caché data is inherently of variable length and is stored in sparse arrays, Caché often requires less than half of the
space needed by a relational database. In addition to reducing disk requirements, compact data storage enhances performance
because more data can be read or written with a single I/O operation, and data can be cached more efficiently.

Declarations and Definitions are Not Required
No declarations, definitions, or allocations of storage are required to directly access or store data in the database, and there
is no need to specify the number or type of subscripts or the type or size of data. The multidimensional arrays are inherently
typeless, both in their data and subscripts. Global data simply pops into existence as data is inserted with the SET command.

However, to make use of the object access and SQL access of the database, data dictionary information is required. In
specifying the data dictionary for objects and SQL, developers have a choice of letting wizards automatically select the
multidimensional data structure best suited to their data, or they can directly specify the mapping.

Namespaces
In Caché, data and ObjectScript code are stored in disk files with the name CACHE.DAT (only one per directory). Each
such file contains numerous “globals” (multidimensional arrays). Within a file, each global name must be unique, but dif-
ferent files may contain the same global name. These files may be loosely thought of as databases.

Rather than specifying which CACHE.DAT file to use, each Caché process uses a “namespace” to access data. A namespace
is a logical map that maps the names of multidimensional global arrays and routine code to CACHE.DAT files, including
the Data Server and directory name for that file. If a file is moved from one disk drive or computer to another, the namespace
map is changed.

Usually a namespace specifies sharing of certain system information with other namespaces, and the rest of the namespace’s
data is in a single CACHE.DAT used only by that namespace. However, this is a flexible structure that allows arbitrary
mapping, and it is not unusual for a namespace to map the contents of several CACHE.DAT files

Caché Basic Reference 211

Multidimensional Data Model

Reserved words
A list of Caché Basic reserved words.

ABS | AND | AS | ASC | ATN |
BITAND | BITEQV | BITIMP | BITNOT | BITOR |
BITXOR | BYREF | BYVAL |
CALL | CASE | CATCH | CHR | CONST | CONTINUE | COS |
DATE | DATEADD | DATEDIFF | DATEPART |
DAY | DEBUG | DEFAULT | DIM | DO |
EACH | ELSE | ELSEIF | END |
EQV | ERR | ERROR | EXISTS |
EXIT | EXP | EXPLICIT |
FALSE | FINALLY | FIX | FOR | FUNCTION |
GOTO |
HEX | HOUR |
IF | IMP | IN | INCREMENT |
INPUT | INSTR | INSTRREV | INT |
IS | ISOBJECT |
JOIN |
LCASE | LEFT | LEN | LET |
LIST | LISTBUILD | LISTEXISTS | LISTFIND | LISTGET |
LISTLENGTH | LOCK | LOG | LOOP | LTRIM |
ME | MID | MINUTE | MOD | MONTH | MONTHNAME |
NEW | NEXT | NOT | NOTHING | NOW |
OBJECT | OCT | ON | OPEN | OPENID | OPTION | OR |
PIECE | PRIVATE | PUBLIC |
RANDOMIZE | REM | REPLACE | RETURN |
RIGHT | RND | ROUND | RTRIM |
SECOND | SELECT | SET | SGN | SIN | SPACE |
SPLIT | SQR | STRCOMP | STRING | STRREVERSE | SUB | SYSTEM |
TAN | TCOMMIT | THEN | THROW | TIMER | TRAVERSE |
TRIM | TROLLBACK | TRUE | TRY | TSTART |
UCASE | UNLOCK | UNTIL |
VBBACKWARD | VBCR | VBCRLF | VBFF | VBFORMFEED | VBFORWARD |
VBFRIDAY | VBHASARRAY | VBHASVALUE | VBLF | VBMONDAY | VBNC |
VBNEWLINE | VBNL | VBNULLCHAR | VBSUNDAY | VBTAB | VBTHURSDAY |
VBTOEXTERNAL | VBTOINTERNAL | VBTUESDAY | VBUNDEF |
VBUSESYSTEM | VBVT | VBVERTICALTAB | VBWEDNESDAY |
WEEKDAY | WEEKDAYNAME | WEND | WHILE |
XOR |
YEAR

Description
Within Caché Basic certain words are reserved. You cannot use a Basic reserved word as a Basic identifier (such as the
name of a variable).

212 Caché Basic Reference

Caché Basic General Concepts

	Table of Contents
	About This Book
	Symbols
	Symbols Used in Caché Basic

	Caché Basic Commands
	Call
	Catch
	Const
	Continue
	Copy
	Debug
	Dim
	Do...Loop
	Erase
	EraseArray
	EraseValue
	Exit
	For Each...Next
	For...Next
	Function
	Goto
	If...Then...Else
	Imports
	Input
	Let
	Merge
	New
	On Error Goto
	OpenId
	Option Explicit
	Print, Println
	Randomize
	Rem
	Return
	Select Case
	Set
	Sleep
	Sub
	TCommit
	Throw
	TRollback
	Try
	TStart
	While...Wend
	With

	Caché Basic Functions
	Abs
	Asc
	Atn
	Case
	Chr
	Cos
	Date
	DateAdd
	DateConvert
	DateDiff
	DatePart
	DateSerial
	DateTimeConvert
	Day
	Derived Math Functions
	Exists
	Exp
	Fix
	Hex
	Hour
	Increment
	InStr
	InStrRev
	Int
	IsObject
	Join
	LCase
	Left
	Len
	List
	ListBuild
	ListExists
	ListFind
	ListFromString
	ListGet
	ListLength
	ListNext
	ListSame
	ListToString
	ListValid
	Lock
	Log
	Mid
	Minute
	Month
	MonthName
	Now
	Oct
	Piece
	Replace
	Right
	Rnd
	Round
	Second
	Sgn
	Sin
	Space
	Split
	Sqr
	StrComp
	String
	StrReverse
	Tan
	Time
	TimeConvert
	Timer
	TimeSerial
	Traverse
	LTrim, RTrim, and Trim
	UCase
	Unlock
	Weekday
	WeekdayName
	Year

	Caché Basic Operators
	Operator Summary
	Operator Precedence
	Addition Operator (+)
	Subtraction Operator (–)
	Mod Operator
	Multiplication Operator (*)
	Division Operator (/)
	Integer Division Operator (\)
	Exponent Operator (^)
	Assignment Operator (=)
	Comparison Operators
	Concatenation Operator (&)
	Is Operator
	And Operator
	BitAnd Operator
	Eqv Operator
	BitEqv Operator
	Imp Operator
	BitImp Operator
	Not Operator
	BitNot Operator
	Or Operator
	BitOr Operator
	Xor Operator
	BitXor Operator

	Caché Basic Constants
	Comparison Constants
	Date Format Constants
	Date and Time Constants
	Node Constants
	String Constants

	Caché Basic Objects
	Err Object
	System Object

	Caché Basic General Concepts
	Multidimensional Data Model
	Reserved words

