InterSystems:

Caché

Caché Transact-SQL (TSQL)
Migration Guide

\ersion 2017.2
2020-06-25

Caché Transact-SQL (TSQL) Migration Guide
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

ADOUL THIS BOOK ...ttt bbbt bbb bbbttt e et et e e b et ebe e 1
L OVEIVIBW ..ttt ettt sttt sttt et e et et s e bt ek e bt eb e e bt e b e e b e be s e e eE et et et ene e b e ebeebeebenbesbenbenbeee 3
1.1 GELING STAMEU ...ecveeeteseeteseeie ettt ettt bbb bt b et b et b e et e b e nn et e 3
1.1.1 Configuring TSQL ..oeiveieieeeeeee et sre st st sn e e e e ennenaenes 3

1.1.2 Migrating SOUICE COUEcceiverieriiriiieiieieeietieese e e s e se e sre e s e te e sre s e e e e e e e eseeseeneenenss 3

1.1.3 Migrating the Datacccceieeieieeieieee ettt e et te e e reenaenreenes 4

1.2 TSQL Language IMplementationcccoucieiiiiirene et et 4

A O Vol o - 1@ I o] g 1) U o £ SRS 7
2.1 CommMONIY USEA CONSIIUCES ...ttt 7
2.1.1 TaDIE RETEIENCES ..c.eiviriciiicie ettt ens 7

W A =Y T o To) =Y A I o] RSP S 7

2.1.3 TFANSACLIONSveuietietesieste ettt sttt sttt sttt a e bt e bt bt s b e sb e e b e b nbesb e b e e e et eseebesneene s 8

2.1.4 Cursor Name ManQgEMENTcceieeierieieeie ettt st e et e e b e sressnesbeesbesreens 8

2.1.5 SyStem StOred PrOCEUUIEScirieeirieiirieiisieisie ittt 8

2.1.6 SYSIEM TADIES ..ottt 9

2.1.7 SYSOBJIECTS RETEIEINCES ...ovviviiieiieiirieiirieisie sttt e 9

3 Caché TSQL Language EIEMENTS ..ottt 11
Bl LIEEIAIS .ttt bbb bbbt E b e e bttt ne b b 11
3L L SENG LITEIALS ..ttt bbb bbb e e e 11

3. L2 EMPLY SENGS oottt sttt sttt sttt sttt e bt nn et es e neeneenenes 11

K 01 100 T 1 S 12

3.1 A HEXAAECIMAN ...cvieiiieieee bttt 12

3. 1.5 RESEIVEA WOIS ...veveiviriitiieie ettt ettt ettt sttt nes 12

3.1.6 Comments, Blank Lines, and SEMICOIONSccccoveiiiiiiinine e 12

KT T 1= o1 (1111 £ OSSP PRT OSSR 13
3.2.1 Delimited and Quoted 1dentifiersoooiiiriiiiiii e 13

3.3 DA TYPES ittt e e E e e 14

KRR @ 0T - (o PSRRI 15
3.4.1 Arithmetic and Equality OPEratorsccccouevveieieeieeesesesese e sresesieseesseaesasseesessessesnens 15

3.4.2 ConCatenation OPEIALOLccceeueiieeierieeie e este st e e seese s ae e aesteeaesreebesreebesssenresneeneas 15

3.4.3 COMPAriSON OPEIALOIS ..cuiiviitirtertertirieriereeieseereeeeieste sttt sbesbesbesbesbesbesbesbeseessenseseeeeneaneas 16

3.4.4 NOT LOGICAI OPEIALOT ..eveveeeieireiiiteietereete ettt sttt b et b e b e e b e b srere e 16

3.4.5 Bitwise LOGICal OPEIALOTSc.eiviviietirieierieierieiesieie ettt ettt ettt besnenea 16

4 TSQL COMIMANGS ..ottt sttt sttt b et b et b ettt sttt st et st et sb et b et sbe b s b e s bt et e sttt 17
4.1 Data Definition Language (DDL) StateMeNtScccccvevriererieresinseseseseeseesseseesesseesessessenees 17
4.1.1 CREATE TABLE ..ottt sttt 17

4.L2 ALTER TABLE ..ottt 18

4. 1.3 DROP TABLE ..ottt st st s e e st e ebe et e e s reenreean 19

4.1.4 CREATE INDEX ...ttt ettt et e s te et snte e nnnesnb e e s taesneeenees 19

4.1.5 DROP INDEX ..otiiiitiriitiiitinisiesteie ettt ettt sttt sttt bbb 20

4.1.6 CREATE TRIGGERoiiiiiitise ettt bbb nas 20

4.1.7 DROP TRIGGER ..ottt 21

4.1.8 CREATE VIEW ...octiiiieiiteise sttt ettt ettt sttt sn et sae e snenennas 21

.19 DROP VIEW ..ottt ettt ettt st sttt e saa e st sba e enbe e sta e anteenneeanes 21

4.1.10 CREATE DATABASE ...ttt ettt et te e e st esnre et 21

Caché Transact-SQL (TSQL) Migration Guide

4.1.11 DROP DATABASEoooiiiiitii e s 21

4.2 Data Management Language (DIML) Statementsccoceeereierieiininene e e 22
B2 L DELETE ..ottt ettt et st e e be e s tb e e ebeesabe e sbeesareeabeseabeenbeesabeens 22
N |\ IS =1 = 22
O 3 N I U 23
4.2.4 READTEXT, UDATETEXT, WRITETEXT ..ccveiiiiiie et 23
425 TRUNCATE TABLE ...ttt ettt s be e st e s re e sba e s abeesbeesnbe e 24

4.3 QUETY STALEIMEINTSeivieiiiitieiieite ettt ettt ettt sb ettt e et e bt e sbeea b e sbeesbesbeensesbe e b e sbeebesbeesbesnnenrens 24
TN Y = I = O TSP 24
B.3.2 JOIN Lottt bttt et b e et r e e e be e re e beeta e beetb e beeateebeearenreenns 26
L T U N1 N SRS 27
O I O I O o SO 27
4.3.5 UPDATE STATISTICS ...ttt ettt st sttt et s be e sae e sabe e sbaesare e e 27

4.4 FIOW OF CONtrol STAEMENTS ...eciuviiiriiiiecetee sttt ettt et e steesbe e sbeesareesbeesabeesbeesabeens 27
o | ORI 27
AV A 1 | 29
e 0 AN | =PRSS 29
O 1@ @ I To = 1= S 29
BASWAITFOR .ottt ettt e et e e sae e st e e s be e s abe e sbeesabe e sbeeeabeesbeesnteenaeennnas 30

4.5 ASSIGNMENT STALEMENTS ...e.eiitiitiitiiteite ettt sttt bbb bbbt e e e e e e e neebearas 30
451 DECLARE ...ttt ettt ettt ettt sttt b e et sh e et e e b e be e nae e beenaee b s 30
45,2 SET oottt be bt e et e e beeaeeebeeabesbeeateebeeresaeearestaenreas 30

4.6 TranSaCtioN STALEMENTS ...cu.iiviiiiieiee ittt et b e sbe b e e beear e sbeeasesbeesaesbeesbesbeebesteesbesnsenns 31
4.6.1 SET TRANSACTION ISOLATION LEVEL ...coooviiiiiiicie ettt 31
4.6.2 BEGIN TRANSACTION ..ottt ettt sttt st re e st e s beesnnesnne s 31
4.6.3 COMMIT TRANSACTION ..iioiiciiitte ettt sttt te et sreesbe e sta e s beesane s reesaeeennas 32
4.6.4 ROLLBACK TRANSACTION ..cctiiiiiictie ettt ettt s stee st sressreesbessbeenbessareens 32
4.6.5 CHECKPOINT ..ottt ettt st st ae s baesbesbeebesbeenbeens 32
NG O L0 S 7N = I PR 32

4.7 ProCedure STAtEMENLSeieieiieriirterterteteieseeeeseeses e ssessestestesrestesteseesteseesseseseeseesseseesessessessessenes 33
4.7.1 CREATE PROCEDURE / CREATE FUNCTIONcoiiiiieiteicieecree et 33
4.7.2 ALTER FUNCTION .ottt ettt ettt et sve e steesaae e ste s sareesbe s sabeeebeesabeenbeesareenes 34
4.7.3 DROP FUNCTION ..ottt ettt sttt st et s st sbe s s be st s sbe e sbaesare e sbassnneesresanns 34
4.7.4 DROP PROCEDUREocoviitictcece ettt ettt ettt e ve et snaeane s 34
T 4= 1 4 RSP RI 35
T = =L O U L I USSR 35
BT.7 CALL ottt ettt ettt e e s b st e e e ae e e be e sha e e be e br e be e eta e beenaeeeabe s 35

4.8 Other STALEIMENTS ...viiiviiiiietee ittt e ee e e rb e e st e e be e sbbe e beeeaeeebessaaeenbeesbbeenbeesteeebeesaeeesrs 36
4.8.1 CREATE USER ..ooootiiitii ettt ettt sttt ettt et et esbe e sba s sbe e sbessnbe e sbaesnreesreas 36
4.8.2 CREATE ROLEoooticeee ettt ettt sttt sttt e ebe et sae b ens 36
4.8.3 GRANT anNd REVOKEooiiiiiitiite ettt sttt sttt sbe e s ba e sbe e 36
L B e 1\ N PR 36
4.8.5 RAISERRORoiiiiiie ettt ettt et sate e be e s te e e be e sbb e e nbeesaeesbeesaneenbeens 36
4.8.6 UPDATE STATISTICS ...ttt ettt ettt v ettt be et s be et s sabe e sbeesnre e 37
4.8.7 USE dALADASEccveeiviiiiiicieeere ettt ettt sttt et e b st e s be e st sbeesbeesabeesbeesnreesreas 37

4.9 INErSYStEMS EXIENSIONSviviiitiieteieeie ettt sttt st ettt st 37
e B O AN O | =S 37
4.9.2 IMPORTASQUERY ..ottt sttt et ve et s tae et e st e et e saaeebe e sneeenreesnneens 38

I IS 1 T ST 1 o S 39

BLL DIALECT ittt ettt e s e b e e st e e et e e s be e s be e ebeeeabeesbeeeabeesbeeeabeesteesabeenaeeenras 39

Caché Transact-SQL (TSQL) Migration Guide

S.2Z ANSI_NULLS ..o s 40

5.3 CASEINSCOMPAREcooiititcttsse ettt sttt ettt e bt 40
5.4 QUOTED IDENTIFIERooiiitiiiiiiiie ettt sttt e et staesnne e e 41
T T I A R 41
B TSOQL FUNCLIONS ...veiiteitee ittt sttt sttt ettt ettt et st st e s e s beetee st eesbesbeesbesbeenbesbeenbesbseabesanesbeennesbeesnens 43
6.1 SUPPOITEA FUNCLIONS .veviviieiiesiesie ettt e ettt b et st s a et et e et e e e e eneeneerenneans 43
B.1.1 ABS .ot a ettt b bt beb ettt retenes 43
B.1.2 ACOS .ottt b e bbbttt e bt e n b b e 43
B.1.3 ASCII .ottt bRttt 43
TRt AN | N TSR 43

S TSN A ST 43

S TG 30 A\ ST 44
B.1.7 CAST oottt bRttt Rttt bR ettt ne s 44
B.1.8 CEILING ...oiiiicteeiit sttt sttt bbbt ettt e e b n s 44
B.1.9 CHAR .ottt bbb bbb bbb bR e b bbb bttt e e 44
6.1.10 CHAR_LENGTH / CHARACTER _LENGTH ...occiiiiiiisiie e 44
6.1.11 CHARINDEXocetitriiieteinisieieiesesesteese s ietesesesessssesesessssesesessssesesessssesesssensesensssssaseses 45
6.1.12 COALESCEoiietetieisieeets ettt b sttt aetene e nannens 45
B.1.13 COL_NAME ..ottt ettt es bt e bbb s s s s 45
B.1.14 CONVERT ..ottt et bbbttt b e bbb e bt ene s 45
B.1.15 COS ..ottt e ettt bbb b b e be e be e te e etenretennas 46
B.1.168 COT oooriictiiete ettt ettt sttt ettt st et s et s b b e s b e s e e b e e e b e e e be e ebeseete st etena et e naeresrerears 46

0 5 1@ 1 ST 46
6.1.18 CURRENT _DATE ...cooiiirietrieiiriststeesesis e e e st ssssesesssssssesssessssesesenes 46
6.1.19 CURRENT_TIME ...ooiitiiiteiii sttt ettt tesa st ssesera s nnnas 47
6.1.20 CURRENT _TIMESTAMP ...ooititiiiiiiteie sttt sttt nnnas 47
6.1.21 CURRENT _USER ...ttt sttt st st e et snnas 47
6.1.22 DATALENGTH ..ottt ettt e e st e enae e steeanneenneeanes a7
6.1.23 DATEADDoecteiieisietciene sttt ettt e bt ne e en 47
6.1.24 DATEDIFFooceeieesetees sttt ettt e nn e en 48
6.1.25 DATENAMEcootiiiietciisis ettt ettt b e b b en 49
6.1.26 DATEPART ...oovititiiisietctei sttt sttt ettt e bbb s e bbb e et bese e b b rene s 50
B.1.27 DAY oottt ettt e e nate e teeaae e reennes 50
6.1.28 DB _INAME ...ttt ettt sttt sttt sttt st nbeerae e eneenreen 50
B.1.29 DEGREESceotitiiiteiiesisieteene sttt ettt as et e e tese e e nsesene e s 50
6.1.30 ERROR_IMESSAGEcooviieteiiirisieieiisis ettt sessssesenees 50
6.1.31 ERROR_NUMBERcectiiitiiiiisieteieistste ettt 50
B.1.32 EXEC ..otiiicictceee sttt bbbt r bbb ettt ne e retn 50
B.1.33 EXP oottt bR b et g bttt et 51
TRt IS 7 I 1 | TS 51

Lo I LT I I ST 51
6.1.36 GETUTECDATEooveteeeiisecteee ettt sttt et naes 51
6.1.37 HOST _INAIME ...oooviteiisisteee ettt ettt st et nee 51
6.1.38 INDEX _COL ..ouiiiioiiiiiiiitetei sttt sttt es bbbt s b ner e s st 51
B.1.39 ISNULL .ovtitiiitiietisieti ettt ettt et et e b se st et e tens 52
6.1.40 ISNUMERIC ...ttt e st e st e e nae e snb e e s teesneeenees 52
B.1.4L LEFT oouiiieeee sttt ettt ettt ne et e nens 52
S ST 52
B.1.43 LOG ..ottt et b et a ettt b et e bt ne s 52
B.1.44 LOGLO ..ocvoviiicietcee sttt ettt b bbbt et b et ene s 52

Caché Transact-SQL (TSQL) Migration Guide

B.1.45 LOWER ..o s 52

B.1.46 LTRIM L.oiiiiiiiieiiteisteeste sttt ettt ettt ettt ettt s et s et e ne st e sente e se s 52
B.1.47 IMAX oottt e b et b et et e e aha e e e aaae e beenaearee e 53
G TRt |V | NSRS 53
B.1.49 IMONTH ettt bbbttt etk se et bbbt e b e s b e abe e 53
B.1.50 NCHAR ..ottt sttt ettt et e b et b et en et e e enen 53
B.1.51 NEWID ...ooioiiicieiiee ettt sttt sttt s b bbbttt sttt et et 53
B.1.52 INOWV ..ottt ettt sttt st s b et bbbttt ettt et st ettt r et n e 54
B.1.53 NULLIF .ot e et e st e e be e saaeebeesraeenreesrbeans 54
I R @ = N | =l @3 1 USSP 54
6.1.55 OBIECT _NAME ...ooiiiitiiitiieist ettt bbbttt sttt 54
B.1.56 PATINDEX ...cvtietirietirieiisieisiee sttt sttt bbbt sttt 54
B.1.57 Pl oottt et bbbttt ettt et 55
B.1.58 POWERo.ooiiiieieiieiiitee sttt sttt st b e sb ettt et et st et sn et e snenesreneenas 55
6.1.59 QUOTENAMIE ..ottt sttt e sbe et be e be e snb e e s teenneeeees 55
LT T AN B AN A S TSRS 55
B.1.61 RAND .ottt ettt bbb bbb bbbttt 56
B.1.62 REPLAGCE ..ottt sttt ettt st ettt e ettt e b ne s 56
B.1.63 REPLICATE ...covitiiiteiete ettt ettt ettt 56
B.1.64 REVERSEocociiieiiiee sttt ettt sb et sb e bt et et saebe e et neete e 56
B.1.65 RIGHT .ottt e et e e st e et e e s aae e beesrbeenbeesrbeans 56
6.1.66 ROUNDooiiiiiiiee ittt ettt e e e st et e e s ta e e e e s ta e e teesna e e teesaneeteesnaeenreenens 56
B.1.67 RTRIM ..ottt sttt ettt et b bbb 57
6.1.68 SCOPE_IDENTITY ioiiiiiitiieiisieiirieiesieeste sttt stss sttt ssse s 57
B.1.69 SIGN ..ottt b e bbbttt e 57
B.1.70 SIN .eeeiteeciet ettt E ettt ettt bbb nenrens 57
B.1.71 SPACE ..ottt te e e anres 57
T 7510 = 3 IO 57
B.1.73 SQUARE ..ottt ettt b e b et ettt nea 58
B.1.74 STR oottt sttt et ettt ettt bR bbb bbbt bttt 58
B.1.75 STURF ..eieeti ettt sttt ettt et s bbb et s et neneenes 58
B.1.76 SUBSTRINGooviviiieiiiieiirieisieesies sttt e b se b se st ne st e ssens 58
B.1.77 SUM ..ottt b et s b e e ea et e s b et e e st e ae e e e reennre s 58
6.1.78 SUSER_INAME ...ttt ettt st st st sreesbesneesbeenee e 59
6.1.79 SUSER_SNAMEoiiitiiitiiitiisie ettt bbbttt sttt 59
B.1.80 TAN Lottt ittt sttt ettt ettt st bbb R bbb e b ettt et e b e 59
B.1.81 TEXTPTR oititeietesiete ettt sttt st sb ettt ettt sttt ettt st et e b ebesbe et nestens 59
6.1.82 TEXTWVALID ..ottt sttt benes 59
B.1.83 UNICODEoccviviiiiieiiiiiiesietsee sttt st es s s st ettt e st nenesnesesaese st nensenen 59
6.1.84 UPPERociii ettt ettt et et e e e et e e s e e e te e nraeereenreeans 59
B.1.85 USER ..ottt bbbt 60
6.1.86 USER_INAIMEocoiiiitiiiieieite ettt ettt ettt st st sa et sbe e b s nnas 60
B.1.87 YEAR oottt ettt bbbttt ettt 60
6.2 UNSUPPOITEA FUNCLIONSoiuiiiiitiiieiteste sttt st st et st ne e ene 60
T TSQL VAFTADIES ..eiie ettt b e bbbttt e et et st e e eneeseene e 61
N I Lo Y £ T - o] RS SE 61
7.1.1 Declaring a Local Variableccccooeieieiciccecc s 61
7.1.2 Setting @ Local Variable ... 61
7.1.3 Initial and Default VAIUEScocoiiiiiiiiiicee e 62
7.1.4 Plain LOCAl VariabIeScociiiiii ettt st sttt enee s 62

Caché Transact-SQL (TSQL) Migration Guide

7.2 @@ Special Variables ... s 62

7.2.1 @@ERROR ..ottt bbbt bbbttt bbb 62
7.2.2 @@FETCH_STATUS ..ottt 63
723 @@IDENTITY oottt bbbttt bbbt 63
7.24 @@LOCK_TIMEOUT ...ocoiiiieiriirereeesr s 63
7.2.5 @@NESTLEVEL ..ottt 63
7.2.6 @@ROWECOUNT ...ttt bbbt 64
7.2.7 @@SERVERNAME ..ottt bbbttt 64
T.2.8 @@SPID ...ttt 64
7.2.9 @@SQLSTATUS ..ottt bbbttt 64
7.2.10 @@TRANCOUNT ..ottt 65
7.2.11 @@VERSION ..ot 65

8 USING the TSQL SNEIL ...t be e s te e e s reeaesteesaenreens 67
8.1 Other Ways to Execute Transact-SQL COUEciererierieiieriiieie e 67

Caché Transact-SQL (TSQL) Migration Guide vii

About This Book

This book describes how to migrate schemas and stored procedures from Sybase or SQL Server and it will provide you
with an understanding of the TSQL (Transact-SQL) implementation in Caché.

The book addresses a number of topics:

An Overview, which includes configuring TSQL and migrating source code and data.

Caché TSQL Constructs including temporary tables, stored procedures, and transaction management.
Caché TSQL Language Elements: data types, operators, literals, reserved words.

Caché TSQL Commands

Caché TSQL Settings

Caché TSQL Functions

Caché TSQL Variables

The Caché TSQL Shell

For a detailed outline, see the Table of Contents.

When using Caché TSQL, you may find the following additional sources useful:

The Caché SQL Reference provides details on individual SQL commands and functions, as well as information on the
Caché SQL configuration settings, error codes, data types, and reserved words.

“Using the Caché SQL Gateway” in Using Caché SQL describes how to use the Caché SQL Gateway, which enables
you to treat external tables as if they were native Caché tables.

Using Caché with ODBC describes how to use Caché ODBC, which enables you to access Caché tables via ODBC
from external applications.

Using Caché with JDBC describes how to use the Caché JDBC driver, which enables you to access Caché tables via
JDBC from external applications.

For general information, see Using InterSystems Documentation.

Caché Transact-SQL (TSQL) Migration Guide 1

Overview

Caché TSQL is an implementation of Transact-SQL which supports many of the features of both the Microsoft and Sybase
implementations. Transact-SQL is used with Microsoft SQL Server (MSSQL) and Sybase Adaptive Server.

Caché TSQL also contains a few proprietary extensions not found in either of these implementations. These are described
in the Commands chapter.

This document will help you to quickly migrate schemas and stored procedures from Microsoft or Sybase databases and
it will provide you with an understanding of the TSQL (Transact-SQL) implementation in Caché.

1.1 Getting Started

To migrate existing TSQL applications to Caché TSQL, you need to perform three operations: configure Caché for TSQL,
migrate the TSQL source code, and migrate the data.

1.1.1 Configuring TSQL

To configure your system for TSQL.:

» Go into the Caché Management Portal. Select System Administration, Configuration, SQL and Object Settings, then
select TSQL Compatibility Settings. Here you can specify the dialect (Sybase or MSSQL), and turn on or off the
ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings. The default for all three is “off”. These values
are used to set the ~%SYS(“tsql”,”SET",...) global array values.

* From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then General SQL
Settings. From here, you can set the Default SQL Schema Name. This is the system-wide default schema name (which
maps to a package) for all unqualified DDL entities.

» From the Management Portal, select System Administration, Configuration, SQL and Object Settings, then User-defined
DDL Mappings. You can use this option to map any needed user-defined data types.

1.1.2 Migrating Source Code

The initial application migration is simple:

1. Migrate the DDL: Import table and view definitions using either the %6SYSTEM.SQL.DDL Import() method (for
single files) or the %SYSTEM.SQL.DDLImportDir() method (for multiple files in a directory). Set the DDLMode
parameter to either ""MSSQLServer" or "*Sybase"". For further details, see the InterSystems Class Reference.

Caché Transact-SQL (TSQL) Migration Guide 3

Overview

Alternatively, you can invoke $SYSTEM.SQL.TSQL(), $SYSTEM.SQL.Sybase() or
$SYSTEM.SQL.MSSQLServer() method to import the schema. For further details, see the InterSystems Class Ref-
erence.

If the TSQL source contains CREATE PROC statements, then a class method containing the CREATE PROC source
is created. Caché places this class method in either an existing class or in a new class whose name is based on the
schema and procedure name. If the procedure already exists, then the existing version is replaced by the new version.
If a class matching the class name generated from the schema and procedure already exists, then this class name is
used — if it was previously generated by the TSQL utility. If not, then a unique class name is generated, based on the
schema and procedure name. The resulting class is compiled once the procedure has been successfully created. If logging
is requested then the source statements are logged along with the name of the containing class, class method, and the
formal arguments generated. Any errors encountered by the process are also reported in the log. If an error is detected
during CREATE PROC processing, Caché deletes any new class that was generated for that procedure.

Inspect the log file for errors: Search by Error #. A summary count of errors and successful imports will appear at the
end of the log. In most cases, errors can be worked around or addressed by using information found in this document.

Compile: When you import DDL, table and view definition compilation is automatically performed. To compile other
TSQL source code, it is best to use the command as follows:

DO $SYSTEM.OBJ.CompileAll("-1')

The lowercase “L” qualifier flag specifies that locking is not applied for the duration of the compile. For a full list of
flag qualifiers, call DO $SYSTEM.OBJ.ShowFlags().

1.1.3 Migrating the Data

In the Management Portal select System Explorer, SQL, then select the Data Migration Wizard.

1.2TSQL Language Implementation

TSQL procedures are converted to Caché methods or queries with a Language type equal to TSQL. Use the following
command:

DO ##class(%TSQL.Manager).load(*'sybase",<filename>,<logname>)

When compiling TSQL methods, ObjectScript code is generated. There is no system-level support for native TSQL. It is
best to maintain the methods in TSQL to retain the familiar look of the original stored procedures.

Using TSQL in Studio

You can write and maintain TSQL stored procedures (SPs) in Studio. A TSQL SP can be either a class method or a
query. A class method takes parameters and returns a single scalar result, a query takes parameters and returns rows.
If you put plain SELECT statements into a class method they will be executed but you won't be able to get the rows.

Writing a TSQL class method

Create a class method stored procedure and enter the language as tsql. You can use the following template as a starting
point:

ClassMethod Example() As %Integer
[Language = tsql, ReturnResultSets, SqlName=name, SqlProc]

}

Using the TSQL Shell

Caché Transact-SQL (TSQL) Migration Guide

TSQL Language Implementation

A TSQL interpreter shell is useful for debugging and experimentation. See “Using the TSQL Shell” for more infor-
mation.

* Using the Caché SQL Shell

The Caché SQL Shell can be used to execute lines of TSQL code by setting the DIALECT parameter to Sybase or
MSSQL. You can execute a TSQL script file from the Caché SQL Shell by using the Shell’s RUN command, See
“Using the SQL Shell Interface™ in the Using Caché SQL manual.

e Using Dynamic SQL

Caché Dynamic SQL can be used to execute TSQL code queries and a limited subset of other DML and DDL statements.
In Dynamic SQL you set the %Dialect property to Sybase or MSSQL. See “Using Dynamic SQL” in the Using Caché
SQL manual.

e Using Triggers

You can write and maintain triggers, which are sets of instructions that appear in TSQL code and that are executed in
response to certain SQL events. See “Using Triggers” in the Using Caché SQL manual.

e TSQL Language Reference
Microsoft has good TSQL reference material at:

http://msdn.microsoft.com/en-us/library/bb545450.aspx

Caché Transact-SQL (TSQL) Migration Guide 5

http://msdn.microsoft.com/en-us/library/bb545450.aspx

Caché TSQL Constructs

2.1 Commonly Used Constructs

2.1.1Table References
Caché TSQL supports table references with the Caché SQL format:
schema.table

The only mandatory table reference component is table.

Other forms of Transact-SQL may use table references with up to four components, separated by dots. Here is how a
Transact-SQL table reference is processed:

» The server. prefix, if present, is ignored.
» The database. prefix, if present, is removed. Caché only supports one database name: 'master'.
e The user. prefix, if present, is mapped to the schema name.

For the purposes of name translation, a field name has the field suffix removed while translation is performed and then
replaced afterwards.

2.1.2 Temporary Tables

Caché TSQL supports #tablename temporary tables. A #tablename temporary table is visible to the current procedure
of the current process. It is also visible to any procedure called from the current procedure. #tablename syntax is only
supported in TSQL procedures (class methods projected as procedures with language tsql).

A temporary table is defined by using CREATE TABLE with a table name starting with "#". The temporary table is created
at runtime. A #tablename table definition goes out of scope when you exit the procedure. All temporary table definitions
go out of scope when the connection is dropped. You can also explicitly delete a temporary table using DROP TABLE.

However, if a temporary table is referenced by an active result set, the temporary table may become invisible to the process,
but the data and definition are retained until the result set goes out of scope.

A #tablename temporary table is visible both to the creating procedure and to any procedures called from that procedure.
Temporary tables are visible to nested procedure calls. It is not necessary to declare the temporary table in the called pro-
cedure. If the called procedure also creates a temporary table with the same name, Caché uses the most recently created

Caché Transact-SQL (TSQL) Migration Guide 7

Caché TSQL Constructs

table definition. Because a temporary table is defined using a Caché local variable, the creation, modification, and deletion
of these tables are not journaled transaction events; rolling back the transaction has no effect on these operations.

2.1.3 Transactions

Code generated for BEGIN TRAN, COMMIT and ROLLBACK uses explicit transaction mode, but following a transaction
TSQL always restores the mode which was active before the BEGIN TRAN statement. TSQL restores this mode when
the procedure is exited from, or when a COMMIT or ROLLBACK s issued, whichever comes first.

2.1.4 Cursor Name Management

You can declare the same cursor more than once, so long as only one version of the cursor is open at runtime. If the same
cursor is declared more than once in a stored procedure, all but the first declaration are associated with renamed cursors.
OPEN, FETCH, CLOSE, and DEALLOCATE statements are assumed to refer to the most recent DECLARE for the
given cursor. Note that the lexical position of a statement within a stored procedure is all that is used to match up a cursor
name with its DECLARE — no account is taken of runtime paths through the code.

Cursors inside queries are named using an extension of the scheme used in Caché SQL queries. For example:

DECLARE C CURSOR FOR SELECT A FROM B

OPEN C
FETCH C
CLOSE C
DEALLOCATE C

DECLARE C CURSOR FOR SELECT D FROM E

OPEN C
FETCH C
CLOSE C
DEALLOCATE C

Would be effectively translated to:

DECLARE C CURSOR FOR SELECT A FROM B

OPEN C
FETCH C
CLOSE C
DEALLOCATE C

DECLARE Cv2 CURSOR FOR SELECT D FROM E

OPEN Cv2
FETCH Cv2
CLOSE Cv2
DEALLOCATE Cv2

2.1.5 System Stored Procedures

sp_addtype
Supported, with the following limitations:

* No unquoted names. For example, you can't use EXEC sp_addtype ssn,.. — you must use EXEC
sp_addtype "ssn-”,...

* No spaces in physical type.
» Only the physical type is used for validation.

8 Caché Transact-SQL (TSQL) Migration Guide

Commonly Used Constructs

2.1.6 SystemTables
System tables exist per Caché namespace.

Systypes
Partially supported.

2.1.7 SYSOBJECTS References

Commonly, an application will have setup procedures that create tables, views, and the metadata for the application envi-
ronment. Such procedures will have expressions like:

IF EXISTS (SELECT * FROM SYSOBJECTS
WHERE 1D = OBJECT_ID("People®))

This determines if a table exists, in this example. 1t’s usually followed by a DROP and CREATE statement to reestablish the
table metadata.

TSQL procedures and triggers can reference the SYSOBJECTS system table. Caché TSQL supports the following columns
in the SYSOBJECTS table (%TSQL.sys.objects class properties):

name Object name.
id Object Id.
type Object type: can be one of the following values:

K=PRIMARY KEY or UNIQUE constraint; P=stored
procedure; RI=FOREIGN KEY constraint; S=system
table; TR=trigger; U=user table; V=view.

deltrig Object ID of a delete trigger if the entry is a table.
Table ID of a table if the entry is a trigger.

instrig Object ID of a table’s insert trigger if the entry is a
table.

updtrig Object ID of a table’s update trigger if the entry is a
table.

parent_obj Object identification number of parent object. For
example, the table ID if a trigger or constraint.

schema Name of the schema in which the object resides.

parent_obj name Object name of parent_obj. If parent_obj=0,

parent_obj_name is the same as name.
The SYSOBJECTS table is read-only. The SYSOBJECTS table may be referenced from outside a TSQL procedure or
trigger by the name %TSQL_sys.objects. SYSOBJECTS is not supported for tables mapped across namespaces.

Note: Caché proves the %Dictionary package of class objects that can perform the same operations as SYSOBJECTS
references. For further details, refer to the %Dictionary package in the InterSystems Class Reference.

Caché Transact-SQL (TSQL) Migration Guide 9

Cache TSQL Language Elements

This chapter describe the following TSQL language elements:
o Literals, Reserved Words, and Comments

* ldentifiers

e Data Types

» Arithmetic, Comparison, String, Logical, and Bitwise Operators

3.1 Literals

3.1.1 String Literals

A string literal must be delimited by quote characters. The preferred delimiter characters are single quote characters. You
can also use double quote characters as string delimiters if you specify SET DELIMITED_IDENTIFER OFF. Otherwise,
double quote characters are parsed as delimiting an identifier.

If you delimit a string literal with single quote characters, you can include literal double quote characters within the string.
To include a literal single quote character within the string, double it by typing two single quotes.

A string containing literal single quotes, such as "this is an ""embedded®" string", is compiled by Caché to
single quotes within double quotes: "this is an "embedded® string".

3.1.2 Empty Strings

When migrating Transact-SQL code to Caché TSQL, it may be necessary to redefine the empty string. You can do this by
setting the following Caché system global:

NSYS('sqllt, 'sys™, "namespace' ,nspace, "‘'empty string')
All of these specified values are keyword literals, except nspace, which is a namespace name specified as a quoted string.

CAUTION: Changing the empty string definition should be done with extreme caution. It can result in data containing
different representations for an empty string. It can also cause existing programs to fail when executed in
this namespace. After defining the empty string, you must purge all cached queries and recompile all classes
and routines for that namespace that use the former empty string definition.

Caché Transact-SQL (TSQL) Migration Guide 11

Caché TSQL Language Elements

The following ObjectScript example changes the empty string definition for the SAMPLES namespace. It first sets the
empty string value to a single blank space. It then sets the empty string value to the non-printing character represented by
the ASCII code 0. (This example then immediately resets the empty string value to the Caché default):

SET ~%SYS(*'sql',''sys", "'namespace’,''SAMPLES","empty string'")=" "

WRITE I,"Empty string set to:"

ZZDUMP ~%SYS(*'sql™,''sys",""namespace"’, SAMPLES "empty string')

SET A%SYS("sqI","sys","namespace",'SAMPLES empty string')= $CHAR(0)

WRITE I,"Empty string set to:"

ZZDUMP ~"%SYS(*'sql',''sys", "namespace",""SAMPLES","empty string')

SET ~SYS(*'sql',''sys", "namespace’,''SAMPLES",""empty string')=""

WRITE !,"Empty string reset to:"

ZZDUMP ~"%SYS(*'sql',''sys", "namespace",""SAMPLES","empty string')

WRITE I1,!1,"End of sample program"

3.1.3 NULL

In TSQL a NULL supplied to a boolean operation returns as FALSE, as shown in the following example:

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var PRINT '"true" ELSE PRINT "false"

In Sybase dialect, NULL is equal to NULL. A NULL=NULL comparison returns TRUE, and a NULL '= NULL comparison
returns FALSE.

In MSSQL dialect, a comparison of NULL with any value returns FALSE. Thus NULL=NULL and NULL != NULL
comparisons both return FALSE.

DECLARE @var BINARY(1)
SELECT @var=NULL
IF @var=NULL PRINT "true" ELSE PRINT "false"

In Sybase dialect, NULL is not equal to any value. Therefore, Not Equals (!=) comparison involving NULL and any boolean,
numeric, or string value (including the empty string (")) returns TRUE. All Equals (=), Greater Than (>) or Less Than (<)
comparisons return FALSE.

In MSSQL dialect, NULL cannot be compared to a value. Thus all Equals (=), Not Equals (1=), Greater Than (>) or Less
Than (<) comparisons return FALSE.

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0.

3.1.4 Hexadecimal

Caché TSQL automatically converts hexadecimal numeric literals in TSQL source code to the corresponding decimal (base-
10) numeric literals.

3.1.5 Reserved Words

Caché TSQL cannot use as identifiers the SQL Server reserved words. Caché TSQL can use Caché SQL reserved words
(that are not also SQL Server reserved words) if the QUOTED_IDENTIFIER SQL configuration setting is set to Yes.

3.1.6 Comments, Blank Lines, and Semicolons

Caché TSQL supports both single-line and multi-line comments.

e Asingle line comment continues to the rest of the line. When used in the TSQL shell, a comment does not encompass
the end-of-line qualifier, such as /x or /c. Caché TSQL supports both — and // as single-line comment delimiters.

e A multi-line comment begins with /* and ends with */. A comment can include nested /* ... */ comments.

12 Caché Transact-SQL (TSQL) Migration Guide

Identifiers

PRINT “"these are comments”

-- this is a single-line comment

// this is a single-line comment

/* This is a multi-line comment

The command

PRINT "do not print*

is part of the comment and is not executed */

3.1.6.1 TSQL-only Statements

Caché TSQL provides the means to include executable statements within Caché TSQL code which are parsed as nonexecutable
comments in Transact-SQL. A statement prefixed with two hyphens and a vertical bar is parsed by Caché as an executable
statement. Sybase Adaptive Server and Microsoft SQL Server consider this to be a Transact-SQL comment.

PRINT "any context”
-- PRINT "commented out®
--] PRINT "InterSystems only*

3.1.6.2 Semicolons
You can specify a blank line by using either two hyphens or a semicolon.

A semicolon either before or after a TSQL statement is ignored. They are supported for compatibility with Transact-SQL
code, such as stored procedures, that ends statements with a semicolon.

PRINT "no semicolon*

PRINT "trailing semicolon”;

;PRINT “leading semicolon”

3.2 ldentifiers

An identifier is a name for a TSQL object, such as a table, column, view, key, index, trigger, or stored procedure. Naming
conventions for identifiers are as follows:

» The first character of an identifier must be a letter, an underscore () or a percent (%) character.

» Subsequent characters of an identifier may be letters, numbers, underscores (_), dollar signs ($), or pound signs (#).
» ldentifiers can be of any length, but must be unique within their first 30 characters.

» Identifiers are not case-sensitive.

e Anidentifier cannot be an SQL reserved word.

* A pound sign (#) prefix to an identifier specifies that it is the name of a temporary table.

* Anatsign (@) prefix to an identifier specifies that it is the name of a variable.

Some identifiers are qualified with a schema name. For example, schema.tablename or schema.storedprocedure. If the

schema name is omitted, the identifier is unqualified. TSQL resolves unqualified identifiers by using the schemaPath
property, which provides a search path of schemas to check for the specified table name or stored procedure name.

3.2.1 Delimited and Quoted Identifiers

A delimited identifier is not restricted by the naming conventions of ordinary identifiers. For example, a delimited identifier
can be the same word as an SQL reserved word; a delimited identifier can contain space characters.

Caché Transact-SQL (TSQL) Migration Guide 13

Caché TSQL Language Elements

By default, both square brackets and double quotation marks can be used to delimit an identifier. These delimiters are
interchangeable; you can define a delimited identifier by enclosing it with square brackets, and invoke the same delimited
identifier by specifying it enclosed with double quotation marks.

You can specify a quoted identifier if the QUOTED_IDENTIFIER SQL configuration setting is set to Yes. You specify a
quoted identifier by enclosing it in double quotation marks. When QUOTED_IDENTIFIER is on, double quotes are parsed
as delimiting an identifier. When QUOTED _IDENTIFIER is off, double quotes are parsed as alternative delimiters for
string literals. The preferable delimiters for string literals are single quotes. A quoted identifier can contain any characters,
including blank spaces.

3.3 Data Types

The following data types are supported for local variables and table columns. These data types are supported in that they
are parsed as valid data types; however, no range or value validation is performed.

BINARY(n) and VARBINARY (n). The (n) size specification is mandatory.

BIT

BOOLEAN

CHAR and VARCHAR

CHAR(n), NCHAR(n), VARCHAR(n), and NVARCHAR(n)

VARCHAR(MAX), and NVARCHAR(MAX). By default, these map to %Stream.GlobalCharacter.
DATETIME and SMALLDATETIME

DECIMAL, DECIMAL (p), and DECIMAL(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

DOUBLE and DOUBLE PRECISION
FLOAT and FLOAT(n)

INT, BIGINT, SMALLINT, and TINYINT
MONEY and SMALLMONEY
NATIONAL

NUMERIC, NUMERIC(p), and NUMERIC(p,s). Where p and s are integers specifying precision (total digits) and scale
(decimal digits).

REAL
TIMESTAMP

Note: The Microsoft SQL Server TIMESTAMP data type is not used for date or time information. It is an integer counter
of the number of times a record is inserted or updated in a table. It should not be confused with the Caché SQL
and ODBC TIMESTAMP data type, which represents a date and time in YYYY-MM-DD HH:MM:SS.nnnnnnnnn
format. In TSQL, use DATETIME and SMALLDATETIME for date and time values.

ROWVERSION

SQL_VARIANT

The following SQL Server data types are supported in a specific context:

CURSOR

14 Caché Transact-SQL (TSQL) Migration Guide

Operators

NTEXT, TEXT By default, these map to %Stream.GlobalCharacter.
IMAGE

TABLE

The following are not implemented:

* UNIQUEIDENTIFIER stored as a 16-byte binary string. Instead use VARCHAR(32) as the data type for a globally
unique 1D.

e SQL92 and TSQL options
e UPDATE OF

3.4 Operators

3.4.1 Arithmetic and Equality Operators

Caché TSQL supports + (addition), — (subtraction), * multiplication, / division, and % modulo arithmetic operators.
Caché TSQL supports the following equality and comparison operators:

* =(equal to)

» <> (notequal to) and !'= (not equal to)

e < (less than), I< (not less than), <= (less than or equal to)

e > (greater than), !> (not greater than), >= (greater than or equal to)

When performing equality comparisons (= or <>) between date values with different data types, all date and time values

are compared using the TIMESTAMP data type. Thus two dates in different formats can be meaningfully compared. A
date value declared as a STRING data type can be compared to a date value declared as a DATETIME data type.

3.4.2 Concatenation Operator

Caché TSQL supports the + (plus sign) as both a concatenation operator and the addition operator. The plus sign functions
as a concatenation operator with strings. You can concatenate several strings together using this operator. If all item are
strings, TSQL performs concatenation; however, if one of the items is a number, TSQL performs addition, treating non-
numeric strings as 0.

‘world'+'wide'+'web' concatenates to ‘worldwideweb'
‘world'+'33'+'web' concatenates to ‘world33web'
‘world'+33+'web’ performs addition (0+33+0=33)

In a TSQL string concatenation operation, NULL is equivalent to an empty string. In a TSQL arithmetic operation, NULL
is equivalent to 0. Note that because the plus sign (+) is used for both concatenation and addition, the data type declaration
of the NULL variable is critical. The following examples all return “bigdeal”:

DECLARE @varl BINARY(1)
DECLARE @var2 VARCHAR(10)
SELECT @varl=NULL,@var2=NULL
PRINT "big"+NULL+"deal™
PRINT "big"+@varil+"deal"
PRINT "big"+@var2+"deal™

Caché Transact-SQL (TSQL) Migration Guide 15

Caché TSQL Language Elements

The following example returns 0; it treats the + as an arithmetic operator and interprets the argumentas0+0+ 0=0:

DECLARE @varl INT
SELECT @varl=NULL
PRINT "big"+@varl+'deal™

Caché TSQL also supports || as a concatenation operator.
3.4.3 Comparison Operators

3.4.3.1 BETWEEN

Caché TSQL supports the BETWEEN range check operator of the form: BETWEEN numl AND num2. BETWEEN is
inclusive of the specified range limits.

3.4.3.2 1S NULL

Caché TSQL supports the IS NULL match operator. A variable is NULL if it has been declared but not assigned a value,
or if it has been explicitly specified as NULL. The empty string is not NULL.

3.4.3.3 LIKE

Caché TSQL supports the LIKE pattern match operator. LIKE performs not case-sensitive matching of letters. Caché TSQL
also supports NOT LIKE.

3.4.4 NOT Logical Operator

The NOT logical operator inverts the truth value of the statement that follows it. For example, IF NOT EXISTS(...).
NOT is not case-sensitive.

3.4.5 Bitwise Logical Operators

Caché TSQL supports the AND (&), OR (), XOR (*), and NOT (~) bitwise operators for the integer data type. The decimal
integers are converted to binary, the logical operation is performed, and the resulting binary is converted to a decimal
integer value. The NOT (~) operator is a unary operator that inverts bits.

16 Caché Transact-SQL (TSQL) Migration Guide

TSQL Commands

This chapter lists the supported TSQL commands in the following groups:
» Data Definition Language (DDL) statements

e Data Management Language (DML) statements

e Query statements

* Flow of control statements

e Assignment statements

» Transaction statements

» Procedure statements

e Other statements

e Caché extensions

4.1 Data Definition Language (DDL) Statements

The following DDL statements are supported.

4.1.1 CREATETABLE

The CREATE TABLE statement defines a table, its fields, and their data types and constraints.
CREATE TABLE [schema. | #]tablename (Ffieldname datattype constraint [,-..])

A CREATE TABLE can create a temporary table by prefixing a # character to the table name. A temporary table can only
be defined from a stored procedure; you cannot define a temporary table from Dynamic SQL outside of a stored procedure.
To create a fully-qualified temporary table name, use quotes around each name element such as the following:
"SQLUser™ . ""#mytemp™.

A valid table name must begin with a letter, an underscore character (), or a # character (for a local temporary table).
Subsequent characters of a table name may be letters, numbers, or the #, $, or _ characters. Table names are not case-sensitive.

A field name must be a valid TSQL identifier. A field name can be delimited using square brackets. This is especially
useful when defining a field that has the same name as a reserved word. The following example defines two fields named
Check and Result:

Caché Transact-SQL (TSQL) Migration Guide 17

TSQL Commands

CREATE TABLE mytest ([Check] VARCHAR(50),[Result] VARCHAR(5))

The optional CONSTRAINT keyword can be used to specify a user-defined constraint name for a column constraint or a
table constraint. You can specify multiple CONSTRAINT name type statements for a column.

Caché SQL does not retain constraint names. Therefore these names cannot be used by a subsequent ALTER TABLE
statement.

The table column constraints DEFAULT, IDENTITY, NULL, NOT NULL, PRIMARY KEY, [FOREIGN KEY] REFER-
ENCES (the keywords FOREIGN KEY are optional), UNIQUE, CLUSTERED, and NONCLUSTERED are supported.
The table constraint FOREIGN KEY REFERENCES is supported.

The column definition DEFAULT values can include the following TSQL functions: CURRENT_TIMESTAMP, CUR-
RENT_USER, GETDATE, HOST_NAME, ISNULL, NULLIF, and USER.

The column definition IDENTITY constraint is supported and assigned a system-generated sequential integer. The IDENTITY
arguments seed and increment are parsed, but ignored.

The table constraint clauses WITH, ON, and TEXTIMAGE ON are parsed for compatibility, but are ignored. The <index
options> clause for the UNIQUE or PRIMARY KEY constraint is parsed for compatibility, but is ignored.

The following SQL Server parenthesized WITH options in a table constraint are parsed but ignored:
ALLOW_PAGE_LOCKS, ALLOW_ROW_LOCKS, DATA_COMPRESSION, FILLFACTOR, IGNORE_DUP_KEY,
PAD_INDEX, and STATISTICS_NORECOMPUTE.

The column constraints CLUSTERED and NONCLUSTERED are parsed for compatibility, but are ignored.

The CHECK column constraint is not supported. If a CHECK constraint is encountered while compiling TSQL source
Caché generates an error message indicating that CHECK constraints are not supported. This error is logged in the compile
log (if active), and the source is placed in the unsupported log (if active).

If the table already exists, an SQLCODE -201 error is issued.

The following Dynamic SQL example creates a temporary table named #mytest with four fields, populates it with data,
then displays the results. The LastName field has multiple constraints. The FirstName field takes a default. The DateStamp
field takes a system-defined default:

SET sql=9

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql(2):"LastName VARCHAR(20) CONSTRAINT unqg_ Iname UNIQUE ™

SET sql(3)=" CONSTRAINT nonull_Iname NOT NULL,®

SET sql(4)="FirstName VARCHAR(20) DEFAULT '***TBD***' "

SET sql(5)="DateStamp DATETIME DEFAULT CURRENT TIMESTAMP)

SET sql(6)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224 “Smith®,"John")"
SET sql (7)="INSERT INTO #mytest(Myld, LastName) VALUES (1225, "Jones™)"
SET sql(8)=""SELECT Myld,FirstName,LastName,DateStamp FROM #mytest"
SET sql(9)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

WRITE status,!

SET result=statement.%Execute()

DO result.%Display()

4.1.2 ALTERTABLE

The ALTER TABLE statement allows you to modify the definition of a table, its fields, and their data types and constraints.

18 Caché Transact-SQL (TSQL) Migration Guide

Data Definition Language (DDL) Statements

The following syntactical forms are supported:

ALTER
NULL}
ALTER
ALTER
ALTER
ALTER
ALTER
ALTER TABLE
ALTER TABLE
<colname>

ALTER TABLE
ALTER TABLE
ALTER TABLE

TABLE
TABLE
TABLE
TABLE
TABLE

<tablename>
<tablename>
<tablename>
<tablename>
<tablename>
<tablename>
<tablename>

<tablename>
<tablename>
<tablename>

TABLE <tablename> ADD <colname> <datatype> [DEFAULT <value>] [{UNIQUE | NOT
| CONSTRAINT <constraintname> {UNIQUE | NOT NULL} 1]

ALTER COLUMN <colname> <newdatatype>

REPLACE <colname> DEFAULT { <constant> | USER | NULL }
DROP COLUMN <colname>

ADD <tableconstraint> FOR <colname>

DROP <tableconstraint>

DROP FOREIGN KEY <role>

ADD CONSTRAINT <constraint> DEFAULT <defaultvalue> FOR

ADD CONSTRAINT <constraint> FOREIGN KEY
DROP CONSTRAINT <constraint>
DISABLE

ALTER TABLE...ADD can only specify the NOT NULL constraint if it also specifies a DEFAULT value. The full supported
syntax for ALTER TABLE...ADD is as follows:

ALTER TABLE <tablename>
[WITH CHECK | WITH NOCHECK 7]
ADD <colname> <datatype> [DEFAULT <value>] [{UNIQUE | NOT NULL}] CONSTRAINT
<constraintname> {UNIQUE | NOT NULL}]
[FOREIGN KEY (coll[,col2[,...] m 1

D
REFERENCES table(coll[,col2[, ..
WITH CHECK |WITH NOCHECK is parsed by Caché, but is ignored. In Transact-SQL, WITH CHECK | WITH NOCHECK
provides an execution time check of existing data for a new or newly enabled constraint. Caché TSQL does not specifically
support that, although Caché SQL will check existing data against a new constraint.

ALTER TABLE...ADD CONSTRAINT...DEFAULT syntax does not create a column constraint. Instead, it performs
the equivalent of an ALTER TABLE...ALTER COLUMN...DEFAULT statement. This means that Caché establishes
the specified column default as the field property’s initialexpression. Because no column constraint is defined, this “constraint”
cannot be subsequently dropped or changed.

CHECK | NOCHECK CONSTRAINT is not supported by Caché TSQL. Specifying this CHECK or NOCHECK keyword
generates an error message.

ALTER TABLE...DROP COLUMN: the keyword DELETE is a synonym for the keyword DROP.

4.1.3 DROP TABLE

Deletes a table definition.
DROP TABLE [IF EXISTS] tablename [,tablename2 [,...] 1]

Deletes a table definition. You can delete a single table or a comma-separated list of tables. You can delete both regular
tables and temporary tables. (Temporary table names begin with a '#' character.) DROP TABLE ignores a nonexistent
temporary table name and completes without error.

The optional IF EXISTS clause suppresses errors if you specify a non-existent tablename that is not a temporary table.

4.1.4 CREATE INDEX
Creates an index for a specified table or view.
CREATE INDEX indexname ON tablename(Ffieldname)

You can create an index on the IDKEY (which is treated as a clustered index), on an IDENTITY column (which create an
index on the %%ID column), on the Primary Key, or on other columns.

Caché Transact-SQL (TSQL) Migration Guide 19

TSQL Commands

The following Transact-SQL features are parsed, but ignored:

* The CLUSTERED/NONCLUSTERED keywords. Other than the IDKEY, which is implicitly treated as a clustered
index, Caché TSQL does not support clustered indexes.

» The ASC/DESC keywords.
e The INCLUDE clause.

e AllWITH clause index options. The comma-separated list of WITH clause options can optionally be enclosed in
parentheses, and can include flag options set =ON or =OFF.

» The ON filegroup or IN dbspace-name clause.

The following Transact-SQL features are not currently supported:
» The DATA clause.
* The VIRTUAL keyword.

e Using a function name as an alternative to a column name.

4.1.5 DROP INDEX

Deletes an index definition. You can delete a single index or a comma-separated list of indices, using either of the following
syntax forms:

DROP INDEX table.index [,table.index]
DROP INDEX index ON table [WITH (-.-..)] [,index ON table [WITH (-..)]1 1

Where table is the name of the table containing the indexed field, and index is the name of the index.

The WITH (...) clause, with any value within the parentheses, is accepted by syntax checking for compatibility, but is not
validated and performs no operation.

4.1.6 CREATE TRIGGER

Creates a statement-level trigger.

CREATE TRIGGER trigger_name {BEFORE | AFTER}
{INSERT | DELETE | UPDATE [OF colil[,col2[,---111}
[ORDER integer]
ON table-name
[REFERENCING OLD [ROW] [AS] name |
NEW [ROW] [AS] name |
OLD TABLE [AS] identifier |
NEW TABLE [AS] identifier][,---]
[FOR EACH {ROW | STATEMENT}]
[WHEN (condition)]
[LANGUAGE {TSQL] SQL JOBJECTSCRIPT}]
triggered statement
[WITH EXECUTE]

Caché TSQL does not support row-level triggers.

Caché TSQL supports BEFORE triggers. This is a Caché-specific extension to TSQL which is not provided in Transact-
SQL software from other vendors.

20 Caché Transact-SQL (TSQL) Migration Guide

Data Definition Language (DDL) Statements

4.1.7 DROP TRIGGER

Deletes a trigger definition. You can delete a single trigger or a comma-separated list of triggers.

4.1.8 CREATE VIEW

CREATE VIEW [owner.]view_name [(colnamel [,colname2 [,..-111
[WITH ENCRYPTION | SCHEMABINDING | VIEW_METADATA]
AS select_statement
[WITH CHECK OPTION]

Aview_name must be a unique TSQL identifier. If the view already exists, an SQLCODE -201 error is issued. A view_name
can be a delimited identifier. For example, CREATE VIEW "Name/Age View"

There are two ways to specify the names of the view columns:

* You can use the optional colname comma-separated list to specify view column names for the corresponding table
columns returned by the SELECT statement.

CREATE VIEW NameAgeV (FulIName,Years)
AS SELECT Name,Age FROM Sample.Person

e You can specify column aliases in the SELECT statement, and these aliases are used as the view column names.

CREATE VIEW NameAgeV
AS SELECT Name AS FullName,Age AS Years FROM Sample.Person

If neither is specified, the table column names are used as the view column names.
The WITH ENCRYPTION, SCHEMABINDING, and VIEW_METADATA keywords are ignored.

The select_statement can only include an ORDER BY clause if this clause is paired with a TOP clause. If you wish to
include all of the rows in the view, you can pair an ORDER BY clause with a TOP ALL clause. You can include a TOP
clause without an ORDER BY clause. However, if you include an ORDER BY clause without a TOP clause, an SQLCODE
-143 error is generated.

The select_statement can contain a UNION or UNION ALL.

The optional WITH CHECK OPTION clause prevents an update through the view that makes the record inaccessible to
that view. It does this by checking the WITH clause in the SELECT statement. WITH CHECK OPTION binds to Caché
SQL using the default of CASCADE.

4.1.9 DROP VIEW

Deletes a view definition. You can delete a single view, or a comma-separated list of views. DROP VIEW is not an all-
or-nothing operation. It deletes existing views from the list of views, and ignores nonexistent views in the list of views.

4.1.10 CREATE DATABASE

CREATE DATABASE syntax is parsed to provide compatibility with MSSQL. No functionality is provided.

The MSSQL attach a database and create a database snapshot syntax options are not supported.

4.1.11 DROP DATABASE

DROP DATABASE syntax is parsed to provide compatibility with MSSQL. No functionality is provided.

Caché Transact-SQL (TSQL) Migration Guide 21

TSQL Commands

4.2 Data Management Language (DML) Statements

e TSQL can resolve an unqualified table name using a schema search path for a single DML statement in Dynamic SQL.

e TSQL cannot resolve an unqualified table name using a schema search path for multiple DML statements in Dynamic
SQL. This includes multiple statements such as an explicit BEGIN TRANSACTION followed by a single DML
statement.

4.2.1 DELETE

Deletes rows of data from a table. Both DELETE and DELETE FROM are supported. Most other options are supported,
with the following exceptions:

* FROM table hints

» rowset functions

* OPTION clause

* join hints

» only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries)

e primary table hints

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,

and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

DELETE sets the @@ROWCOUNT system variable to the number of rows deleted, and the @ @IDENTITY system
variable to the IDENTITY value of the last row deleted.

4.2.2 INSERT

Inserts rows of data into a table. The following MSSQL syntactic forms are supported:

INSERT column VALUES list_of values
INSERT column SELECT select_statement

The corresponding Sybase list_of values and SELECT syntactic forms are supported. (Sybase does not use the VALUES
keyword.)

Most options are supported, with the following exceptions:

* EXECUTE as a value clause

» rowset functions

* DEFAULT VALUES

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

22 Caché Transact-SQL (TSQL) Migration Guide

Data Management Language (DML) Statements

INSERT sets the @ @ROWCOUNT system variable to the number of rows inserted, and the @@IDENTITY system
variable to the IDENTITY value of the last row inserted.

4.2.3 UPDATE

Updates values of existing rows of data in a table.

UPDATE tablename SET fieldname=value[,fieldname2=value2[, .. .11
WHERE [tablename.]fieldname=value

Most UPDATE options are supported, with the following exceptions:

e rowset

e OPTION

» only very simple theta joins are supported (the FROM table clause is transformed into nested subqueries)

e table hints

UPDATE supports the use of a local variable on the left-hand-side of a SET clause. This local variable can be either instead
of a column name or in addition to a column name. The following example shows a SET to a column name, a SET to a
local variable, and a SET to both a column name and a local variable:

UPDATE table SET x=3,@v=b,@c=Count=Count+1

If a local variable is specified on the left-hand-side of a SET, the right-hand-side cannot be DEFAULT.

The following table_hints are parsed but ignored: FASTFIRSTROW, HOLDINDEX, INDEX(name), NOLOCK, PAGLOCK,
READCOMMITTED, READPAST, READUNCOMMITTED, REPEATABLEREAD, ROWLOCK, SERIALIZABLE,
SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK. Table hints can be optionally preceded by the WITH keyword,
and, if WITH is specified, optionally enclosed in parentheses. A list of table hints can be separated by either commas or
blank spaces.

UPDATE sets the @ @ROWCOUNT system variable to the number of rows updated, and the @ @IDENTITY system
variable to the IDENTITY value of the last row updated.

The following Dynamic SQL example shows a simple UPDATE operation:

SET sql=9

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql(2)="LastName VARCHAR(20) CONSTRAINT nonull_lIname NOT NULL,"

SET sql(3)="FirstName VARCHAR(20) DEFAULT "***TBD***")"

SET sql(4)=""INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224,"Smith*",*John®)"
SET sql(5)="INSERT INTO #mytest(Myld,LastName) VALUES (1225, "Jones")"

SET sql(6)="INSERT INTO #mytest(Myld,LastName) VALUES (1226, "Brown")"

SET sqgl (7)="UPDATE #mytest SET FirstName="Fred" WHERE #mytest.LastName="Jones""
SET sql(8)="SELECT FirstName,LastName FROM #mytest ORDER BY LastName"

SET sql(9)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

WRITE status,!

SET result=statement.%Execute()

DO result.%Display()

4.2.4 READTEXT, UDATETEXT, WRITETEXT

READTEXT returns stream data from a column of a table. It requires a valid text pointer value, which can be retrieved
using the TEXTPTR function.

UPDATETEXT updates stream data from a column of a table. It requires a valid text pointer value, which can be retrieved
using the TEXTPTR function.

Caché Transact-SQL (TSQL) Migration Guide 23

TSQL Commands

WRITETEXT writes data to a stream column of a table. It requires a valid text pointer value, which can be retrieved using
the TEXTPTR function.

4.2.5TRUNCATE TABLE

TRUNCATE TABLE tablename

Deletes all rows from the specified table. Supported to the extent that it is a synonym for DELETE FROM table with no
WHERE clause. However, TRUNCATE TABLE does not reset the Rowld (ID), IDENTITY, or SERIAL (%Counter)
row counters. The InterSystems SQL TRUNCATE TABLE command does reset these counters.

4.3 Query Statements

4.3.1 SELECT

SELECT [DISTINCT | ALL]
[ToP [A{ int | @var | ? | ALL}DI]

select-item {, select-itent

[INTO #temptable]

[FROM table [[AS] t-alias] [,table2 [[AS] t-alias2]]]
[[WITH] [tablehint=val [,tablehint=val] D]]
[WHERE condition-expression]

[GROUP BY scalar-expression]

[HAVING condition-expression]

[ORDER BY item-order-list [ASC | DESC] 1

The above SELECT syntax is supported. The following features are not supported:
e TOP nn PERCENT or TOP WITH TIES

e OPTION

 WITH CUBE

e WITH ROLLUP

e GROUP BY ALL

e GROUP WITH

e COMPUTE clause

* FOR BROWSE

TOP nn specifies the number of rows to retrieve. Caché TSQL supports TOP nn with a integer, ?, local variable, or the
keyword ALL. The TOP argument can be enclosed in parentheses TOP (nn). These parentheses are retained, preventing
preparser substitution. If SET ROWCOUNT specifies fewer rows than TOP nn, the SET ROWCOUNT value is used. The
following Dynamic SQL example shows the use of TOP with a local variable:

SET sqgl=3

SET sql (1)="DECLARE @var INT"

SET sql (2)="SET @var=4"

SET sql(3)=""SELECT TOP @var Name,Age FROM Sample.Person™
SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

24 Caché Transact-SQL (TSQL) Migration Guide

Query Statements

The select-item list can contain the following:

field names, functions, and expressions

the SIDENTITY pseudo-column name, which always returns the RowID value, regardless of the field name assigned
to the RowID.

an asterisk: SELECT * is supported. The asterisk means to select all columns in the specified table. You can qualify
the asterisk with the table name or table alias: SELECT mytable.*.

a subquery

stream fields. A SELECT on a stream field returns the oref (object reference) of the opened stream object.

An INTO clause can be used to select values into a table. This table can be a permanent table, or a temporary table, as
shown in the following example:

SELECT name,age INTO #MyTemp FROM Sample.Person
SELECT name,age FROM #MyTemp WHERE name LIKE "[A-D]%"

If the INTO table does not already exist, SELECT creates it.

An INTO clause cannot be used when the SELECT is a subquery or is part of a UNION.

The FROM clause is not required. A SELECT without a FROM clause can be used to assign a value to a local variable,
as follows:

DECLARE @myvar INT
SELECT @myvar=1234
PRINT @myvar

The FROM clause supports table hints with either of the following syntactic forms:

FROM tablename (INDEX=indexname)
FROM tablename INDEX (indexname)

Table hints can be optionally preceded by the WITH keyword, and optionally enclosed in parentheses. A list of table hints
can be separated by either commas or blank spaces. The following table hints are parsed but ignored: FASTFIRSTROW,
HOLDINDEX, NOLOCK, PAGLOCK, READCOMMITTED, READPAST, READUNCOMMITTED, REPEAT-
ABLEREAD, ROWLOCK, SERIALIZABLE, SHARED, TABLOCK, TABLOCKX, UPDLOCK, XLOCK.

A WHERE clause can use AND, OR, and NOT logic keywords. It can group multiple search conditions using parentheses.
The WHERE clause supports the following search conditions:

Equality comparisons: = (equals), <> (not equals), < (less than). > (greater than), <= (less than or equals), >= (greater
than or equals)

IS NULL and IS NOT NULL comparisons

BETWEEN comparisons: Age BETWEEN 21 AND 65 (inclusive of 21 and 65); Age NOT BETWEEN 21 AND 65
(exclusive of 21 and 65). BETWEEN is commonly used for a range of numeric values, which collate in numeric order.
However, BETWEEN can be used for a collation sequence range of values of any data type. It uses the same collation
type as the column it is matching against. By default, string data types collate as not case-sensitive.

IN comparisons: Home_State IN ("MA",*RI1","CT")

LIKE and NOT LIKE comparisons, specified as a quoted string. The comparison string can contain wildcards: _ (any
single character); % (any string); [abc] (any value in the set specified as a list of items); [a-c] (any value in the set
specified as a range of items). Caché TSQL does not support the ~ wildcard. A LIKE comparison can include an
ESCAPE clause, such as the following: WHERE CategoryName NOT LIKE *D_%" ESCAPE ="\".

EXISTS comparison check: used with a subquery to test whether the subquery evaluates to the empty set. For example
SELECT Name FROM Sample.Person WHERE EXISTS (SELECT LastName FROM Sample.Employee

Caché Transact-SQL (TSQL) Migration Guide 25

TSQL Commands

WHERE LastName="Smith"). In this example, all Names are returned from Sample.Person if a record with Last-
Name="'Smith' exists in Sample.Employee. Otherwise, no records are returned from Sample.Person.

* ANY and ALL comparison check: used with a subquery and an equality comparison operator. The SOME keyword
is a synonym for ANY.

WHERE clause and HAVING clause comparisons are not case-sensitive.

A HAVING clause can be specified after a GROUP BY clause. The HAVING clause is like a WHERE clause that can
operate on groups, rather than on the full data set. HAVING and WHERE use the same comparisons. This is shown in the
following example:

SELECT Home_State, MIN(Age) AS Youngest,
AVG(Age) AS AvgAge, MAX(Age) AS Oldest
FROM Sample.Person
GROUP BY Home_State
HAVING Age < 21
ORDER BY Youngest

The following Dynamic SQL example selects table data into a result set:

SET sql=7

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql (2)="LastName VARCHAR(20),"

SET sql(3)="FirstName VARCHAR(20))"

SET sql (4)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224, "Smith","John")"
SET sql(5)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1225, "Jones”, "Wilber®)"
SET sql(6)=""SELECT FirstName,LastName FROM #mytest"

SET sql(7)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The following Dynamic SQL example selects a single column value into a local variable:

SET sql=9

SET sql (1)=""CREATE TABLE #mytest (Myld INT PRIMARY KEY,"

SET sql(2)="LastName VARCHAR(20),"

SET sql(3)="FirstName VARCHAR(20))"

SET sql (4)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1224, "Smith","John")"
SET sql(5)="INSERT INTO #mytest(Myld,LastName,FirstName) VALUES (1225, "Jones”, "Wilber®)"
SET sql(6)="DECLARE @nam VARCHAR(20)"

SET sql (7)="SELECT @nam=LastName FROM #mytest"

SET sql(8)="PRINT @nam"

SET sql(9)=""DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect=""MSSQL""

SET status=statement.%Prepare(.sql)

DO statement.%Execute()

An ORDER BY clause can specify ascending (ASC) or descending (DESC) order. The default is ascending. Unlike Caché
SQL, an ORDER BY may be used in subqueries and in queries that appear in expressions. For example:

SET @var = (SELECT TOP 1 name FROM mytable ORDER BY name)

4.3.2 JOIN

JOIN (equivalent to INNER JOIN), INNER JOIN, and LEFT JOIN supported. Parentheses can be used to rationalize
parsing of multiple joins.

26 Caché Transact-SQL (TSQL) Migration Guide

Flow of Control Statements

Note: Caché TSQL uses the following symbolic representations for outer joins:

=* |eft Outer Join
*= Right Outer Join

These correspond to Caché SQL usage. They are the exact opposite of the SQL Server and Sybase join syntax
(where =* is a Right Outer Join). It is strongly recommended that you represent outer joins using ANSI standard
keyword syntax, rather than this symbolic syntax.

4.3.3 UNION

A union of two (or more) SELECT statements is supported. Caché TSQL supports UNION and UNION ALL. If you
specify UNION ALL, only the first SELECT can specify an INTO table. This INTO table can be a defined table, or a
temporary table generated from the SELECT column list.

4.3.4 FETCH Cursor

The OPEN, FETCH, CLOSE, and DEALLOCATE commands are mainly supported. The following features are not
supported:

e OPEN/FETCH/CLOSE @local
» FETCH followed by any qualifier other than NEXT (the qualifier can be omitted).
* Note that DEALLOCATE is supported, but that, by design, it generates no code.

4.3.5 UPDATE STATISTICS

Optimizes query access for a specified table. Caché passes the specified table name argument to the
$SYSTEM.SQL.TuneTable() method for optimization. UPDATE STATISTICS calls $SYSTEM.SQL.TuneTable() with
update=1 and display=0. The returned %msg is ignored and KeepClassUpToDate defaults to 'false’. All other UPDATE
STATISTICS syntax is parsed for compatibility only and ignored. In a batch or stored procedure, only the first UPDATE
STATISTICS statement for a given table generates a call to $SYSTEM.SQL.TuneTable().

4.4 Flow of Control Statements

44.11F

The IF command is supported with four syntactic forms:

Caché Transact-SQL (TSQL) Migration Guide 27

TSQL Commands

IF...ELSE syntax:

IF condition
statement
[ELSE statement]

IF..THEN...ELSE single-line syntax:
IF condition THEN statement [ELSE statement]
ELSEIF...END IF syntax:

IF condition THEN

statements

{ELSEIF condition THEN statements}
[ELSE statements]

END IF

ELSE IF (SQL Anywhere) syntax:

IF condition THEN statement
{ELSE IF condition THEN statement}
[ELSE statement]

The first syntactic form is the TSQL standard format. No THEN keyword is used. You may use white space and line breaks
freely. To specify more than one statement in a clause you must use BEGIN and END keywords to demarcate the block of
statements. The ELSE clause is optional. This syntax is shown in the following example:

SET sql=4

SET sql (1)="DECLARE @var INT"

SET sql(2)="SET @var=RANDQ)"

SET sql(3)="IF @var<.5 PRINT "The Oracle says No""
SET sql (4)="ELSE PRINT "The Oracle says Yes®™ "

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

The second syntactic form is single-line syntax. The THEN keyword is required. A line break restriction requires that 1F
condition THEN statement all be on the same line, though only the first keyword of the statement must be on that
line. Otherwise, you may use white space and line breaks freely. To specify more than one statement in a clause you must
use BEGIN and END keywords to demarcate the block of statements. The ELSE clause is optional. This syntax is shown
in the following example:

SET sqgl=3

SET sql (1)="DECLARE @var INT

SET sql(2)="SET @var=RAND() "

SET sql(3)="IF @var<.5 THEN PRINT "No" ELSE PRINT "Yes"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()
DO result.%Display()

The third syntactic form provides an ELSEIF clause. You can specify zero, one, or more than one ELSEIF clauses, each
with its own condition test. Within an IF, ELSEIF, or ELSE clause you can specify multiple statements. BEGIN and END
keywords are permitted but not required. A line break restriction requires a line break between IF condition THEN
and the first statement. Otherwise, you may use white space and line breaks freely. The ELSE clause is optional. The END
IF keyword clause is required. This syntax is shown in the following example:

28 Caché Transact-SQL (TSQL) Migration Guide

Flow of Control Statements

SET sql=14

SET sql (1)="DECLARE @var INT **

SET sql (2)="SET @var=RAND() "'

SET sql(3)="IF @var<.2 THEN "

SET sql(4)="PRINT "The Oracle® ™

SET sql(5)="PRINT "says No" "

SET sql(6)="ELSEIF @var<.4 THEN "

SET sqgl(7)="PRINT "The Oracle® ™

SET sql(8)="PRINT "says Possibly® "
SET sql(9)="ELSEIF @var<.6 THEN "

SET sql(10)="PRINT "The Oracle® **

SET sql(11)="PRINT "says Probably® "
SET sql (12)="ELSE PRINT "The Oracle™ "
SET sgl(13)="PRINT "says Yes®™ ™

SET sql(14)="END IF"

SET statement=##class(%SQL.Statement) .%New()
SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)
SET result=statement.%Execute()

DO result.%Display()

The fourth syntactic form is compatible with SQL Anywhere. It provides an ELSE IF clause (note space between keywords).
You can specify zero, one, or more than one ELSE IF clauses, each with its own condition test. To specify more than one
statement in a clause you must use BEGIN and END keywords to demarcate the block of statements. You may use white
space and line breaks freely. The ELSE clause is optional. This syntax is shown in the following example:

SET sql=6

SET sql(1)="DECLARE @var INT *

SET sql (2)="SET @var=RAND() "

SET sql(3)="IF @var<.2 THEN PRINT "The Oracle says No""

SET sql (4)="ELSE IF @var<.4 THEN PRINT "The Oracle says Possibly™"

SET sql(5)="ELSE IF @var<.6 THEN PRINT "The Oracle says Probably""

SET sql(6)="ELSE PRINT "The Oracle says Yes""

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()
DO result.%Display()

The WHILE command is supported. It executes code while a condition is true.
WHILE condition BEGIN statements END

The BEGIN and END keywords are required if statements is more than one command.

4.4.3 CASE

The CASE statement is supported. The ELSE clause is optional. If no WHEN clause is satisfied and no ELSE clause is
specified, the CASE statement sets the expression to NULL.

4.4.4 GOTO and Labels

Caché TSQL supports the GOTO command and labels. A label must be a valid TSQL identifier followed by a colon (:).
A GOTO reference to a label does not include the colon.

Caché Transact-SQL (TSQL) Migration Guide 29

TSQL Commands

4.4 5WAITFOR

Caché TSQL supports both forms of the WAITFOR command:

WAITFOR DELAY timeperiod
WAITFOR TIME clocktime

timeperiod is the amount of time to wait before resuming execution, expressed as 'hh:mm[:ss[.fff]]. Thus WAITFOR DELAY
"00:00:03" provides a time delay of 3 seconds. WAITFOR DELAY "00:03" provides a time delay of 3 minutes.

clocktime is the time at which to resume execution, expressed as ‘hh:mm[:ss[.fff]], using a 24-hour clock. Thus WAITFOR
TIME "00:00:03" resumes execution at 3 seconds after midnight.

4.5 Assignment Statements

4.5.1 DECLARE

Used to declare the data type for a local variable.
DECLARE @var [AS] datatype [= initval]

Only the form which declares local variables is supported; cursor variables are not supported.

@var can be any local variable name; local variable names are not case-sensitive. datatype can be any valid data type, such
as CHAR(12) or INT. The optional initval argument allows you to specify an initial value for the local variable.

For further details on data types, refer to the TSQL Constructs chapter of this document.

4.5.2 SET

Used to assign a value to a local variable:

DECLARE @var CHAR(20)
SET @var="hello world*

Used to set a system setting:

These settings have immediate effect at parse time, whether inside a stored procedure or not. The change persists until
another SET command alters it — even if the SET is made inside a stored procedure, and accessed outside the SP or in
another SP.

The following SET variables are supported:

« SET ANSI_NULLS Permitted values are SET ANSI_NULLS ONand SET ANSI_NULLS OFF. If ANSI_NULLS
OFF, a=b is true if (a=b OR (a IS NULL) AND (b IS NULL)).

e SET DATEFIRST number

e SET IDENTITY_INSERT Permitted values are SET IDENTITY_INSERT ONand SET IDENTITY_INSERT OFF.
If ON, an INSERT statement can specify an identity column value. This variable applies exclusively to the current
process and cannot be set on linked tables. Therefore, to use this option you should define a procedure in TSQL to
perform both the SET IDENTITY_INSERT and the INSERT, then link the procedure and execute the procedure in
Caché via the gateway.

30 Caché Transact-SQL (TSQL) Migration Guide

Transaction Statements

e SET NOCOUNT Permitted values are SET NOCOUNT ON and SET NOCOUNT OFF. When set to ON, messages indi-
cating the number of rows affected by a query are suppressed. This can have significant performance benefits.

e SET QUOTED_IDENTIFIER Permitted values are SET QUOTED_IDENTIFIER ONand SET QUOTED_IDENTIFIER
OFF. When SET QUOTED_IDENTIFIER is on, double quotes are parsed as delimiting a quoted identifier. When SET
QUOTED_IDENTIFIER is off, double quotes are parsed as delimiting a string literal. The preferable delimiters for
string literals are single quotes.

* SET ROWCOUNT Set to an integer. Affects subsequent SELECT, INSERT, UPDATE, or DELETE statements to limit
the number of rows affected. In a SELECT statement, ROWCOUNT takes precedence over TOP: if ROWCOUNT is
less than TOP, the ROWCOUNT number of rows is returned; if TOP is less than ROWCOUNT, the TOP number of
rows is returned. ROWCOUNT remains set for the duration of the process or until you revert it to default behavior.
To revert to default behavior, SET ROWCOUNT O. If you specify a fractional value, ROWCOUNT is set to the next
larger integer.

e SET TRANSACTION ISOLATION LEVEL See Transaction Statements below.

The following SET variables are parsed, but ignored:
e SET DATEFORMAT
e SET TEXTSIZE

4.6 Transaction Statements

Caché TSQL provides support for transactions, including named transaction names. It does not support savepoints. Distributed
transactions are not supported.

4.6.1 SETTRANSACTION ISOLATION LEVEL

Supported for the following forms only:
e SET TRANSACTION ISOLATION LEVEL READ COMMITTED
e SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED.

4.6.2 BEGIN TRANSACTION

BEGIN TRAN [name]
BEGIN TRANSACTION [name]

Initiates a transaction. The optional name argument can be used to specify a named transaction, also known as a savepoint.
The name value must be supplied as a literal; it cannot be a variable.

Note: A Data Management Language (DML) statement that is within an explicit transaction cannot resolve an unqualified
table name using a schema search path.

Caché Transact-SQL (TSQL) Migration Guide 31

TSQL Commands

4.6.3 COMMIT TRANSACTION

COMMIT

COMMIT TRAN
COMMIT TRANSACTION
COMMIT WORK

These four syntactical forms are functionally identical. A COMMIT statement commits all work completed during the
current transaction, resets the transaction level counter, and releases all locks established. This completes the transaction.
Work committed cannot be rolled back.

A transaction is defined as the operations since and including the BEGIN TRANSACTION statement. A COMMIT
restores the transaction level counter to its state immediately prior to the BEGIN TRANSACTION statement that initialized
the transaction.

A single COMMIT causes all named transactions to be committed.

4.6.4 ROLLBACK TRANSACTION

ROLLBACK [name]

ROLLBACK TRAN [name]
ROLLBACK TRANSACTION [name]
ROLLBACK WORK [name]

These four syntactical forms are functionally identical; the ROLLBACK keyword, as specified below, refers to any of
these syntactical forms. The optional name argument specifies a named transaction, as specified by a BEGIN
TRANSACTION name statement. The name value must be supplied as a literal; it cannot be a variable.

A ROLLBACK rolls back a transaction, undoing work performed but not committed, decrementing the transaction level
counter, and releasing locks. It is used to restore the database to a previous consistent state.

* A ROLLBACK rolls back all work completed during the current transaction, resets the transaction level counter to
zero and releases all locks. This restores the database to its state before the beginning of the transaction.

A ROLLBACK name rolls back all work done since the specified named transaction (savepoint) and decrements the
transaction level counter by the number of savepoints undone. When all savepoints have been either rolled back or
committed and the transaction level counter reset to zero, the transaction is completed. If the named transaction does
not exist, or has already been rolled back, ROLLBACK rolls back the entire current transaction.

4.6.5 CHECKPOINT

The CHECKPOINT statement is parsed but ignored in Caché TSQL. It performs no operation.

4.6.6 LOCKTABLE

LOCK TABLE tablename IN {SHARE | EXCLUSIVE} MODE [WAIT numsecs | NOWAIT]

The LOCK TABLE statement locks all of the records in the specified table. You can lock a table in SHARE MODE or in
EXCLUSIVE MODE. The optional WAIT clause specifies the number of seconds to wait in attempting to acquire the table
lock. The LOCK TABLE statement immediately releases any prior lock held by the current user on the specified table.
LOCK TABLE locks the table for the duration of the current transaction.

32 Caché Transact-SQL (TSQL) Migration Guide

Procedure Statements

4.7 Procedure Statements

The following standard Transact-SQL statements are supported.

4.7.1 CREATE PROCEDURE / CREATE FUNCTION

Creates a named executable procedure.

CREATE PROCEDURE procname [[@var [AS] datatype [= | DEFAULT value] [,---11 [RETURNS
datatype] [AS] code

CREATE PROC procname [[@var [AS] datatype [= | DEFAULT value] [,---1]1 [RETURNS
datatype] [AS] code

CREATE FUNCTION procname [[@var [AS] datatype [= | DEFAULT value] [,---]11 [RETURNS
datatype] [AS] code

You can return a single scalar value result from either a PROCEDURE or a FUNCTION. OUTPUT parameters and default
values are also supported. These commands convert the return type from a TSQL type declaration to a Caché type
descriptor. Currently, result sets and tables can't be returned.

Supported as either CREATE PROCEDURE or CREATE PROC. CREATE FUNCTION is very similar to CREATE
PROCEDURE, but the routine type argument value is "FUNCTION", rather than "PROCEDURE".

* Any statements can be used in a CREATE FUNCTION.

» The RETURN keyword is allowed in a CREATE PROCEDURE. If a procedure completes without invoking a
RETURN or RAISERROR statement, it returns an integer value of 0.

* The WITH EXECUTE keyword clause is allowed in a CREATE PROCEDURE and CREATE FUNCTION. It
must appear after the RETURN keyword.

A CREATE PROCEDURE can specify a formal parameter list. Formal parameters are specified as a comma-separated
list. Enclosing parentheses are optional. The AS keyword between the parameter variable and its data type is optional.
Optionally, you can use the DEFAULT keyword or = symbol to assign a default value to a formal parameter; if no actual
parameter value is specified, this default value is used. In TSQL an input formal parameter has no keyword indicator; an
output formal parameter can be specified by the OUTPUT keyword following the data type. Alternatively, these formal
parameters can be prefaced by the optional keywords IN, OUT, or INOUT.

The following example shows the creation of the procedure AvgAge with two formal parameters:

CREATE PROCEDURE AvgAge @min INT, @max INT
AS
BEGIN TRY
SELECT AVG(Age) FROM Sample.Person
WHERE Age > @min AND Age < @max
END TRY
BEGIN CATCH
PRINT “error!-
END CATCH

The following statement executes this procedure. In this case, the specified actual parameter values limit the averaging to
ages 21 through 65:

EXEC AvgAge 20,66

The following example creates a procedure that returns the results of a division operation. The RETURNS keyword limits
the number of decimal digits in the return value:

Caché Transact-SQL (TSQL) Migration Guide 33

TSQL Commands

CREATE PROCEDURE SQLUser.MyDivide @a INTEGER, @b INTEGER, OUT @rtn INTEGER RETURNS DECIMAL(2,3)
BEGIN

SET @rtn = @a / @b;

RETURN @rtn;

END

The following statement executes this procedure:

SELECT SQLUser .MyDivide(7,3)

The following example shows the creation of procedure OurReply:

CREATE PROCEDURE OurReply @var CHAR(16) DEFAULT "No thanks® AS PRINT @var

When executed without a parameter, OurReply prints the default text (“No thanks™); when executed with a parameter
OurReply prints the actual parameter value specified in the EXEC statement.

Note that CREATE FUNCTION and CREATE PROCEDURE cannot be issued from a stored procedure.

4.7.1.1 Importing a CREATE PROCEDURE

If imported TSQL source contains a CREATE PROC statement, then a class method containing the CREATE PROC source
will be created. This class method is either placed in an existing class, or in a new class whose name is based on the schema
and procedure name.

If the procedure already exists, the existing implementation is replaced. If a class matching the class name generated from
the schema and procedure already exists, it is used if it was previously generated by the TSQL utility. If not, then a unique
class name is generated, based on the schema and procedure name. The schema defaults to the default schema defined in
the system configuration. The resulting class is compiled once the procedure has been successfully created.

If logging is requested, the source statements are logged along with the name of the containing class, class method, and the
formal arguments generated. Any errors encountered by the process are also reported in the log. If errors are detected during
CREATE PROC processing and a new class was generated, that class is deleted.

4.7.2 ALTER FUNCTION

Supported. The WITH EXECUTE keyword clause is supported.

4.7.3 DROP FUNCTION

Supported.

4.7.4 DROP PROCEDURE

Deletes a procedure or a comma-separated list of procedures.

DROP PROCEDURE [IF EXISTS] procname [,procname2 [,

---11
DROP PROC [IF EXISTS] procname [,procname2 [,---]]

The optional IF EXISTS clause suppresses errors if you specify a non-existent procname. If this clause is not specified, an
SQLCODE -362 error is generated if you specify a non-existent procname. DROP PROCEDURE is an atomic operation;
either all specified procedures are successfully deleted or none are deleted.

34 Caché Transact-SQL (TSQL) Migration Guide

Procedure Statements

4.7.5 RETURN

Halts execution of a query or procedure. Can be argumentless or with an argument. Argumentless RETURN must be used
when exiting a TRY or CATCH block. When returning from a procedure, RETURN can optionally return an integer status
code. If you specify no status code, it returns the empty string ("").

4.7.6 EXECUTE

Executes a procedure, optionally passing in parameters.

EXECUTE procname [paraml [,param2 [,---1 1 1
EXEC procname [paraml [,param2 [,--.1 1 1

The EXECUTE (or EXEC) statement is supported as follows:

» EXEC <procedure> can be used to execute a stored procedure. The EXEC keyword cannot be omitted. Named
parameters are supported. The following EXEC <procedure> features are not currently supported: procedure variables,
and procedure numbers (i.e. ';n"). WITH RECOMPILE is accepted but ignored.

CREATE PROCEDURE ProcTopSample
AS SELECT TOP 4 Name,Age FROM Sample.Person
GO

EXEC ProcTopSample
GO

The following example executes the Caché-supplied procedure Sample.PersonSets, passing it two parameters:

EXECUTE Sample.PersonSets "F",*VT*

If the specified procedure does not exist, an SQLCODE -428 error (Stored procedure not found) is issued.

» EXEC (<TSQL commands>) can be used to execute dynamic SQL. The string of TSQL commands to be executed
are enclosed in single quote characters. A TSQL command string can contain line breaks and white space. Dynamic
TSQL runs in the current context.

DECLARE @DynTopSample VARCHAR(200)
SELECT @DynTopSample="SELECT TOP 4 Name,Age FROM Sample.Person®
EXEC(@DynTopSample)

4.7.7 CALL

The CALL statement is functionally identical to the EXECUTE statement. It differs syntactically.

CALL procname ([paraml [,param2 [,---1 1 1D
@var = CALL procname ([paraml [,param2 [,---1 1 1D

The parameters are optional. The enclosing parentheses are mandatory.

Caché Transact-SQL (TSQL) Migration Guide 35

TSQL Commands

4.8 Other Statements

4.8.1 CREATE USER

CREATE USER creates a new user ID and password. Executing this statement creates a Caché User with its password
set to the specified user name.

User names are not case-sensitive. Caché TSQL and Caché SQL both use the same set of defined user names.

4.8.2 CREATE ROLE

CREATE ROLE creates a new role. A role is a named set of privileges that may be assigned to multiple users. A role may
be assigned to multiple users, and a user may be assigned multiple roles. The following syntax is supported; the AUTHO-
RIZATION clause is optional:

CREATE ROLE rolename AUTHORIZATION auth

4.8.3 GRANT and REVOKE

GRANT privilegelist ON (columnlist) TO granteelist

» privelegelist: a single privilege or a comma-separated list of privileges. The available privileges are ALL, EXECUTE,
SELECT, INSERT, DELETE, UPDATE, and REFERENCES.

» columnlist: a single column name or a comma-separated list of column names, enclosed in parentheses. You can
specify a parenthesized list of column names at the end of the GRANT statement. For SELECT and UPDATE privileges,
you can specify a parenthesized list of column names following that privilege keyword.

» granteelist: a single grantee (recipient of privileges) or a comma-separated list of grantees. A grantee can be a user
name, "PUBLIC" or "*".

You can use the REVOKE command to explicitly remove granted privileges.

REVOKE privilegelist ON (columnlist) FROM granteelist CASCADE

4.8.4 PRINT

Supported.

4.8.5 RAISERROR

RAISERROR err_num "message-
RAISERROR(error,severity,state,arg) WITH LOG

Both syntactic forms (with and without parentheses) are supported. Both spellings, RAISERROR and RAISEERROR, are
supported and synonymous. RAISERROR sets the value of @ @ERROR to the specified error number and error message
and invokes the %SYSTEM.Error.FromXSQL () method.

The Sybase-compatible syntax (without parentheses) requires an err_num error number, the other arguments are optional.

RAISERROR 123 "this is a big error”
PRINT @@ERROR

36 Caché Transact-SQL (TSQL) Migration Guide

InterSystems Extensions

A RAISERROR command raises an error condition; it is left to the user code to detect this error. However, if RAISERROR
appears in the body of a TRY block, it transfers control to the paired CATCH block. If RAISERROR appears in a CATCH
block it transfers control either to an outer CATCH block (if it exists) or to the procedure exit. RAISERROR does not
trigger an exception outside of the procedure. It is up to the caller to check for the error.

When an AFTER statement level trigger executes a RAISEERROR, the returned %msg value contains the err_num and
message values as message string components separated by a comma: %msg="err_num,message".

The Microsoft-compatible syntax (with parentheses) requires an error (either an error number or a quoted error message).
If you do not specify an error number, it defaults to 50000. The optional severity and state arguments take integer values.

RAISERROR("this is a big error®,4,1) WITH LOG
PRINT @@ERROR

4.8.6 UPDATE STATISTICS

Supported. Provides query performance optimization. UPDATE STATISTICS generates a call to the Caché
$SYSTEM.SQL.TuneTable() method, passing the table name. For further details, see Tune Table in Caché SQL Optimization
Guide.

4.8.7 USE database

Supported, also an extension: USE NONE to select no database. Effective at generation-time, persists as long as the transform
object exists (e.g. in the shell or loading a batch).

4.9 InterSystems Extensions

TSQL supports a number of InterSystems extensions to Transact-SQL. To allow for the inclusion of these InterSystems-
only statements in portable code, Caché TSQL also supports a special form of the single-line comment: two hyphens followed
by a vertical bar. This operator is parsed as a comment by Transact-SQL implementations, but is parsed as an executable
statement in Caché TSQL. For further details, refer to the Comments section of the TSQL Constructs chapter of this document.

TSQL includes the following InterSystems extensions:

4.9.1 CACHE

This extension allows you to include ObjectScript code in the compiled output. It takes one or more lines of ObjectScript
inside curly brackets:

CACHE {WRITE "'SQLCODE="',SQLCODE, !}

Note that in the above example the WRITE command specifies a new line (,!); this is necessary because the CACHE
extension does not issue a new line following execution.

The CACHE extension can also be used to embed Caché SQL into TSQL code:

CACHE {&sql (SET TRANSACTION %COMMITMODE EXPLICIT)}

For further details on embedded Caché SQL, refer to Embedded SQL in Using Caché SQL.

Caché Transact-SQL (TSQL) Migration Guide 37

TSQL Commands

4.9.2 IMPORTASQUERY

This extension forces a stored procedure to be imported as a query rather than as a class method. This is useful for stored
procedures that contain only an EXEC statement, because Caché cannot otherwise determine at import whether such a
stored procedure is a query or not.

38 Caché Transact-SQL (TSQL) Migration Guide

TSQL Settings

Settings are used to tailor the behavior of the compiler and colorizer. The TSQL configuration options are part of the standard
Caché configuration.

Caché supports the following TSQL settings:

» DIALECT (default is Sybase)

e ANSI_NULLS

* CASEINSCOMPARE (String comparison is not case-sensitive.)
e QUOTED_IDENTIFIER

» TRACE

These values are used to set the corresponding ~%SYS("tsql","SET",...) global array values.
For further details, see TSQL Compatibility Settings in the Caché Additional Configuration Settings Reference.
You can view and modify these settings using the Caché Management Portal or %SYSTEM.TSQL class methods.

» Go into the Caché Management Portal. Go to System Administration, Configuration, SQL and Object Settings, TSQL
Compatibility. Here you can specify the DIALECT (Sybase or MSSQL, default is Sybase), and turn on or off the
ANSI_NULLS, CASEINSCOMPARE, and QUOTED_IDENTIFIER settings.

If you change one or more configuration options, the TSQL Settings heading will be followed by an asterisk, indicating
that changes have been made but not yet saved. You must press the Save button for configuration changes to take
effect.

* Invoke the $SYSTEM.TSQL.CurrentSettings() method to display the settings:

DO ##class(%SYSTEM.TSQL) -CurrentSettings()

You can use %SYSTEM.TSQL class methods to get or set the ANSI_NULLS, CaselnsCompare, and Quoted_ldentifier
settings. While these methods take a dialect string, there are not separate settings for the TSQL dialects. For example,
changing CaselnsCompare changes this configuration setting for both Sybase and MSSQL.

5.1 DIALECT

The DIALECT configuration option allows you to select the Transact-SQL dialect. The available options are Sybase and
MSSQL. The default is Sybase. This option is set using the Caché Management Portal.

Caché Transact-SQL (TSQL) Migration Guide 39

TSQL Settings

If DIALECT=MSSQL.: a DECLARE statement binds host variable values.
If DIALECT=Sybase: host variable values are refreshed for each cursor OPEN.

5.2 ANSI_NULLS

The ANSI_NULLS configuration option allows you to specify whether comparisons to a null value return true or false.
The default is OFF.

e ON: All comparisons to a null value evaluate to Unknown. For example, Age = Null returns false, even when Age is
null. Null is unknown, so it is false/unknown to specify null=null.

* OFF: Comparisons of a non-Unicode value to a null value evaluates to True if both values are null. For example: Age
= Null returns true for null values for Age.
You can determine the current ANSI_NULLS setting using %SYSTEM.TSQL class methods, or from the TSQLAnsiNulls

property, as follows:

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLAnsiNulls

You can activate (ON) or deactivate (OFF) ANSI_NULLS system-wide using either of the following ObjectScript commands:
WRITE ##class(USYSTEM.TSQL) .SetAnsiNulls(*'Sybase","OFF')

SET MSYS(*tsql™,"SET™,""ANSI_NULLS")=""0FF"

5.3 CASEINSCOMPARE

The CASEINSCOMPARE setting specifies non-case-sensitive equality comparisons, such as 'A'="a". The default is OFF.
If this option is set to ON, the comparison operators = and <> operate without regard to case in most contexts. However,
there are a few contexts where such insensitivity does not apply:

* Where a comparison is the ON condition for a JOIN.

» Where either operand is a subquery.

These exceptions exist because Caché SQL does not accept the %SQLUPPER operator in these contexts.

You can determine the current CASEINSCOMPARE setting using %SYSTEM.TSQL class methods, or from the
TSQLCaselnsCompare property, as follows:

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLCaselnsCompare

You can activate (ON) or deactivate (OFF) CASEINSCOMPARE system-wide using either of the following ObjectScript
commands:

WRITE ##class(%SYSTEM.TSQL) .SetCaselnsCompare(*'Sybase", " OFF')

SET ~eSYS('tsql™,""SET", ""CASEINSCOMPARE)=""0FF"

40 Caché Transact-SQL (TSQL) Migration Guide

QUOTED_IDENTIFIER

5.4 QUOTED _IDENTIFIER

The QUOTED_IDENTIFIER configuration option allows you to select whether quoted identifiers are supported. The
default is OFF (not supported). This option is set using the Caché Management Portal. When QUOTED_IDENTIFIER is
on, double quotes are parsed as delimiting an identifier. When QUOTED_IDENTIFIER is off, double quotes are parsed
as alternative delimiters for string literals. The preferable delimiters for string literals are single quotes.

You can determine the current QUOTED_IDENTIFIER setting using %SYSTEM.TSQL class methods, or from the
TSQLQuotedldentifier property, as follows:

SET context=##class(%SYSTEM.Context.SQL) .%New()
WRITE "ANSI_NULLS is = ",context.TSQLQuotedldentifier

You can activate (ON) or deactivate (OFF) QUOTED _IDENTIFIER system-wide using either of the following ObjectScript
commands:

WRITE ##class(%SYSTEM.TSQL) .SetQuotedldentifier(*'Sybase","OFF™)

SET ~MSYS(*tsqgl™,"SET",""QUOTED_IDENTIFIER™)=""0FF"

5.5TRACE

The TRACE configuration option is not available from the Management Portal. It controls the behavior of the TSQL
compiler. When a method is compiled with TRACE active, running this method will log traced messages to the active log
file, by default. The active log file is located in the same namespace as CACHE.DAT, and is named using the current process
number.

You can activate (ON) or deactivate (OFF) TRACE system-wide using the following ObjectScript command:

SET ~%SYS(*'tsql™,""SET",""TRACE")=""ON""

The default value is ON (TRACE active).

Caché Transact-SQL (TSQL) Migration Guide 41

TSQL Functions

6.1 Supported Functions

The following TSQL functions are implemented.

6.1.1 ABS

ABS(num)

Returns the absolute value of num. Thus both 123.99 and —123.99 return 123.99.

6.1.2 ACOS

ACOS(float)

Arc cosine: returns the angle in radians whose cosine is float. Thus 1 returns 0.

6.1.3 ASCI

ASCI1(char)

Returns the integer value corresponding to the first character in string char. Thus, ASCI1(*A*™) returns 65.

ASCII is functionally identical to UNICODE. The reverse of this function is CHAR.

6.1.4 ASIN

ASIN(float)

Arc sine: returns the angle in radians whose sine is float. Thus 1 returns 1.570796326...

6.1.5 ATAN

ATAN(float)

Arc tangent: returns the angle in radians whose tangent is float. Thus 1 returns .785398163...

Caché Transact-SQL (TSQL) Migration Guide

43

TSQL Functions

6.1.6 AVG

AVG(numfield)
AVG(DISTINCT numfield)

Aggregate function: used in a query to return the average of the values in the numfield column. For example, SELECT
AVG(Age) FROM Sample.Person. AVG(DISTINCT numfield) averages the number of unique values in the field column.
Fields with NULL are ignored.

6.1.7 CAST

CAST(expression AS datatype)

Returns the expression converted to the specified datatype. CAST can be used with any supported data type. For further
details, refer to Data Types in the Caché SQL Reference.

When expression is a date value string, such as '2004-11-23' and datatype is TIMESTAMP or DATETIME, a time value
of '00:00:00' is supplied.

When expression is a time value string, such as '1:35PM" and datatype is TIMESTAMP or DATETIME, the time is converted
to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the default date
value of '1900-01-01" is supplied. Thus '1:35PM" is converted to '1900-01-01 13:35:00'".

When expression is a date value string, such as '2004-11-23' and datatype is DATE, the date is returned in Caché
$HOROLOG date format, such as 60703 (March 14, 2007).

Caché TSQL does not support data type XML. However, instead of generating an error during compilation, CAST(x AS
XML) in SQL mode generates CAST(x AS VARCHAR(32767)). In procedure mode, CAST(x AS XML) does not generate
any conversion.

See CONVERT.

6.1.8 CEILING

CEILING(num)

Returns the closest integer greater than or equal to num. Thus 123.99 returns 124, —-123.99 returns —-123.

6.1.9 CHAR

CHAR(num)

Returns the character corresponding to the integer value num. Thus CHAR(65) returns A.

CHAR is functionally identical to NCHAR. The reverse of this function is ASCII.

6.1.10 CHAR_LENGTH / CHARACTER_LENGTH

CHAR_LENGTH(string)
CHARACTER_LENGTH(string)

Returns the number of characters in string.

44 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

6.1.11 CHARINDEX

CHARINDEX(seekstring, target[,startpoint])

Returns the position in target (counting from 1) corresponding to first character of the first occurrence of seekstring. You
can use the optional startpoint integer to specify where to begin the search. The return value counts from the beginning of
target, regardless of the startpoint. If startpoint is not specified, specified as 0, 1, or as a negative number, target is searched
from the beginning. CHARINDEX returns 0 if seekstring is not found.

6.1.12 COALESCE

COALESCE(expressionl,expression2,...)

Returns the first non-null expression from the specified list of expressions.

6.1.13 COL_NAME

COL_NAME(object_id,column_id)

Returns the name of the column. Can be used in procedure code or trigger code.
TSQL supports the two-argument form of this function. It does not support a third argument.
The following example returns the column name of the 4th column of Sample.Person:

SET sql=2

SET sql(1)=""SELECT "column name®"=COL_NAME(id,4) FROM Sample.Person"
SET sql(2)="WHERE i1d=0OBJECT_ID("Sample.Person®)"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL"

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

6.1.14 CONVERT

CONVERT (datatype,expression[,format-code])

Returns the expression converted to the specified datatype.

When datatype is BIT and expression is a boolean value: if the input value is a non-zero number, the result is 1. if the input
value is 0, the result is 0. If the input value is the string "TRUE' (case insensitive), the result is 1. If the input value is the
string 'FALSE' (case insensitive), the result is 0. If the input value is NULL, the result is NULL. Any other input value
generates an SQLCODE -141 error.

When datatype is datetime or timestamp and expression is a date value string, such as '2004-11-23', a time value of '00:00:00'
is supplied. When expression is a time value string, such as '1:35PM' and datatype is datetime or timestamp, the time is
converted to a 24-hour clock, the AM or PM suffix is removed, a missing seconds interval is filled in with zeros, and the
default date value of '1900-01-01" is supplied. Thus '1:35PM' is converted to '1900-01-01 13:35:00'".

CONVERT supports the DATETIMEZ2 data type. Caché maps DATETIME?2 to system-defined DDL mapping
%L ibrary. TimeStamp. This mapping is supplied with new installs; if you are using an upgrade install, you may need to
create this mapping.

The optional format-code argument is used to specify a date/time format when converting a datetime or timestamp value
to a string. By specifying various format codes you can return a dates and times in a variety of different formats. The

Caché Transact-SQL (TSQL) Migration Guide 45

TSQL Functions

available format codes are 0 through 14 (100 through 114), 20 & 21 (120 & 121), 126, 130, and 131. The default format-code
is 120:

yyyy-mm-dd hh:mm:ss

The 20 & 21 (120 & 121) format codes also support the format:

yyyy-mm-ddThh:mm:ss . fff

For further details, refer to the functionally identical Caché SQL CONVERT function in the Caché SQL Reference.
See CAST.

6.1.15 COS

COS(float)

Cosine: returns the cosine of the angle specified in float. Thus 1 returns .540302305...

6.1.16 COT

COT(Float)

Cotangent: returns the cotangent of the angle specified in float. Thus 1 returns .64209261593...

6.1.17 COUNT

COUNT(Field)
COUNT(DISTINCT Field)
COUNT(*)

COUNT(1)

Aggregate function: used in a query to return the count of the values in the field column. Fields with NULL are not counted.
For example, SELECT COUNT(Name) FROM Sample.Person. COUNT(*) and COUNT(1) are synonyms, they count
all rows. COUNT(DISTINCT field) counts the number of unique values in the field column. Fields with NULL are not
counted.

6.1.18 CURRENT_DATE

CURRENT_DATE
CURRENT DATE

Returns the current local date in the following format:
yyyy-mm-dd

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

46 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

6.1.19 CURRENT_TIME

CURRENT_TIME
CURRENT TIME

Returns the current local time in the following format:

hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.
The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

This function is provided for compatibility with SQL Anywhere; it is supported by both the Sybase and MSSQL dialects.

6.1.20 CURRENT_TIMESTAMP

CURRENT_T IMESTAMP
CURRENT TIMESTAMP

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

The two syntax forms, with and without an underscore, are identical. Note that no parentheses are used with this function.

6.1.21 CURRENT_USER

CURRENT_USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.1.22 DATALENGTH

DATALENGTH(expression)

Returns an integer specifying the number of bytes used to represent expression. Thus 'fred' returns 4, and +007.500 returns
3.

6.1.23 DATEADD

DATEADD(code, num,date)

Returns the value of date modified by adding the interval specified in code the num number of times. The date can be a
date, time, or date/time string in a variety of formats. You can specify any of the following code values, either the abbrevi-
ation (left column) or the name (right column):

Caché Transact-SQL (TSQL) Migration Guide 47

TSQL Functions

vy Year

aq Quarter
mm Month

dy DayofYear
dd Day

dw, w Weekday
wk Week

hh Hour

mi Minute

Ss Second
ms Millisecond

Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.
The value returned by DATEADD always includes both date and time in the format:

yyyy-mm-dd hh:mm:ss.n

Fractional seconds are only returned if the source contained fractional seconds.
If a date is not specified (that is, if date contains only a time value), it defaults to 1/1/1900.

If a time is not specified in date, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock.

6.1.24 DATEDIFF

DATEDIFF(code,startdate,enddate)

Returns the number of code intervals between startdate and enddate. The two dates can be a date, a time, or a date/time
string. in the following format:

yyyy-mm-dd hh:mm:ss.n

You can specify any of the following code values, either the abbreviation (left column) or the name (right column):

yy Year

mm Month

dd Day

dw, w Weekday
wk Week

hh Hour

mi Minute

SS Second

ms Millisecond

48 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

Code values are not case-sensitive. Day, DayofYear, and Weekday all return the same value.

If a date is not specified (that is, if startdate or enddate contains only a time value), it defaults to 1/1/1900.

If a time is not specified in startdate or enddate, it defaults to 00:00:00.

6.1.25 DATENAME

DATENAME (code,date)

Returns the value of the part of the date specified by code as a string. The date can be a date, time, or date/time string in a
variety of formats. date must be specified as a quoted string; code permits, but does not require enclosing quotes. Available

code values are:

YYYY. Yy

year

ad. q

quarter

mm, m

month

dy, y
dayofyear
dd, d

day

wk, ww

week

dw, w

weekday

hh

hour
mi, n
minute

SS, S

second

ms

millisecond

Year. Returns a four-digit year. If a two-digit year is
specified, DATENAME supplies '19' as first two digits.

Quarter. Returns an integer 1 through 4.

Month. Returns the full name of the month. For
example, 'December’.

Day of Year. Returns an integer count of days 1
through 366.

Day of Month. Returns an integer count 1 through 31.

Week of Year. Returns an integer count 1 through 53.

Day of Week. Returns the number of the day of the
week, counting from Sunday. For example, 3 is
Tuesday.

Hour. Returns the hour of the day (24—hour clock),
an integer 0 through 23.

Minute. Returns an integer 0 through 59.

Second. Returns a decimal number 0 through 59
which may have a fractional part representing
milliseconds.

Millisecond. Returns the fractional part of a second
as an integer.

Caché Transact-SQL (TSQL) Migration Guide

49

TSQL Functions

Code values are not case-sensitive.
If a date is not specified, it defaults to 1/1/1900. Two-digit years default to 19xx.

If a time is not specified, it defaults to 00:00:00. Hours are always returned based on a 24-hour clock. Seconds are always
returned with fractional seconds, if fractional seconds are defined. Milliseconds are returned as an integer, not a decimal
fraction.

6.1.26 DATEPART

DATEPART (code ,date)

Returns the value of the part of the date specified in code as an integer. The date can be a date, time, or date/time string in
a variety of formats. Available code values are listed in DATENAME.

6.1.27 DAY

DAY (date)

Returns the day portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date must contain a date component. The date separator must be a hyphen (-).

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).

6.1.28 DB_NAME

DB_NAMEQ)

Returns the current namespace name. No argument is permitted.

6.1.29 DEGREES

DEGREES(Float)

Converts an angle measurement in radians to the corresponding measurement in degrees.

6.1.30 ERROR_MESSAGE

When invoked from within a CATCH block, returns the current error message. Otherwise, returns NULL.

6.1.31 ERROR_NUMBER

When invoked from within a CATCH block, returns the current SQLCODE error. Otherwise, returns NULL.

6.1.32 EXEC

EXEC(@var)

Executes dynamic SQL at runtime, as shown in the following example:

50 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

DECLARE @dyncode VARCHAR(200)
SELECT @dyncode="SELECT TOP 4 Name,Age FROM Sample.Person*
EXEC(@dyncode)

Compare this dynamic execution with the EXECUTE command that executes a stored procedure.

6.1.33 EXP

EXP(num)

Returns the exponential of num. This is the e constant (2.71828182) raised to the power of num. Thus EXP(2) returns
7.3890560989.

6.1.34 FLOOR

FLOOR(num)

Returns the closest integer less than or equal to num. Thus 123.99 returns 123, —123.99 returns —124.

6.1.35 GETDATE

GETDATEQ)

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.1.36 GETUTCDATE

GETUTCDATEQ)

Returns the current UTC (Greenwich Mean Time) date and time in the following format:

yyyy-mm-dd hh:mm:ss.n

Time is specified using a 24-hour clock, Fractional seconds are returned.

6.1.37 HOST_NAME

HOST_NAMEQ)

Returns the system name of the current host system.

6.1.38 INDEX_COL

INDEX_COL(table_name, index_id,key, [,user_id])

Returns the name of the indexed column in the specified table. table_name can be fully qualified. index_id is the number
of the table's index. key is a key in the index, a value between 1 and sysindexes.keycnt (for a clustered index) or sysin-
dexes.keycnt+1 (for a non-clustered index). user_id is parsed but ignored.

Caché Transact-SQL (TSQL) Migration Guide 51

TSQL Functions

6.1.39 ISNULL

If expr is NULL, returns default. If expr is not NULL, returns expr.

6.1.40 ISNUMERIC

A boolean function that returns 1 if expression is a valid numeric value; otherwise, returns 0.

(o)
=
IS
[UN
—
m
M
—

Returns int number of characters from string, counting from the left. If int is larger than string, the full string is returned.

o 9
D
= 3
B 5
- -
— —
T
=

Returns the number of characters in string.

o
=
~
w
—
o
®

Returns the natural logarithm of num. Thus LOG(2) returns .69314718055.

o
=
N
AN
—
@)
@
=
o

Returns the base-10 logarithm of num. Thus LOG10(2) returns .301029995663.

o
=
~
o1
S
=
m
P

Returns string with all uppercase letters converted to lowercase. See UPPER.

odd
=
N
(@p]
o
T
<

Removes leading blanks from string. See RTRIM.

al

2 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

6.1.47 MAX

MAX(numFfield)

Aggregate function: used in a query to return the largest (maximum) of the values in the numfield column. For example:

SELECT MAX(Age) FROM Sample.Person

Fields with NULL are ignored.

6.1.48 MIN

MINCnumFfield)

Aggregate function: used in a query to return the smallest (minimum) of the values in the numfield column. For example:

SELECT MIN(Age) FROM Sample.Person

Fields with NULL are ignored.

6.1.49 MONTH

MONTH(date)

Returns the month portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator must be a hyphen (-). Dates in any other format return 0.

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).

6.1.50 NCHAR

NCHAR (num)

Returns the character corresponding to the integer value num. Thus NCHAR(65) returns A.

NCHAR is functionally identical to CHAR. The reverse of this function is ASCII.

6.1.51 NEWID

NEWIDQ)

Returns a unique value of a type compatible with the SQL Server UNIQUEIDENTIFIER data type. UNIQUEIDENTIFIER
is a system-generated 16-byte binary string, also known as a a globally unique ID (GUID). A GUID is used to synchronize
databases on occasionally connected systems. A GUID is a 36-character string consisting of 32 hexadecimal numbers
separated into five groups by hyphens. Caché TSQL does not support UNIQUEIDENTIFIER; it instead uses VARCHAR(36)
as the data type for a Globally Unique ID.

The NEWID function takes no arguments. Note that the argument parentheses are required.
NEWID() can be used to specify the DEFAULT value when defining a field.
The corresponding Caché SQL function is $TSQL_NEWID:

Caché Transact-SQL (TSQL) Migration Guide 53

TSQL Functions

SELECT $TSQL_NEWIDQ)

6.1.52 NOW

NOW(*)

Returns the current local date and time in the following format:

yyyy-mm-dd hh:mm:ss

Time is specified using a 24-hour clock, Fractional seconds are not returned.

Note that the asterisk within the parentheses is required.

6.1.53 NULLIF

NULLIF(exprl,expr2)

Returns NULL if exprl is equivalent to expr2. Otherwise, returns exprl.

6.1.54 OBJECT_ID

OBJECT__ID(objname,objtype)

Takes the object name as a quoted string, and optionally the object type, and returns the corresponding object ID of the
specified object as an integer. The available objtype values are as follows: Rl = FOREIGN KEY constraint; K = PRIMARY
KEY or UNIQUE constraint; P = Stored procedure; S = System table; TR = Trigger; U = User table; V = View.

CREATE PROCEDURE GetName
AS SELECT OBJECT_ID("Person®,*U")
GO

Returns the NULL if objname does not exist, or if the optional objtype is specified and does not match the objname. Can
be used within procedure code or trigger code. The inverse of OBJECT_NAME.

6.1.55 OBJECT_NAME

OBJECT_NAME(id)

Takes the object ID integer and returns the corresponding object name of the specified object. Returns the empty string if
id does not exist. Can be used within procedure code or trigger code. The inverse of OBJECT_ID.

CREATE PROCEDURE GetlID
AS SELECT OBJECT_NAME(22)
GO

6.1.56 PATINDEX

PATINDEX(pattern,string)

Returns an integer specifying the beginning position of the first occurrence of pattern in string, counting from 1. If pattern
is not found in string, 0 is returned. Specify pattern as a quoted string. Comparisons are case-sensitive. The pattern can
contain the following wildcard characters:

54 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

% Zero or more characters. For example, '%a%' returns
the position of the first occurrence of 'a’ in string,
including 'a’ as the first character in string.

Any single character. For example, '_1%' returns 1 if
string begins with a substring such as 'Al', 'el', and 'il'.

[xyz] Any single character from the specified list of
characters. For example, '[ai]l%' returns 1 if string
begins with the substring 'al' or il', but not 'el' or "Al'.

[a-2] Any single character from the specified range of
characters. For example, "%s[a-z]t%" matches 'sat’,
'set’, and 'sit'. A range must be specified in ascending
ASCII sequence.

The caret (*) character is a not a wildcard character; if included within square brackets it is treated as a literal. A pattern
commonly consists of a search string enclosed in percent (%) characters "%Chicago%" indicating that the entire string
should be searched.

6.1.57 Pl

P10

Returns the constant pi. The parentheses are required; no argument is permitted. Thus PI() returns 3.141592653589793238.

6.1.58 POWER

POWER(num, exponent)

Returns the value num raised to exponent.

6.1.59 QUOTENAME

QUOTENAME(value)

Returns value as a delimited identifier. TSQL supports double quotes (“value™) as delimiter characters. For example:

PRINT 123
// returns 123
PRINT QUOTENAME(123)
// returns 123"

6.1.60 RADIANS

RADIANS(Float)

Converts an angle measurement in degrees to the corresponding measurement in radians.

Caché Transact-SQL (TSQL) Migration Guide 55

TSQL Functions

6.1.61 RAND

RAND([seed])

Returns a random number as a fractional number less than 1. The optional seed integer argument is ignored; it is provided
for compatibility. If RAND is used more than once in a query it returns different random values.

6.1.62 REPLACE

REPLACE(target,search,replace)

Finds every instance of the search string in the target string and replaces it with the replace string, and returns the resulting
string. To remove the search string from the target string, specify replace as an empty string.

6.1.63 REPLICATE

REPLICATE(expression, repeat-count)

REPLICATE returns a string of repeat-count instances of expression, concatenated together.

If expression is NULL, REPLICATE returns NULL. If expression is the empty string, REPLICATE returns an empty
string.

If repeat-count is a fractional number, only the integer part is used. If repeat-count is 0, REPEAT returns an empty string.
If repeat-count is a negative number, NULL, or a non-numeric string, REPEAT returns NULL.

Repeats string for the number of times specified by the integer num.

REPLICATE returns NULL if either argument is NULL. If string is the empty string ("), REPLICATE returns the empty
string. If num is a negative number, REPLICATE returns NULL. If num is zero, REPLICATE returns the empty string.

6.1.64 REVERSE

REVERSE(string)

Reverses the order of the characters in string.

6.1.65 RIGHT

RIGHT(string, int)

Returns int number of characters from string, counting from the right. If int is larger than string, the full string is returned.
See LEFT.

6.1.66 ROUND

ROUND(num, length)

Returns num rounded to the number of decimal digits specified by the integer length. If length is greater than the number
of decimal digits, no rounding is performed. If length is O, num is rounded to an integer. If the length argument is omitted,
it defaults to 0. If length is a negative integer, num is rounded to the left of the decimal point. A third argument is not
accepted by ROUND.

56 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

6.1.67 RTRIM

RTRIM(string)

Removes trailing blanks from string.

6.1.68 SCOPE_IDENTITY

Returns the last identity value inserted into an IDENTITY column in the same scope. However, the last IDENTITY is not
limited to the scope of the current procedure. Therefore, you should only use SCOPE_IDENTITY when you know that
a statement within the current procedure has generated an IDENTITY value. For example, SCOPE_IDENTITY should
be used after an INSERT command in the same procedure.

The following Dynamic SQL example returns the IDENTITY value from the second INSERT:

SET sql=6

SET sql (1)=""CREATE TABLE #mytest (Myld INT IDENTITY(1,1),"
SET sql (2)="Name VARCHAR(20))"

SET sqgl(3)=""INSERT INTO #mytest(Name) VALUES ("John Smith®)"
SET sql(4)="INSERT INTO #mytest(Name) VALUES (“Walter Jones®)"
SET sql(5)="PRINT SCOPE_IDENTITY(Q"

SET sql(6)="DROP TABLE #mytest"

SET statement=##class(%SQL.Statement) .%New()

SET statement.%Dialect="MSSQL""

SET status=statement.%Prepare(.sql)

SET result=statement.%Execute()

DO result.%Display()

6.1.69 SIGN

SIGN(num)

Returns a value indicating the sign of num. If num is negative (for example, -32), it returns -1. If num is positive (for
example, 32 or +32), it returns 1. If num is zero (for example, 0 or -0), it returns 0.

6.1.70 SIN

SIN(Float)

Sine: returns the sine of the angle specified in float. Thus 1 returns .841470984807...

6.1.71 SPACE

SPACE(num)

Returns a string of blank spaces of length num.

6.1.72 SQRT

SQRT(num)

Returns the square root of num. Thus SQRT(9) returns 3.

Caché Transact-SQL (TSQL) Migration Guide 57

TSQL Functions

6.1.73 SQUARE

SQUARE (num)

Returns the square of num. Thus SQUARE(9) returns 81.

6.1.74 STR

STR(num, [length[,precision]])

Returns a string of length characters. If the integer length is equal to or greater than the number of characters in the numeric
num (including decimal point and sign characters), STR returns num converted to a string and padded with leading blanks
to make the resulting string of length characters.

If the optional integer precision is specified, num is truncated to the specified number of decimal digits before string con-
version. If precision is omitted, num is truncated to its integer portion. If precision is larger than the number of decimal
digits, num is padded with trailing zeros before string conversion.

If length is omitted, it defaults to 10. If length is less than the number of characters in num (after adjustment by precision)
a dummy string consisting of all asterisks of length number of characters is returned.

6.1.75 STUFF

STUFF(string,start, length,replace)

Returns string with length number of characters removed and the replace string inserted. The point of removal and insertion
is specified by the start integer, counting from the beginning of string. If length is 0, no characters are removed. If replace
is the empty string, no characters are inserted.

If start is greater than the number of characters in string, no value is returned. If start is 1, length number of characters are
removed from the beginning of string and the replace string inserted. If start is 0, length minus 1 number of characters are
removed from the beginning of string and the replace string inserted.

If length is greater than or equal to the number of characters in string, the replace string is returned. The replace string
length is not limited by the length of string or length.

6.1.76 SUBSTRING

SUBSTRING(string,start, length)

Returns a substring of string beginning at the location start for the length number of characters. If start is greater than the
length of string, or if length is 0, no string is returned.

6.1.77 SUM

SUM(numfield)
SUM(DISTINCT numfield)

Aggregate function: used in a query to return the sum of the values in the numfield column. For example:

SELECT SUM(Age) FROM Sample.Person

SUM(DISTINCT numfield) sums the unique values in the field column. Fields with NULL are ignored.

58 Caché Transact-SQL (TSQL) Migration Guide

Supported Functions

6.1.78 SUSER_NAME

SUSER_NAMEQ)

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the Caché SQL USER function, and the ObjectScript SUSERNAME special variable.

6.1.79 SUSER_SNAME

SUSER_SNAMEQ)

Returns the name of the current OS user. Parentheses are required, no argument is permitted. Equivalent to TSQL
USER_NAME(), the Caché SQL USER function, and the ObjectScript SJUSERNAME special variable.

6.1.80 TAN

TAN(Float)

Tangent: returns the tangent of the angle specified in float. Thus 1 returns 1.55740772465...

6.1.81 TEXTPTR

TEXTPTR(Field)

Returns an internal pointer to the image or text column data specified in field. The data type of this pointer is
VARBINARY (16).

6.1.82 TEXTVALID

TEXTVALID("table.field", textpointer)

Takes an internal pointer to an image or text column from TEXTPTR, and compares it to a specified in table.field. Returns
1 if the pointer points to the specified table.field. Otherwise, returns 0.

6.1.83 UNICODE

UNICODE(char)

Returns the Unicode integer value corresponding to the first character in the string char. Thus, UNICODE("A™) returns
65.

UNICODE is functionally identical to ASCII. The reverse of this function is CHAR.

6.1.84 UPPER

UPPER(string)

Returns string with all lowercase letters converted to uppercase. See LOWER.

Caché Transact-SQL (TSQL) Migration Guide 59

TSQL Functions

6.1.85 USER

USER

Returns the name of the current user.

Note that no parentheses are used with this function.

6.1.86 USER_NAME

USER_NAME([userid])

Returns the name of the user specified by user ID. If the optional userid is omitted, returns the name of the current user.
The argument is optional; the parentheses are mandatory.

6.1.87 YEAR

YEAR(date)

Returns the year portion of the specified date or date/time string. The date can be specified in ODBC timestamp format:

yyyy-mm-dd hh:mm:ss.n

The date separator can be either a hyphen (-) or a slash (/).

The date can also be specified in Caché $HOROLOG date format, such as 60703 (March 14, 2007).

6.2 Unsupported Functions

The following Microsoft Transact-SQL functions are not supported by TSQL at this time: APP_NAME, ATN2,
BINARY_CHECKSUM, CHECKSUM, COL_LENGTH, COLLATIONPROPERTY, COLUMNPROPERTY, CUR-
SOR_STATUS, DATABASEPROPERTY, DATABASEPROPERTYEX, DB_ID, DIFFERENCE, FILE_ID, FILE_NAME,
FILEGROUP_ID, FILEGROUP_NAME, FILEGROUPPROPERTY, FILEPROPERTY, FORMATMESSAGE, FULL-
TEXTCATALOGPROPERTY, FULLTEXTSERVICEPROPERTY, GETANSINULL, HOST_ID, IDENT_CURRENT,
IDENT_INCR, IDENT_SEED, IDENTITY, INDEXKEY_PROPERTY, INDEXPROPERTY, ISDATE, IS_ MEMBER,
IS_SRVROLEMEMBER, OBJECTPROPERTY, PARSENAME, PERMISSIONS, ROWCOUNT_BIG, SERVERPROP-
ERTY, SESSIONPROPERTY, SESSION_USER, SOUNDEX, SQL_VARIANT_PROPERTY, STATS_DATE, STDEV,
STDEVP, SYSTEM_USER, TYPEPROPERTY.

60 Caché Transact-SQL (TSQL) Migration Guide

TSQL Variables

7.1 Local Variables

By default, TSQL local variables are specified using an At Sign (@) prefix. For example, @myvar. You can override this
default to also allow PLAINLOCALS, TSQL local variables specified without an At Sign (@) prefix. For example, myvar.

7.1.1 Declaring a Local Variable

A local variable must be declared (using DECLARE or as a formal parameter) before use. A variable name must be a valid
identifier. Local variable names are not case-sensitive. The declaration must specify a data type, though strict data typing
is not enforced in Caché TSQL. For a list of supported data types, refer to the TSQL Constructs chapter of this document.

The DECLARE command has the following syntax:
DECLARE @var [AS] datatype [= initval]

If declaring variables is inconvenient, you can switch this check off using the NDC setting. However, cursors must be
declared, even if NDC is used.

Stored procedure arguments are automatically declared as local variables.

7.1.2 Setting a Local Variable

A local variable can be set using either the SET command or the SELECT command. A local variable can be displayed
using either the PRINT command or the SELECT command. The following Dynamic SQL examples show two local
variables being declared, set, and displayed:

SET myquery = 3
SET myquery(1)
SET myquery(2)
SET myquery(3) "PRINT @a,@b"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL'™)
SET gStatus = tStatement.%Prepare(.myquery)

IF gStatus®=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

"DECLARE @a CHAR(20),@b CHAR(20) "
"SET @a="hello " SET @b="worldI® ™

Caché Transact-SQL (TSQL) Migration Guide 61

TSQL Variables

SET myquery = 3
SET myquery(1l) = "DECLARE @a CHAR(20),@b CHAR(20) ™
SET myquery(2) "SELECT @a="hello ", @b="world!""
SET myquery(3) "SELECT @a,@b"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL")
SET gStatus = tStatement.%Prepare(.myquery)
IF gStatus®=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

7.1.3 Initial and Default Values

By default, DECLARE initializes local variables to **** (SQL NULL). Optionally, you can specify an initial value (initval)
for a local variable in the DECLARE command.

If a declared variable is set to the results of a scalar subquery, and the subquery returns no rows, Caché TSQL sets the
variable to *** (SQL NULL). This default is compatible with MS SQLServer; it is not compatible with Sybase.

7.1.4 Plain Local Variables

By default, local variables require an @ prefix. However, you can specify plain locals, local variables that do not require
an @ prefix. The following command activates plain local variables:

SET PLAINLOCALS ON

You must activate plain local variables before declaring these variables. With plain local variables activated you can declare
both local variables with an @ prefix and local variables without an @ prefix. However, you cannot declare two variables
that only differ by the @ prefix. For example, @myvar and myvar are considered the same variable. When declaring,
selecting, or printing a plain local variable, you can specify the same variable with or without the @ prefix.

Plain local variables follow all of the other TSQL variable conventions.

7.2 @@ Special Variables

TSQL special variables are identified by an @@ prefix. @@ variables are system-defined; they cannot be created or
modified by user processes. @@ variables are global in scope (available to all processes). They are thus sometimes referred
to elsewhere in the Transact-SQL literature as “global variables.” Because the term “global variable” is used widely in
Caché and differs significantly in meaning, these TSQL @@ variables are referred to here as “special variables” to avoid
confusion.

The following special variables are implemented. Invoking an unimplemented special variable generates a #5001 *@@nnn*
unresolved symbol error or a #5002 <UNDEFINED> error. The corresponding ObjectScript (COS) and Caché SQL
generated code for each special variable is provided:

7.2.1 @@ERROR

Contains the error number of the most recent TSQL error. O indicates that no error has occurred. A 0 value is returned when
either SQLCODE=0 (successful completion) or SQLCODE=100 (no data, or no more data). To differentiate these two
results, use @@SQLSTATUS.

COS SQLCODE
SQL :SQLCODE

62 Caché Transact-SQL (TSQL) Migration Guide

@@ Special Variables

7.2.2 @@FETCH_STATUS

Contains an integer specifying the status of the last FETCH cursor statement. The available options are: 0=row successfully
fetched; —1=no data could be fetched; —2 row fetched is missing or some other error occurred. A value of -1 can indicate
that there is no data to FETCH, or that the fetch has reached the end of the data.

SET myquery = "SELECT @@FETCH_STATUS AS FetchStat"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL"™)
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_FETCH_STATUSQ)

COS $Case($Get(SQLCODE,0),0:0,100:-1,:-2)
SQL CASE :SQLCODE WHEN O THEN O WHEN 100 THEN -1 ELSE —2 END

7.2.3 @@IDENTITY

Contains the IDENTITY field value of the most recently inserted, updated, or deleted row.
COS %ROWID
SQL :%ROWID

7.2.4 @@LOCK_TIMEOUT

Contains an integer specifying the timeout value for locks, in seconds. Lock timeout is used when a resource needs to be
exclusively locked for inserts, updates, deletes, and selects. The default is 10.

SET myquery = "SELECT @@LOCK_TIMEOUT AS LockTime"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL"™)
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus®™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_LOCK_TIMEOUT()

COS LOCK command
SQL SET OPTION LOCK_TIMEOUT

7.2.5 @@NESTLEVEL

Contains an integer specifying the nesting level of the current process.

SET myquery = "PRINT @@NESTLEVEL"
SET tStatement = ##class(%SQL.Statement) .%New(, , "MSSQL™")
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_NESTLEVELQ

Caché Transact-SQL (TSQL) Migration Guide 63

TSQL Variables

COS $STACK

7.2.6 Q@ROWCOUNT

Contains the number of rows affected by the most recent SELECT, INSERT, UPDATE, or DELETE command. A single-
row SELECT always returns a @ @ROWCOUNT value of either 0 (no row selected) or 1.

When invoking an AFTER statement level trigger, the @ @ROWCOUNT value upon entering the trigger is the
@@ROWCOUNT immediately prior to the trigger. Rows affected within the scope of the trigger code are reflected in the
@@ROWCOUNT value. Upon completion of the trigger code, @ @ROWCOUNT reverts to the value immediately prior
to the trigger invocation.

COS %ROWCOUNT
SQL :%ROWCOUNT

7.2.7 @@SERVERNAME

Contains the Caché instance name.

SET myquery = "SELECT @@SERVERNAME AS Cachelnstance"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL')
SET qStatus = tStatement.%Prepare(myquery)
IF gStatus®™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_SERVERNAMEQ)

COS $PIECE($system,™:",2)

7.2.8 @@SPID

Contains the server process ID of the current process.

SET myquery = ""SELECT @@SPID AS ProcesslID"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL')
SET qStatus = tStatement.%Prepare(myquery)
IF gStatus®™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_SPID()

COS $30B

7.2.9 @@SQLSTATUS

Contains an integer specifying the completion status of the most recent SQL statement. Available values are: 0=successful
completion; 1=failure; 2=no (more) data available.

SET myquery = "SELECT @@SQLSTATUS AS SQLStatus"
SET tStatement = ##class(%SQL.Statement) .%New(, ,"'MSSQL')
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(qStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

64 Caché Transact-SQL (TSQL) Migration Guide

@@ Special Variables

The corresponding Caché SQL function is:

SELECT $TSQL_SQLSTATUS(Q)

COS $Case($Get(SQLCODE,0),0:0,100:2, :1)
SQL CASE :SQLCODE WHEN O THEN O WHEN 100 THEN 2 ELSE 1 END

7.2.10 @@TRANCOUNT

Contains the number of currently active transactions.

SET myquery = "SELECT @@TRANCOUNT AS ActiveTransactions"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL"™)
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus®™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_TRANCOUNTQ

COS $TLEVEL

7.2.11 @Q@VERSION

Contains the Caché version number and date and time of its installation.

SET myquery = "SELECT @@VERSION AS CacheVersion"
SET tStatement = ##class(%SQL.Statement) .%New(, ,""MSSQL"™)
SET gStatus = tStatement.%Prepare(myquery)
IF gStatus™=1 { WRITE "%Prepare failed",$System.Status.DisplayError(gqStatus) QUIT}
SET rset = tStatement.%Execute()
DO rset.%Display()

The corresponding Caché SQL function is:

SELECT $TSQL_VERSIONQ)

COS $ZVERSION

Caché Transact-SQL (TSQL) Migration Guide 65

Using the TSQL Shell

The TSQL Shell is one way to execute Transact-SQL code from Caché.

To use the TSQL Shell, invoke the TSQLShell() method from the Terminal as follows: DO $SYSTEM.SQL . TSQLShell ().
This invokes the Caché SQL Shell and sets its DIALECT configuration parameter to MSSQL.

You can perform the same operation by invoking the SQL Shell from the Terminal as follows: DO $SYSTEM.SQL .Shell(),
then setting the DIALECT configuration parameter. The SQL Shell supports three SET DIALECT options: MSSQL, Sybase,
and Cache.

When in multiline mode, the GO command is used to execute a multiline TSQL statement and exit multiline mode. This
statement delimiter is configurable to the statement delimiter defined in imported TSQL code.

For further details about this shell, refer to the “Using the SQL Shell Interface™ chapter of Using Caché SQL.

8.1 Other Ways to Execute Transact-SQL Code

You can also execute Transact-SQL code:
e asClassMethod methodname() [Language = tsql, SqlProc],
* as Dynamic SQL program using the %Dialect property.

» from the Management Portal Execute SQL Statements option, by setting the Dialect option, which is displayed if you
click the more option.

Caché Transact-SQL (TSQL) Migration Guide 67

	Table of Contents
	About This Book
	1 Overview
	1.1 Getting Started
	1.1.1 Configuring TSQL
	1.1.2 Migrating Source Code
	1.1.3 Migrating the Data

	1.2 TSQL Language Implementation

	2 Caché TSQL Constructs
	2.1 Commonly Used Constructs
	2.1.1 Table References
	2.1.2 Temporary Tables
	2.1.3 Transactions
	2.1.4 Cursor Name Management
	2.1.5 System Stored Procedures
	2.1.6 System Tables
	2.1.7 SYSOBJECTS References

	3 Caché TSQL Language Elements
	3.1 Literals
	3.1.1 String Literals
	3.1.2 Empty Strings
	3.1.3 NULL
	3.1.4 Hexadecimal
	3.1.5 Reserved Words
	3.1.6 Comments, Blank Lines, and Semicolons

	3.2 Identifiers
	3.2.1 Delimited and Quoted Identifiers

	3.3 Data Types
	3.4 Operators
	3.4.1 Arithmetic and Equality Operators
	3.4.2 Concatenation Operator
	3.4.3 Comparison Operators
	3.4.4 NOT Logical Operator
	3.4.5 Bitwise Logical Operators

	4 TSQL Commands
	4.1 Data Definition Language (DDL) Statements
	4.1.1 CREATE TABLE
	4.1.2 ALTER TABLE
	4.1.3 DROP TABLE
	4.1.4 CREATE INDEX
	4.1.5 DROP INDEX
	4.1.6 CREATE TRIGGER
	4.1.7 DROP TRIGGER
	4.1.8 CREATE VIEW
	4.1.9 DROP VIEW
	4.1.10 CREATE DATABASE
	4.1.11 DROP DATABASE

	4.2 Data Management Language (DML) Statements
	4.2.1 DELETE
	4.2.2 INSERT
	4.2.3 UPDATE
	4.2.4 READTEXT, UDATETEXT, WRITETEXT
	4.2.5 TRUNCATE TABLE

	4.3 Query Statements
	4.3.1 SELECT
	4.3.2 JOIN
	4.3.3 UNION
	4.3.4 FETCH Cursor
	4.3.5 UPDATE STATISTICS

	4.4 Flow of Control Statements
	4.4.1 IF
	4.4.2 WHILE
	4.4.3 CASE
	4.4.4 GOTO and Labels
	4.4.5 WAITFOR

	4.5 Assignment Statements
	4.5.1 DECLARE
	4.5.2 SET

	4.6 Transaction Statements
	4.6.1 SET TRANSACTION ISOLATION LEVEL
	4.6.2 BEGIN TRANSACTION
	4.6.3 COMMIT TRANSACTION
	4.6.4 ROLLBACK TRANSACTION
	4.6.5 CHECKPOINT
	4.6.6 LOCK TABLE

	4.7 Procedure Statements
	4.7.1 CREATE PROCEDURE / CREATE FUNCTION
	4.7.2 ALTER FUNCTION
	4.7.3 DROP FUNCTION
	4.7.4 DROP PROCEDURE
	4.7.5 RETURN
	4.7.6 EXECUTE
	4.7.7 CALL

	4.8 Other Statements
	4.8.1 CREATE USER
	4.8.2 CREATE ROLE
	4.8.3 GRANT and REVOKE
	4.8.4 PRINT
	4.8.5 RAISERROR
	4.8.6 UPDATE STATISTICS
	4.8.7 USE database

	4.9 InterSystems Extensions
	4.9.1 CACHE
	4.9.2 IMPORTASQUERY

	5 TSQL Settings
	5.1 DIALECT
	5.2 ANSI_NULLS
	5.3 CASEINSCOMPARE
	5.4 QUOTED_IDENTIFIER
	5.5 TRACE

	6 TSQL Functions
	6.1 Supported Functions
	6.1.1 ABS
	6.1.2 ACOS
	6.1.3 ASCII
	6.1.4 ASIN
	6.1.5 ATAN
	6.1.6 AVG
	6.1.7 CAST
	6.1.8 CEILING
	6.1.9 CHAR
	6.1.10 CHAR_LENGTH / CHARACTER_LENGTH
	6.1.11 CHARINDEX
	6.1.12 COALESCE
	6.1.13 COL_NAME
	6.1.14 CONVERT
	6.1.15 COS
	6.1.16 COT
	6.1.17 COUNT
	6.1.18 CURRENT_DATE
	6.1.19 CURRENT_TIME
	6.1.20 CURRENT_TIMESTAMP
	6.1.21 CURRENT_USER
	6.1.22 DATALENGTH
	6.1.23 DATEADD
	6.1.24 DATEDIFF
	6.1.25 DATENAME
	6.1.26 DATEPART
	6.1.27 DAY
	6.1.28 DB_NAME
	6.1.29 DEGREES
	6.1.30 ERROR_MESSAGE
	6.1.31 ERROR_NUMBER
	6.1.32 EXEC
	6.1.33 EXP
	6.1.34 FLOOR
	6.1.35 GETDATE
	6.1.36 GETUTCDATE
	6.1.37 HOST_NAME
	6.1.38 INDEX_COL
	6.1.39 ISNULL
	6.1.40 ISNUMERIC
	6.1.41 LEFT
	6.1.42 LEN
	6.1.43 LOG
	6.1.44 LOG10
	6.1.45 LOWER
	6.1.46 LTRIM
	6.1.47 MAX
	6.1.48 MIN
	6.1.49 MONTH
	6.1.50 NCHAR
	6.1.51 NEWID
	6.1.52 NOW
	6.1.53 NULLIF
	6.1.54 OBJECT_ID
	6.1.55 OBJECT_NAME
	6.1.56 PATINDEX
	6.1.57 PI
	6.1.58 POWER
	6.1.59 QUOTENAME
	6.1.60 RADIANS
	6.1.61 RAND
	6.1.62 REPLACE
	6.1.63 REPLICATE
	6.1.64 REVERSE
	6.1.65 RIGHT
	6.1.66 ROUND
	6.1.67 RTRIM
	6.1.68 SCOPE_IDENTITY
	6.1.69 SIGN
	6.1.70 SIN
	6.1.71 SPACE
	6.1.72 SQRT
	6.1.73 SQUARE
	6.1.74 STR
	6.1.75 STUFF
	6.1.76 SUBSTRING
	6.1.77 SUM
	6.1.78 SUSER_NAME
	6.1.79 SUSER_SNAME
	6.1.80 TAN
	6.1.81 TEXTPTR
	6.1.82 TEXTVALID
	6.1.83 UNICODE
	6.1.84 UPPER
	6.1.85 USER
	6.1.86 USER_NAME
	6.1.87 YEAR

	6.2 Unsupported Functions

	7 TSQL Variables
	7.1 Local Variables
	7.1.1 Declaring a Local Variable
	7.1.2 Setting a Local Variable
	7.1.3 Initial and Default Values
	7.1.4 Plain Local Variables

	7.2 @@ Special Variables
	7.2.1 @@ERROR
	7.2.2 @@FETCH_STATUS
	7.2.3 @@IDENTITY
	7.2.4 @@LOCK_TIMEOUT
	7.2.5 @@NESTLEVEL
	7.2.6 @@ROWCOUNT
	7.2.7 @@SERVERNAME
	7.2.8 @@SPID
	7.2.9 @@SQLSTATUS
	7.2.10 @@TRANCOUNT
	7.2.11 @@VERSION

	8 Using the TSQL Shell
	8.1 Other Ways to Execute Transact-SQL Code

