
Using InterSystems
Development Environments —

Atelier and Studio

Version 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using InterSystems Development Environments — Atelier and Studio
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Introduction to Atelier .. 3

2 Introduction to Studio .. 5
2.1 Overview of the Studio Window .. 5

2.1.1 Running Studio from the Command Line .. 7
2.2 Projects ... 7
2.3 Class Definitions .. 8

2.3.1 Class Definitions as Text .. 8
2.4 CSP Files .. 10
2.5 Routine Editor .. 10
2.6 Multiple User Support .. 11
2.7 Importing and Exporting Caché Documents Locally ... 11
2.8 Debugging .. 11

2.8.1 Debugging Object-Based Applications .. 11
2.9 Integration with Caché Security ... 11
2.10 Source Control Hooks .. 12

3 Building a Simple Application with Studio .. 13
3.1 Creating a Project ... 13
3.2 Creating a Database .. 14

3.2.1 Defining a New Class ... 14
3.2.2 Adding Properties ... 14
3.2.3 Saving and Compiling Your Class .. 15
3.2.4 Viewing Documentation for Your Class ... 15

3.3 Creating a Web User Interface using CSP .. 15
3.3.1 Creating a CSP File .. 15
3.3.2 Saving and Compiling Your CSP File .. 17
3.3.3 Viewing Your Web Page ... 17

3.4 Creating a Web User Interface using Zen ... 17
3.4.1 Making Your Class a Data Adaptor .. 17
3.4.2 Creating a Zen Page ... 18
3.4.3 Adding a Zen Form .. 19
3.4.4 Adding Client-side Methods .. 21
3.4.5 Viewing the Database in a Table .. 22

4 Creating Class Definitions ... 25
4.1 Creating New Class Definitions ... 25

4.1.1 New Class Wizard .. 25
4.1.2 Results of Running the New Class Wizard .. 28

4.2 Opening Class Definitions ... 28
4.3 Editing Class Definitions ... 28
4.4 Saving and Deleting Class Definitions ... 29
4.5 Compiling Class Definitions .. 29

4.5.1 Incremental Compilation .. 29
4.6 Renaming Class Definitions ... 30
4.7 Class Inspector ... 30

4.7.1 Activating the Class Inspector .. 31

Using InterSystems Development Environments — Atelier and Studio iii

4.8 Class Browser ... 31
4.9 Superclass Browser and Derived Class Browser .. 31

4.9.1 Superclass Browser .. 32
4.9.2 Derived Class Browser ... 32

4.10 Package Information ... 32

5 Adding Properties to a Class .. 35
5.1 New Property Wizard ... 35

5.1.1 Name and Description Page ... 35
5.1.2 Property Type Page .. 36
5.1.3 Property Characteristics Page .. 36
5.1.4 Data Type Parameters Page .. 37
5.1.5 Property Accessors Page .. 37
5.1.6 Results of Running the New Property Wizard ... 37

6 Adding Methods to a Class .. 39
6.1 New Method Wizard ... 39

6.1.1 Name and Description Page ... 39
6.1.2 Method Signature Page .. 40
6.1.3 Method Characteristics Page .. 40
6.1.4 Implementation Page .. 41
6.1.5 Results of Running the New Method Wizard ... 41

6.2 Overriding a Method .. 41

7 Adding Class Parameters to a Class ... 43
7.1 New Class Parameter Wizard .. 43

8 Adding Relationships to a Class .. 45
8.1 New Property Wizard to Create a Relationship Property ... 45

8.1.1 Name and Description Page ... 46
8.1.2 Property Type Page .. 46
8.1.3 Relationship Characteristics Page .. 46
8.1.4 Additional Changes .. 47
8.1.5 Results of Creating a New Relationship with the New Property Wizard 47

9 Adding Queries to a Class .. 49
9.1 New Query Wizard ... 50

9.1.1 Name, Implementation, and Description Page ... 50
9.1.2 Input Parameters Page .. 50
9.1.3 Columns Page ... 50
9.1.4 Conditions Page ... 50
9.1.5 Order By Page .. 51
9.1.6 Row Specification Page ... 51
9.1.7 Results of Running the New Query Wizard ... 51

10 Adding Indices to a Class ... 53
10.1 New Index Wizard .. 53

10.1.1 Name and Description Page ... 53
10.1.2 Index Type Page ... 54
10.1.3 Index Properties Page ... 54
10.1.4 Index Data Page ... 55
10.1.5 Results of Running the New Index Wizard .. 55

10.2 Populating an Index .. 55

11 Adding Projections to a Class .. 57

iv Using InterSystems Development Environments — Atelier and Studio

11.1 New Projection Wizard ... 58
11.1.1 Name and Description Page ... 58
11.1.2 Projection Type Page .. 58
11.1.3 Results of Running the New Projection Wizard ... 58

12 Adding XData Blocks to a Class .. 59
12.1 New XData Wizard ... 59

13 Adding SQL Triggers and Foreign Keys to a Class ... 61
13.1 SQL Aliases .. 61
13.2 SQL Stored Procedures .. 61

13.2.1 Query-Based Stored Procedure .. 61
13.2.2 Creating Method-Based Stored Procedure ... 62

13.3 Adding SQL Triggers to a Class ... 62
13.3.1 New SQL Trigger Wizard .. 63

13.4 Adding New SQL Foreign Keys to a Class .. 64
13.4.1 New SQL Foreign Key Wizard .. 64

14 Adding Storage Definitions to a Class .. 67
14.1 Adding Storage Definitions to a Class ... 67

14.1.1 Using the New Storage Wizard .. 68
14.2 Using the Class Inspector with Storage Definitions ... 69
14.3 Using the Class Editor with Storage Definitions ... 69

15 Working with CSP Files ... 71
15.1 Sample CSP Page ... 71
15.2 Creating a New CSP File .. 72

15.2.1 Default.csp Template File .. 72
15.3 Editing a CSP File .. 72

15.3.1 Insert Options ... 72
15.4 Saving a CSP File ... 73
15.5 Compiling a CSP File ... 73
15.6 Viewing the Results of a CSP File .. 73
15.7 Viewing Syntax-Colored Source for Any URL ... 74

16 Working with Routines and Include Files .. 75
16.1 Routine Editor .. 75
16.2 Routine Source Formats ... 75
16.3 Creating a New Routine or Include File ... 76
16.4 Opening an Existing Routine or Include File ... 76
16.5 Routine Template File .. 76
16.6 Saving, Compiling, and Deleting Routines .. 76
16.7 Save Automatically Backs Up Routines, Include, and CSP Files .. 76

17 Using the Studio Debugger .. 79
17.1 Sample Debugging Session: Debugging a Routine .. 79
17.2 Debugger Settings for the Current Project ... 80

17.2.1 Debug Target .. 80
17.2.2 Breakpoints .. 81

17.3 Debug Menu ... 81
17.4 Watch Window .. 82

17.4.1 Debugger Watch Window Context Menu ... 83

18 Using Studio Templates .. 85
18.1 Accessing Studio Templates ... 85

Using InterSystems Development Environments — Atelier and Studio v

18.2 Caché-Supplied Standard Studio Templates .. 86
18.2.1 Templates ... 86
18.2.2 Class Definition Templates .. 87
18.2.3 Zen Templates .. 87
18.2.4 Add-In Templates ... 88

18.3 Making Your Own Studio Templates .. 88
18.3.1 Template Architecture .. 88
18.3.2 Default Template Timeout .. 89
18.3.3 Simple Text Templates ... 89
18.3.4 Interactive Studio Templates .. 91
18.3.5 New Document Studio Templates .. 92
18.3.6 Add Text to End of a Document ... 93
18.3.7 Add-in Studio Templates .. 93

19 Studio Menu Reference .. 95
19.1 File Menu ... 95
19.2 Edit Menu ... 97

19.2.1 Basic Editing .. 98
19.2.2 Find and Replace .. 98
19.2.3 Bookmarks ... 100
19.2.4 Advanced Editing .. 100

19.3 View Menu ... 101
19.3.1 Toolbars .. 102
19.3.2 Customize Toolbars .. 103

19.4 Project Menu .. 104
19.4.1 Common Project Tasks ... 104

19.5 Class Menu ... 104
19.6 Build Menu ... 105
19.7 Debug Menu ... 106
19.8 Tools Menu ... 106
19.9 Utilities Menu ... 108
19.10 Window Menu .. 108
19.11 Help Menu .. 108
19.12 Context Menus ... 108

19.12.1 Editor Context Menu .. 109
19.12.2 Workspace Context Menu .. 109
19.12.3 Inspector Context Menu ... 110
19.12.4 Tab Context Menu .. 110
19.12.5 Window Display Context Menu ... 110
19.12.6 Debugger Watch Context Menu ... 111

19.13 Keyboard Accelerators ... 111
19.13.1 Inserting MultiValue Characters ... 117

19.14 Adding to a Studio Menu ... 117

20 Setting Studio Options ... 119
20.1 Environment Options .. 119
20.2 Editor Options .. 121
20.3 Compiler Options ... 123
20.4 SQL Options ... 125
20.5 Studio Look Options .. 125

Appendix A: Using Studio Source Control Hooks .. 127

vi Using InterSystems Development Environments — Atelier and Studio

A.1 Overview ... 127
A.2 Caché Documents .. 127

A.2.1 Tools for Managing Documents and Files .. 128
A.2.2 Deciding How to Map Internal and External Names .. 128

A.3 Creating and Activating a Source Control Class ... 128
A.3.1 Extending Studio ... 129
A.3.2 Creating a Source Control Class ... 129
A.3.3 Activating a Source Control Class ... 130

A.4 Accessing Your Source Control System .. 130
A.4.1 Example 1 .. 130
A.4.2 Example 2 .. 130

A.5 Sample Source Control Class .. 131
A.5.1 Introduction ... 131
A.5.2 Global .. 132
A.5.3 Determining the External Names .. 133
A.5.4 Synchronizing the Caché Document and the External File .. 133
A.5.5 Controlling the Status of the Caché Document ... 134
A.5.6 Source Control Actions ... 134
A.5.7 Other Details ... 135

Appendix B: Frequently Asked Questions About Studio ... 137

Using InterSystems Development Environments — Atelier and Studio vii

List of Figures

Figure 2–1: Studio Components .. 6
Figure 4–1: Class Inspector ... 30
Figure 4–2: Package Settings dialog ... 32
Figure 18–1: Example of an Interactive Template, the HTML Color Table ... 86
Figure 19–1: Standard Toolbar .. 103
Figure 19–2: Debug Toolbar .. 103
Figure 19–3: Class Members Toolbar ... 103
Figure 19–4: BPL Toolbar ... 103
Figure 19–5: Bookmarks Toolbar .. 103

viii Using InterSystems Development Environments — Atelier and Studio

List of Tables

Table 11–1: Projection Classes .. 57
Table 18–1: CSP Templates ... 86
Table 18–2: Class Definition Templates .. 87
Table 18–3: Zen Templates .. 87
Table 18–4: Add-Ins .. 88
Table 18–5: Studio Template Types ... 90

Using InterSystems Development Environments — Atelier and Studio ix

About This Book

This book provides information on the integrated development environments (IDEs) available from InterSystems. It contains
the following chapters and appendices:

• Introduction to Atelier — For information on using Atelier, see http://www.intersystems.com/atelier, the Atelier home
page.

• Introduction to Studio — This chapter and the remaining chapters apply to Studio.

• Building a Simple Application with Studio

• Creating Class Definitions

• Adding Properties to a Class

• Adding Methods to a Class

• Adding Class Parameters to a Class

• Adding Relationships to a Class

• Adding Queries to a Class

• Adding Indices to a Class

• Adding Projections to a Class

• Adding XData Blocks to a Class

• Adding SQL Triggers and Foreign Keys

• Adding Storage Definitions to a Class

• Working with CSP Files

• Working with Routines

• Using the Studio Debugger

• Using Studio Templates

• Studio Menu Reference

• Setting Studio Options

• Using Studio Source Control Hooks

• Frequently Asked Questions About Studio

• And a more detailed Table of Contents.

Also see Class Definitions in the reference Class Definitions in Caché Class Definition Reference.

Using InterSystems Development Environments — Atelier and Studio 1

http://www.intersystems.com/atelier

1
Introduction to Atelier

With the release of version 2016.2, InterSystems introduces Atelier, a new IDE based on the open-source Eclipse development
environment. Atelier is in active development and will provide a full Caché development environment in the future. Studio
remains available for customers with experience and investment in that technology.

Atelier is available as a separate download in addition to Caché or Ensemble. You can choose to install either a stand-alone
Rich Client Platform (RCP) application, or a plug-in that can be added to an existing Eclipse installation. Users of the RCP
application can add additional Eclipse plug-ins. Atelier uses the Eclipse auto-update mechanism to help users get the latest
changes. For more information on Atelier, see http://www.intersystems.com/atelier, the Atelier home page, which has
information on downloading and using Atelier. (The remaining chapters of this book describe Studio.)

Using InterSystems Development Environments — Atelier and Studio 3

http://www.intersystems.com/atelier

2
Introduction to Studio

Studio offers features that help you develop applications rapidly, in a single, integrated environment including:

• An editor in which to create

– Classes, including persistent, database classes and Web service classes

– Interactive Web pages using: CSP (Caché Server Pages) and Zen, XML, HTML, JavaScript, cascading style sheets
(CSS)

– Routines using ObjectScript, Basic, or MultiValue

• Integrated syntax coloring and syntax checking for ObjectScript, Basic, Java, SQL, JavaScript, HTML, and XML.

• Support for teams of developers working with a common repository of application source code.

• A graphical source code debugger.

• The ability to organize application source code into projects.

Studio is a client application, built using Caché objects, that runs on Windows-based operating systems. It can connect to
any Caché server (compatible with the current version of Studio) regardless of what platform and operating system that
server is using.

Note: A Studio client must be running either the same version of Caché or a higher version than the Caché server that
it is connecting to. Example: Caché 2015.1 Studio can connect to a Caché 2015.1 (or earlier version) server. Caché
2014.1 Studio cannot connect to a Caché 2015.1 (or later) server. This applies also to maintenance releases.
Example: Caché 2014.1.2 Studio can connect to a Caché 2014.1.1 (or earlier maintenance release or version)
server. Caché 2014.1.0 Studio cannot connect to a Caché 2014.1.1 (or later maintenance release or version) server.

2.1 Overview of the Studio Window
Studio is a standard Windows application. It uses windows to display and allow the editing of aspects. The main components
of the Studio user interface are shown below:

Using InterSystems Development Environments — Atelier and Studio 5

Figure 2–1: Studio Components

1. Editors: Class Editor for editing class definitions, Routine Editor for editing routines and include files, and CSP Editor
for editing CSP definition text.

2. Class Browser window: for viewing existing classes.

3. Workspace window: three tabs let you display: the contents of the current project, all open windows, or the content of
the current namespace.

4. Class Inspector window: for viewing and modifying keywords in a class definition.

5. Watch window: displays variables.

6. Title Bar: displays ConnectionName/Namespace@UserName - ProjectName.prj – Studio – ActiveDocument. If the
active document is maximized, the name shows in square brackets.

In addition to the windows displayed above, Studio contains wizards and templates for assisting with common tasks. These
include:

• Find in Files window: displays a search window.

• Output window: displays output from the Caché server (such as messages generated during class compilation).

• Code Snippets window: for viewing and dragging user-created code snippets.

• New Class wizard: defines a new class.

• Class member wizards that add members to class definitions for: properties, indexes, relationships, methods, parameters,
SQL triggers, queries, projections, storage, foreign keys, and XData blocks.

• Wizards that create classes from other technologies; from: Java classes and jar files, SML schema, SOAP client classes,
that provide access to COM objects, and DLL assembly files from .NET.

• HTML templates that add: colors, tables, tags, and scripts.

• CSP Form wizard: creates an HTML form bound to a Caché object in a CSP page.

6 Using InterSystems Development Environments — Atelier and Studio

Introduction to Studio

• Zen templates that add: charts, tables, methods, and styles.

2.1.1 Running Studio from the Command Line

You can run Studio from the system's command line using the command Cstudio.exe (in the Caché bin directory). The
command and its parameters are case-sensitive.

DescriptionParameter

Help info?

Connect to the server named ServerName./Servername=ServerName

Connect to the server at ip address[port]./Server=cn_iptcp:127.0.0.1[1972]::

Connect to the User namespace.You must also
define a server.

/Namespace=User

Open project MyProject.You must also define a
server and a namespace.

/Project=MyProject

Load routine test.int.cn_iptcp is a case-sensitive
protocol identifier.

cn_iptcp://127.0.0.1:1972/User/test.int

Open listed documents and set cursor in specified
position.You must also define a server and a
namespace.

/files="tag+1^myroutine.int",User.Class1.cls

Attach to process.You must also define a server
and a namespace.

/pid=123

Connect without connection definition in registry
using ip address[port]:USER:username:password

/fastconnect=127.0.0.1[1972]:USER:_SYSTEM:SYS

2.2 Projects
Studio uses projects to organize application source code.

A project is a set of class definitions, CSP files, routines, and include files. For example, you might create a Studio project
to group all classes and CSP files for a single application.

You are always in a project, either one that you created or the default project that is created when you first open Studio
called Default_yourusername (a prefix of Default_ followed by your username).

All files in a single project must be in the same namespace (and Caché server). Each class, CSP file, or routine can be
associated with any number of projects. Each namespace can contain any number of projects.

The project stores information such as the class hierarchy in a given Caché namespace, used when you edit classes or CSP
files. The project also stores debugging information (such as how to start the application you want to debug).

Using InterSystems Development Environments — Atelier and Studio 7

Projects

2.3 Class Definitions
A class definition defines a Caché class. A class definition consists of class members (such as properties and methods) and
other items, called keywords, each with associated values, that specify details of the class behavior.

Class definitions reside in a Caché database where they are stored in the class dictionary. A class definition can be compiled,
a process which creates executable code that can create object instances based on the class definition. The source code for
the executable code created for a class consists of one or more Caché routines. These generated routines can also be viewed
in Studio.

A class definition can be projected for use by other technologies. In the case of SQL and ActiveX, this projection is automatic.
In the case of Java (or C++) there is an additional compilation step in which a Java class is generated that corresponds to
the Caché class definition. For details, see the chapter “Adding Class Projections.”

Within Studio, class definitions can be displayed and edited in a Class Editor window. Class definitions can also be viewed
in the Class Inspector window as keywords and their corresponding values in tables.

2.3.1 Class Definitions as Text

The following is an example of a class definition that defines a class containing one property and one method:

/// Definition of a simple persistent Person class
Class MyApp.Person Extends %Persistent
{

/// The name of the Person
Property Name As %String;

/// A simple Print method
Method Print() As %Boolean
{
 // Write out Person's Name
 Write "Name is: ", ..Name
 Quit 1
}

}

2.3.1.1 Class Information

A class definition starts with the declaration of the class name and any class-wide characteristics, such as:

Class MyApp.Student Extends Person
{

}

This example defines a class called MyApp.Student (with no properties, methods, or other members) that extends (is derived
from) the class MyApp.Person (since Student and Person are in the same package, we can omit MyApp from the Extends
statement). The { } (braces) enclose the definition of the class members (of which there are none in this example).

You can specify additional characteristics for this class by defining values for class keywords. This is done by placing a
list of keywords (possibly with values) in [] (brackets) immediately following the class declaration (after the class name
and superclass name (if any)).

For example, you can specify that the class as Final and the name of its corresponding SQL table as StudentTable.

Class MyApp.Student Extends Person [Final, SqlTableName=StudentTable]
{

}

8 Using InterSystems Development Environments — Atelier and Studio

Introduction to Studio

You can also provide a description for this class by placing a description comment (identified by ///, three slashes) imme-
diately before the declaration of the class. This description is used when you view the class documentation via the Caché
online class reference. It may contain HTML markup. Example:

/// This is a simple Student class
/// It is derived from the Person class
Class MyApp.Student Extends Person
{

}

You can use the C-style //, two slashes, and /* */, begin with slash asterisk and end with asterisk slash, comments anywhere
in a class definition to comment out a section of the class definition.

2.3.1.2 Properties

You can define a property in a class definition using the Property keyword:

Class MyApp.Student Extends Person
{
 Property GPA As %Float;
}

This example defines a property named GPA with type %Float (specified using As). The end of the property definition is
marked with a final semicolon (;).

As with the class declaration, you can add a description for this property using a preceding /// comment and we can specify
additional property keywords in [] brackets:

Class MyApp.Student Extends Person
{
 /// Grade Point Average for the Student
 Property GPA As %Float [Required];
}

If you want to specify parameter values for the property data type (parameters give you a way to customize the behavior
of a property), placed them in (), parentheses, as part of the type name. Note that the values for data type parameters are
treated as literal values; enclose strings in quotation marks.

Class MyApp.Student Extends Person
{
 /// Grade Point Average for the Student
 Property GPA As %Float(MINVAL=0.0, MAXVAL=5.0) [Required];
}

2.3.1.3 Methods

You can define a method in a class definition using the Method keyword:

Class MyApp.Student Extends Person
{
/// This method wastes count seconds.
Method WasteTime(count As %Integer=1) As %Boolean [Final]
{
 // loop and sleep
 For i = 1:1:count {
 Write "."
 Hang 1
 }
 Quit 1
}
}

The return type of the method is specified using As followed by a class name. The formal argument list follows the method
name and is enclosed in () (parentheses). The implementation of the method is contained in { } (braces) following the
method declaration.

Using InterSystems Development Environments — Atelier and Studio 9

Class Definitions

As with a property, you can use /// (three slashes) comments to specify a description (with HTML markup, if desired) and
additional keyword values are placed in [] (brackets).

You can specify the programming language for a method using the Language keyword. For example, the code below defines
a method in Basic:

/// Find the sum of numbers from 1 to <var>count</var>.
Method SumUp(count As %Integer) As %Integer [Language = basic]
{
 total = 0
 For i = 1 To count
 total = total + i
 Next

 Return i
}

Use the Language keyword to specify one of the following languages:

• cache—ObjectScript (the default if no language is specified). Refer to the book Using Caché ObjectScript for more
details.

• basic—Basic. Caché supports a variant of the BASIC programming language. Basic methods are compiled into
executable code that runs in the Caché virtual machine (in the same manner as ObjectScript). Refer to Using Basic for
more details.

• java—Java. When you use the Caché Java Binding, Java methods become part of the automatically generated Java
classes and are compiled into executable Java code. Refer to Using Java with Caché for more details.

A single class can contain methods that use different languages. Or you can specify the default programming language for
an entire class using the class-level Language keyword.

2.4 CSP Files
A CSP (Caché Server Page) file is an HTML or XML text file containing CSP markup language. The CSP engine processes
a CSP file and generates from it a Caché class which is then used to respond to HTTP events and provide Web content.

If you prefer a more programmatic approach to Web development, you can also use Studio to create and edit CSP classes
in the same way as you would work with any other class definitions.

Studio displays CSP files in a CSP Editor window. This editor provides syntax coloring of HTML and XML as well as
many of the scripting languages that may be contained in a CSP file.

The CSP Editor provides commands for performing common CSP and HTML editing tasks such as inserting CSP markup
tags. Studio also lets you view the results of a CSP file in a browser using the menu pick View > Web Page.

2.5 Routine Editor
Using the Routine Editor, you can directly create and edit the source for specific Caché routines in a syntax-coloring editor.
You also use the Routine Editor to edit include files.

10 Using InterSystems Development Environments — Atelier and Studio

Introduction to Studio

2.6 Multiple User Support
Studio is an object-based, client/server application. The source files—class definitions, routines, include files, and CSP
files—that you can create and edit with Studio are stored in a Caché server and are represented as objects.

When you save a source file from Studio, it is saved in the Caché server you are connected to. If a source file is modified
on the server while you are viewing it in Studio, you are notified and asked if you want to load the newer version.

Studio automatically detects when multiple users view the same source components simultaneously and manages access
concurrency. If you attempt to open a file that is being edited by another user, you are notified and asked if you want to
open the file in read-only mode.

2.7 Importing and Exporting Caché Documents Locally
Normally any documents you work with in Studio (such as class definitions or routines) are stored in a Caché database
(which may be on a remote machine). You can import from and export to local files using Tools > Export and Tools > Import.

Class definitions and routines are stored in local files as XML documents.

2.8 Debugging
Studio includes a source-level, GUI debugger. The debugger attaches (or starts up and attaches to) a target process running
on the same Caché server that Studio is connected to. The debugger controls this target process remotely and allows you
to watch variables, step through code, and set breakpoints.

You typically must have a project open in order to use the debugger; the project contains the information needed to start
the debug target (name of a routine, method, CSP page, Zen page, or client application). In addition, the project stores a
list of breakpoints set in a prior debugging session for subsequent reuse.

You may attach and break into a running process without having a project open. In this case Studio does not remember
breakpoint settings from previous sessions. See more about debugging in the chapter “Using the Studio Debugger.”

2.8.1 Debugging Object-Based Applications

At this time, Studio only allows source-level debugging of INT (ObjectScript routine) and BAS (Basic routine) files. To
step through, or set breakpoints within classes or CSP pages, open the corresponding INT or BAS file and use the debugging
commands in it.

To make sure that the generated source code for a class is available, check the Keep Generated Source Code option,
on Tools > Options dialog, Compiler > General Flags tab.

2.9 Integration with Caché Security
Caché security features control both the use of Studio and the ability of Studio to connect to any Caché server. When you
start Studio, it presents a login screen; to use Studio, you must log in as a user who holds the following privileges:

Using InterSystems Development Environments — Atelier and Studio 11

Multiple User Support

• %Development:Use - Use permission on the %Development resource grants access to various development-related
resources.

• %Service_Object:Use - Use permission on the %Service_Object resource grants access to the %Service_Bind-
ings service, which controls access to Studio.

Also, you can only connect to a namespace if you have Read or Write permission for its default database.

The way in which a user is granted these various privileges depends on the instance’s security level, described in the list
below. To change the Studio authentication settings, use the Allowed Authentication Modes check boxes on the Edit Service

page for the %Service_Bindings service.

• For an instance with minimal security, all users, including UnknownUser, have all privileges and access to all names-
paces. When presented with the Studio login screen, either leave the Username and Password fields blank or enter
“_SYSTEM” and “SYS” as the username-password pair.

• For an instance with normal security, you must be explicitly granted the specified privileges. This is established by
being assigned to a role or roles that holds these privileges.

• For an instance with locked-down security, the service that governs access to Studio (%Service_Bindings) is disabled
by default. By default, no user has access to Studio.

Note: Studio access may also be affected by any changes to default settings that have occurred since installation.

2.10 Source Control Hooks
Studio includes a mechanism for implementing custom hooks—code that is executed on the Caché server whenever a
document is loaded or saved. Typically these hooks are used to implement a connection to a source or revision control
system.

To define source control hooks, create a subclass of the %Studio.SourceControl.Base class and implement the callback
methods that you want. You can specify which Source Control class Studio should use by navigating to System Adminis-

tration > Configuration > Additional Settings > Source Control on the Management Portal.

Refer to the %Studio.SourceControl.Base class and the “Using Studio Source Control Hooks” appendix for more details.

12 Using InterSystems Development Environments — Atelier and Studio

Introduction to Studio

3
Building a Simple Application with Studio

This chapter contains a tutorial that illustrates some basic features of Studio. The tutorial shows you how to create a database
application that is a phone book, containing names and phone numbers.

The phone book application consists of:

• A database in which you can store names and phone numbers.

• An interactive user interface on a Web page (an HTML form) that allows you to add new entries, search for entries,
and edit entries in the phone book.

The tutorial demonstrates how to use Studio to:

1. Create a Caché Project to manage the source code for the application.

2. Define the application's database using a persistent database class.

3. Create a Web-based (HTML) user interface for the application using Caché Server Pages (CSP).

4. Create a Web-based (HTML) user interface for the application using InterSystems Zen.

3.1 Creating a Project
First, create a new project named Phone Book to manage the source files for the application, as follows:

1. Start Studio; right-click the Caché cube and select Studio.

Studio connects to the local Caché server using the namespace used most recently by Studio (or displays the namespace
dialog if this is the first time Studio is connecting).

If Studio is not connected to the namespace in which you want to work, connect to a different namespace using the
File > Change Namespace.

By default, Studio displays the Workspace window and creates a new project called Default_system. The Studio
Workspace window indicates the name of the current project as well as the server connection and namespace name.
The Workspace window should be displayed by default; if you don't see it, display it using the View > Workspace or
with the Alt-3 keyboard accelerator.

Using InterSystems Development Environments — Atelier and Studio 13

2. To save your new project, select File > Save Project As and enter Phone Book.

You can save this project to the Caché server at any time using the File > Save Project.

3.2 Creating a Database
The Phone Book application is a database containing people's names and phone numbers, stored using a set of persistent
objects. These objects are defined by a persistent class called Person. For sake of organization you can place this class in
a package called PhoneBook.

The persistent class Person contains two properties (or fields): Name and PhoneNumber.

3.2.1 Defining a New Class

You can define this new Person class using Studio's New Class wizard by following these steps:

1. Start the New Class wizard by selecting File > New > General tab.

2. Double-click Caché Class Definition.

3. On the first page of the New Class wizard, enter a package name, PhoneBook and a class name, Person. Select Next.

4. Select Persistent from the list of available class types. Select Finish.

You see a Class Editor window containing the definition of your new class:

Class PhoneBook.Person Extends %Persistent
{
}

3.2.2 Adding Properties

Add the Name and PhoneNumber properties to the definition of the Person class with the New Property wizard as follows:

1. Select Class > Add > Property to start the New Property wizard.

2. Enter a name for the new property, Name, andselect Finish.

Your class definition includes a property definition:

Class PhoneBook.Person Extends %Persistent
{
 Property Name As %String;
}

14 Using InterSystems Development Environments — Atelier and Studio

Building a Simple Application with Studio

3. Select Class > Add > Property. Enter PhoneNumber. Select Finish.

Class PhoneBook.Person Extends %Persistent
{
 Property Name As %String;
 Property PhoneNumber As %String;
}

You could have also added the PhoneNumber property by copying, pasting, and modifying the Name property directly into
the Class Editor window. Items are indented to structure the code to improve readability. A plus/minus expansion box is
provided to the left of each item so that you can collapse sections of the code that you are not currently looking at.

3.2.3 Saving and Compiling Your Class

Save this class definition to the database and compile it into executable code with Build > Compile or select the Compile

icon .

You now have a PhoneBook.Person class defined in your database.

3.2.4 Viewing Documentation for Your Class

View the automatically generated documentation for this class in the Caché online class reference with View > Show Class

Documentation. To enter descriptions for your class and properties so that they appear in the online documentation, you
can enter descriptions above class member declarations using /// (three slashes) or you can do the following:

1. Select the Class Inspector and view Class keywords (make the left column header of the inspector display the word
Class)

2. In the Inspector, double-click the keyword Description.

3. This opens an editor in which you can enter a description for your class, such as the following:

4. Select OK when you are finished.

5. Save your class and view the documentation again.

3.3 Creating a Web User Interface using CSP
The user interface of the Phone Book application is a Web page containing an HTML form that lets you edit and view data,
name and number, for a person in the database. You create this Web page using a CSP file that contains a form bound to
the persistent PhoneBook.Person class.

3.3.1 Creating a CSP File

You can create a CSP file in Studio using the Web Form wizard as follows:

1. Create a new CSP file by selecting File > New > CSP File tab > Caché Server Page.

A CSP Editor window is displayed containing source for the new CSP page entitled Unititled.csp.

Using InterSystems Development Environments — Atelier and Studio 15

Creating a Web User Interface using CSP

2. Select File > Save.

3. In the Save As dialog, double-click /csp/user to open this directory. Enter Person.csp. Select Save As.

4. In the editor window, position the cursor in the <BODY> section of the CSP source file. Delete the words “My page
body.” Select Tools > Templates > Templates. Select Web Form Wizard from the list.

5. Select the PhoneBook.Person class and select Next.

6. Select the Name and PhoneNumber properties from the list of available properties. They should be displayed in the
Selected Properties list.

7. Select Finish.

The Web Form Wizard places HTML source for a bound form in the CSP Editor window:

<html>
<head>

<!-- Put your page Title here -->
<title> Cache Server Page </title>

</head>

<body>
<!-- Put your page code here -->

<head>
<title>Cache Server Page - PhoneBook.Person (USER)</title>
</head>
<h1 align='center'>PhoneBook.Person</h1>
<!-- This function is needed by the search button on the form -->
<script language='javascript'>
<!--
function update(id)
{
 #server(..formLoad(id))#;
 return true;
}

// -->
</script>

<!-- use CSP:OBJECT tag to create a reference to an instance of the class -->
<csp:object name='objForm' classname='PhoneBook.Person' OBJID='#(%request.Get("OBJID"))#'>

<!-- use csp:search tag to create a javascript function to invoke a search page -->
<csp:search name='form_search' classname='PhoneBook.Person' where='%Id()' options='popup,nopredicates'

onselect='update'>

<form name='form' cspbind='objForm' cspjs='All' onsubmit='return form_validate();'>
<center>
<table cellpadding='3'>
 <tr>
 <td><div align='right'>Name:</div></td>
 <td><input type='text' name='Name' cspbind='Name' size='50'></td>
 </tr>
 <tr>
 <td><div align='right'>PhoneNumber:</div></td>
 <td><input type='text' name='PhoneNumber' cspbind='PhoneNumber' size='50'></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type='button' name='btnClear' value='Clear' onselect='form_new();'>
 <input type='button' name='btnSave' value='Save' onselect='form_save();'>
 <input type='button' name='btnSearch' value='Search' onselect='form_search();'></td>
 </tr>
</table>
</center>
</form>
</body>
</html>

16 Using InterSystems Development Environments — Atelier and Studio

Building a Simple Application with Studio

3.3.2 Saving and Compiling Your CSP File

Save and compile the CSP file by selecting Build > Compile or Ctrl-F7 or the Compile icon .

3.3.3 Viewing Your Web Page

View the Web page in a browser by selecting View > Web Page or the Web Page icon .

To learn more about using CSP to create Web pages, see the book Using Caché Server Pages (CSP).

3.4 Creating a Web User Interface using Zen
Zen supports several approaches to creating Web-based forms like the CSP form PhoneBook.Person in the previous section.
The same set of technologies provides the foundation for both CSP and Zen. Zen makes the development of fully-featured
Web applications faster while building on the client/server communication features that CSP provides. The CSP/Zen rela-
tionship is explained further in the book Using Zen.

The tutorial in this section creates a Zen page, a Web-based user interface to the Phone Book project you began in this
chapter. The general steps (details follow) are:

1. Make your class a Zen data adaptor

2. Create a Zen page

3. Add a Zen form

4. Use the form to add database entries

5. Add a Zen table to display database entries

3.4.1 Making Your Class a Data Adaptor

This step takes the PhoneBook.Person class that you developed for the project you began in this chapter, and converts it to
work as a Zen data adaptor. This is the quickest way build a Zen user interface based on an existing class:

1. Open the PhoneBook.Person class.

2. Display the Studio Inspector window by selecting View > Inspector. If not already showing, in the left column header,
select Class from the drop-down list. An alphabetical list of class keywords displays.

3. Find the Super keyword and select to highlight. The field currently holds the class name %Persistent and an ellipsis
(...). Select the ellipsis. This opens a dialog in which you can choose superclasses in addition to %Persistent.

Using InterSystems Development Environments — Atelier and Studio 17

Creating a Web User Interface using Zen

4. In the left-hand column of the dialog, navigate to the %ZEN.DataModel.Adaptor class and select to highlight. At the
center of the dialog, select >, the right-angle bracket to place the %ZEN.DataModel.Adaptor class into the right-hand
column underneath %Persistent.

5. Select OK.

6. Save and compile the PhoneBook.Person class.

3.4.2 Creating a Zen Page

This step creates a ZenPage class that you can edit to create the user interface for your project:

1. Choose File > New or Ctrl-N or the New icon .

2. Select the Zen tab. Select New Zen Page. Select OK.

. The Zen Page Wizard displays:

3. Edit the dialog as follows:

• Enter the Package Name: PhoneBook

• Enter the Class Name: ZenPage

• Enter the Page Name: My Telephone Book

• Select Next.

18 Using InterSystems Development Environments — Atelier and Studio

Building a Simple Application with Studio

4. Select Title Page for your initial page layout. Select Finish.

The Zen Page Wizard creates and displays a skeletal Zen page with template class parameters and the XML blocks
XData Style and XData Contents. Notice the location of XData Contents in the class. You will edit this XML block
to add items to your new Zen page:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <html id="title">Title</html>
 <vgroup width="100%">
 <!-- put page contents here -->
 </vgroup>
 </page>
}

5. Save and compile with Ctrl-F7. .

6. View the Web page by choosing View > Web Page or the View Web Page icon . The only item visible so far is the
Title text displayed by the <html> element:

7. If you look at the XData Contents block, you see that the <html> element contains an attribute id="title".
id="title" refers to the style definition #title that appears in the XData Style block in the same ZenPage class.
#title determines the background color, layout, and font choices that you see when you view the page. The default
XData Style block for the Title Page layout looks like this:

XData Style
{
 <style type="text/css">
 /* style for title bar */
 #title {
 background: #C5D6D6;
 color: black;
 font-family: Verdana;
 font-size: 1.5em;
 font-weight: bold;
 padding: 5px;
 border-bottom: 1px solid black;
 text-align: center;
 }
 </style>
}

8. Edit the text contents of the <html> element to provide a more meaningful title:

<html id="title">My Telephone Book</html>

9. Save and compile the class, then view the Web page. It should look like this:

3.4.3 Adding a Zen Form

Now that you have a ZenPage class to work with, you can edit the XML elements in its XData Contents block to add items
to the display. In this exercise, you will begin by adding a form that allows you to add PhoneBook.Person objects to your
database:

Using InterSystems Development Environments — Atelier and Studio 19

Creating a Web User Interface using Zen

1. In Studio, open the ZenPage class.

2. Place <dataController> and <dynaForm> elements inside the main <vgroup> in XData Contents, exactly as shown in
the following example:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <html id="title">My Telephone Book</html>
 <vgroup width="100%">
 <dataController id="source" modelClass="PhoneBook.Person" modelId=""/>
 <dynaForm id="MyForm" controllerId="source" />
 </vgroup>
 </page>
}

Place the cursor between <vgroup> and </vgroup> and begin typing. (Delete the put page contents here line.)

After you type the character < Studio Assist displays a list of all elements. Typing <d brings you to the part of the list
that includes <dataController> and <dynaForm>. Double-click on one of the choices to select it. Then type a space
character and Studio Assist prompts you displays a list of attributes appropriate for that element. Continue in this
manner until you have entered the entire line.

Alternatively, if you are viewing this document online, you can cut and paste the <dataController> and <dynaForm>
lines from the example above.

3. Provide two <button> elements in XData Contents, exactly as shown below:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <html id="title">My Telephone Book</html>
 <vgroup width="100%">
 <dataController id="source" modelClass="PhoneBook.Person" modelId=""/>
 <dynaForm id="MyForm" controllerId="source" />
 <button caption="New" onselect="zenPage.newRecord();" />
 <button caption="Save" onselect="zenPage.saveRecord();" />
 </vgroup>
 </page>
}

Type the new elements or, if you are viewing this document online, you can cut and paste the <button> lines from the
example.

4. Save and compile with Ctrl+F7. View the Web page. It should look like this:

5. If you are curious about selecting the buttons New and Save, try it. An error message displays. Select OK to dismiss it.

To understand why you saw an error message when you selected the buttons, look carefully at the values of the onselect
attribute for each <button> element in XData Contents. Each onselect value is a JavaScript expression that executes
automatically whenever the button is selected.

20 Using InterSystems Development Environments — Atelier and Studio

Building a Simple Application with Studio

In these examples, the onselect expression invokes a method that runs in JavaScript on the client. The special variable
zenPage indicates that the method is defined in the current ZenPage class. The methods themselves are called
newRecord and saveRecord.

In order to make these onselect values work, you must create client-side JavaScript methods in the ZenPage class. This
is quite simple to do using the Zen Method Wizard in Studio.

3.4.4 Adding Client-side Methods

In this step you add methods that create new objects and save them in response to button selects. These methods permit
you to use your Zen form to populate your database with objects of the PhoneBook.Person class:

1. In Studio, open the ZenPage class.

2. Position the cursor below the closing curly bracket of the XData Contents block, but before the closing curly bracket
for the ZenPage class.

3. Choose Tools > Templates > Templates or press Ctrl-T to display the Studio Template dialog. Choose Zen Method Wizard.
Select OK. The following dialog displays:

Edit the dialog as follows. (Note that you will need to scroll down to the bottom of the dialog.)

• Enter the Method Name newRecord

• Choose is an instance method

• Choose runs on the client

• Provide a Description as shown.

• Clear the Try/Catch check box.

• Select Finish. Your new method appears in the page class as follows:

/// Create a new instance of the controller object.
ClientMethod newRecord() [Language = javascript]
{
 // TODO: implement
 alert('Client Method');
}

4. Change the code within curly brackets so the method now looks like this:

/// Create a new instance of the controller object.
ClientMethod newRecord() [Language = javascript]
{
 var controller = zenPage.getComponentById('source');
 controller.createNewObject();
}

5. Repeat the above steps to add the saveRecord method. When using the Zen Method Wizard, enter values in the dialog
as follows:

Using InterSystems Development Environments — Atelier and Studio 21

Creating a Web User Interface using Zen

• Enter the Method Name saveRecord

• Choose is an instance method

• Choose runs on the client

• Provide a Description of Create a new instance of the controller object.

• Clear the Try/Catch check box.

• Select Finish. Your new method appears in the page class.

Edit the new method so that it looks like this:

/// Save the current instance of the controller object.
ClientMethod saveRecord() [Language = javascript]
{
 var form = zenPage.getComponentById('MyForm');
 form.save();
}

6. Save and compile the class, then view the Web page.

7. Select the New button on the page. The Name and PhoneNumber fields become empty so that you can enter new
information for the next entry. After you have typed in each field, select the Save button. The new entry is saved in
the database.

8. Use New and Save repeatedly to add more entries.

3.4.5 Viewing the Database in a Table

Now that you have something in your database, you would like to be able to see it. In this step you will add a Zen table
that displays the saved objects from your database. You will then modify the saveRecord method so that it automatically
updates this table each time you select the Save button in the user interface:

1. In Studio, open the ZenPage class.

2. Provide one <tablePane> element inside the main <vgroup> in XData Contents, exactly as shown below. You can type
the new element, or if you are viewing this document online, for convenience you may cut and paste the <tablePane>
lines from this example:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <html id="title">My Telephone Book</html>
 <vgroup width="100%">
 <dataController id="source" modelClass="PhoneBook.Person" modelId=""/>
 <dynaForm id="MyForm" controllerId="source" />
 <button caption="New" onselect="zenPage.newRecord();" />
 <button caption="Save" onselect="zenPage.saveRecord();" />
 <tablePane id="people"
 sql="SELECT Name,PhoneNumber FROM PhoneBook.Person" />
 </vgroup>
 </page>
}

The <tablePane> sql attribute provides an SQL statement. SELECT lists the two properties from your PhoneBook.Person

class, and FROM provides the full package and class name. This SQL query provides the data for the <tablePane>.

3. Save and compile the class, then view the Web page.

4. Use New and Save to add more entries to the database.

5. Select the browser refresh button to view the updated table. The new entries are visible.

6. Remove the need for the user to refresh after each new entry, by refreshing the table automatically after each save. To
accomplish this, add two lines to the saveRecord method, so that it looks like this:

22 Using InterSystems Development Environments — Atelier and Studio

Building a Simple Application with Studio

/// Save the current instance of the controller object.
Method saveRecord() [Language = javascript]
{
 var form = zenPage.getComponentById('MyForm');
 form.save();
 var table = zenPage.getComponentById('people');
 table.executeQuery();
}

7. Save and compile the class, then view the Web page. It should look like this:

8. Use New and Save to add more entries to the database. Each time you select Save, the saveRecord method updates
the table so that the newest entry becomes visible.

To learn more about Zen, see the book Using Zen.

Using InterSystems Development Environments — Atelier and Studio 23

Creating a Web User Interface using Zen

4
Creating Class Definitions

The Studio lets you create and edit class definitions. A class definition specifies the contents of a particular class including
its members (such as methods and properties) and characteristics (such as superclasses).

With Studio you can work with class definitions with several tools:

• Wizards to quickly create classes and class members

• Class Inspector to view and edit class characteristics in a table

• Class Editor to directly edit the class definition. The Class Editor is a full-featured text editor that provides syntax
coloring, syntax checking, and code completion drop-down menus of available options.

You can use all of these techniques interchangeably; Studio automatically ensures that all of these representations are
synchronized.

This chapter discusses general aspects of creating class definitions. Most of the following chapters in this book describe
how to create class members, such as properties, methods, parameters, and so forth.

4.1 Creating New Class Definitions
You can create a new class definition in Studio by using the New Class wizard.

Note: You must have an open project before you can work with class definitions in the Studio. When working with
class definitions, Studio performs numerous interactions with the Caché server (such as for providing lists of
classes, class compiling, etc.). Internally, Studio uses projects to manage the details of this server interaction.

4.1.1 New Class Wizard

To open the New Class wizard, select File > New and select New Class Definition.

The New Class wizard prompts you for information. Select Finish at any time (in this case, default values are provided for
any information you have not specified).

4.1.1.1 Name and Description Page

The New Class wizard prompts you for the following information (with the exception of class and package name, you can
later modify any of these values):

Using InterSystems Development Environments — Atelier and Studio 25

Package Name

Package to which the new class belongs. You can select an existing package name or enter a new name. If you
enter a new name, the new package is automatically created when you save your class definition. The only punc-
tuation marks that property names can contain are a dot (.) and a leading percent sign (%).

For more information on packages, see the chapter “Packages” in Using Caché Objects.

Class Name

Name of your new class. This must be a valid class name and must not conflict with the name of a previously
defined class. Note that you cannot change this class name later.

For specifics of class naming conventions in Caché, see the section “Naming Conventions” in Using Caché
Objects.

Description

(optional) Description of the new class. This description is used when the class' documentation is displayed in the
online class library documentation.

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

4.1.1.2 Class Type Page

The New Class wizard asks you what type of class you would like to create. You can either extend (inherit from) a previously
defined class or create a new class by selecting one of the following options:

Persistent

Create a definition for a persistent class. Persistent objects can be stored in the database.

Serial

Create a definition for a serial class. Serial objects can be embedded in persistent objects to create complex data
types such as addresses.

Registered

Create a definition for a registered class. Registered objects are not stored in the database.

Abstract

Create a definition for an abstract class with no superclass.

Datatype

Create a definition for a data type class. A data type class is used to create user-defined data types.

CSP (used to process HTTP events)

Create a definition for a %CSP.Page class. A CSP class is used to create a CSP event handling class. This is a
programmatic way to create CSP Pages or to respond to HTTP events (for example, to create an XML server).

Extends

Extend an existing class: check Extends and enter (or choose from a list) the name of an existing superclass.

26 Using InterSystems Development Environments — Atelier and Studio

Creating Class Definitions

4.1.1.3 Data Type Class Characteristics Page

If you are creating a new data type class, the New Class wizard prompts for certain items particular to data type classes.
These include:

Client Data Type

The data type used by clients, such as Active X, to represent this data enter a client application.

ODBC Data Type

The data type used by ODBC or JDBC to represent this data type. Choose a type that corresponds to how you
want this data type to appear to ODBC/JDBC based applications.

SQL Category

The SQL Category used by the Caché SQL Engine when it performs logical operations on this data type.

4.1.1.4 Persistent, Serial, Registered Class Characteristics Page

If you are creating a new persistent, serial class, or registered, the New Class wizard prompts for certain items particular
to persistent or serial classes. These include:

Owner

(optional) For a persistent class, enter the SQL username to be the owner of the new class. This username controls
privileges when this class is used via SQL. If this field is left blank, then the default owner, _system, is used.

SQL Table Name

(optional) For a persistent class, enter a name to be used for the SQL table that corresponds to this class. If this
field is left blank, then the SQL table name is identical to the class name. If the class name is not a valid SQL
identifier, you must enter an SQL table name here.

XML Enabled

(optional) If selected, the class is XML-enabled; that is, it has the ability to project itself as an XML document. It
can also be used in Web Service methods. This is equivalent to adding the %XML.Adaptor class to the class'
superclass list.

For more information see Using XML with Caché as well as Creating Web Services and Web Clients in Caché.

Zen DataModel

(optional) If checked, the class includes extends %ZEN.DataModel.Adaptor.

Data Population

(optional) If you select this option, your new class supports automatic data population. This is equivalent to adding
the %Library.Populate class to the class' superclass list.

Automatic data population allows you to easily create random data with which you can test the operation of your
class. To populate a class, compile it and then execute the class' Populate method (inherited from the
%Library.Populate class). For example, using the Terminal:

 Do ##class(MyApp.Person).Populate(100)

For more information see the chapter “Caché Data Population Utility” in Using Caché Objects.

Using InterSystems Development Environments — Atelier and Studio 27

Creating New Class Definitions

MultiValue Enabled

The created class inherits from %MV.Adaptor, such that the class uses MV storage and the data appears as a “file”
to MultiValue programs and queries.

4.1.1.5 CSP Class Characteristics Page

If you are creating a new CSP class, the New Class wizard prompts for the following value:

Content Type

Specifies what the content type served by this CSP class is. The available options are HTML or XML. This option
is used to set the value of the CONTENTTYPE parameter of the new class to text/html or text/xml respectively.
You can later change this to whatever value you want.

4.1.2 Results of Running the New Class Wizard

After running the New Class wizard, Studio displays a new Class Editor window. The Class Editor window contains your
new class definition. For example:

/// This is a Person class
class MyApp.Person extends %Persistent
{
}

You can save this class definition in the Caché database, add class members such as properties or methods, or edit the class
definition using the Class Inspector.

Note: By default, the New Class wizard creates classes that use ObjectScript for method code. You can change this
default value to Basic with Tools > Options dialog, Environment, General tab.

4.2 Opening Class Definitions
You can open a previously saved class definition and display it in a Class Editor window by selecting the class in the Project
tab of the Workspace window and double-clicking it with the mouse.

If the class definition you want to open is not part of the current project, first add it to the current project using Project >

Add Class.

If the class definition you want to open is currently being edited by someone else, you are asked if you want to open the
class definition for read-only access.

4.3 Editing Class Definitions
You may modify any of the characteristics of a newly created or previously existing class definition (with the exception
of the class or package name). You can do this in two ways:

• Using the Class Inspector to change the value of a class or class member keyword.

• Changing a value in the class definition using the Class Editor.

For the class keywords and other details on definitions, see “Class Definitions” in the reference “Class Definitions” in
Caché Class Definition Reference

28 Using InterSystems Development Environments — Atelier and Studio

Creating Class Definitions

4.4 Saving and Deleting Class Definitions
If you have modified a class definition, save it to the Caché database in either of the following ways:

• Use File > Save to save the contents of the current window.

• Use Save Project to save all modified class definitions in the current project.

To delete a class definition, in the Workspace window, select a class and select Edit > Delete class classname. The class
and all of its generated files are deleted.

4.5 Compiling Class Definitions
You can compile class definitions from Studio in these ways:

• Using Build > Compile or the Compile icon, . This saves all modified class definitions and compiles the current class
definition (the one displayed in the active editor window).

• Using Build > Rebuild All or the Rebuild All icon, . This saves all open, modified class definitions and compiles all
classes in the current project.

Note: You can control how classes are compiled using options on Tools > Options dialog, Compiler tab).

4.5.1 Incremental Compilation

The Studio can do incremental compilation of classes. The feature is enabled with the Skip Related Up-to-date Classes

option. To find this option, open the Tools > Options dialog, Compiler, General Flags tab.

When enabled, if changes have been made to source code in one or more methods, only those methods are compiled with
Build > Compile. (Use Build > Rebuild All to override.) Any changes to the class interface (properties, method signatures,
etc.) or storage definition cause a full compilation.

Incremental compilation is typically much faster than a full compilation and speeds up the process of making incremental
changes to methods (application logic) during development.

Incremental compilation works as follows:

1. The Class Compiler finds all methods whose implementation has changed, places their runtime code into a new routine,
such as MyApp.MyClass.5.INT, and compiles this routine.

2. The Class Compiler then modifies the runtime class descriptor for the class to use the new implementations of the
compiled methods. When an application invokes one of these methods, the new code is dispatched to and executed.

3. The rest of the class definition (compiled meta-information, storage information for persistent classes, runtime SQL
information is left unchanged. Note that the previous implementation of the modified methods remains in the runtime
code but is not executed.

When a full (non-incremental) compilation is performed, all of the extra routines containing incrementally compiled
methods are removed. Perform a full compilation on all classes before deploying an application to avoid having extra routines.

Using InterSystems Development Environments — Atelier and Studio 29

Saving and Deleting Class Definitions

4.6 Renaming Class Definitions
Once you have created a class definition you cannot change its name. You can perform the equivalent of this operation by
creating a copy of the class with a new name as follows:

1. Select Tools > Copy Class.

2. Select the class you want to rename in the From field.

3. Enter the new class name in the To field.

4. Select any of the three options: Add new class to project, Replace instances of the class name,
or Copy Storage Definition.

5. Select OK.

6. You have a new Class Editor window containing a copy of the original class definition. Using the text editor, you can
make any additional changes you desire. You can save this new class definition when you like.

7. You can, if you want, delete the old class definition.

4.7 Class Inspector
The Class Inspector displays the current class definition in an editable table. The main components of the Class Inspector
are described below:

Figure 4–1: Class Inspector

30 Using InterSystems Development Environments — Atelier and Studio

Creating Class Definitions

1. Member Selector: Controls which set of keywords are displayed. You can choose to view either the Class-wide keywords
or the keywords for a specific class member (such as properties or methods).

2. Item Selector: Controls which specific class member is displayed (such as a particular property). The contents of the
list depend on the value of the Member Selector. Selecting (Summary) displays a list of all the members of the type
specified by the Member Selector.

3. Keywords: Lists the keywords for the current class or class member selected by the Member and Item Selectors.
Highlighting a keyword displays its description and allows editing select Edit at the right of the value or directly edit
the value). Keywords whose value was set explicitly (not inherited or set by default) are shown in bold.

4. Values: Lists the values of keywords displayed in the keyword list. Values modified since the last time the class defi-
nition has been saved are displayed in blue.

4.7.1 Activating the Class Inspector

The Class Inspector displays current information when it is activated (it is gray when inactive). To activate the Class
Inspector:

1. Make sure that the current editor window contains a class definition (the Class Inspector does not work with Routines
or CSP files).

2. Select the Class Inspector

When the Class Inspector is activated its background turns white and its contents are updated to reflect the current class
definition. If you modify any keyword values using the inspector, the corresponding Class Editor window becomes inactive
(turn gray). When you are finished with the inspector, select the original Class Editor window. It becomes active and display
the result of the modifications you made using the Class Inspector.

If you right-click in the Class Inspector, it displays a popup menu allowing you to perform operations such as adding new
class members.

4.8 Class Browser
Studio includes a class browsing utility that lets you view all available classes arranged by class hierarchy. Within each
class you can view class members such as properties and methods, including those inherited from superclasses. The Class
Browser displays class members in a table. By select a column title, you can sort the class members by that column.

1. Open the Class Browser with Tools > Class Browser.

2. Right-click an item in the Class Browser and select whether to add it to the project, open it in the Class Editor, or view
documentation.

4.9 Superclass Browser and Derived Class Browser
Studio includes two additional browsers, one for listing all superclasses and one for listing derived classes from the current
class definition.

Using InterSystems Development Environments — Atelier and Studio 31

Class Browser

4.9.1 Superclass Browser

Open the Superclass Browser using Class > Superclasses to display an alphabetical list of all superclasses of the current
class.

Select a class and then select a button to either add it to the current project, open it in the Class Editor, or view documentation.

4.9.2 Derived Class Browser

Open the Derived Class Browser using Class > Derived Classes to display a list, in alphabetical order, of all the classes
derived from the current class definition.

Select a class and then select a button to either add it to the current project, open it in the Class Editor, or view documentation.

4.10 Package Information
Within Studio, you can view and edit information about a specific class package using the Package Settings dialog.

To open Package Information, in the Workspace window, in the Project tab, right-click the package name and select
Package Information.

Figure 4–2: Package Settings dialog

The Package Information window displays the following information:

32 Using InterSystems Development Environments — Atelier and Studio

Creating Class Definitions

Name of the package.Package Name

Description of the packageDescription

SQL Owner name of this package. This is used to provide
Schema-wide privileges to the SQL representation of the package.

Owner

Name of the SQL Schema used to represent the package
relationally.

SQL Name

Package name used for the generated projection of this package's
classes. For example, if this package contains a class named
bank.account, and you give it a client package name of
com.mycompany.bank. when the class is compiled, a Java projection
of this class is put into com.mycompany.bank.account.

Client Name

String that is used as a prefix for the routines generated from
classes in this package

Routine Prefix

String that is used as a prefix for the default global names used by
persistent classes in this package

Global Prefix

For more information on class packages see the chapter “Packages” in Using Caché Objects.

Using InterSystems Development Environments — Atelier and Studio 33

Package Information

5
Adding Properties to a Class

This chapter describes how to add properties in a class definition.

The data, or state, of an object is stored in it properties. Every class definition may contain zero or more property definitions.

You can add a new property to a class in two ways:

• Adding the property to the class definition in the Class Editor.

• Using the New Property wizard

To add a property using the Class Editor, position the cursor on a blank line in the Class Editor and enter a property decla-
ration:

Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property Title As %String;
}

Alternatively, copy an existing property declaration, paste it into a new location, and edit it.

For details on property definitions, see “Class Definitions” in the reference “Class Definitions” in Caché Class Definition
Reference.

5.1 New Property Wizard
To open the New Property wizard, select Class > Add > Property . Alternatively, right-click the Class Inspector and select
Add > Property or, if only properties are displayed (Property heads the left column), right-click and select New Property

or select the New Property icon, from the toolbar.

The New Property wizard prompts you for information. Select Finish at any time; default values are provided for any
information you have not specified.

5.1.1 Name and Description Page

The New Property wizard prompts you for the following information (you can later modify any of these values):

Using InterSystems Development Environments — Atelier and Studio 35

Property Name

(required) Name of the new property. This name must be a valid property name and must not conflict with the
name of a previously defined property. The only punctuation marks that property names can contain are a dot (.)
and a leading percent sign (%).

For a general discussion on names see the chapter “Caché Classes ” in Using Caché Objects.

Description

(optional) Description of the new property. This description is used when the class' documentation is displayed
in the online class library documentation.

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

5.1.2 Property Type Page

The New Property wizard asks you to select the property type: single-valued, a collection, a stream, or a relationship. You
can further refine each of these choices by specifying additional characteristics, such as data type.

Single Valued

A single-valued property is just that; it contains a single value. A single-valued property has a type associated
with it. This type is the name of a Caché class. If the class used as a type is a data type class, then the property is
a simple literal property; if it is a persistent class, then the property is a reference to an instance of that class; if it
is a serial class, then the property represents an embedded object.

You can enter a class name directly or choose from a list of available classes, including streams, using the Browse

button.

For a description of the basic data type classes provided with Caché, see the chapter “Data Types” in Using Caché
Objects.

Collection

A collection property contains multiple values. There are two collection types, List (a simple, ordered list) and
Array (a simple dictionary with elements associated with key values). As with a single-valued property, a collection
property also has a data type. In this case, the data type specifies the type of the elements contained in the collection.

Relationship

A relationship property defines an association between two objects. For more details on relationships, see the
chapter “Adding Relationships to a Class” in this book.

5.1.3 Property Characteristics Page

If you are adding a new property to a class definition for a persistent or serial object, the New Property wizard asks for
additional characteristics. These include:

Required

(optional) This is only relevant for persistent or serial classes. Specifies that this property is required (NOT NULL
in SQL terminology). For persistent or serial objects a required property must be given a value or any attempt to
save the object fails.

36 Using InterSystems Development Environments — Atelier and Studio

Adding Properties to a Class

Indexed

(optional) This is only relevant for persistent classes. Specifies that an index should be created based on this
property. This is equivalent to creating an index based on this field.

Unique

(optional) This is only relevant for persistent classes. Specifies that the value of this property must be unique in
the extent (set of all) objects of this class. This is equivalent to creating a unique index based on this field.

Calculated

(optional) A calculated property has no in-memory storage allocated for it when an object instance is created.
Instead, you must provide accessor (Get or Set) methods for the property. If you choose this option, the New
Property wizard can generate an empty Get accessor method for you.

SQL Field Name

(optional) In the case of a persistent class, this is the name that should be used for the SQL field that corresponds
to this property. By default (when this field is blank) the SQL field name is identical to the property name. Provide
an SQL field name if you want to use a different field name or if the property name is not a valid SQL identifier.

5.1.4 Data Type Parameters Page

Every property has a list of parameter values which is determined by the type of the property. The values of these parameters
control aspects of the property's behavior. Using the table displayed on the Parameters page of the New Property wizard
you can specify the value of particular parameters.

5.1.5 Property Accessors Page

You can override the Set method (used to set the value of a property) and Get method (used to retrieve the value of a
property) for a property by selecting the corresponding override check box. Choosing one of these options creates an empty
Set or Get method which you have to fill in later.

5.1.6 Results of Running the New Property Wizard

After running the New Property wizard the Class Editor window is updated to include the new property definition. For
example:

/// This is a Person class
Class MyApp.Person extends %Persistent
{
Property Name As %String;
}

If you want to make further modifications to this property you can do this using either the Class Editor or the Class
Inspector.

Using InterSystems Development Environments — Atelier and Studio 37

New Property Wizard

6
Adding Methods to a Class

This chapter discusses how to add and edit method definitions in a class definition.

The operations that are associated with an object and can be performed by it are referred to as methods. Every class definition
may contain zero or more methods.

You can add a new method to a class definition in two ways:

• Adding a method to the class definition using the Class Editor.

• Using the New Method wizard

To add a method using the Class Editor, position the cursor on a blank line in the Class Editor and enter a method declaration:

Class MyApp.Person Extends %Persistent
{
Method NewMethod() As %String
{
 Quit ""
}
}

Alternatively, you can do this by copying and pasting an existing method declaration and then editing it.

For details on method definitions, see “Class Definitions” in the reference “Class Definitions” in Caché Class Definition
Reference.

6.1 New Method Wizard
You can invoke the New Method wizard using the Class > Add > Method. Alternatively, right-click the Class Inspector and

select Add Method or select the New Method icon from the toolbar.

The New Method wizard prompts you for information. Select Finish at any time (default values are provided for any
information you have not specified).

6.1.1 Name and Description Page

The New Method wizard prompts you for the following information (you can later modify any of these values):

Method Name

(required) Name of the new method. This name must be a valid method name and must not conflict with the name
of a previously defined method.

Using InterSystems Development Environments — Atelier and Studio 39

For a general discussion on names see the chapter “Caché Classes ” in Using Caché Objects.

Description

(optional) Description of the new method. This description is used when the class' documentation is displayed in
the online class library documentation.

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

6.1.2 Method Signature Page

Every method has a signature that indicates its return type (if any) as well as its formal argument list (if any). For method
signature you may specify the following:

Return Type

(optional) Indicates the type of the value returned by this method. This type is the name of a Caché class. You can
type this name in directly or choose from a list of available classes using the Browse button.

For example, a method that returns a true (1) or false (0) value would have a return type of %Boolean. Leave this
field empty if your new method has no return value.

For a description of the basic data type classes provided with Caché see the chapter “Data Types” in Using Caché
Objects.

Arguments

(optional) Indicates the names, types, default values, and how data is passed (by reference or by value) for any
formal arguments. The arguments are displayed in order in a table. You can add a new item to the argument list
using Add located on the side of the table. This displays a popup dialog allowing you to specify the name of the
argument, its type, its optional default value, and whether it is passed by value or by reference. Using the other
buttons, you can remove and rearrange the order of items in the list.

6.1.3 Method Characteristics Page

You may specify additional characteristics for your method. These include:

Private

(optional) Indicates whether this method is public or private. Private methods may only be invoked from other
methods of the same class.

Final

(optional) Indicates whether this method is final. Final methods cannot be overridden by subclasses.

Class Method

(optional) Indicates that the new method is a class method (as opposed to an instance method). Class methods may
be invoked without having an object instance.

SQL Stored Procedure

(optional) Indicates that this method is accessible to an ODBC or JDBC client as a stored procedure. Only class
methods may be projected as SQL Stored Procedures.

40 Using InterSystems Development Environments — Atelier and Studio

Adding Methods to a Class

Language

Indicates the language used to create the method.

6.1.4 Implementation Page

If you want, you may enter the implementation (code) for the new method by typing lines of source code into the text editor
window. You can also enter this source code after running the wizard using the Class Editor.

6.1.5 Results of Running the New Method Wizard

After running the New Method wizard the Class Editor window is updated to include the new method definition. You can
edit it using either the Class Editor or the Class Inspector. For example:

/// This is a Person class
class MyApp.Person extends %Persistent
{
Method Print() As %Boolean
{
 Write "Hello"
 Quit 1
}
}

6.2 Overriding a Method
Note: The Refactor submenu is available only when Studio is connected to a Windows server. The Override menu item

is available in other platforms.

One of the powerful features of object-based development is that classes inherit methods from their superclasses. In some
cases, you may want to override, that is, provide a new implementation for, a method inherited from a superclass.

Class > Refactor > Override simplifies the process of overriding a class item, such as a specific method by displaying a list
of all the methods defined by superclasses that can be overridden by the current class.

For example, in a persistent class, you may want to override the default implementation of the %OnValidateObject method
provided by the %RegisteredObject class in order to specify custom validation that occurs when an instance of your class
is saved.

To do this, follow these steps:

1. Open (or create) a persistent class definition in Studio.

2. Select Class > Refactor > Override and select the Methods tab. This displays a dialog window containing a list of
methods which you can override.

3. Select %OnValidateObject from the list and select OK button.

Your class definition now includes a definition for an %OnValidateObject method:

class MyApp.Person extends %Persistent
{
// ...
Method %OnValidateObject() As %Status
{
}
}

At this point, you can use the Class Editor to add code to the body of the method.

Using InterSystems Development Environments — Atelier and Studio 41

Overriding a Method

7
Adding Class Parameters to a Class

A class parameter defines a constant value for all objects of a given class. When you create a class definition (or at any
point before compilation), you can set the values for its class parameters. By default, the value of each parameter is the
null string; to set a parameter's value, you must explicitly provide a value for it. At compile-time, the value of the parameter
is established for all instances of a class. This value cannot be altered at runtime.

You can add a class parameter to a class definition in two ways:

• Adding a class parameter to the class definition using the Class Editor.

• Using the New Class Parameter wizard.

To add a method using the Class Editor, position the cursor on a blank line in the Class Editor and enter a class parameter:

Parameter P1 = "x";

7.1 New Class Parameter Wizard
You can use the New Class Parameter Wizard to create a new class parameter. You can open the New Class Parameter
wizard using the Class > Add > Class Parameter . Alternatively, right-click the Class Inspector and select Add New Class

Parameter or select the New Class Parameter icon on the toolbar.

The New Class Parameter wizard prompts you for information. Select Finish at any time (default values are provided for
any information you have not specified).

See for more information about class parameters see the chapter “Caché Classes” in Using Caché Objects.

The New Class Parameter wizard prompts you for the following information (you can later modify any of these values):

Name

(required) Name of the class parameter. This name must be a valid parameter name and must not conflict with the
name of a previously defined parameter.

For a general discussion on names see the chapter “Caché Classes” in Using Caché Objects.

Description

(optional) Description of the new class parameter. This description is used when the class' documentation is displayed
in the online class library documentation.

Using InterSystems Development Environments — Atelier and Studio 43

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

Default

Default value for the class parameter. This will be the default value for this parameter for all instances of this
class.

44 Using InterSystems Development Environments — Atelier and Studio

Adding Class Parameters to a Class

8
Adding Relationships to a Class

A relationship is a special type of property that defines how two or more object instances are associated with each other.
For example, a Company class that represents a company could have a one-to-many relationship with an Employee class
that represents an employee (that is, each company may have one or more employees while each employee is associated
with a specific company).

A relationship differs from a property in that every relationship is two-sided: for every relationship definition there is a
corresponding inverse relationship that defines the other side.

For more information on relationships, see the chapter “Relationships” in Using Caché Objects.

You can add a new relationship to a class definition in two ways:

• Adding a relationship to the class definition using the Class Editor.

• Using the New Property wizard

To add a relationship using the Class Editor, position the cursor on a blank line in the Class Editor and enter a relationship
declaration:

Class MyApp.Company Extends %Persistent
{
Relationship TheEmployees As Employee [cardinality=many, inverse=TheCompany];
}

A relationship definition must specify values for both the cardinality and inverse keywords.

As this relationship has two sides, also enter the inverse relationship in the class definition of Employee:

Class MyApp.Employee Extends %Persistent
{
Relationship TheCompany As Company [cardinality=one, inverse=TheEmployees];
}

If the two sides of the relationship do not correctly correspond to each other, there are errors when you try to compile.

8.1 New Property Wizard to Create a Relationship Property
You can use the New Property Wizard to create a new relationship property. To invoke this wizard, use Class > Add >

Property. Alternatively, right-click the Class Inspector and select Add Property or select New Property on the toolbar.

The New Property wizard prompts you for information. The procedure is identical to creating a new, non-relationship
property except that you specify Relationship on the property type.

Using InterSystems Development Environments — Atelier and Studio 45

8.1.1 Name and Description Page

The New Property wizard prompts you for the following information (you can later modify any of these values):

Property Name

(required) Name of the relationship. This name must be a valid relationship (property) name and must not conflict
with the name of a previously defined relationship or property.

For a general discussion on names see the chapter “Caché Classes” in Using Caché Objects.

Description

(optional) Description of the new relationship. This description is used when the class' documentation is displayed
in the online class library documentation.

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

8.1.2 Property Type Page

The New Property wizard asks you to choose from a variety of property types. Choose Relationship and enter the name
of the class on the inverse side of the relationship.

8.1.3 Relationship Characteristics Page

The New Property wizard asks for additional relationship characteristics. These include:

Cardinality

One: one other object

This relationship property refers to a single instance of the related object. The resulting property acts like a simple
reference field.

Many: many other objects

This relationship property refers to a one or more instances of the related object. The resulting property acts like
a collection of objects.

Parent: this object's parent

Identical to cardinality of one except that this is a dependent relationship and this property refers to the parent of
this object. Note: When you create a parent-child relationship, you are not given the option to create an index
because children aren't stored independently but within the parent; you can see that by looking at the global
structure. The children are indexed automatically by creating an extra subscript.

Children: the object's children

Identical to cardinality of many except that this is a dependent relationship and this property refers to a collection
of child objects.

Inverse:

This relationship property references objects of the following type

Select a class from the Browse button or enter a new class name for the inverse side of the relationship.

46 Using InterSystems Development Environments — Atelier and Studio

Adding Relationships to a Class

The name of the corresponding property in the referenced class

Select a property from the class or enter a new property name for the inverse side of the relationship.

8.1.4 Additional Changes

Select any of the additional changes that you would like to implement:

Create a new class “<inverse class>”

This field is active if you entered a class name that does not exist for the inverse relationship on the last screenSelect
this to create the class in this package. The new class is added to the package. You must compile the new class
before you can compile the class that contains the relationship.

Create a new property “Parent” in class “<inverse class>”

This field is active if you entered a property that does not exist for the inverse relationship on the last screenSelect
this to create the property in the package and class named in the last screen. The new property is added to the
class. You must compile the class with this new property before you can compile the class that contains the rela-
tionship.

Modify property “Parent” of class “<inverse class>”

This property is active if you entered a property that already exists for the inverse relationship on the last
screenSelect this to modify that property to be a relationship with this property.

Define an index for this relationship.

Check to define an index for this property. This is applicable only for One-To-Many relationships; it is disabled
for Parent-Child relationships

8.1.5 Results of Creating a New Relationship with the New Property Wizard

After creating a new relationship with the New Property wizard, the Class Editor window is updated to include the new
relationship definition. For example:

/// This is an Employee class
class MyApp.Employee extends %Persistent
{

/// We have a one-to-many relationship with Company
Relationship Company As Company [cardinality=one, inverse=Employees];
}

If you want to make further modifications to this relationship, you can do this using either the Class Editor or the Class
Inspector.

Additionally you can use the Modify Relationship wizard, which has the advantage of automatically determining the changes
required to the inverse of a relationship.

You can invoke the Modify Relationship wizard by following these steps:

1. Display the list of properties in the Class Inspector

2. Right-click the desired relationship in the list of properties and select Add/Modify Relationship command from the pop-
up menu.

Using InterSystems Development Environments — Atelier and Studio 47

New Property Wizard to Create a Relationship Property

9
Adding Queries to a Class

Caché class definitions may contain query definitions. Each query defines an instance of query interface: a set of methods
that can be called from a Caché %ResultSet object allowing you to iterate over a set of data.

You can use queries in the following ways:

• Via the %ResultSet class in server-based methods.

• Via the Java ResultSet class that is included with the Caché Java binding.

• Via the ActiveX ResultSet class that is included with the Caché ActiveX binding.

• As ODBC or JDBC stored procedures (if you specify that the query should be projected as an SQL stored procedure).

There are two kinds of queries:

• Those based on SQL statements (using the %SQLQuery class) and

• Those based on user-written code (using the %Query class).

The %SQLQuery class automatically provides an implementation of the query interface. The %Query class does not; the
query definition merely provides a query interface; you must write methods to implement the actual query functionality.

You can add a new query to a class definition in two ways:

• Edit the class definition using the Class Editor.

• Using the New Query wizard

To add a query using the Class Editor, position the cursor on a blank line in the Class Editor and enter a query declaration:

Class MyApp.Person Extends %Persistent
{
Property Name As %String;

/// This query provides a list of persons ordered by Name.
Query ByName(ByVal name As %String) As %SQLQuery(CONTAINID = 1)
{
 SELECT ID,Name FROM Person
 WHERE (Name %STARTSWITH :name)
 ORDER BY Name
}

}

Alternatively, you can copy and paste an existing query declaration and then edit it.

For a general introduction to queries, see the chapter “Queries” of Using Caché Objects. For details on query definitions,
see “Class Definitions” in the reference “Class Definitions” in Caché Class Definition Reference.

Using InterSystems Development Environments — Atelier and Studio 49

9.1 New Query Wizard
You can use the New Query wizard to add a new query to a class definition. You can open the New Query wizard using

Class > Add > Query. Alternatively, right-click the Class Inspector and select Add Query or select the New Query icon, ,
in the toolbar.

Select Finish at any time; default values are provided for any information you have not specified.

9.1.1 Name, Implementation, and Description Page

The New Query wizard prompts you for the following information (you can later modify any of these values):

Query Name

(required) Name of the new query. This name must be a valid query name and must not conflict with the name of
a previously defined query.

For a discussion of names, see the chapter “Caché Classes ” in Using Caché Objects.

Implementation

(required) You must specify if this query is based on an SQL statement (which the wizard generates for you) or
on user-written code (in which case you have to provide the code for the query implementation).

Description

(optional) Description of the new query. This description is used when the class documentation is displayed in the
online class library documentation.

A description may include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

9.1.2 Input Parameters Page

A query may take zero or more input parameters (arguments).

You can specify the names, types, default values, and how data is passed by value for these parameters. The arguments are

displayed in order in a table. You can add a new item to the argument list using the Add icon located on the side of the
table. This displays a popup dialog allowing you to specify the name of the argument, its type, its optional default value.

Using up, , and down arrows, , you can rearrange the order of items in the list.

9.1.3 Columns Page

For an SQL-based query, you must specify the object properties (columns) that you want included in the result set (this is
the SELECT clause of the generated SQL query).

To add a column to the query, select an item from the left-hand list of available properties and move it to the right-hand
list using the > (Move To) button.

9.1.4 Conditions Page

For an SQL-based query, you can specify conditions to restrict the result set (the SQL WHERE clause of the generated
SQL query).

50 Using InterSystems Development Environments — Atelier and Studio

Adding Queries to a Class

You can build a set of conditions by selecting values from the set of combo boxes. The expression box can contain an
expression (such as a literal value) or a query argument (as an SQL host variable with a prepended : colon character).

9.1.5 Order By Page

For an SQL-based query, you can specify any columns you want to use to sort the result set (the SQL ORDER BY clause
of the generated SQL query).

9.1.6 Row Specification Page

For a user-written query, you must specify the names and types of the columns that are to be returned by the query.

The wizard does not prompt for this information for SQL-based queries as the class compiler can determine it by examining
the SQL query.

9.1.7 Results of Running the New Query Wizard

After you run the New Query wizard, the Class Editor window is updated to include the new query definition. For example:

/// This is a Person class
class MyApp.Person extends %Persistent
{

Query ByName(ByVal name As %String) As %SQLQuery(CONTAINID = 1)
{
 SELECT ID,Name FROM Person
 WHERE (Name %STARTSWITH :name)
 ORDER BY Name
}

}

If you want to make further modifications to this query you can do this using either the Class Editor or the Class Inspector.

If you specified a user-written query, the Class Editor contains both the new query definition as well as skeletons of the
query methods you are expected to implement:

Class MyApp.Person Extends %Persistent
{
// ...

ClassMethod MyQueryClose(
 ByRef qHandle As %Binary
) As %Status [PlaceAfter = MyQueryExecute]
{
 Quit $$$OK
}

ClassMethod MyQueryExecute(
 ByRef qHandle As %Binary,
 ByVal aaa As %Library.String
) As %Status
{
 Quit $$$OK
}

ClassMethod MyQueryFetch(
 ByRef qHandle As %Binary,
 ByRef Row As %List,
 ByRef AtEnd As %Integer = 0
) As %Status [PlaceAfter = MyQueryExecute]
{
 Quit $$$OK
}

Query MyQuery(
 ByVal aaa As %Library.String
) As %Query(ROWSPEC = "C1,C2")
{

Using InterSystems Development Environments — Atelier and Studio 51

New Query Wizard

}

}

52 Using InterSystems Development Environments — Atelier and Studio

Adding Queries to a Class

10
Adding Indices to a Class

This chapter discusses how to add and edit index definitions to a persistent class definition.

An index definition instructs the Caché class compiler to create an index for one or more properties. Indices are typically
used to make SQL queries more efficient.

You can add an index to a class definition in two ways:

• Editing the class definition using the Class Editor.

• Using the New Index wizard

To add an index using the Class Editor, position the cursor on a blank line in the Class Editor and enter an index declaration:

Index NameIndex On Name;

Alternatively, copy and paste an existing index declaration and then edit it.

For details on index definitions, see “Class Definitions” in the reference “Class Definitions” in Caché Class Definition
Reference.

10.1 New Index Wizard
You can invoke the New Index wizard using the Class > Add > Index. Alternatively, right-click the Class Inspector and

select Add Index or select the New Index icon, , from the toolbar.

The New Index wizard prompts you for information. To end, select Finish (default values are provided for any information
you have not specified).

10.1.1 Name and Description Page

The New Index wizard prompts you for the following information (you can later modify any of these values):

Index Name

(required) Name of the new index. This name must be a valid index name and must not conflict with the name of
a previously defined index.

For a discussion of valid names, see the chapter “Caché Classes” in Using Caché Objects.

Using InterSystems Development Environments — Atelier and Studio 53

Description

(optional) Description of the new index. This description is used when the class' documentation is displayed in
the online class library documentation.

A description can include HTML formatting tags. For details, see “Using HTML Markup in Class Documentation”
in the chapter “Defining and Compiling Classes” in Using Caché Objects.

10.1.2 Index Type Page

Caché supports the following types of indices.

Normal Index

A normal index is used for indexing on property values. You can further qualify a normal index by selecting one
of the following:

The set of properties associated with this index must have a combined value
that is unique in the extent of objects of this class.

Unique Index

The set of properties associated with this index are used to create the Object
ID value used to store instances of this class in the database.You cannot modify
the values of properties that are part of an IDKEY definition once an object has
been saved. IDKEY implies that the property or properties are unique (as with
a Unique Index).

IDKEY

The set of properties associated is reported as the SQL Primary Key for the
SQL table projected for this class. This implies that the property or properties
are unique (as with a Unique Index).

SQL Primary
Key

Extent Index

An extent index is used to keep track of which objects belong to a specific class in a multiclass extent of objects.
It differs from a so-called normal index in that you cannot specify additional characteristics for it.

You can also select how the index is physically implemented in the database:

Standard Index

This index is a traditional cross-index on the specified property or properties.

Bitmap Index

A bitmap index uses a compressed representation of a set of object ID values that correspond to a given indexed
value. See Bitmap Indices in Caché SQL Optimization Guide for more information.

Bitslice Index

A bitslice index is a specialized form of index that enables very fast evaluation of certain expressions, such as
sums and range conditions. Bitslice indices are currently automatically used in certain Caché SQL queries. Future
versions of Caché SQL will make further use of bitslice indices to optimize additional queries.

10.1.3 Index Properties Page

On the Index Properties page, you can enter a list of one or more properties on which the index is based. For each property
you can override the default collation function used to transform values stored in the index as well as any parameters for
the collation function.

54 Using InterSystems Development Environments — Atelier and Studio

Adding Indices to a Class

Note: Important — There must not be a sequential pair of vertical bars (||) within the values of any property used by an
IDKEY index, unless that property is a valid reference to an instance of a persistent class. This restriction is
imposed by the way in which the Caché SQL mechanism works. The use of || in IDKey properties can result in
unpredictable behavior.

10.1.4 Index Data Page

On the Index Data page, elect to store a copy of the data for any properties in the index.

You cannot store copies of data values with a bitmap index.

10.1.5 Results of Running the New Index Wizard

After running the New Index wizard, the Class Editor window is updated to include the new index definition. For example:

/// This is a Person class
class MyApp.Person extends %Persistent
{

Property Name As %String;

Index NameIndex On Name;
}

You can edit the index definition with either the Class Editor or the Class Inspector.

10.2 Populating an Index
After you add an index definition to a class and compile, you can populate the index (place data into it) by using Rebuild

Indices, found in the Management Portal (Building Indices).

The Studio does not automatically place data into indices.

Using InterSystems Development Environments — Atelier and Studio 55

Populating an Index

11
Adding Projections to a Class

This chapter discusses how to add projection definitions in a class definition.

A projection definition instructs the Caché class compiler to perform specified operations when a class definition is compiled
or removed. A projection defines the name of a projection class (derived from the %Projection.AbstractProjection class) that
implements methods that are called when a) the compilation of a class is complete and b) when a class definition is removed
(either because it is being deleted or because the class is about to be recompiled).

A class can contain any number of projection definitions. The actions for all of them are invoked when the class is compiled
(the order in which they are invoked is not defined).

Caché includes predefined projection classes that generate client code that allows access to a class from Java, MV, and so
on. See the class in the class reference for definitions of parameters for each class.

To generate C++-related classes, use Tools > Generate C++ Projection or the cpp_generator command line interface. For
more information, see the chapter “Using the C++ Generator Program ” in Using C++ with Caché.

Table 11–1: Projection Classes

DescriptionClass

Generates a Java client class to enable access to the class from Java.%Projection.Java

Registers this class as a routine that works with Caché Monitor. Metadata is written to
Monitor.Application, Monitor.Alert, Monitor.Item and Monitor.ItemGroup. A new persistent class is
created called Monitor.Sample.

%Projection.Monitor

Generates an MV class that enables access to the class from MV.%Projection.MV

Registers this class as a routine that works with Studio.%Projection.StudioDocument

Projects the XData 'menu' block to the menu table.%Studio.Extension.Projection

Projection class used by %ZEN.Component.object classes. This is used to manage
post-compilation actions for Zen components.

%ZEN.Object.Projection

Projection class used by %ZEN.Component.page. Currently this does nothing.%ZEN.PageProjection

Projection class used by %ZEN.Templage.studioTemplate class.%ZEN.Template.TemplateProjection

You can also create your own projection classes and use them from Studio as you would any built-in projection class.

You can add a new projection to a class definition in two ways:

• Editing the class definition using the Class Editor.

• Using the New Projection wizard

Using InterSystems Development Environments — Atelier and Studio 57

To add a projection using the Class Editor, position the cursor at a blank line and enter a projection declaration.

Alternatively, you can copy and paste an existing projection declaration and then edit it.

For details on projection definitions, see “Class Definitions” in the reference “Class Definitions” in Caché Class Definition
Reference.

11.1 New Projection Wizard
You can invoke the New Projection wizard using the Class > Add > Projection and asking for a new Projection. Alternatively
right-click in the Class Inspector and select New Projection.

The New Projection wizard displays pages prompting you for information about the new projection. To end, select Finish

(in this case, default values are provided for any information you have not specified).

11.1.1 Name and Description Page

The New Projection wizard prompts you for the following information (you can later modify any of these values):

Projection Name

(required) Name of the new projection. This name must be a valid projection name and must not conflict with the
name of a previously defined projection.

Description

(optional) Description of the new projection.

11.1.2 Projection Type Page

The projection type determines what actions happen when your class definition is compiled or removed. You can select
what kind of projection you would like to define:

Projection Type

Name of a projection class whose methods are executed when a class definition is compiled or removed.

Projection Parameters

A set of name-value pairs that control the behavior of the projection class. The list of available parameter names
is determined by the selected projection class.

11.1.3 Results of Running the New Projection Wizard

When you finish running the New Projection wizard, the Class Editor window is updated to include the new projection
definition. For example:

/// This is a Person class
class MyApp.Person extends %Persistent
{

Property Name As %String;

Projection JavaClient As %Projection.Java;
}

To edit this projection definition, use either the Class Editor or the Class Inspector.

58 Using InterSystems Development Environments — Atelier and Studio

Adding Projections to a Class

12
Adding XData Blocks to a Class

An XData block is a block of XML code that you can add to your class definition.

You can add an XData block to a class definition in two ways:

• Editing the class definition using the Class Editor.

• Using the XData wizard

To add an XData block using the Class Editor, position the cursor at a blank line and enter an XData declaration:

XData ProductionDefinition
 {
 <Production>
 <ActorPoolSize2/ActorPoolSize>
 </Production>
 }

Alternatively, you can copy and paste an existing XData block and then edit it.

12.1 New XData Wizard
You can invoke the New Projection wizard using the Class > Add > XData. Alternatively, right-click in the Class Inspector
and select Add Projection.

The New XData wizard displays a single page prompting you for a name for the XData block and a description. To end,
select Finish. Add XML code into the Class Editor window to complete the XData block.

The New XData wizard prompts you for the following information (you can later modify any of these values):

XData Name

(required) Name of the new XData. This name must be a valid name and must not conflict with the name of a
previously defined XData.

Description

(optional) Description of the new XData.

Using InterSystems Development Environments — Atelier and Studio 59

13
Adding SQL Triggers and Foreign Keys
to a Class

Every persistent Caché class is automatically projected as an SQL table. This chapter discusses how you can use Studio
with those parts of a class definition that control its SQL behavior.

13.1 SQL Aliases
You can give classes as well as most class members an alternate name for use by SQL. This is useful because:

• There is a long list of SQL reserved words that cannot be used as identifiers.

• Caché does not support the underscore character in class or class member names.

To specify an SQL table name for a class, view the Class information in the Class Inspector and edit the value for the
SqlTableName keyword.

To specify an SQL name for a class member, select the desired property in the Class Inspector and edit the value for its
appropriate SQL name keyword (such as SqlFieldName for properties and SqlName for indices).

13.2 SQL Stored Procedures
An SQL Stored procedure is a Caché method or class query than can be invoked from an ODBC or JDBC client as a stored
procedure.

Caché supports two styles of SQL stored procedure: those based on class queries and that return a result set; and those
based on class methods and that do not return a result set.

13.2.1 Query-Based Stored Procedure

To create an SQL stored procedure that returns a result set, add a query definition to a class definition and then set the
query's SqlProc keyword to true. Do this as follows:

1. Create a query in a class definition using the New Query wizard with Class > Add > Query.

2. Using the Class Inspector, set the value of the query definition keyword SqlProc to True.

Using InterSystems Development Environments — Atelier and Studio 61

You should end up with something similar to:

Class Employee Extends %Persistent
{

/// A class query listing employees by name.
Query ListEmployees() As %SQLQuery(CONTAINID = "1") [SqlProc]
{
 SELECT ID,Name
 FROM Employee
 ORDER BY Name
}
}

You can invoke this stored procedure from an ODBC or JDBC client using a CALL statement:

CALL Employee_ListEmployees()

Following this call, the ODBC or JDBC application can fetch the contents of the result set returned by the class query.

Note that you can use this same technique with query definitions that are based on custom-written code; you are not limited
to defining stored procedures solely based on SQL statements.

13.2.2 Creating Method-Based Stored Procedure

To create an SQL stored procedure that does not return a result set, add a class method to a class definition and then set the
method's keyword SqlProc to True. Do this as follows:

1. Create a class method in a class definition using the New Method wizard.

2. Using the Class Inspector, set the value of method's keyword SqlProc to True.

You should end up with something similar to:

Class Employee Extends %Persistent
{

 ClassMethod Authenticate(
 ctx As %SQLProcContext,
 name As %String,
 ByRef approval As %Integer
) [SqlProc]
 {
 // ...
 Quit
 }

}

Note that the first argument of a method used as an SQL stored procedure is an instance of a %SQLProcContext object. For
more information, see the chapter “Defining and Using Stored Procedures” in Using Caché SQL.

You can invoke this stored procedure from an ODBC client using a CALL statement:

CALL Employee_Authenticate('Elvis')

To invoke this stored procedure from a JDBC client, you can use the following code:

prepareCall("{? = call Employee_Authenticate(?)}")

13.3 Adding SQL Triggers to a Class
An SQL trigger is code that is fired by the SQL Engine in response to certain events.

Note that SQL triggers are not fired during object persistence (unless you are using %CacheSQLStorage storage class).

62 Using InterSystems Development Environments — Atelier and Studio

Adding SQL Triggers and Foreign Keys to a Class

You can add an SQL trigger to a class definition in two ways:

• Editing the class definition using the Class Editor.

• Using the New SQL Trigger wizard

To add an SQL trigger using the Class Editor, position the cursor on a blank line in the Class Editor and enter a trigger
declaration:

Class MyApp.Company Extends %Persistent
{

/// This trigger updates the Log table for every insert
Trigger LogEvent [Event = INSERT]
{
 // ...
}

}

13.3.1 New SQL Trigger Wizard

You can use the New Trigger wizard to create a new SQL trigger. You can open the New SQL Trigger wizard using Class

> Add > SQL Trigger. Alternatively, right-click in the Class Inspector and select Add SQL Trigger .

The New SQL Trigger wizard prompts you for information. Select Finish at any time (default values are provided for any
information you have not specified).

13.3.1.1 Name and Description Page

The New SQL Trigger wizard prompts you for the following information (you can later modify any of these values):

Trigger Name

(required) Name of the trigger. This name must be a valid trigger name and must not conflict with the name of a
previously defined trigger.

Description

(optional) Description of the new trigger. This description is used when the class' documentation is displayed in
the online class library documentation.

13.3.1.2 Trigger Event Page

The New SQL Trigger wizard asks you to indicate when you want the new trigger to be fired by specifying the event and
time for the trigger.

Event Type

This specifies which SQL event fires the trigger. The choices are Insert (when a new row is inserted), Update
(when a row is updated), or Delete (when a row is deleted).

Event Time

This specifies when the trigger is fired. The choices are Before or After the event occurs.

13.3.1.3 Trigger Code

The New SQL Trigger wizard lets you enter the source code for the trigger if you want.

Using InterSystems Development Environments — Atelier and Studio 63

Adding SQL Triggers to a Class

13.3.1.4 Results of Running the New SQL Trigger Wizard

After you finish using the New SQL Trigger wizard, the Class Editor window is updated to include text for the new trigger
definition.

If you want to edit this trigger you can do this using either the Class Editor or the Class Inspector.

13.4 Adding New SQL Foreign Keys to a Class
An SQL foreign key defines an integrity constraint between one or more fields in a table and a key (unique index) in another
table.

Object applications typically do not use foreign keys; they instead use relationships which offer better object-based navigation.
Relationships automatically impose integrity constraints (for both SQL and object access) that are equivalent to manually
defining foreign key definitions.

Typically you use foreign key definitions in applications that are originally purely relational in nature.

You can add an SQL foreign key to a class definition in two ways:

• Editing the class definition using the Class Editor.

• Using the New SQL Foreign Key wizard

To add an SQL foreign key using the Class Editor, position the cursor on a blank line in the Class Editor and enter a foreign
key declaration:

Class MyApp.Company Extends %Persistent
{

Property State As %String;

ForeignKey StateFKey(State) References StateTable(StateKey);

}

13.4.1 New SQL Foreign Key Wizard

Open the New SQL Foreign Key wizard using the Class > Add > Foreign Key. Alternatively you can right-click the Class

Inspector and selecting Add Foreign Key or select the New Foreign Key icon, , from the toolbar.

The New SQL Foreign Key wizard prompts you for information. When you have filled in the required information, select
Finish (default values are provided for any information you have not specified).

13.4.1.1 Name and Description Page

The New SQL Foreign Key wizard prompts you for the following information (you can later modify any of these values):

Foreign Key Name

(required) Name of the foreign key. This name must be a valid foreign key name and must not conflict with the
name of previously defined foreign key.

For a general discussion on names see the chapter “Caché Classes ” in Using Caché Objects.

64 Using InterSystems Development Environments — Atelier and Studio

Adding SQL Triggers and Foreign Keys to a Class

Description

(optional) Description of the new foreign key. This description is used when the class' documentation is displayed
in the online class library documentation.

A description can include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

13.4.1.2 Attributes Page

The second page asks you to select one or more properties of the class that you want constrained by the foreign key.

13.4.1.3 Key Construction Page

The third page asks you to select both the class and a key (unique index) in that class that specify the values used to constrain
the foreign key properties.

13.4.1.4 Results of Running the New SQL Foreign Key Wizard

After running the New SQL Foreign Key wizard, the Class Editor window is updated to include the new foreign key defi-
nition.

If you want to make further modifications to this foreign key you can do this using either the Class Editor or the Class
Inspector.

Using InterSystems Development Environments — Atelier and Studio 65

Adding New SQL Foreign Keys to a Class

14
Adding Storage Definitions to a Class

The physical storage used by a persistent or serial class is specified by means of a storage definition. You can use Studio
to view and edit such storage definitions.

Note: Storage definitions are a fairly advanced feature of Caché objects. In most cases, you do not need to work with
storage definitions; the Caché class compiler automatically creates and manages storage definitions for persistent
objects.

If you use storage definitions, you typically work with them in the following cases:

• You need detailed control over the storage used by a persistent object, perhaps for performance tuning.

• You are mapping an object definition on top of a preexisting data structure.

A class can have any number of storage definitions, though only one can be used at one time. A new class does not have
a storage definition until either you first a) save and compile the class, or, b) you explicitly add one. You can add a new
storage definition to a class using Class > Add > Storage.

Note: Compiling a class automatically generates its storage definition. Only persistent and serial classes have storage
definitions.

Within Studio, you can view and edit the storage definition(s) for a class in two different ways:

• Visually using the Storage Inspector in the Class Inspector window: select Storage in the Class Inspector and select
the desired storage definition.

• Textually using the Class Editor window; the storage definition is in the body of the class definition.

These techniques are described in the following sections.

14.1 Adding Storage Definitions to a Class
You can add a new storage definition to a class definition in two ways:

• Adding a storage definition to the class definition using the Class Editor and Class > Add > Storage.

• Using the New Storage wizard.

Using InterSystems Development Environments — Atelier and Studio 67

14.1.1 Using the New Storage Wizard

You can use the New Storage wizard to add a new storage definition to a class definition. You can start the New Storage
wizard using Class > Add > Storage. Alternatively, right-click in the Class Inspector and selecting Add > Storage or select

the New Storage icon, , from the toolbar.

The New Storage wizard prompts you for information. Select Finish at any time (in this case, default values are provided
for any information you have not specified).

14.1.1.1 Name,Type, Description Page

The New Storage wizard prompts you for the following information (you can later modify any of these values):

Storage Name

(required) Name of the new storage definition. This name must be a valid class member name and must not conflict
with the name of a previously defined storage definition.

Storage Type

(required) Type of storage used by this storage definition. The type specifies which storage class is responsible
for implementing the storage interface for this class. The choices are:

• Caché Storage—this storage definition is based on the %CacheStorage class. This is the default storage type
used for new persistent classes.

• Caché SQL Storage—this storage definition is based on the %CacheSQLStorage class. This storage type uses
SQL statements to perform storage operations. This storage type is used for mapping objects to existing data
structures or to talk to remote RDBMS via the Caché SQL Gateway.

• Custom Storage—this storage definition is based on a user-defined storage class.

Description

(optional) Description of the new storage definition.

A description can include HTML formatting tags. For more details, see “Using HTML Markup in Class Docu-
mentation” in the chapter “Defining and Compiling Classes” in Using Caché Objects.

14.1.1.2 Global Characteristics of a %CacheStorage Definition Page

For a %CacheStorage storage definition, the New Storage wizard lets you specify some characteristics of the globals (per-
sistent multidimensional arrays) used to store the data and indices for the persistent class. These characteristics include:

DataLocation

Name of the global as well as any leading subscripts used to store instances of the persistent class. For example,
to specify that data should be stored in the global ^data, enter ^data in this field. To specify that data should be
stored in the global subnode ^data("main"), enter ^data("main").

IndexLocation

Name of the global as well as any leading subscripts used to store index entries for the persistent class. By default,
indices are stored in the Index Reference global with an additional subscript based on the Index name. You can
override this on an index-by-index basis.

68 Using InterSystems Development Environments — Atelier and Studio

Adding Storage Definitions to a Class

IdLocation

Name of the global as well as any leading subscripts used to contain the default object ID counter. The object ID
counter is used to maintain the ID number of the next object instance of this type.

14.2 Using the Class Inspector with Storage Definitions
You can use the Class Inspector to visually view and edit a class' storage definition. The Class Inspector displays a list of
storage definitions in the same way that it displays methods or properties.

To view an existing storage definition in the Class Inspector:

1. Select the Class Inspector

2. Select Storage in the Inspector's Member list pull-down.

3. Double-click a storage definition.

At this point, the Class Inspector displays storage keywords along with their values.

Several of the storage keywords warrant special attention:

Data Nodes

Represents the set of data mappings used by the %CacheStorage storage class. The Data Nodes editor, which you
can invoke by double-clicking on the Data Nodes keyword, allows you to view and edit the set of data node
specifications for the storage definition: that is, you can directly specify how your class' properties are stored in
global nodes.

SQL Storage Map

Represents the set of data mappings used by the %CacheSQLStorage storage class. The SQL Storage Map editor,
which you can invoke by double-clicking the SQL Storage Map keyword, allows you to view and edit the set
of mappings used to map object properties to existing data structures.

14.3 Using the Class Editor with Storage Definitions
You can use the Class Editor to view and edit a class' storage definition. You can toggle the display of a class storage defi-
nition(s) using View > Expand Code.

A storage definition is displayed as an in-line XML island in the body of the class definition using the same XML elements
that are used in the external, XML-representation of a class definition.

For example, suppose you have a simple persistent MyApp.Person class:

/// A simple persistent class
Class MyApp.Person Extends %Persistent
{
Property Name As %String;
Property City As %String;
}

After compiling this class (to ensure that the class compiler has created a storage definition for it), display its storage defi-
nition using the View > Expand Code (or select plus icon next to the top line of the block). This results in following display
in the Class Editor window:

Using InterSystems Development Environments — Atelier and Studio 69

Using the Class Inspector with Storage Definitions

/// A simple persistent class
Class MyApp.Person Extends %Persistent
{

Property Name As %String;
Property City As %String;

<Storage name="Default">
 <Data name="PersonDefaultData">
 <Value name="1">
 <Value>City</Value>
 </Value>
 <Value name="2">
 <Value>Name</Value>
 </Value>
 </Data>
 <DataLocation>^MyApp.PersonD</DataLocation>
 <DefaultData>PersonDefaultData</DefaultData>
 <IdLocation>^MyApp.PersonD</IdLocation>
 <IndexLocation>^MyApp.PersonI</IndexLocation>
 <Type>%Library.CacheStorage</Type>
</Storage>
}

The XML storage definition includes all the defined storage keywords and their corresponding values represented as XML
elements.

You can directly edit this definition in the Class Editor as you would any other part of the class definition. If you enter
invalid XML syntax the editor colors it as an error.

The storage definition can be useful in cases where you need to do simple or repetitive modifications.

For example, suppose you want to change the name of a property City to HomeCity, while preserving the physical storage
layout (that is, you want the new property name to access the values stored with the old name). You can do this using the
Class Editor as follows:

1. Load the class definition into a Studio Class Editor window and display its storage.

2. Use the Editor's Replace command to replace all occurrences of the property City with HomeCity. You must be careful
to only change those occurrences of City that represent the property name (such as in the property definition, method
code, descriptions, and in the body of the storage definition); do not replace the values of any class definition keywords.

3. Save and recompile the class definition.

70 Using InterSystems Development Environments — Atelier and Studio

Adding Storage Definitions to a Class

15
Working with CSP Files

A CSP (Caché Server Page) file is a text file containing HTML, XML, or CSP markup commands. This file is stored on a
Caché server machine and is compiled, by the CSP Engine, into an executable class that can process HTTP events sent
from a browser.

You can use Studio to create and edit CSP files in the same way you would work with class definitions or routines. CSP
files are displayed in the Studio syntax-coloring editor allowing you to quickly spot errors in HTML as well as in any
embedded server-side scripts.

15.1 Sample CSP Page
To create a simple CSP page with Studio, perform the following steps:

1. Start Studio and create a new Project in the SAMPLES namespace.

2. Create a new CSP file (with File > New > CSP File tab > Caché Server Page) .

3. Studio creates a new CSP Editor window containing a new CSP file named Untitled.csp.

Replace the contents of the editor window with:

<HTML>
<HEAD>
<TITLE>Sample Page</TITLE>
</HEAD>
<BODY>
My Sample CSP Page.
</BODY>
</HTML>

4. Save the page with File > Save. The Save As dialog appears. Within the dialog, double-click the CSP application
/csp/samples (this is the directory in which we are going to save this CSP page) and then enter Sample.csp in the Filename

box. Select Save As.

5. Compile the page with Build > Compile .

6. View the resulting Web page from a browser with View > Web Page.

At this point, you should see a very simple Web page containing the words My Sample CSP Page in your browser.

To make this example more interesting, we can add an SQL query to the page that executes when the page is requested:

1. Position the cursor in the CSP Editor window at the start of the blank line after My Sample CSP Page.

2. Select Insert > SQL Query. In the dialog that appears enter the following SQL query:

Using InterSystems Development Environments — Atelier and Studio 71

SELECT Name,SSN FROM Sample.Person ORDER BY Name

3. Check Create HTML Table and select OK.

4. Save and recompile the page with Build > Compile.

5. View the resulting Web page from a browser with View > Web Page .

Now your CSP page displays a list of names and social security numbers in an HTML table.

15.2 Creating a New CSP File
To create a new CSP file, select File > New > CSP File tab > Caché Server Page. This creates a new CSP file named Untitled.csp.

When you save this file for the first time, you are asked for a file name. If this file is part of a CSP application, create a
folder with an application name, in which to put your new file.

The file name, which must have a .csp extension, is used for both saving a physical source file on the Caché server as well
as in a URL requesting this page. The application name also determines the URL used to request the CSP page as well as
other characteristics.

For more information on CSP files and applications, see the Caché Server Pages documentation.

15.2.1 Default.csp Template File

When you create a new CSP file in Studio, it opens a new CSP Editor window and copies into it the contents of a CSP
template file. You can edit or replace this template file in order to customize how Studio creates new CSP files. This file
is a text file called Default.csp and is located in the same directory as the Studio executable file. For a default installation,
this is the /cachesys/bin directory.

15.3 Editing a CSP File
You can edit a CSP file in the same way you would edit any other document in Studio.

15.3.1 Insert Options

The Studio includes dialogs, a wizard, and templates to assist with editing CSP files. These dialogs are available under the
Insert menu and are described in the table below.

The templates are in theCSP/samples directory in the installation directory . To view a sample, open a file in Studio, such
as zipcode.csp and then select View > Web Page. The Web Form Wizard is available in the Tools > Templates > Templates
menu.

72 Using InterSystems Development Environments — Atelier and Studio

Working with CSP Files

ActionInsert Menu
Option

Inserts a <csp:CLASS> tag at the current cursor location.Class

Inserts a <csp:LOOP> tag at the current cursor location.Loop

Inserts a <csp:WHILE> tag at the current cursor location.While

Inserts a Caché objects method (in a <SCRIPT> tag) at the current cursor locationMethod

Inserts a <csp:OBJECT> tag at the current cursor location.Object

Inserts a <csp:QUERY> tag at the current cursor location.Query

Inserts an SQL query (in a <SCRIPT> tag) at the current cursor location.SQL Query

15.4 Saving a CSP File
Save a CSP file using the File > Save. This sends the source of the CSP file back to the Caché server (which could be on a
remote machine) and save it on the server's local file system in the appropriate directory (specified by the Caché server's
CSP application settings). Studio automatically saves backup files for the five previous saves of a CSP file. For more
information, see Save Automatically Backs Up Routines, Include, and CSP Files

15.5 Compiling a CSP File
Compile a CSP file using Build > Compile. Compiling a CSP File is a multi-step process: first the CSP file is fed through
the CSP engine and converted into a Caché class (derived from the %CSP.Page class). Then this generated class is compiled
into one or more routines that contain executable code.

Sometimes it is easier to debug or understand a CSP file by looking at the code generated for it. You can use Studio to view
the class generated for a CSP file, as well as the routine(s) generated from this class by opening them with File > Open or
View > Other.

15.6 Viewing the Results of a CSP File
You can view the results of a CSP file in a browser by using View > Web Page. This launches your default browser with
the URL for the current CSP page. You can also use this command when editing a %CSP.Page class.

You can modify the server address portion of the URL used to display a CSP page in a specific project. To do this, select
Project > Settings and edit the value of the WEB Server field.

Using InterSystems Development Environments — Atelier and Studio 73

Saving a CSP File

15.7 Viewing Syntax-Colored Source for Any URL
As an aid to debugging Web applications, Studio lets you request a Web page from a URL and display its HTML source
in a syntax coloring window. This can help you spot errors in Web pages more easily than viewing the rendered HTML in
a browser.

You can open a URL Viewer window using the File > Open URL and entering a URL in the resulting dialog.

To try this with a CSP sample page, do the following:

1. Select File > Open URL.

2. If you have a Web server on your local system, enter http://localhost/csp/samples/custom.csp

If you do not have a Web Server on your local system, use the test HTTP server on the 8972 port (or the port number
your system is configured for): http://localhost:8972/csp/samples/custom.csp

At this point, you sees the HTML returned by the custom.csp page displayed in a syntax-coloring window.

Note: You can use the URL viewer to view syntax-colored source for any Web page on the Internet.

74 Using InterSystems Development Environments — Atelier and Studio

Working with CSP Files

16
Working with Routines and Include Files

A routine is the unit of execution in a Caché server; all application logic running on a Caché server is executed by invoking
routines and entry points in routines. Routines are executed in a virtual machine that is built into the Caché server environment.
Routines are portable to all platforms supported by Caché and automatically shareable across a Caché environment.

Include files (.inc files) contain macro definitions (or other include files) and can be included in .mac routines or class def-
initions. For more information on macros see the section “Using Macros” in Using Caché ObjectScript.

16.1 Routine Editor
Using the Routine Editor, you can directly create and edit the source for routines or include files. When class definitions
are compiled, the class compiler generates a set of routines containing the implementation for the class. If you check to
Keep Generated Source Code (on the Tools > Options dialog, Compiler, General Flags tab), you can view and edit this gen-
erated source code as well.

The Routine Editor uses syntax coloring and indicates syntax errors with a wavy red line.

16.2 Routine Source Formats
There are several kinds of routine source formats (files) in Caché. The Routine Editor provides syntax coloring and
checking for each of these formats. The formats include:

• BAS - Basic source files with a .bas extension

• MAC - Macro source files with a .mac extension, processed by the Caché macro preprocessor to resolve macros,
embedded SQL statements, and embedded HTML, which results in an .int file.

• INT - Intermediate source files, which are compiled directly into executable Caché object (OBJ) code.

• INC - Include files. Not routines per se, .inc files contain macro definitions that can be included by .mac routines.

By default, when you create a new ObjectScript routine, it is saved as a .mac routine. Select File > Save As to save this as
a different type of routine (changing the extension from .mac to .inc for example).

Select View > View Other to display .int code corresponding to a given .mac file and vice versa.

Using InterSystems Development Environments — Atelier and Studio 75

16.3 Creating a New Routine or Include File
To create a new routine or include file, select File > New. A dialog displays the templates you can choose from. For a routine,
you can choose either an ObjectScript routine or a Caché Basic routine. For an include file, select ObjectScript. This opens
a new Routine Editor window with a default name, such as Untitled. You can save this with a different name with File >

Save As.

16.4 Opening an Existing Routine or Include File
Open an existing routine with File > Open . In the drop-down list of Files of Type , select the file extension of interest (such
as .mac, .int, or All Files) and select a routine.

When you attempt to open a previously saved routine or include file, the Open dialog uses wildcard matching (using the *
(asterisk to match any number of any character) and ? (question mark to match a single character) to display a list of
available routines or include files. The routine type - BAS, MAC, INT, or INC - is used as a file extension for purposes of
wildcard matching.

16.5 Routine Template File
When you create a new routine in Studio, it opens a new Routine Editor window. If a Routine template file exists, it is
copied into the new file. To create a Routine template file, create a file with the contents that you want in your template.
Save the file asDefault.mac in the same directory as the Studio executable file (CStudio.exe).

16.6 Saving, Compiling, and Deleting Routines
You can save routines to the database using the File > Save or File > Save As. By default, saving a routine does not cause
it to be compiled. You can change this behavior by checking Compile Routine on Save available from Tools > Options dialog,
Compiler, Behavior.

To compile a routine directly, use Build > Compile (which also causes it to be saved).

To delete a routine, in a Workspace window, highlight the routine and select Edit > Delete. The routine and any generated
files are deleted.

16.7 Save Automatically Backs Up Routines, Include, and
CSP Files
When you save an existing routine (or include or CSP file), Studio automatically creates a backup file. It automatically
saves up to five backup files, naming them with a ;# (semicolon number) suffix. For example, a file named setup.MAC

which has been saved six times has five backup files named:

76 Using InterSystems Development Environments — Atelier and Studio

Working with Routines and Include Files

setup.MAC;1
setup.MAC;2
setup.MAC;3
setup.MAC;4
setup.MAC;5

Specifically, files with the following extensions are automatically backed up: .BAS, .INC, .INT, .MAC, .OBJ, .MVB, .MVI,
.CSP

To see what backup files exist, use a semi-colon in the search field of the File > Open option. You can use the following
syntax examples:

.;* displays all backup files in this folder

.mac; displays all backup files with a .MAC extension

setup.*;* lists all backup files named setup

These backup files can also be found using this syntax through the Management Portal on the System Explorer > Routines

page using the Routines and include files box.

Using InterSystems Development Environments — Atelier and Studio 77

Save Automatically Backs Up Routines, Include, and CSP Files

17
Using the Studio Debugger

The Studio debugger lets you step through the execution of programs running on a Caché server. Programs that can be
debugged include INT files, BAS files, MAC files, methods within CLS files, CSP classes responding to HTTP requests,
server-side methods invoked from Java or ActiveX clients, or server-hosted applications. To step through, or set breakpoints
within classes or CSP pages, open the corresponding INT or BAS file and use the debugging commands in it. To view INT
source code files, go to the Tools > Options dialog, Compiler, General Flags tab and enable the Keep Generated Source
Code option.

You can connect the debugger to a target process in one of the following ways:

• Define a debug target (name of program, routine, or Zen or CSP page to debug) for the current project using Project

> Settings > Debugging > Debug Target (or Debug > Debug Target). Then select Debug > Go to start the target program
and connect to its server process.

• Select Debug > Attach and choose a running process on a Caché server.

Sometimes using command-line debugging with the zbreak command can give you better control. For more information
on zbreak, see the chapter “Command-Line Routine Debugging” in Using Caché ObjectScript.

17.1 Sample Debugging Session: Debugging a Routine
The following example demonstrates how to debug a Caché routine.

1. Start Studio and select File > New Project to create a new project called Project1.

2. Create a new routine by selecting File > New > General tab > ObjectScript Routine.

3. Enter code for this routine:

MyTest ; MyTest.MAC

Main() PUBLIC {
 Set a = 10
 For i = 1:1:10 {
 Set b = i
 Write b," "
 }
}

4. Save and compile the new routine as MyTest.MAC using File > Save As.

5. Define a debug target for the project by selecting the Debug > Debug Target tab, selecting Class Method or Caché

Routine, and entering the name of the entry point in your new routine, Main^MyTest.

Using InterSystems Development Environments — Atelier and Studio 79

6. Set a breakpoint in the routine: Position the cursor anywhere on the line Set a = 10 and press F9, the Toggle

Breakpoint key. A breakpoint indicator appears in the left margin, .

7. Select Debug > Go to begin debugging. When the debugger stops at your breakpoint, the next command to be executed
is outlined with a yellow box. The INT file opens in a new window (if you enabled the Keep Generated Source
Code option, on the Tools > Options dialog, Compiler, General Flags tab).

8. Enter b and a (as Watchpoints) in the Watch window (View > Watch) so that you can watch the values.

9. Step through execution of the program by repeatedly selecting Debug > Step Into (F11) and notice the b value change.

You can stop debugging by stepping to the end of the program or by selecting Debug > Stop.

17.2 Debugger Settings for the Current Project
Some debug settings are defined and stored in the current project. These include:

• Debug Target

• Breakpoints

17.2.1 Debug Target

A debug target tells Studio what process you want to debug.

To specify a debug target for a project, select Project > Settings > Debugging > Debug Target or select Debug > Debug Target.
Choose one of the following, which is started when you select Debug > Go. You can also set a debug target by placing the
cursor next to an item in a editor window, right-clicking, and selecting Set xxxx as debug target.

Class Method or Caché Routine

The routine (and tag), class, or method that you want to debug when Debug > Go is executed. For example, enter
Test^MyRoutine() to begin execution at the tag Test in the routine MyRoutine. Or enter the name of a class
method to execute, such as ##class(MyApp.Person).Test(1).

ZEN and CSP Page (URL, CSP or class)

The Zen or CSP page to be accessed when you invoke Debug > Go. The debugger connects to the Caché server
process that is servicing the CSP page's HTTP request. Use this option for debugging CSP applications, for
example, to step through the code for the Test.csp page, enter /csp/user/Test.csp as a debug target.

80 Using InterSystems Development Environments — Atelier and Studio

Using the Studio Debugger

17.2.2 Breakpoints

A project maintains a list of breakpoints that you set with F9. When you start debugging a project's debug target (with
Debug > Go), the breakpoints defined by the project are set in the target process.

To view breakpoints, select Debug > Breakpoints > View Breakpoints. To add and remove breakpoints, place the cursor at
the breakpoint location and select Debug > Breakpoints > Toggle Breakpoint or F9. You can also add or remove breakpoints
using Project > Settings > Debugging > Breakpoints.

Note: 20 is the maximum number of breakpoints that can exist in a routine. If more than 20 breakpoints are set, the
Debugger displays <ROUTINELOAD>^%Debugger.System.1 and halts debugging.

17.3 Debug Menu
Debug menu options are described below:

Displays a list of processes currently running on the Caché
server and lets you attach to one to debug.

If you select a process and select OK, Studio breaks into the
selected target process and allows you to start debugging it.

If you generated source for the current routine executing in
the target process, the source is displayed in an editor window.

If you later terminate debugging with Debug > Stop, the target
process resumes executing.

Attach

If you are not currently debugging, Go starts the target specified
by the Project's debug target.

(f you haven't set a target, you are asked for one. A debug
target is the name of routine or method to execute; you can
set this using theDebug Target dialog.

Once the target is started, it runs until the first breakpoint. If
you did not set any breakpoints in your application, it runs to
completion without stopping.

Go

Halts execution of the target process, restarts it, and resumes
debugging (as if the Go command was used).

Restart

Stops debugging and either halts the target process or
detaches from it. If the target process was running and
attached to with Attach, then the target process continues
running. If the target process was started as a result of the Go

command, then it is terminated.

Stop

Pauses execution of the target process (that is, if the debugger
is attached to a target process that is currently running, not
stopped).

Break

Interrupts execution of the current command.Interrupt

Using InterSystems Development Environments — Atelier and Studio 81

Debug Menu

Executes the current command in the target process and stops
on the next command, stepping into any function calls or loop
bodies.

Step Into

Executes the current command in the target process and stops
on the next command. The debugger steps over any function
calls or code blocks (such as loops) it encounters; it stops on
the command following the function call or code block.

Step Over

Advances the execution of the target process by leaving or
stepping out of the current code block or function and stops
on the next command at this outer level.

Step Out

Available only for documents containing INT routines.

Starts execution of the target process and stops when it
reaches the line on which the cursor is currently located. This
is equivalent to setting a breakpoint at the current line in the
editor window, executing the Go command, and clearing the
breakpoint when the program halts.

Run To Cursor

Toggles Watch window Display.Watch

Toggle Breakpoints Sets or clears a breakpoint on the current
line in the current document. View Breakpoints: Opens the
Breakpoints dialog with which you can list, add, and remove
breakpoints.

Breakpoints

Enter a debug target – a method, routine, Zen page, or CSP
page. See also “Debug Target”

Debug Target

17.4 Watch Window
The Watch Window displays a table in which you can watch the values of variables and simple expressions. All variables
and expressions listed in the Watch Window (called watchpoints) are evaluated after each debugger operation (such as Step

Over) and their resulting values are displayed in the second column of the Watch Window. If the value of a variable or
expression changes after a debugger operation, it is displayed in red. If a variable in the watch list is undefined when it is
evaluated then the value is displayed as: <UNDEFINED>. Similarly, any expression whose result is an error displays an
error message for its value. Note that you can also see the value of a variable displayed in a hint in the debugger by hovering
your mouse over the variable.

To add a variable or expression to the Watch Window, double-click an empty cell in the first column and enter the variable
or expression. Alternatively you can use your mouse to highlight text in an editor window, drag it over an empty cell in
the Watch Window and drop it. You can edit the contents of the Watch Window by double-clicking on a variable or
expression and typing.

The following are examples of variables and expressions you could enter into the Watch Window:

• a

• a + 10

• a(10,10)

• $L(a)

82 Using InterSystems Development Environments — Atelier and Studio

Using the Studio Debugger

• person.Name

You can also change the value of a variable in the target process by entering a new value in the Value column of the Watch
Window.

17.4.1 Debugger Watch Window Context Menu

Right-clicking a debugger watch window displays the following context menu:

Removes the active variable from the watch list.Remove

Select view type from list.View As

Displays result of %SYSTEM.OBJ.Dump() on selected
variable.

Dump Object

Refreshes the watch list.Refresh

Removes all active variables from the watch list.Remove All

Adds selected element of array or object property to
be added to watch menu as an independent entry.

Add to Watch

Using InterSystems Development Environments — Atelier and Studio 83

Watch Window

18
Using Studio Templates

This chapter describes how to use Studio Templates.

Templates are a repeatable way to insert functionality into Studio editor windows. There are three types of templates:

• Text Template—(what is meant by the word Template) A simple text template inserts generated text into a document.
An interactive text templateincludes user input. An example would be a Studio template inserts a block of standard
HTML into a CSP file. To access text templates, select Tools > Templates > Templates....

• New Document Template—Creates a new document window in Studio.

New Document Templates constitute the list of new document types displayed by the File > New menu. To create a
new document template, create either a simple or interactive text template with a Mode attribute of new.

• Add-in Template—Creates a new tool in Studio. An Add-in Template differs from a Text Template in that it does not
inject text into a document and does not require an open document.

Add-ins are available using Tools > Add-ins. For information on using the SOAP Web client wizard, see Creating Web
Services and Web Clients in Caché. For information on using the XML Schema Wizard, see the appendix “Using the
XML Schema Wizard” in Using XML with Caché.

Studio comes with a set of Caché-supplied standard Studio templates. In addition, you can create your own custom templates
using CSP.

Note: To ensure that Studio templates open quickly, disable the automatic detection of proxy settings in Internet Explorer.

1. Open Internet Explorer and select Tools > Internet Options and the Connections tab.

2. Select LAN Settings and uncheck any checked boxes. Make sure nothing on this page is checked and then
select OK twice to close the Internet Options dialog.

18.1 Accessing Studio Templates
You can open a template using Tools > Templates, as well as with the right-click menu in the editor window. You can open
a template by selecting it from the list of recently-used templates (showing on the right-walk menu under the word Tem-

plates...) or from the Studio Template list, accessed with (Tools > Templates > Templates), which lists available templates.
Each template is associated with one or more document types; only templates associated with the current window's document
type are shown in the Template list.

There are two styles of template; simple and interactive. A simple template inserts text at the cursor point with no further
user interaction. An interactive template displays one or more screens soliciting additional information, like a wizard.

Using InterSystems Development Environments — Atelier and Studio 85

Any text that is highlighted when you open a template is replaced by the template. Many templates use the currently high-
lighted text as input to the template program.

18.2 Caché-Supplied Standard Studio Templates
Studio comes with a set of templates. You can see a list of all system-supplied templates in Studio in the %SYS namespace,
Workspace window, Namespace tab, under CSP files. To see templates usable in the current document, use Tools > Templates

> Templates. These templates are described below.

Note: By default, Studio templates use a session timeout of 90 seconds. If you are entering data into a Studio template,
the session ends after 90 seconds of no user input. For more information, see the section “Default Timeout”
below.

18.2.1 Templates

This section contains three tables defining the templates available in Studio for use with CSP or Zen:

Table 18–1: CSP Templates

DescriptionTemplate

Select to insert an HTML color value string (such as #F0F0F0) at the cursor point.HTML Color

Select to insert an HTML input control at the cursor point.HTML Input

Select to insert a <SCRIPT> tag at the cursor point, with the specified language and
content.

HTML Script

Select to insert an HTML table at the cursor point with the specified characteristics.
Select Preview to display a preview window.

HTML Table

Select to insert an HTML tag at the cursor point, selected from a list with specified
attributes. Or if you highlight an existing HTML tag and then invoke the template, you
can edit the displayed attribute values.

HTML Tag

Figure 18–1: Example of an Interactive Template, the HTML Color Table

86 Using InterSystems Development Environments — Atelier and Studio

Using Studio Templates

18.2.2 Class Definition Templates

Many of the CSP templates are available for use in class definitions (they can be useful in &html<> blocks). In addition,
the following templates are available:

Table 18–2: Class Definition Templates

DescriptionTemplate

Select to insert code for a specified SQL Statement at the cursor point. Select Preview

to see test results of the table (using data in the database) in a popup preview window.
You can specify whether the template returns only the SQL text, an embedded SQL
cursor based on the SQL text, or a %ResultSet object based on the SQL text.

SQL Statement

Select to open a Wizard with which you can create a CSP form, specifying class
members and a table style for the form to use. (See Building a Simple Application
with Studio for an example.

Web Form Wizard

18.2.3 Zen Templates

You can use the following wizards (also called templates) in Zen classes. For detailed information on using these wizards,
see Zen Wizards in Using Zen and the chapters referenced in the table below for select templates.

Table 18–3: Zen Templates

DescriptionTemplate

Select to insert a Zen chart definition within an Xdata block of a ZenPage class,
selecting type, style, and attributes. For more information see the chapter “Zen
Charts” of Using Zen Components.

Zen Chart Template

Select to insert a Zen element within an Xdata block of a ZenPage class.You can
insert and edit built-in, custom, or composite Zen components or create a new Zen
component. For more information, see the chapter “Zen Layout” in Using Zen.

Zen Element
Template

Select to insert a method.The wizard lets you select a scope, either instance or class,
a location where the method will execute, a name, and whether to add a try/catch
error processing template.You can further edit it in the Studio editor. See the section
“Adding Client-Side Methods” in this book for an example of using the Zen Method
Template.

Zen Method
Template

Select to insert a CSS style declaration within an Xdata Style block of a Zen class.
A table displays the CSS style declarations defined by Zen components.You can
select one and override it within your page by editing details. For more information,
see the chapter “Zen Style” in Using Zen.

Zen Style Template

Select to insert a new Zen tablePane definition within an Xdata block of a ZenPage

class. Select the source of the query or table for this tablePane and then adjust
properties as desired. For more information, see the chapter “Zen Style” in Using
Zen.

Zen TablePane
Template

Using InterSystems Development Environments — Atelier and Studio 87

Caché-Supplied Standard Studio Templates

18.2.4 Add-In Templates

The Tools > Add-Ins menu contains a list of wizards with which you can add items to your project. The menu contains the
following add-ins.

Table 18–4: Add-Ins

For More InformationFunctionAdd-In

Using the Object Gateway for
.NET

Imports a DLL assembly file from .NET and
create a set of corresponding classes.

.Net Gateway Wizard

The Caché Activate Wizard in
Using the Caché ActiveX Gateway

Creates Caché classes which provide you with
access to COM objects from within Caché.

Activate Wizard

Using the Java Gateway in the
Ensemble documentation set

Imports a class file or a jar file from Java and
creates a set of corresponding classes.

Java Gateway
Wizard

Creating Web Services and Web
Clients in Caché

Reads a WSDL (Web Services Description
Language) document and creates one or more
Web client classes or Web service classes.

SOAP Wizard

“Using the XML Schema Wizard”
in Using XML with Caché.

Reads an XML schema and creates a set of
corresponding classes.

XML Schema wizard

“Performing XSLT
Transformations” in Using XML
with Caché

Transforms an XML file using a specified XSL
stylesheet.

XSL Translate
Wizard

18.3 Making Your Own Studio Templates
You can create any of the following types of templates:

• Simple Text Templates insert text at the current cursor location.

• Interactive Text Templates provide an interactive dialog that request information and then insert text at the current
cursor location.

• Add-in Templates provide tools for general use in Studio.

• New Document Templates appear in the Studio New Document dialog and create new documents.

Note: You should have some familiarity with CSP development before attempting to create Studio templates.

18.3.1 Template Architecture

Studio Templates are created and implemented using Caché Server Pages (CSP); each template is one or more server pages
that run on a Caché server. When you invoke a template, Studio creates a window containing a browser and makes an
HTTP request (via the built-in Caché simple HTTP server) to the CSP page associated with the template. The CSP page
can either:

1. Return HTML containing an interactive form that solicits additional input from the user, or

88 Using InterSystems Development Environments — Atelier and Studio

Using Studio Templates

2. Return XML containing the text to be inserted at the cursor point in Studio. (All Text and New Document Templates
do this as their final step; Simple Templates, with no user interface, implement only this step; Add-in Templates do
not insert text into a document.)

To make it easier to develop templates, Caché includes a set of custom CSP tags that perform all the basic operations of
templates. These tags are described in the following sections.

The power of templates comes from the fact that they are running on a Caché server and have the entire power of Caché
at their disposal. Therefore, for example, templates can perform sophisticated database operations.

When invoking a template, Studio passes parameters to the server, where they are accessible, in the %request object. These
parameters (which are case-sensitive) may include:

• Project—name of the current Studio project.

• Namespace—name of the namespace Studio is connected to.

• User—name of the current Studio user.

• Language —ObjectScript language mode.

• Document Namespace—namespace the document belongs to (might be different from current namespace.

• Name—name of the current document, if any.

• Tabsize—Number of spaces a tab contains in the document.

• SelectedText—selected text in the current document, if any.

Give each template a unique name (unless you are replacing an existing template with a new one).

18.3.2 Default Template Timeout

A session timeout is the amount of time in which a session stays open without any input from a user. At the end of this
time of no user input, CSP closes the session.

Templates created in Studio are stored in either of the CSP applications, /isc/studio/usertemplates (which appear on the
Tools > Templates menu) or /isc/studio/templates (which appear on the Tools > Templates > Templates menu). By default,
both of these applications have default session timeouts of 90 seconds. In the Management Portal, on the CSP Application
options page for each of these applications, you can enter a number in the Default Timeout setting, but the number has no
effect on the hard-coded session timeout of 90 seconds. This is intentional to prevent inactive Studio templates from
retaining system licenses.

18.3.3 Simple Text Templates

A simple template is a single CSP page that returns a block of text that is inserted into the current document at the cursor
point. The CSP page contains the special Studio CSP tag: <csp:StudioSimpleTemplate>.

18.3.3.1 Creating a Simple Studio Template

To create a simple Studio template, start Studio and do the following:

1. Create a new CSP page with File > New > Caché Server Page.

2. Replace the contents of the document with the following. (The name of the new template is MyTemplate.)

<csp:StudioSimpleTemplate name="MyTemplate" type="CSP">
SOME TEXT!

Using InterSystems Development Environments — Atelier and Studio 89

Making Your Own Studio Templates

3. Save and compile this CSP document with Build > Compile. It does not matter what file name you use for the CSP
document or which namespace or CSP application you store it in.

To make a Studio template accessible to all namespaces, save it in the %SYS namespace in /isc/studio/usertemplates.

You have now defined a template called MyTemplate (its name is specified by the name attribute of the <csp:StudioSim-
pleTemplate> tag). When you are in an open CSP page in the Studio Editor, select Tools > Templates > MyTemplate, and
the text SOME TEXT! is inserted into the page.

The Template dialog lists templates whose type matches the document type from which you invoked the Template dialog.
In our example, the MyTemplate template has a type of CSP. When you are in a CSP page in the Studio Editor, it appears
on the Tools > Templates list.

You can also edit the type attribute, a comma-separated list of document types, to specify the document types the template
can be called from. The list of types includes:

Table 18–5: Studio Template Types

Template is available when your current document is aTemplate Type

CSP documentCSP

CSR documentCSR

MAC routineMAC

INT routineINT

INC fileINC

BASIC scriptBAS

Class Definition documentCLS

MVBasic RoutineMVB

18.3.3.2 Testing a Simple Studio Template

To test a simple text template:

1. Open an existing (or create a new) CSP page in Studio (you can use any CSP application directory). While you can
continue to use the namespace in which you created the template, you probably want to connect to the namespace
where you normally work.

2. Position the cursor in the CSP document editor window and select Tools > Template > Templates.

3. You see your new template in the list. Select it and select OK.

The body of the simple template is inserted at the cursor location. For example:

<html>
<body>
SOME TEXT!
</body>
</html>

18.3.3.3 Adding Logic to a Simple Studio Template

The real power of templates is that they can execute code. CSP page templates can include CSP features including:

• Embedded expressions using #()# syntax.

• Line of code contained in a <script runat=”server”> tag.

90 Using InterSystems Development Environments — Atelier and Studio

Using Studio Templates

For example, we could create a simple template that returns the current date and time (using the $ZDT function) in an
HTML (boldface) tag:

<csp:StudioSimpleTemplate name="Now" type="CSP">
#($ZDT($H,3))#

18.3.3.4 Troubleshooting a Simple Studio Template

If you have problems developing a custom template, one way to debug it is to view your template CSP page in a browser
with View > Web Page while editing your CSP. Use a browser capable of displaying XML text; the value returned by a
template is wrapped in XML.

For example, you can display the output of the template defined earlier in this section by entering a URL in a browser (or
using File > Open URL), such as:

http://localhost:8972/csp/user/MyTemplate.csp

This results in the following XML response:

<?xml version="1.0"?>
<template>
<![CDATA[BODY##www.intersystems.com:template_delimiter##
 SOME TEXT!##www.intersystems.com:template_delimiter##]]>
</template>

The response is contained in a <template> element. The body of the response is delimited using the
##www.intersystems.com:template_delimiter## delimiter.

18.3.4 Interactive Studio Templates

An interactive template is a set of one or more CSP files that display a dialog window (using HTML) requesting user input.
The interactive template's final page inserts a block of text into the current document at the cursor point, as a simple template
does.

When you select an interactive template, Studio displays a dialog window containing a Web browser. The first page (or
pages) of an interactive template returns an HTML form that solicits user input.

The first page of an interactive template starts with the <csp:StudioInteractiveTemplate> tag. The attributes of this tag are
identical to those of the simple template tag. The final page (the one returning output to Studio) starts with the <csp:Studio-
GenerateTemplate> tag. Any intermediate pages (perhaps you are creating a multiple page wizard) do not need any special
tags. The penultimate page contains a SUBMIT button that invokes the final page.

For example, suppose you want to create an interactive template, MyScript, that solicits script content and script type
from a user and inserts a <script> tag into a CSP document. The first page, MyScript.csp, contains a simple HTML form:

<csp:StudioInteractiveTemplate name="MyScript" type="CSP">
<HTML>
<BODY>
<FORM NAME="form" ACTION="MyScript2.csp">
Language:
<SELECT NAME="language">
<OPTION VALUE="CACHE" SELECTED>CACHE
<OPTION VALUE="JavaScript">JavaScript
</SELECT>

Script: <TEXTAREA NAME="script" ROWS="10" COLS="40"></TEXTAREA>

<INPUT TYPE="submit" VALUE="OK" NAME="submit">
</FORM>
</BODY>
</HTML>

This CSP page contains:

1. A <csp:StudioInteractiveTemplate> tag specifying that this is an interactive template as well as the template's name
and type.

Using InterSystems Development Environments — Atelier and Studio 91

Making Your Own Studio Templates

2. An HTML form whose ACTION attribute links it to the final page of the template, MyScript2.csp (see below).

3. A SELECT control for specifying a script language.

4. A TEXTAREA control for entering the contents of the script.

5. A SUBMIT button that submits the contents of the form to the MyScript2.csp page.

The final template page, MyScript2.csp, uses the values submitted from the form to create a response that is sent back to
Studio:

<csp:StudioGenerateTemplate>
<SCRIPT LANGUAGE="CACHE" RUNAT="SERVER">
 Write "<SCRIPT"
 Write " LANGUAGE=""",$G(%request.Data("language",1)),""""
 If ($G(%request.Data("language",1))="CACHE") {
 Write " RUNAT=""SERVER"""
 }
 Write ">",!
 Write $G(%request.Data("script",1)),!
 Write "<","/SCRIPT>",!
</SCRIPT>

This page starts with a <csp:StudioGenerateTemplate> tag and then includes ObjectScript code that sends back a SCRIPT
tag (with appropriate attributes) to Studio. To test this, create a new CSP page and select Tools > Templates > MyScript.
Enter some ObjectScript in the script box and select Ok. Script tags with your script are entered automatically into your
new CSP page.

18.3.5 New Document Studio Templates

You can create a new document template by adding a mode attribute, with value of new, to either the <csp:StudioSim-
pleTemplate> or <csp:StudioInteractiveTemplate> tags.

Any template whose mode is new, appears, by name, in the New Document dialog (invoked by File > New). The results
of the template are written into a newly created document.

For example, to create a new document template that creates new CSP pages, make a CSP file similar to this:

<csp:StudioSimpleTemplate name="MyCSPPage" type="CSP" mode="new">
<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="FFDDFF">
<H1>New CSP Page</H1>
</BODY>
</HTML>

After saving this CSP file (you can save it under any CSP application) and compiling it, it appears in the Studio New dialog
as MyCSPPage When selected, a new, untitled CSP document is created with the following contents:

<HTML>
<HEAD>
</HEAD>
<BODY BGCOLOR="FFDDFF">
<H1>New CSP Page</H1>
</BODY>
</HTML>

You can create more sophisticated New Document Templates by adding logic or by using an interactive template, as
described above for Text Templates.

Parameters passed to the server in the %request object for a new document template are:

• Project—name of the current Studio project.

• Namespace—name of the namespace Studio is connected to.

• User—name of the current Studio user.

92 Using InterSystems Development Environments — Atelier and Studio

Using Studio Templates

• Tabsize—Number of spaces a tab contains in the document.

18.3.5.1 New Class Definition Templates

If you are creating a New Document Template that creates a new class definition, you must perform an extra step in your
template code: you tell Studio of the name of the new class so that it can create the correct internal data structures for the
new class definition. This information is returned from the Template to Studio via data in the %session object's Data

property stored under the subscripts Template and CLASS. At some point, your template should contain code similar to
this:

<SCRIPT LANGUAGE="CACHE" RUNAT="SERVER">
 Set %session.Data("Template","CLASS") = classname
</SCRIPT>

18.3.6 Add Text to End of a Document

You can add text to end of a document template by setting an InsertAtEnd flag on the last page of either a Simple
Template or an Interactive Template. If this flag evaluates to true (1), then studio inserts the template-generated text at the
end of document for a non-class document or before the first <Storage> tag for a class document.

<SCRIPT LANGUAGE="CACHE" RUNAT="SERVER">
 Set %session.Data("Template","InsertAtEnd") = 1
</SCRIPT>

18.3.7 Add-in Studio Templates

You can create an add-in template by adding a mode attribute, with value of addin, to either the <csp:StudioSimpleTem-
plate> or <csp:StudioInteractiveTemplate> tags.

Any template whose mode is addin, appears, by name, in the Add-in dialog (invoked by the Tools > Add-in).

You can create Add-in Templates in the same manner as described above for Text Templates.

When invoking an add-in, Studio passes parameters to the server, where they are accessible, in the %request object. These
parameters (which are case-sensitive) include the following:

• Project—name of the current Studio project.

• Namespace—name of the namespace Studio is connected to.

• User—name of the current Studio user.

• Document—name of the current document, if any.

• SelectedText—selected text in the current document, if any.

18.3.7.1 Adding Items to a Project

From an Add-in Template, you can instruct Studio to add one or more items to the current project by using the inherited
method, AddToProject, on the final page of the Add-in Template.

For example, the following adds a class, MyApp.MyClass, to the current project:

<SCRIPT LANGUAGE="CACHE" RUNAT="SERVER">
 Do ..AddToProject("MyApp.MyClass.CLS") // note .CLS extension
</SCRIPT>

Note that when adding an item to a project in this way, you must append the type of item (.CLS, .CSP, .MAC, and so on)
to the item name. Also note that the item must exist before you add it to a project; adding a class to a project does not

Using InterSystems Development Environments — Atelier and Studio 93

Making Your Own Studio Templates

automatically create such a class (but, perhaps, your Add-in Template does this using the %Dictionary class provided in
the class library).

94 Using InterSystems Development Environments — Atelier and Studio

Using Studio Templates

19
Studio Menu Reference

This chapter describes menu and keyboard options available from the Studio menus. The menus are:

• File

• Edit

• View

• Project

• Class

• Build

• Debug

• Tools

• Utilities

• Window

• Help

• Context Menus

• Studio Editor Keyboard Accelerators

19.1 File Menu
The File menu contains options for opening and saving documents and projects. Options vary depending on whether a file
is open. See also the section “Keyboard Accelerators.”

Use to connect to a different Caché server.New Studio

Use to change to a different namespace.Change Namespace ...

Using InterSystems Development Environments — Atelier and Studio 95

Use to create a new document (such as class definition, routine,
or CSP file) in an editor window.You can also drag and drop
files into Studio. Document types are grouped under four tabs:

• General - for creating a new ObjectScript routine, Caché
Basic routine, Caché class definition (with the New Class
wizard), Caché MultiValue routine, Web Service/Client
Configuration, or Web Service.

• CSP File - for creating a new Caché Server Page, XML file,
JavaScript file, or cascading style sheet (CSS) file

• Zen— for creating a new Zen application, component, page,
report, form, or Web Service. (For details, see Zen Wizards
in Using Zen.

• Custom - for a new DeepSee KPI. For information on
DeepSee KPIs, see the Advanced DeepSee Modeling
Guide.

New ...

Opens a Allows to you open an existing item from the current
Caché namespace and server.

The Open dialog is displayed for the current namespace. Select
a file type as needed. Select Ctrl+A to Select All.

If the item is in use by another user, you can open it for Read
Only access.

To open automatically-saved backup files, see Save Automat-
ically Backs Up Routines, Include, and CSP Files

Studio allows you to edit class definitions, routines, and CSP
files only from the current server and namespace. To open an
item from a different server or namespace, use File > Change

Namespace to change to a different namespace or switch to a
different server. Use File > New Studio to open a second Studio
window.

If you select an item and right-click Delete, the item and all
subitems are deleted. Examples: if you select an .INT file, both
.INT and .OBJ files are deleted. If you select a .cls file, all
associated .INT and .OBJ files are deleted also.

Open

Displays HTML source in an editor. This is useful when you
are developing a Web-based application to view progress.

Open URL

Closes the current editor.Close

Saves the contents of the current editor.Save

Saves the contents of the current editor with a name that you
specify.

Save As ...

Saves the contents of all open windows.Save All

Creates a new project in the current Caché server and
namespace.

New Project

96 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Opens an existing project in the current Caché server and
namespace.You can also drag and drop a project into Studio.

To open a project from a different server or namespace, use
File > Change Namespace to change to a different namespace or
switch to a different server. Use File > New Studio to open a
project in a second Studio window.

Open Project ...

Saves setting for the current project. It does not save any
modified documents belonging to the project.

Save Project

Saves the current project with a name you specify.Save Project As

Closes the current project.Close Project

Prints the current document.Print ...

Displays the document as it will look when printed.Print Preview

Opens the Print Setup dialog with which you can set how
documents are printed.

Print Setup ...

Lists recently used files. More shows files (if they exist) in
categories Today, Yesterday, Last 7 days, Last 30 days and All. All

is limited to 100 documents. Select Clear History to clear all.
Select Open Document to open a selected document.

Recent Files ...

Lists recently used projects.Recent Projects ...

Ends the current Studio session.Exit

19.2 Edit Menu
The Edit menu contains editing and navigation options. Most of the options have keyboard shortcuts; see the section
“Keyboard Accelerators.” .

Using InterSystems Development Environments — Atelier and Studio 97

Edit Menu

19.2.1 Basic Editing

Reverses the last action.

Note that changes made to classes with the Class Inspector cannot be
reversed using Undo.

Undo

Reverses the most recent Undo.Redo

Deletes the current text selection and copies it to the clipboard.Cut

Copies the current text selection to the clipboard.Copy

Inserts the contents of the clipboard at the current cursor location.Paste

Deletes the current text selection without copying it to the clipboard. If
you highlight an item in the Workspace window, the item and any of its
generated files are deleted.

Delete

Selects all the contents of the current document.Select All

19.2.2 Find and Replace

Searches for text in the current document.You can use wildcard matching
with the * (asterisk to match any number of any character) and ?
(question mark to match a single character). To find the character * or
? or \ (asterisk, question mark, or backslash) , escape it with a backslash
(\). To find a tab, use \t. See the section More on Find beneath this
table to specify an element type to search within and an explanation of
the backslash escape.

Find

Searches for text in multiple files on the Caché server. Enter a string to
search for, select the type of file to search (such as .cls for class defini-
tions), and select Find. See the section Find in Files beneath this table
for specifics.

Find In Files

Searches for a class in the current project. In the Search window, type
in a class name. The list shows matching entries. To open a class,
double-click a class or select a row and press Enter or select GoTo.

Search

Cancels a running Find in Files search or a class compilation.Cancel

Replaces one text string with another in the current document.Replace

Moves the cursor to a location in the current document, specified as
either a line number or (for routines and class definitions) a tag or class
member.

Go To

After a Go To action, returns the cursor to the previous location — before
the Go To action.

Go Back

See “Bookmarks” below.Bookmarks

See “Advanced”Advanced

98 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Moves the cursor to the next error in a CSP file.Next Error

Moves the cursor to the previous error in a CSP file.Previous Error

Moves the cursor to the next warning in a file.Next Warning

Moves the cursor to the previous warning in a file.Previous Warning

19.2.2.1 More on Find

Backslash Escape
The search engine normally interprets a backslash (\) as a metacharacter; that is, a character that means something other
than itself. In this case — the backslash and the following character form a two-character code. When you want to search
for the backslash itself, you need to create a two-character code since the search engine always looks for a second character
when it sees a backslash. Create a two-character code with a second backslash. The search engine interprets this as the
backslash character itself.

This convention was implemented during the development of the UNIX grep command and the convention, if not the
underlying C code, has been duplicated many times since.

Match Element Type
To find text that is in a particular element type (such as a command, variable, operator, and so on), enter the desired text
in the Find what field and select the Match Element Type check box.

Note: Find displays the searched-for text in all elements of that type in the open file, regardless of language selected.
In the Language field, select the language that you are interested in to limit the number of element types shown
in the Element list. In the Element field, select the element type that contains the text you are looking for and select
Find Next.

For example, searching for the word Set in a Comment with the Class Definition Language selected matches all instances
of the word Set in comments that exist in any language in the file.

19.2.2.2 Find in Files

When you select Find in the Find in Files dialog, Studio searches the selected files in the current Caché namespace and
returns a list of all (up to the first 5,000) files that contain the search string. Double-click an item in the search results to
open the file and display the item, highlighted. Line & column numbers for the selected item are displayed in the right
corner of the status bar.

Note that Find in Files searches stored data; it does not search modified open documents. If you search only in the current
project and the current project is either a new project or a modified project, you are prompted to save the project. If you
refuse, Find in Files is canceled.

Note also that to find a backslash (\) in Find in Files, you need to escape the backslash with another backslash. See the
section More on Find for an explanation of the backslash escape.

The Filter field can contain the elements in the list below. You can use SQL AND and OR logical operators to enter more
than one filter. For example, Type=5 AND Modified>01/01/08. The contents of the Filter field forms part of an SQL
WHERE clause. The fields come from the %Studio.OpenDialogItems class.

You can enter your own custom mask in the In files/file types field, such as al*.mac. Use a comma delimited list to enter
multiple filters in any field.

You can use the following items in the Filter field.

• IsTrue=1 or 0 - True (1) if this is a document, false (0) if it is a directory.

• Name=file name - Enter a file name to search within selected files.

Using InterSystems Development Environments — Atelier and Studio 99

Edit Menu

• Characters=number of characters - Filters for documents of a certain size. Can include SQL relational operators.

• Type=# - Type is followed by an integer which filters according to file type list, shown in
%Studio.OpenDialogItems.Type. This can filter to a finer degree than the file type field. To search for only .mac files,
for example, enter Type=5.

• Modified=last modified timestamp - Can include SQL relational operators.

• Generated=1 or 0 - True (1) if this is a generated document, false (0) if it is a user-created document.

• Description=description - Enter a description to search for within files.

19.2.3 Bookmarks

You can use bookmarks to keep track of locations in your application source. Bookmarks are stored on the local machine
in which Studio is running; they are not shared among multiple users. The bookmark options are:

Adds or removes a bookmark at the current line in the current
document.

Toggle Bookmark

Removes all bookmarks defined for the current document.Clear Bookmarks

Moves the cursor to the next bookmark in the current document.Next Bookmark

Moves the cursor to the previous bookmark in the current document.Previous Bookmark

19.2.4 Advanced Editing

The Advanced Editing menu contains some commands that are displayed in certain circumstances only.

Displays when you have an ObjectScript routine open and text is highlighted. Replaces
all abbreviated ObjectScript commands contained in the currently selected text with
their full names. For example, the following code:

S x = 10

Is replaced with:

Set x = 10

Expand Commands

Displays when you have an ObjectScript routine open and text is highlighted. Replaces
all ObjectScript commands contained in the currently selected text with their abbreviated
versions. For example:

Set x = 10

Would be replaced with:

S x = 10

Compress
Commands

Increases indent for selected lines.Increase Line
Indent

Decreases indent for selected lines.Decrease Line
Indent

100 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Uppercases selected text.Make Uppercase

Lowercases selected text.Make Lowercase

Turns a selected line into a comment by adding a # (pound sign) to the beginning of
the line.

Comment Line

Turns a selected comment into a regular line by removing a # (pound sign) from the
beginning of the line.

Uncomment Line

Turns a selected block of text into a commented block by adding a /* (slash asterisk)
to the beginning of the block and a */ (asterisk slash) to the end of the block..

Comment Block

Turns a commented block of text into a regular block by removing the /* (slash asterisk)
from the beginning of the block and the */ (asterisk slash) from the end of the block..

Uncomment Block

Adds a tab to the beginning of each of a set of selected lines.Tabify Selected
Lines

Removes a tab from the beginning of each of a set of selected lines.Untabify Selected
Lined

19.3 View Menu
The View menu contains options that control what is displayed. Which options are shown on this menu depends on where
your cursor is. See also the section “Keyboard Accelerators.”

Shows or hides the Workspace window. The Workspace window
has three tabs:

• Project - Displays the contents of the current project.

• Windows - Displays a list of all current windows.

• Namespace - Displays the contents of the current namespace.

Workspace

Shows or hides the Inspector. The Inspector displays class
definitions in an editable table. Some aspects of class definitions
can be changed in a file only; some can be changed in a file or in
the Inspector; and some can be edited only in the Inspector.

Inspector

Shows or hides the Output window. The Output window displays
output from the server (such as error messages resulting from
compilation).You can enter ObjectScript commands into this
window; they are executed on the server. Line & column numbers
for the selected information are displayed in the right corner of the
status bar.

Output

Shows or hides the Watch window. The Watch window displays
watchpoints when debugging.

Watch

Lets you select Studio toolbars to show or hide.Toolbars

Expands Studio to occupy the full screen.Full Screen

Using InterSystems Development Environments — Atelier and Studio 101

View Menu

Lets you Increase, return to Normal, or Decrease text size of text
in Studio.

Text Size

Displays spaces, tabs, and end-of-line characters in the Studio
Editor window.

Show Special Characters

Displays line numbers.Show Line Numbers

If a document is active, reloads the saved version of current
document. If the Workspace window is active, reloads the window
or project. If the Workspace window, Namespace tab is active
reloads the subtree parent of the selected item; highlight topmost
level to reload the entire tree.

Reload

Displays any source code generated by the compiler, such as .INT
and .MAC files, related to the position of the cursor. This option
works only if the current window has one or more source files
currently generated for it.

View Other Code

Displays other documents related to the current document. In some
situations,View Other Code results in the same behavior as View Other

Documents.

View Other Documents

Available only when in a CSP file.

Opens your default Web browser and displays the current CSP file,
so that you can see how your CSP pages will look as you develop
Web applications.

You can change the network address portion of the URL used with
Project > Settings. The default value is http://localhost:8972.

Web Page

Available only in some files. Displays complete code in text editor
window.

Expand Code

Available only in some files. Contracts some code sections in text
editor window. Select the plus icon to expand a section.

Contract Code

Available only in class definition files or when a class is selected.
Displays online documentation for the current class derived from
the (saved) descriptions of class members.

Show Class Documentation

Available only when you are in a source code file, such as .INT or
.MAC.

Select from a list of Caché language versions as appropriate for
your site.

Language Mode

19.3.1 Toolbars

The Toolbars menu lets you toggle the display of toolbars and lets you customize toolbars.

102 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Toggles display of the Standard toolbar.Standard

Toggles display of the Debug toolbar.Debug

Toggles display of the class Members toolbar.Members

Toggles display of the status bar at the bottom of the Studio window. From left to
right, this bar shows a status message and the location of the cursor by line and
column. The four buttons on the right, if highlighted, show that the Caps Lock key
is on, that the Num Lock key is on, that the Insert key is on (Overwrite), and that the
current file is a read-only file.The status bar also displays line and column numbers
for Find in Files and Output windows, where appropriate.

Status Bar

Toggles of the Bookmark toolbar.Bookmark

Opens the Customize dialog.Customize

Toolbars, displaying text labels are shown below. To display text labels in Studio, choose View > Toolbars > Customize,
the Toolbars tab. Select a toolbar and select Show text tabels. (If a toolbar is already selected, uncheck the toolbar, recheck
the toolbar, and check Show text labels.)

Figure 19–1: Standard Toolbar

Figure 19–2: Debug Toolbar

Figure 19–3: Class Members Toolbar

The BPL toolbar is only applicable in Ensemble.

Figure 19–4: BPL Toolbar

Figure 19–5: Bookmarks Toolbar

19.3.2 Customize Toolbars

The Customize menu consists of four tabs for customizing parts of the Studio interface, Commands, Toolbars, Tools, and
Options.

Using InterSystems Development Environments — Atelier and Studio 103

View Menu

Lists menus and all commands on Studio menus. Drag a command and drop it
into an open toolbar. To remove a command from a toolbar, drag it off the toolbar.

Commands

Select check boxes to display toolbars. Toolbars can include text labels if you
select Show text labels. The Menu Bar cannot be cleared. Select New to create a
new toolbar.

Toolbars

Adds menu items to the Studio Tools menu. Specify an item name, it's command,
any arguments, and it's initial directory.

Tools

Select check boxes to turn on the display of screen tips, screen tips including
shortcut keys, and large icons.

Options

19.4 Project Menu
The Project menu contains options for working with projects.

Adds the item in the current editor window to the current project.Add Item

Removes the item in the current editor window from the current project.Remove Item

Select to edit settings for the current project:Settings

• General: HTTP Address used by Studio to set Web pages for this project: Set URL
location for Web pages for this project. Defines: Define a macro that is applied when
you compile the project.You can define a debug macro which can be tested by other
macros and turns on additional checking in the code. For example, debug=1 defines
the macro $$$debug to be 1.

• Debugging: Set Debug target and Breakpoints. See the chapter “Using the Studio
Debugger” for details.

19.4.1 Common Project Tasks

To delete a project, select File > Open Project and right-click the project that you want to delete.

To import a project, select Tools > Import Local and select the .xml file that contains the project.

To export a project, open the project, select Tools > Export, select Export Current Project, browse to the output directory,
and enter a file name.

Project names cannot include the characters .,;/\ (that is, period, comma, semi-colon, slash, or backslash).

19.5 Class Menu
The Class menu contains options for editing class definitions and is available only when you are in a class definition file.

The class options are arranged in an Add submenu and an Override dialog. The options include:

104 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Select one of: Property, Method, Class Parameter, Query, Index, SQL Trigger, Foreign Key,
Storage, Projection, or XData Opens a wizard for the item and inserts an item definition into
the current class definition. See separate chapters in this book for details on options for
each of these class members.

Add

(Refactoring is available only when Studio is connected to a Windows server (it may be
Override on other platforms). Some features may partially work on non-Windows platforms,
but you should not use these features, because you may get unexpected results.)

Override: Opens a window that lists items that the current class inherits that you can
select. It inserts an override definition into the selected class definition. Items listed include
Properties, Methods, Parameters, Queries, SQL Triggers, and XData routines.

Rename: Enter a new name. The new name replaces the old name in all locations in the
document. (Studio does not refactor code inside literal strings, such as in an embedded
SQL statement or in a method that takes a string with a column name.) . If you check
Reset Storage (for a class) or New Storage Slot (for a property), the renamed item is created
without storage and default storage is generated.You see a confirmation box which If
you choose to delete an old class, its storage extent definition is also deleted.

Refactoring delays applying changes to the database until you are finished reviewing
changes across all documents. When you select Accept Changes, changes are saved in
a temporary location. When you select Finish all changes are applied. If you select Finish

but haven’t accepted changes to all documents, you are prompted Not all documents
modified. Proceed anyway? and you can accept changes for more documents or
finish.

Note: Do not use refactoring in a production environment. Use only during development.
Studio does not allow any data manipulation.

Refactor or
Override

Lists superclasses of the current class alphabetically.You can pick from these to Add to

Project, Show Documentation, or Open.
Superclasses

Lists classes derived from the current class (subclasses).You can pick from these to Add

to Project, Show Documentation, or Open.
Derived Classes

Displays the New Class Wizard. A class created using this option becomes a derived
class of the class in the current window and inherits its members, including properties,
methods, class parameters, applicable class keywords, and the parameters and keywords
of the inherited properties and inherited methods.

Create Subclass

A projection automatically creates related files for other languages when you compile a class. For example, adding a Pro-
jection of type %Projection.Java generates a new Java class when it compiles so that you can use your class from a Java
application.

19.6 Build Menu
The Build menu contains options for compiling and building applications. The behavior of the Build options is controlled
by the Compile settings in the Studio Options dialog.

The build options include:

Using InterSystems Development Environments — Atelier and Studio 105

Build Menu

Compiles the contents of the current window. Uses settings of the
Compiler tab from Tools > Options. Any messages from the compiler
are displayed in the Output Window.

If Skip Related Up-to-date Classes is enabled then:

Compile

• The current class definition is only compiled if it has been modi-
fied.

• If possible, Studio performs an incremental compile; if the only
change to a class definition is in the implementation of one or
more methods then only these methods are compiled.

Use to select options for this session only or to change the default
compile options. Default options can also be set with the Tools >

Options, Compiler tab

Compile with Options

Compiles all the components in the current project whether or not
they have been modified from the last compile.

Rebuild All

19.7 Debug Menu
The Debug menu contains debugging options. To see the Debug Menu options, see the section “Debug Menu” in the
chapter “Using the Studio Debugging .” See also the section “Keyboard Accelerators.”

19.8 Tools Menu
The Tools menu contains miscellaneous options.

The tools options include:

Opens the Studio Class Browser. The Class Browser displays a list of all classes
in the current namespace as well as their members (defined and inherited).

Class Browser

Opens dialog for an SQL statement. An SQL statement selected in the active
document is displayed and editable in the dialog. Selecting Show Plan displays the
query execution plan in a web page.

Show Plan for SQL
Statement

Displays a list of Studio Templates. A template injects a stream of text at the current
cursor location. Studio provides templates. In addition, you can create your own.
For more information see the chapter on “Studio Templates”.

Templates

Contains a list of wizards that help you add items to an open Studio file or connect
to existing files using standard formats.The wizards are the .NET Gateway Wizard,
the Activate Wizard, the Java Gateway Wizard, the SOAP Wizard, the XML Schema
Wizard, and the XSL Transform Wizard. For more on these wizards, see the section
“Add-In Templates”.

Add-Ins

106 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Displays list of tasks.You can add, edit, or delete a task in the New Task window.
Each task includes a server, namespace, document name, line #, and optional
description. The current line code or selected text is used by default for the task
description. GoTo takes you to selected document and line #. If needed, Studio
connects to specified by task server/namespace using current security credentials.

Task List

Exports one or more items (class definitions, projects, routines, include files) to
either a local file or a file on the server system.

Export

Export RO, the format created with the %RO utility.Export Special

Lets you import an item from a remote file (that is; a file that is on the same machine
as the server that Studio is connected to). All imported items are placed into new
document windows.

You can use this option to import a project, class definition, routines, or include
files from either XML, or .RTN (%RO Routine format files).

The Import Remote option displays a dialog that lists all the items contained in the
file from which you can select.You can also specify whether the imported items
should be added to the current project and if they should be compiled.

The hand icon indicates that the file you are importing is older than the file on
the system.

Import Remote

Lets you import an item from a local file (that is a file on the same machine as
Studio). All imported items are placed into new document windows.

You can use this option to import a project, class definition, routines, or include
files from either XML, or .RTN (%RO Routine format files).

The Import Local option displays a dialog that lists all the items contained in the
file.You can select which items you want to import.You can also specify whether
the imported items should be added to the current project and if they should be
compiled. The list of items to import must be less than 32K.

The hand icon indicates that the file you are importing is older than the file on
the system.

Import Local

Compares an open file to one that you select with Browse.You must have specified
an external compare tool with the Compare setting in Options > Environment > General.
To work correctly, the compare tool must be able to accept command line
parameters as tool.exe file1 file2. Tested compare tools are Microsoft Windiff and
Perforce p4Diff.exe.

Compare

Creates a copy of an existing class with a new name.Copy Class

Creates C++-related files when this class is compiled so you can use this class
from a C++ application. For more information, see the chapter Using the C++
Binding in the book Using C++ with Caché.

Generate C++ Projection

Opens Import and Export Studio settings wizard. In this wizard you can set file
and directory for import and export and save these settings to a text file in format
compatible with regedit.exe.This file can be imported by wizard or executed directly
from command prompt or explorer on any windows computer. Import and reset
settings cause a Studio restart. Import on Windows Vista requires administrator
privileges to run.

Import and Export
Settings

Using InterSystems Development Environments — Atelier and Studio 107

Tools Menu

Lets you set Studio options. For details on options see the chapter “Studio
Options.”

Options

Opens Customize window, in which you can customize aspects of the Studio UI,
such as menus and toolbars.

Customize

19.9 Utilities Menu
The Utilities menu contains links to resources outside of Studio, such as:

• Management Portal

• Telnet

• Ensemble Management (available only if Ensemble is installed)

19.10 Window Menu
The Window menu contains standard window options for manipulating the windows in Studio.

19.11 Help Menu
The Help menu contains options for accessing online Help.

The help options include:

Displays the table of contents for Studio documentation.Studio Documentation

Displays the list of Studio options and short descriptions.Studio Commands

Displays the home page of the Caché Online Documentation.Online Documentation

Displays the ObjectScript online reference.ObjectScript Reference

Displays the Caché SQL online reference.SQL Reference

Displays the online reference for class definition syntax.Class Definition Syntax

Provides links to useful pages on the InterSystems Web Site.InterSystems on the Web

Displays version information about Studio.About Studio

19.12 Context Menus
Right-clicking areas in Studio displays different context menu. These include those described in the following sections.

108 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

19.12.1 Editor Context Menu

Right-clicking in the Studio Editor window displays a context menu. Within this context menu are many items available
from the main menus, such as on the Editor menu are Cut, Copy, Paste, Find, Toggle Breakpoint, and Go Back, and so on.
There are also additional options that are not available from the main menu. These include:

The Help option displays context-sensitive help for selected syntactical elements. To
use, right-click text and select Help.

For example, if you right-click the word Do in ObjectScript code and select Help , the
reference page for the Do command is displayed in your browser.

Help

Opens the Add Task window, in which you can add a task to the task list. See also Tools
Menu.

Add Task

Displays a dialog in which you can choose the color used to display a specific syntactical
element.

To use, right-click text and select Set Syntax Color.

Set Syntax Color

Available when editing an ObjectScript routine. Lets you jump to the code that defines
the ObjectScript tag.

To use, in an ObjectScript routine, right-click a tag and select Goto <TAG> . If the right-
clicked tag is defined in another routine, Studio automatically opens this routine.

Goto <TAG>

Sets the current item as the debug target.Set current item as
debug target

Highlights all instances of the word the cursor is pointing to in the document .Toggle Word
Highlight

19.12.2 Workspace Context Menu

Right-clicking the Workspace window displays a context menu. Which menu is displayed depends on the cursor location.
Different context menus are displayed if the cursor is on a package, a class, a CSP file, and so on. This table below shows
items on the Workspace Package context menu not available on the menu bar.

Adds a class selected from the displayed list to the
current package.

Add

Removes the current package from this project.Remove Package “name”

Compiles the current package.Compile Package “name”

Deletes the current package.Delete Package “name”

Exports the current package to an xml file. (To import
a package, select Tools > Import and select an xml
file.)

Export

Adds the highlighted item to the current project.Add to Project

Using InterSystems Development Environments — Atelier and Studio 109

Context Menus

Select from Source Control options Check Out, Undo

Checkout, Check In, Get Latest

For more information see the section on “Source
Control Hooks”.

Source Control

Closes the current document.Close

Closes all documents except the highlighted
document.

Close All But This

Closes all documents.Close All

19.12.3 Inspector Context Menu

Right-clicking the Inspector window displays a context menu with the following items (if they are applicable to the current
document in the editor window):

Adds a member selected from the displayed list to
the current class definition.

Add

Opens a window that lists items inherited by the
current class, from which you select. An override
definition is inserted into the current class definition
window.

Override

Resets selected item to default.Reset to Default

Deletes the displayed item.Delete

Available when a class member is displayed. Displays
the member in the editor window.

Locate

Toggles the inclusion of inherited members in the
window display.

Show Inherited Members

Toggles the display of the column headers, Name
and Value, in the Inspector window.

Show Headers

19.12.4 Tab Context Menu

Right-clicking the tabs header displays a context menu with these items:

Closes the current tab.Close

Closes all tabs except the current tab.Close All But This

Closes all tabs.Close All

19.12.5 Window Display Context Menu

Right-clicking a window where no other context menus apply shows the generic window context menu:

110 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

Disconnects the selected window from a fixed
location; that is, it can be dragged freely to a desired
locaiton.

Floating

Glues the selected window to a default location.Docking

Conceals the selected window.Hide

19.12.6 Debugger Watch Context Menu

To see the Debugger Watch Window Context Menu, see the section Debugger Watch Context Menu in the chapter “Using
the Studio Debugger” in this book.

19.13 Keyboard Accelerators
This section lists Studio's keyboard accelerators (keyboard shortcuts)—combinations of keys that, when pressed, perform
a Studio function. These are listed in the following table.

block of text

In the following table a block of text means a number of whole lines. To select a block of text, put the caret at the
start of the first line, press Shift, and select the down arrow till all of the relevant lines are highlighted. The caret
is then displayed at the start of the line beneath the last whole line.

ActionAccelerator

General

Context HelpF1

Change Namespace or ConnectionF4

Toggles Full Screen Display of Studio menus and editor window.F8

New DocumentCtrl+N

Open DocumentCtrl+O

Open ProjectCtrl+Shift+O

Print

Opens the Print dialog. If text is selected, Selection is checked.

Ctrl+P

SaveCtrl+S

ExportCtrl+Shift+I

Import LocalCtrl+I

Display

Expand All

Expands all sections in the document that can be expanded.

Select minus icon to collapse a section or Ctrl+- to collapse all sections.

Ctrl++

Using InterSystems Development Environments — Atelier and Studio 111

Keyboard Accelerators

ActionAccelerator

Expand All Block Sections

Expands all sections in this code block that can be expanded.

Select minus icon to collapse a block or Ctrl+- to collapse all blocks.

Ctrl+Left Select plus icon

Collapse All

Collapses all sections that can be collapsed.

Ctrl+-

Show Class BrowserCtrl+W

View Other

Opens documents related to the current document, such as MAC or INT routines.

Ctrl+Shift+V

Toggles Inspector window displayAlt+1

Toggles Output window display

The Output window has tabs for Result and Find in Files.

Alt+2

Toggles Workspace window displayAlt+3

Toggles Watch window displayAlt+4

Toggles Code Snippets window displayAlt+5

Toggles Find in Files window displayAlt+6

Toggles Class View window displayAlt+7

Increase Font

(Press Ctrl and Alt and the equal sign key — here called the plus sign.)

Ctrl+Alt++

Decrease Font

(Press Ctrl and Alt and the minus key.)

Ctrl+Alt+-

Toggles display of Whitespace Symbols, spaces, newlines, and tabsCtrl+Alt+Space

Toggle Bracket Matching

Turns bracket matching on and off for the current window.

Ctrl+B

Toggles Line Numbers Display.Ctrl+Shift+N

Next WindowCtrl+Tab

Previous WindowCtrl+Shift+Tab

Navigation

Go To Beginning of Line

Subsequent presses hops the caret between the beginning of the line and the
beginning of text on the line.

Home

Go To Beginning of DocumentCtrl+Home

Go To End of LineEnd

112 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

ActionAccelerator

Go To End of DocumentCtrl+End

BackCtrl+-

ForwardCtrl+Shift+-

Page UpPage Up

Page DownPage Down

Go To Top of Visible PageCtrl+Page Up

Go To Bottom of Visible PageCtrl+Page Down

Scroll DownCtrl+

Scroll UpCtrl+

GotoCtrl+G

Goto Documentation for TagCtrl+Shift+G or F12

Go To Next ErrorCtrl+F3

Go To Previous ErrorCtrl+Shift+F3

Go to Next WarningAlt+F3

Go to Previous WarningAlt+Shift+F3

Go To Bracket

Moves the cursor between the innermost pair of brackets (or parentheses or
braces). Pairs of all three kinds (one of each) can be highlighted if they are
nested.This accelerator works only if bracket matching is turned on (see Ctrl+B).

Ctrl+]

Editing

Toggle Insert/Overwrite Mode

Toggles between Insert mode (new characters are inserted when typing) and
Overwrite mode (new characters replace existing characters when typing).

Insert

Delete Next Word or to End of Word

If caret is at the start of a word, deletes the word. If caret is in the middle of a
word, deletes from the caret to the end of word.

Ctrl+Delete

Delete Previous Word or to Start of Word

If the caret is at the end of a word, deletes the word. If caret is in the middle of
a word, deletes from caret to start of word.

Ctrl+Backspace or
Ctrl+Shift+Delete

Delete LineCtrl+Shift+L

CopyCtrl+C or Ctrl+Insert

CutShift+Delete or Ctrl+X

Cut LineCtrl+L

PasteCtrl+V or Shift+Insert

Using InterSystems Development Environments — Atelier and Studio 113

Keyboard Accelerators

ActionAccelerator

Select AllCtrl+A

RedoCtrl+Y or Ctrl+Shift+Z

UndoCtrl+Z

Show Popup

If the cursor is in an appropriate location, this displays the Studio Assist popup,
which shows options available for this location (such as classes, methods,
properties, and so on, as appropriate).

Ctrl+Space

Toggle Tab Expansion

Toggles whether tabs or spaces are entered when you press Tab.

Ctrl+~

Uppercase SelectionCtrl+U

Lowercase SelectionCtrl+Shift+U

Toggles the Delay Parsing option.Ctrl+Alt+O

Titlecase (Initial Caps) SelectionCtrl+Alt+U

Insert Open and Close Parentheses. (Does not work on German and Swiss
keyboards.*)

Ctrl+(

Insert Open and Close Braces.Ctrl+{

Insert Open and Close Square Brackets.Ctrl+[

Inserts Open and Close Angle Brackets.Ctrl+<

Indentation Cleanup. Cleans up indentation on a selected block of whole lines
of text.

Ctrl+=

Comment Line

Turns a selected line into a comment by adding a # (pound sign) to the beginning
of the line.

Ctrl+/

Uncomment Line

Turns a selected comment into a regular line by removing a # (pound sign) from
the beginning of the line.

Ctrl+Shift+/

Comment Block of Text

Pressing Ctrl+/ while a block of text is selected comments the block of text; that
is, adds #; (pound semi-colon) to the start of each line (for Objectscript routine)
or appropriate marker based on the document’s language. (Does not work on
German and Swiss keyboards.*)

Ctrl+/

Uncomment Block of Text

Pressing Ctrl+Shift+/ while a block of text is selected uncomments the block of
text (that is, removes the #; from the start of each line for Objectscript routine
— or other marker based on the document’s language). (Does not work on
German and Swiss keyboards.*)

Ctrl+Shift+/

114 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

ActionAccelerator

Comment Markers Added to Block of Text

Inserts block type comments (such as /*...*/) for specific language if block
comments are supported. If block type comments do not exist, then single line
comment marker is inserted. (Does not work on German and Swiss keyboards.*)

Ctrl+Alt+/

Comment Markers Removed from Block of Text

Removes block type comments (such as /*...*/) for specific language if block
comments are supported. If block type comments do not exist, then single line
comment marker is inserted. (Does not work on German and Swiss keyboards.*)

Ctrl+Shift+Alt+/

In an ObjectScript document, commands in a selection are replaced with their
full names.

Ctrl+E

Compress Commands

In an ObjectScript document, commands in a selection are replaced with their
abbreviated names.

Ctrl+Shift+E

Insert Dots

With a block of text selected, Insert dots at the start of each line (after leading
white space). Lines must start with leading whitespace. This is for use in block
structuring with leading periods with argumentless DO commands.

Ctrl+.

Remove Dots

Remove leading dots from the start of the selected block of text (for use in block
structuring with leading periods with argumentless DO commands).

Ctrl+Shift+.

Add TaskCtrl+Shift+T

Find and Replace

FindCtrl+F

Find NextF3

Find PreviousShift+F3

Find in FilesCtrl+Shift+F

SearchCtrl+, (comma)

ReplaceCtrl+H

Go ToCtrl+Shift+G

Go BackCtrl+Alt+G

Bookmarks

Toggle Bookmark on Current LineCtrl+F2

Go to Next BookmarkF2

Go to Previous BookmarkShift+F2

Clear All BookmarksCtrl+Shift+F2

Using InterSystems Development Environments — Atelier and Studio 115

Keyboard Accelerators

ActionAccelerator

Build and Compile

Rebuilds All Documents in ProjectF7

Compile Active DocumentCtrl+F7

Compile with OptionsCtrl+Shift+F7

View as Web PageF5

Debugging

Toggle Studio Debug Logging

Turns logging on or off. If on, information is sent to the file
/cacheinstall/bin/CD###.log for Studio debugging purposes. This file can become
very large. Use carefully. For details, see “Logging” in Using Caché Direct.

Ctrl+Alt+L

Debug Attach

Attach the debugger to a process.

Ctrl+Shift+A

Debug Toggle Breakpoint on Current LineF9

Debug StartCtrl+F5

Debug RestartCtrl+Shift+F5

Debug Run to Cursor

Resumes program execution and pauses at the cursor line or a breakpoint.

Ctrl+F10

Debug Step Into

From a break or an interrupt, step into the next loop.

F11

Debug Step Out

Step out of the current process.

Shift+F11

Debug Step Over

Skip over the next process.

F10

Debug StopShift+F5

Templates

Open Template

Can be used as accelerators for Studio Templates. To set an accelerator, add
an attribute in the form accelerator="#" to the template (in either the
csp:StudioInteractiveTemplate tag or the csp:StudioSimpleTemplate tag). This
sets an accelerator of Ctrl+Shift+# for the template. The number (#) can be 0-9.

Ctrl+Shift+1 - Ctrl+Shift+9

Open TemplatesCtrl+T

Wizards: Arguments for New Method wizard and Parameters for New Query wizard

AddAlt+A

116 Using InterSystems Development Environments — Atelier and Studio

Studio Menu Reference

ActionAccelerator

RemoveAlt+R

UpAlt+U

DownAlt+D

19.13.1 Inserting MultiValue Characters

You can insert the following four MultiValue characters by pressing Ctrl+M and then pressing one of the characters shown
in the table below.

Insert MultiValue textmark.

Press Ctrl+M, then [.

Ctrl+M [

Insert MultiValue subvaluemark.

Press Ctrl+M, then].

Ctrl+M]

Insert MultiValue valuemark.

Press Ctrl+M, then \.

Ctrl+M \

Insert MultiValue attributemark.

Press Ctrl+M, then ^.

Ctrl+M ^

*The German and Swiss keyboards have some different arrangements than most other keyboards. This limits some of the
available keyboard accelerator combinations due to the AltGr key and the way key presses are reported in Windows.

19.14 Adding to a Studio Menu
To add a menu item to a Studio menu,

1. In the Studio toolbar, right-click the menu name and select Customize.

2. Select the Tools tab, add the.exe file.

Using InterSystems Development Environments — Atelier and Studio 117

Adding to a Studio Menu

20
Setting Studio Options

You can modify the behavior of aspects of Studio by selecting Tools > Options.

The options dialog contains tabs described in the following sections.

20.1 Environment Options
These options control the Studio environment:

General

Preferred Language: Sets the default language version used to create new classes.

Items shown in recently used lists: Specifies the number of items displayed in the most recently used file list (under
the File menu).

Open File Added to Project: If enabled, adding a file to the current project automatically opens the file in Studio.

Tabbed Document Selector: If enabled, displays a tab for each open document. You can choose whether the row
displays on the top of bottom of the Studio window.

When connected show documents from last time: If selected, when you start Studio all documents that were open
the last time you were in the current namespace are reopened. To bypass this option, hold down Shift when Studio
opens.

Hide Find and Replace window after operation complete: If selected, the Find and Replace dialog exits when it
completes it task.

Compare: Select a document to compare this document to using Tools > Compare.

Font

Specifies the typeface and size of the fonts used in the following windows and print. Each can use any Windows
font but it is limited to a single typeface and size: Editor Window, Output Window, Print, Workspace, Inspector.

Keyboard

Show commands containing: Specify a command to search for.

Shortcut for selected command: Shows Whether the selected command has a shortcut key assigned to it.

Press new shortcut key: Enter a shortcut key to assign to the selected command.

Using InterSystems Development Environments — Atelier and Studio 119

Short currently used by: Shows whether the shortcut key you entered is currently assigned to another command.

Reset All Resets all keyboard shortcuts to original settings.

Remove Removes an existing shortcut key for the selected command.

Open Dialog

Automatically apply last mask. If checked, the last search mask is used automatically in the File > Open dialog.
Selected by default.

Use additional dedicated server process. Recommended only on very large systems if user want option to abort

data collection. In rare situations on very large systems, searching for a file in the File > Open dialog can take a
significant amount of time. To solve this, check this option to run the search in a separate process. If the search
take more than .2 seconds, Studio displays a progress bar with a Cancel button. Note that if you check this box
and an additional process is started, it affects the license count.

Server defined colors

You can select a color for the status panel background or the document background for a software instance. Display
a color palette by selecting the square to the far right of the instance. Select a color from the palette, which is
shown by a color swatch and its hexadecimal color code.

Documentation and Proxy

HTTP Address used to serve on-line documentation: Specifies the location Studio uses to fetch on-line documentation.
Select Automatic to use the default location associated with the instance, or HTTP Address to supply a different
location.

Templates and add-ins will use Proxy server for 'Caché_instance': Specify the server address and port number of
a Proxy server to load templates and add-ins for the current instance. The Address field supports the address formats
http:// and https://, as well as address such as localhost. If no :// detected in the address, Studio adds
http://.

Class

Multiline Method Argument: If selected, method arguments are displayed in the class editor one per line. Note that
if Multiline Method Argument is enabled and you use Find in Files and then select a line in the Find in Files output
of a file that has multiline method arguments, the cursor may go to the wrong line number. Disable Multiline
Method Arguments if this is a problem.

Option explicit: If selected, you see a syntax error if you refer to a variable that hasn't been declared. (Select this
and Studio Assist to display undeclared local variables when entering a #DIM statement in a method or a DO
statement in a routine.)

Show internal class members in Studio Assist: If selected, Studio Assist lists class members marked as internal.

Track variables: If selected, a green wavy underline indicates any questionable use of a variable—specifically: A
variable is used that has no value, was never created, or has already been killed. Or a variable is given a value,
but never used or killed before being used.

Open class in contracted view: If selected, by default a class opens with all collapsible sections contracted (as
though Ctrl+- had been pressed). If not selected, a class opens with collapsible sections open (as though Ctrl++
had been pressed).

120 Using InterSystems Development Environments — Atelier and Studio

Setting Studio Options

Code Snippets

Display Snippets Check the types of code snippets you want Studio to display. You can define your own sets of
code snippets by specifying a name and a text file. Use Create Code Snippet from the document's context (right-
click) menu. The snippet is created in your currently-active user-defined set or if no set is currently-active, then
in the first set.

Advanced

Auto Save prevents you from losing changes to Studio documents on a software or system failure. By default,
Auto Save is enabled and saves every 5 minutes. It saves any document that is open and has been modified since
the last save into a file that is a text representation of the document, C:\Documents and Settings\<username>\Local

Settings\Temp\CST*.tmp. If you subsequently save (or close) the document, this .tmp file is deleted. If Studio
crashes, the next time that Studio is opened, you get a message telling you that the temporary file exists. If you
open this temporary document, you can paste the relevant portions into a Studio document.

Enable service status check (Recommended) determines how often Studio checks to see if open documents and/or
the open project changed on the Server outside of this Studio process. If Studio is the active application, it uses
the first setting, Studio is active application (2–60 sec). If Studio is running in the background, it uses the second
setting: Studio is background application (30–600 sec). If you are on a slow sytem, you can uncheck this option.
As result studio will not check server status and will not be able timely detect if documents or project on server
were modified or studio lost connection. Use with caution.

Automatically reload document when it is modified on the server and it has not been edited in Studio: If selected
and you have a document open in an editor, but have not yet edited it, and someone else saves a new version to
the server, the file in your window is automatically updated. This setting can be enabled on a namespace basis
using a global: Set ^%SYS("Studio","Reload")=1 (or 0 to turn off).

Show generated documents in Namespace tree: If selected, the namespace window in workspace shows generated
files. If not selected, generated files are not displayed.

Use INT as default for ObjectScript: If selected, when you select File > New > Caché Objectscript Routine, an INT

file is opened. If not selected, a MAC file is opened.

Pass credentials to View Web Page: If selected, Studio checks your permissions when you select View Web
Page.

Use default language (will cause reset toolbars and restart). If checked, Studio loads language specific resources.
To override your system’s default language (that is, to see all menus in English) uncheck this box. When you
accept the changes, toolbars are reset and Studio is restarted

Export flags:Enter flags that you want to use when exporting files. See theFlags and Qualifiers section of the
$SYSTEM entry in the Caché ObjectScript Reference for more information.

20.2 Editor Options
The editor options allow you to control the behavior of the Studio text editor. These options include:

Syntax Check and Assist

Enable Syntax Checking: If enabled, syntax errors are highlighted. You can specify when syntax checking should
be performed - either on each change (each character that you type or erase) (Syntax Check on Change) or when
the cursor leaves the current line (Syntax Check on Leave Line).You can specify whether you also want the errors
to be underlined with a wavy red line (Underline Errors).

Using InterSystems Development Environments — Atelier and Studio 121

Editor Options

Parsing delay. Check if parsing slow. Uncheck if line flashing. If Syntax Check on Change and Parsing delay are
both enabled and you are entering text faster than the parser can reparse, the text flashes between black and the
parsed color. If the text is flashing, disable Parsing Delay by clearing this option or pressing Ctrl+Alt+O. Response
may slow slightly since every keystroke causes a reparse, but the flashing stops. This switch needs to be set at the
start of each Studio session.

Enable Bracket Matching: If enabled, pairs of matching brackets enclosing the current cursor point are bolded.
Depending on the language you are in, brackets include [] square brackets, () parentheses, and < > angle brackets.
Note that for Enable Bracket Matching to work, Enable Syntax Checking must be checked. Bracket Matching Line

LimitLimits the number of lines to search above and below the caret position to locate a matching bracket (as an
unlimited search in a long file would slow the editor down significantly).

Studio Assist: Enables code completion. As you are entering ObjectScript code, a drop-down menu is displayed
showing available options for what you can enter next. If you type a package name, available classes are listed.
If you type a class, available methods are listed. If you type a method, available arguments are listed. Available
options may be listed in other locations as well, such as with #dim declarations and trigger code.

To display undeclared local variables when entering a #DIM statement, you must be in a method, and you must
have selected Studio Assist and Option Explicit. To be listed, a variable must not begin with %, must not be a
parameter or in the public list, and must not have been declared already.))

If you type $$$, available macros are listed as follows: User-defined macros are listed if they are defined in the
current file and if they are defined in an include file and, within the include file, they are preceded by a line
beginning with three slashes, ///. System-defined macros are listed if the current file is a class file.

Following a partial member name, Studio displays a list of matching members as follows: If the partial entry begins
with double-quotes (or a single quote), the popup contain only members whose names must be quoted in the program;
that is, they contain spaces or other non-alphanumeric characters. If the partial entry does NOT begin with double-
quotes, the popup contains only members whose names do not need to be quoted. If Studio Assist is triggered
directly after a period, the popup contains all member names.

Colors

The Studio syntax checker uses a different coloring scheme for each language it supports. This option lets you
specify the colors used to highlight syntactic elements when Studio syntax coloring is enabled.

To change the color used by the Studio Editor for a specific syntax element do the following in the Options dialog
Appearance tab:

1. Select a language (such as ObjectScript) from the available options

2. Select a syntax element (such as comments)

3. Select the desired foreground (and background color if you must!) color

4. Select Apply to use the new color scheme.

Reset reverts the selected syntax element to its default color.

Reset All reverts all syntax colors to their default values.

Note: You can also change the color for a particular syntax element by right-clicking it in the editor window
and selecting Set Syntax Color.

Keyword Expansion Case

This feature only applies to ObjectScript routines.

122 Using InterSystems Development Environments — Atelier and Studio

Setting Studio Options

Specifies the case (Use Current Case, Uppercase, Lowercase, or Mixed Case) used to expand ObjectScript commands
when you select Edit > Advanced > Expand Commands. Set this option, highlight the code you want to expand,
then select Edit > Advanced > Expand Commands. This also applies if you are compressing commands.

Indentation

Defines characteristics of automatic indentation.

• Basic: If enabled, if a line begins with a tab, a space, or any combination of spaces and tabs, when you press
Enter, the next line is started automatically with the same combination of spaces and tabs.

• User-defined ('/t' for tab)

: If enabled, you can specify any characters that you would like to be automatically entered at the start of each
subsequent line. For example, if you enter the set of characters \t.#/; (tab, dot, pound, slash, semi-colon)
and if a line begins with any of these characters or any combination of these characters, when you press Enter,
the next line is started automatically with the same combination of characters.

• None: No automatic indentation is provided.

Comment

Displays a table of comment delimiters for Studio document types. Select in a cell to enter a delimiter. Highlight
a block of text in a Studio document and press Ctrl + Alt + / to delimit the block with Multi-Start and Multi-End
characters.

View

Controls the display of some items.

• Show Special Characters: If enabled, the editor displays newline and tab characters using special symbols.

• Show Line Numbers: If enabled, the editor displays line numbers.

• Tab Size: Specifies the size of a tab by number of spaces.

• Convert tabs to spaces: If enabled, the editor converts tabs to spaces.

• Cloudy background color for generated files: If enabled, the editor displays generated files with a greyed
background color to differentiate them from user-created files.

20.3 Compiler Options
These options affect how Studio compiles your code. There are two pages, Flags and Optimization and Behavior.

Flags and Optimization

This page includes 3 sections: Compile Flags, Optimization Level, and Flags.

The Compile Flags section includes

Keep Generated Source Code: If enabled, specifies that the compiler should not delete any intermediate source
code (routines) that it creates as a consequence of compiling.

Compile Dependent Classes: If enabled, the compiler compiles all of a class' dependent subclasses.

Using InterSystems Development Environments — Atelier and Studio 123

Compiler Options

Skip Related Up-to-date Documents: If enabled, this sets the “Do not compile up-to-date documents” flag and the
compiler does not compile related documents that have not been modified since their last compilation. The document
that is current in the editor is always, however, recompiled.

Compile In-use Classes: If enabled, the compiler compiles a class even if there currently are instances of the class
in active use.

In the Optimization Level section, you can set the level of optimization to improve execution speed. If optimization
is enabled, the compiler reorganizes the code for maximum benefit, including the copying of expressions between
classes to eliminate method calls. Levels are:

• No optimization: Recommended during development. It does not recompile dependent classes and it keeps a
strong correspondence between source and object code so it is easier to read and debug. Default.

• Optimize properties: Optimizes any reference to ..property to the instance variable reference (for simple
properties described by datatypes where the get/set method is not overridden).

• Optimize within class and calls to library classes: Optimizes classes, as well as calls to system (%) classes (as
code may be extracted and moved during the process). Note that incremental compile no longer works for
optimized classes.

In the Flags field, enter compiler flags you want used in this field shown in the table.

To see this list of flags in the terminal, enter: d ##class(%SYSTEM.OBJ).ShowFlags()

To see a list of qualifiers, enter: d ##class(%SYSTEM.OBJ).ShowQualifiers()

EffectFlag

Include application classes. This flag is set by default.a

Include sub classes.b

Compile. Compile the class definition(s) after loading.c

Display. This flag is set by default.d

Delete extent.e

Generate help.h

Validate XML export format against schema on Load.I

Keep source. When this flag is set, source code of generated routines is kept.k

Lock classes while compiling. This flag is set by default.l

Percent. Include classes with names of the form %*.p

Recursive. Compile all the classes that are dependency predecessors.r

Process system messages or application messages.s

Update only. Skip compilation of classes that are already up-to-date.u

Include classes that are related to the current class in the way that they either reference
to or are referenced by the current class in SQL usage.

v

Behavior

• Before Compile: You can choose a default behavior for Studio to take when you select Compile. You can select
that, before compiling, Studio will automatically save all modified documents, prompt to save modified docu-

ments, or do not save modified documents.

124 Using InterSystems Development Environments — Atelier and Studio

Setting Studio Options

• Compile Routine on Save Select this option to have the system compile any modified documents when you
select Save. By default, this option is turned off.

20.4 SQL Options
Use these options if you primarily use Studio to create classes that map onto existing legacy data.

Legacy Mode: Enable Legacy SQL Mode For Classes

If enabled, the other default settings on this tab are enabled. This option effects only how Studio wizards operate;
it has nothing to do with the runtime behavior of applications.

Default Storage Type: Specifies the storage class used when the New Class wizard creates a new class.

Default $Piece Separator: Specifies the default data delimiter used when defining a mapping to legacy data structures.

Default Collation: Specifies the default index collation used when defining a mapping to legacy data structures.

Private Row ID: Specifies whether new classes should have their SqlRowIdPrivate flag set by default.

Automatically Generate Row ID: Automatically creates a row id field when mapping data to existing storage
structures.

20.5 Studio Look Options
Select a theme from the list to change the color scheme of Studio using this option.

Using InterSystems Development Environments — Atelier and Studio 125

SQL Options

A
Using Studio Source Control Hooks

To place Caché code under source control, you need to connect Studio to a third-party source control system. This appendix
describes how to do this. It discusses the following topics:

• The Overview provides a summary of how to place Caché code under source control

• An introduction to Caché documents (class definitions, routines, include files, and CSP files), tools that Caché provides
to manage documents and files, and some issues to consider when mapping Caché documents to XML files

• How to create and activate a source control class, in general

• How to execute the functions or methods of your source control software

• A look at the source control sample provided in the SAMPLES namespace

A.1 Overview
To place a Caché development project under source control, do the following:

• Represent units of code as XML files and write them to a document system. Caché considers a class definition, a routine,
or a CSP file as a single unit called a document.

• Place the XML files under source control.

• Ensure that the XML files are kept synchronized with the Caché documents (and vice versa), and make sure that both
are kept in the appropriate read-write state.

• Ensure that you can perform source control activities from within Studio.

• Ensure that Studio always has the same information that the source control system has as to the status of a document:
whether the document has been checked out, and, if checked out, by whom.

A.2 Caché Documents
A Caché document is a class definition, a routine, an include file, or a CSP file. Caché records information about each
Caché document, such as whether it has changed since the last compilation. Your source control system treats each Caché
document as a separate unit. The state of a document is shown by an icon in the document window.

In Caché, you work within one namespace at a time. The same is true for your source control system.

Using InterSystems Development Environments — Atelier and Studio 127

A.2.1 Tools for Managing Documents and Files

Caché provides the following tools for managing Caché documents and external files:

• The %Studio.Extension.Base and %Studio.SourceControl.Base classes provide methods for basic document management.
You can extend one of these classes to add menu items that act on Caché documents. These classes are discussed in
the section “Creating and Activating a Source Control Class” in this book.

• The $system.OBJ.Export function exports a Caché document to an XML file in the external document system. This
XML file contains all the information needed to reconstruct the Caché document. For example, for a class document,
the corresponding XML file is a text representation of the entire class definition, which includes all code, properties,
comments, and so on.

• The $system.OBJ.Load function loads an external XML file and overwrites the corresponding Caché document, if
one exists.

• The %RoutineMgr.TS class method returns the timestamp for a Caché document. This method also returns, by reference,
the compile time for the Caché document, as the second argument.

A.2.2 Deciding How to Map Internal and External Names

Each document has two names:

• An internal name, the name you use in the Open dialog box in Studio.

• An external name, which should be the complete external file name, including path. Because of differences between
supported Caché platforms, it is not possible to provide a meaningful default.

You will set up a bidirectional mapping between the internal names and the external names. In practice, deciding how to
do this may be one of the most challenging parts of creating a source control interface. This mapping is customer-specific
and should be considered carefully.

You want the source control tool to group similar items. For example, the sample uses the following directory structure:

• Class files are in the cls subdirectory, which contains subdirectories corresponding to the package hierarchy of the
classes.

• .INT routines are in the int subdirectory.

• .MAC routines are in the mac subdirectory.

• CSP files are in the csp subdirectory, which contains subdirectories corresponding to the package hierarchy of the CSP
files.

For example, the external name for the class MyApp.Addresses.HomeAddress is
C:\sources\cls\MyApp\Addresses\HomeAddress.xml.

This approach might be problematic if you had large numbers of routines. In such a case, you might prefer to group routines
into subdirectories in some manner, perhaps by function.

A.3 Creating and Activating a Source Control Class
This section describes the basic requirements for creating and activating a source control class.

128 Using InterSystems Development Environments — Atelier and Studio

Using Studio Source Control Hooks

A.3.1 Extending Studio

Caché provides classes that you can use to add menu items to Studio. To add a source control menu to Studio, you would
use either %Studio.Extension.Base or %Studio.SourceControl.Base.

Note: Limit on how many menus you can add to Studio: You can add up two menus with 19 menu items each.

The %Studio.Extension.Base class provides the following methods, which all use the internal name of the Caché document:

• Empty Login and Logout methods that you can implement as needed. The variable $username records the current
user. (In the Login method, the Username argument is provided for backward compatibility; it is recommended that
you use the variable $username instead.)

• Basic methods to indicate the status of a given Caché document: GetStatus, and IsInSourceControl. Implement these
methods as needed.

• Callback methods that are executed when a user in Studio performs some action on a Caché document. These methods
include OnBeforeLoad, OnAfterLoad, OnBeforeCompile, OnAfterCompile, ItemIconState, and so on.

Note: Studio compiles processes in separate threads. If you set properties in %Studio.Extension.Base, they may not be
accessible in subsequent calls, as they may be running in different object instances. Do not use a properties to
pass information from MenuItem to OnBeforeCompile. Instead, use a temporary global.

The %Studio.SourceControl.Base class is a subclass of the preceding class. %Studio.SourceControl.Base provides the fol-
lowing additional elements:

• An XDATA block named Menu that defines an additional menu for Studio: Source Control. By default, this menu
contains the menu items Check In, Check Out, Undo Check Out, Get Latest, and Add To Source Control. This XDATA
block also defines additional menu items for the context menu in Studio.

All these menu items call methods also defined in this class.

• Methods named CheckIn, CheckOut, UndoCheckOut, GetLatest, and AddToSourceControl, which do nothing by default.

To extend Studio, you define a new class that extends one of these classes. As you see in “Activating a Source Control
Class,” the Management Portal provides a way to indicate which extension class is currently active in a given namespace.
If an extension class is active in a given namespace, and if that class defines an XDATA menu block, those menu items
are added to Studio.

A.3.2 Creating a Source Control Class

To create a source control class, do the following:

1. Create a subclass of %Studio.Extension.Base or %Studio.SourceControl.Base.

2. If you started with %Studio.Extension.Base, create an XDATA block named Menu in your subclass. (Copy and paste
from %Studio.SourceControl.Base to start this.)

3. Implement the methods of this class as needed: AddToSourceControl, CheckIn, CheckOut, and so on. These
methods would typically do the following, at a minimum:

• If appropriate, import or export the Caché document to XML.

• Call the appropriate function or method of your source control software, to act on the XML file.

• Update internal information in Caché about the status of the given file.

• Control whether the Caché document is editable.

Using InterSystems Development Environments — Atelier and Studio 129

Creating and Activating a Source Control Class

The details depend upon the source control system. The sample demonstrates some useful techniques. See the section
“Sample Source Control Class” in this book.

4. Implement the GetStatus method of your source control class. This is required. You might also need to implement
the IsInSourceControl method, if the default implementation is not suitable.

A.3.3 Activating a Source Control Class

To activate a source control class for a given namespace, do the following:

1. Use the Management Portal to specify which extension class, if any, Studio should use for a given namespace. To
specify the class to use:

a. Navigate to System Administration > Configuration > Additional Settings > Source Control on the Management
Portal.

b. On the left, select the namespace to which this setting should apply.

c. Select the name of the extension class to use (or select NONE) and select OK.

This list includes all compiled subclasses of %Studio.Extension.Base.

2. If Studio is currently open, close it and reopen it, or switch to another namespace and then switch back.

A.4 Accessing Your Source Control System
The API for your source control system provides methods or functions to perform source control activities such as checking
files out. Your source control class will need to make the appropriate calls to this API, and the Caché server will need to
be able to locate the shared library or other file that defines the API itself.

If the source control system provides a COM interface, you can generate a set of Caché wrapper classes that you can use
to call methods in that interface. To do so, you use the Caché Activate Wizard in Studio. Given an interface and the name
of the package to contain the classes, the wizard generates the classes. For information, see Using the Caché ActiveX
Gateway.

Also, it is important to remember that Caché will execute the source control commands on the Caché server. This means
that your XML files will be on the Caché server, and your file mapping must work on the operating system used on that
server.

A.4.1 Example 1

For the following fragment, we have used the Caché Activate Wizard to generate wrapper methods for the API for VSS.
Then we can include code like the following within your source control methods:

 do ..VSSFile.CheckIn(..VSSFile.LocalSpec,Description)

The details depend on the source control software, its API, and your needs.

A.4.2 Example 2

The following fragment uses a Windows command-line interface to check out a file. In this example, the source control
system is Perforce:

130 Using InterSystems Development Environments — Atelier and Studio

Using Studio Source Control Hooks

/// Check this routine/class/csp file out of source control.
Method CheckOut(IntName As %String, Description As %String) As %Status
{
 Set file=..ExternalName(IntName)
 If file="" Quit $$$OK
 //...
 Set cmd="p4 edit """_file_""""

 #; execute the actual command
 Set sc=..RunCmd(cmd)
 If $$$ISERR(sc) Quit sc

 #; If the file still does not exist or
 #; if it is not writable then checkout failed
 If '##class(%File).Exists(file)||(##class(%File).ReadOnly(file)) {
 Quit $$$ERROR($$$GeneralError,
 "Failure: '"_IntName_"' not writeable in file sys")
 }

 #; make sure we have latest version
 Set sc=..OnBeforeLoad(IntName)
 If $$$ISERR(sc) Quit sc

 //...
 Quit sc
}

In this example, RunCmd is another method, which executes the given command and does some generic error checking.
(RunCmd issues the OS command via the $ZF(-1) interface.)

Also, this CheckOut method calls the OnBeforeLoad method, which ensures that the Caché document and the external
XML file are synchronized.

A.5 Sample Source Control Class
The SAMPLES namespace provides a sample source control class, Studio.SourceControl.Example. This section shows how
this sample works. The following topics are discussed:

• An introduction to the sample and its assumptions

• The global in which Studio.SourceControl.Example records needed information

• How the class determines the external names of the Caché documents, which are used as the XML file names

• How the class synchronizes the Caché document and the corresponding XML file

• How the class implements the required GetStatus method, which ensures that the Caché document is read-only when
appropriate

• Details of the actual source control methods in the class

• Other notes about this class

Note: The class in your SAMPLES namespace could be slightly different from the examples shown here. In particular,
some of the line breaks have been adjusted for readability in this document.

A.5.1 Introduction

Studio.SourceControl.Example is a partial example that does not make any calls to a source control system. It simply
maintains external XML files that such a system would use. Despite this simplification, however, the sample demonstrates
all the following:

• Establishing and maintaining a relationship between each Caché document and a corresponding external file.

Using InterSystems Development Environments — Atelier and Studio 131

Sample Source Control Class

• Keeping Caché up-to-date with the status of each file.

• Appropriately controlling the read-write state of each Caché document.

• Defining methods to check files in and out.

Note that the sample does not modify the read-write state of the external files; the source control system would be respon-
sible for that. Also, the sample implements only the Check In and Check Out methods.

To try this example in the SAMPLES namespace, do the following:

1. Use the Management Portal to enable this source control class (Studio.SourceControl.Example), as described earlier in
“Activating a Source Control Class.”

2. In the Studio Workspace window, double-click a Caché document. Notice a message like the following in the Output

window:

File C:\sources\cls\User\LotteryUser.xml not found, skipping import

3. Edit the document (for example by adding a comment).

4. Select File —> Save. You will see a message like the following in the Output window:

Exported 'User.LotteryActivity.CLS' to file
'C:\sources\cls\User\LotteryActivity.xml'

At this step, you have implicitly added the Caché document to the source control system.

5. Try to make another edit. The Studio displays a dialog box that asks if you want to check the file out. Select No. Notice
that the Caché document remains read-only.

6. Select Source Control —> Check Out and then select Yes. You can now edit the Caché document.

7. Select Source Control —> Check In and then select Yes. The Caché document is now read-only again.

Other menu items on the Source Control menu do nothing, because the sample implements only the Check In and Check
Out methods.

A.5.2 Global

The Studio.SourceControl.Example sample uses a global to record any needed persistent information. Methods in this class
maintain and use the ^MySourceControl global, which has the following structure:

ContentsNode

The absolute path of the directory that will
store the XML files.The default is C:\sources\

^MySourceControl("base")

The date and time when the corresponding
external file was last modified

^MySourceControl(0,IntName), where IntName is the
internal name of a Caché file

The date and time when this Caché
document was last modified

^MySourceControl(1,IntName)

The name of the user who has this Caché
document checked out, if any

^MySourceControl(2,IntName)

This global is purely a sample and is used only by this class.

132 Using InterSystems Development Environments — Atelier and Studio

Using Studio Source Control Hooks

A.5.3 Determining the External Names

If you enable the Studio.SourceControl.Example class, it maintains external XML files that correspond to any Caché document
that you load or create. It writes these files to the directory C:\sources\ by default, as described in “Deciding How to Map
Internal and External Names.” For example, the external name for the class MyApp.Addresses.HomeAddress is
C:\sources\cls\MyApp\Addresses\HomeAddress.xml.

Within the sample, the ExternalName method determines the external file name for any Caché document. This method is
as follows:

Method ExternalName(IntName As %String) As %String
{
 Set name=$piece(IntName,".",1,$length(IntName,".")-1)
 Set ext=$zconvert($piece(IntName,".",$length(IntName,".")),"l")
 If name="" Quit ""
 Set filename=ext_"\"_$translate(name,".","\")_".xml"
 Quit $get(^MySourceControl("base"),"C:\sources\")_filename
}

The sample is suitable only for Windows, of course.

A.5.4 Synchronizing the Caché Document and the External File

Two methods are responsible for ensuring that the Caché document and the corresponding XML file are kept synchronized
with each other:

• Studio calls the OnBeforeLoad method immediately before loading any Caché document into the work space.

• Studio calls the OnAfterSave method immediately after saving any Caché document.

In the sample, the OnBeforeLoad method is as follows:

Method OnBeforeLoad(IntName As %String) As %Status
{
 Set filename=..ExternalName(IntName)
 If filename="" Quit $$$OK

 #; If no file then skip the import
 If '##class(%File).Exists(filename) {
 Write !,"File ",filename," not found, skipping import"
 Quit $$$OK
 }

 #; If the timestamp on the file is the same as the last time
 #; it was imported, then do nothing
 If ##class(%File).GetFileDateModified(filename)=
 $get(^MySourceControl(0,IntName)) {
 Quit $$$OK
 }

 #; Call the function to do the load
 Set sc=$system.OBJ.Load(filename,"-l-d")
 If $$$ISOK(sc) {
 Write !,"Imported '",IntName,"' from file '",filename,"'"
 Set ^MySourceControl(0,IntName)=##class(%File).GetFileDateModified(filename)
 Set ^MySourceControl(1,IntName)=##class(%RoutineMgr).TS(IntName)
 } Else {
 Do $SYSTEM.Status.DecomposeStatus(sc,.errors,"d")
 }
 Quit sc
}

Note:

• The method checks to see whether the external file exists yet. If the external file exists, the method compares its time
stamp to the time stamp of the Caché document. If the external file is more recent than the Caché document, the method
loads it.

Using InterSystems Development Environments — Atelier and Studio 133

Sample Source Control Class

It is not strictly necessary to check the time stamps; this method could load the external document every time. The
check is performed because it offers a performance improvement.

• The method sets the relevant nodes of the ^MySourceControl global.

The OnAfterSave method is analogous, as you can see in the sample itself.

Note: Not only does Studio call these methods automatically as noted above, we will call these methods whenever we
need to ensure that the Caché document and the external document are synchronized.

A.5.5 Controlling the Status of the Caché Document

The GetStatus method of your source control class is responsible for returning information about the status of the given
Caché document. This method has the following signature:

Method GetStatus(IntName As %String,
 ByRef IsInSourceControl As %Boolean,
 ByRef Editable As %Boolean,
 ByRef IsCheckedOut As %Boolean,
 ByRef UserCheckedOut As %String) As %Status

Studio calls this method at various times when you work with a Caché document. It uses this method to determine if a
Caché document is read-only, for example. When you implement a source control class, you must implement this method
appropriately.

In the sample, this method is implemented as follows:

Method GetStatus(IntName As %String,
 ByRef IsInSourceControl As %Boolean,
 ByRef Editable As %Boolean,
 ByRef IsCheckedOut As %Boolean,
 ByRef UserCheckedOut As %String) As %Status
{
 Set Editable=0,IsCheckedOut=0,UserCheckedOut=""
 Set filename=..ExternalName(IntName)
 Set IsInSourceControl=(filename'=""&&(##class(%document).Exists(filename)))
 If 'IsInSourceControl Set Editable=1 Quit $$$OK

 If $data(^MySourceControl(2,IntName))
 {Set IsCheckedOut=1
 Set UserCheckedOut=$listget(^MySourceControl(2,IntName))}

 If IsCheckedOut,UserCheckedOut=..Username Set Editable=1
 Quit ..OnBeforeLoad(IntName)
}

Here is how this method works:

1. It first initializes all the arguments that it returns by reference.

2. The method then checks to see whether the external document exists yet; if it does not, the Caché document should be
editable.

3. The method then checks the ^MySourceControl global to see if anyone has checked this document out. If so, and
if that user is the current user, the document is editable. If the document is checked out to a different user, it is uneditable
to the current user.

4. Finally, the method calls the OnBeforeLoad method, which was described earlier in this document. This step ensures
that the Caché document and the external XML file are synchronized and that the relevant nodes of the
^MySourceControl global get set.

A.5.6 Source Control Actions

The sample implements methods for the two most basic source actions: check in and check out.

134 Using InterSystems Development Environments — Atelier and Studio

Using Studio Source Control Hooks

The CheckIn method is as follows:

Method CheckIn(IntName As %String, Description As %String) As %Status
{
 #; See if we have it checked out
 If '$data(^MySourceControl(2,IntName)) {
 Quit $$$ERROR($$$GeneralError,"You cannot check in an item
 you have not checked out")
 }
 If $listget(^MySourceControl(2,IntName))'=..Username {
 Quit $$$ERROR($$$GeneralError,"User '"_
 $listget(^MySourceControl(2,IntName))_"'has this item checked out")
}

 #; Write out the latest version
 Set sc=..OnAfterSave(IntName)
 If $$$ISERR(sc) Quit sc

 #; Remove the global to show that we have checked it in
 Kill ^MySourceControl(2,IntName)
 Quit $$$OK
}

Notes:

• This method uses the ^MySourceControl global to see whether the current user can actually check this Caché
document in.

• If the user can check the document out, the method does the following:

– The method calls OnAfterSave to make sure that the Caché document and the external document are synchronized.

– The method kills the appropriate node of the ^MySourceControl global to indicate that the document is now
checked in.

The CheckOut method is analogous.

These methods could be extended to include the appropriate calls to a third-party source control system.

A.5.7 Other Details

By default, the method IsInSourceControl calls the GetStatus method and gets the needed information from there.

In the sample, the method IsInSourceControl returns true for all internal names; recall that all documents are assumed to
be under source control.

A class definition can be changed when you compile it, because compilation can update the storage information. Accordingly,
the sample implements the OnAfterCompile method. This method just calls the OnAfterSave method, because it needs
the same logic as that method provides; specifically, it needs to check whether the Caché document has changed and if so,
save the XML file again.

We do not recommend using process private globals in source control hooks because processes may not run in the same
thread. For more information, see the chapter “Cache 2012.1” in the Caché Release Notes and Upgrade Checklist Archive.

Using InterSystems Development Environments — Atelier and Studio 135

Sample Source Control Class

B
Frequently Asked Questions About Studio

A Question and Answer Set about Studio.

Projects

What is a project?

A project is a collection of class definitions, routines, and/or CSP files that you can group together for the sake of convenience.

Using projects gives you an easy way to return to your work when you start a Studio session. For example, you can place
all the classes related to an application, or part of an application, in a project. When you start Studio, open this project and
the Project tab of the Workspace window displays all the classes in a convenient list.

You can also export and import entire projects to and from a single external file making it easy to save or pass around
application code.

How do I add an item to a project?

Here are some of the ways to add items to a the current project:

• Before opening one or more items (with File > Open), select the Add to Project check box in the Open dialog.

• To add the item in the current editor window to the current project, select Project > Add Item.

• In the workspace window, highlight an item, right-click, and select Add to Project.

Can I add something from another namespace to my project?

No. A project can only contain items that are visible to the current Caché namespace.

Can an item belong to multiple projects?

Yes. A project is a specified set of items (class definitions, routines, and CSP files) that you choose to group together. The
items themselves have no link back to the projects they may belong to. There is no limit to how many projects an item can
belong to.

Using InterSystems Development Environments — Atelier and Studio 137

What if I don't want to use projects?

You are not required to use projects with Studio; you can completely ignore them if you like. To ignore projects, do not
add any items to the default project and ignore the prompt asking you if you want to save your project when you exit Studio.

Can I export a project?

Yes. Select Tools > Export > Export Project. Enter a file name and press OK. This exports the entire contents of the current
project (including the project definition) to a single XML file.

How do I delete a project?

Select File > Open to list all your projects. Right-click a project and select Delete.

Note that you can use File > Open to delete any type of item on the server in this way.

Opening Files

How do I open a class definition?

To open an existing class definition (that is, one saved on the Caché server), do the following:

1. Make sure you are connected to the Caché namespace and server containing the class definition.

2. Select File > Open.

3. In the Open dialog, make sure that class definitions are listed by selecting Class Definitions (.CLS) or All in
the File Types combo box.

4. Package names are listed in the file list as folders. Select a package name to list all the classes (or subpackages) within
the package. Double-click a class name to open it.

5. Alternatively, you can enter the name of the class you want directly into the filename edit box with a .cls extension
(such as Sample.Person.cls) and select Open.

How do I open a routine?

To open an existing routine (that is, one saved in the Caché server), do the following:

1. Make sure you are connected to the Caché namespace and server containing the routine.

2. Select File > Open.

3. In the Open dialog, make sure that routines are listed by selecting either MAC routines (.MAC), INT routines
(.INT), or All in the File Types combo box. Double-click a routine name.

4. Alternatively, you can enter a routine name with extension directly into the filename edit box (such as MyRoutine.MAC)
and select Open.

138 Using InterSystems Development Environments — Atelier and Studio

Frequently Asked Questions About Studio

How do I open a CSP file?

You can open a CSP file in the same way that you open a class definition or a routine. The main difference is that the Open

dialog lists CSP Applications (for example, /csp/samples) as folders; select the name of an application to see the CSP pages
within it.

What does the Show System check box in the Open dialog do?

If the Show System check box is selected, then the File > Open dialog lists system items (items whose names start with the
% character and are stored in the CACHELIB database) along with items in the current namespace.

Can I use pattern matching in the File > Open dialog?

Yes. You can use the “*” character as a wildcard to match any number of any character as you can in a standard File >

Open dialog. You can use file extensions to filter certain items; for example, “*.cls” lists all Class Definitions in the selected
package. You can use the “?” character to match any character. Note that these are Windows pattern matching conventions,
not Caché pattern matching.

How do I open a routine from a different namespace?

The Studio File > Open dialog lists items from only the current namespace and server. To open a routine from a different
namespace or server:

1. Select File > Change Namespace.

2. Open the desired routine.

Can I open a % class?

Yes. You can list % classes (classes whose package name starts with a % character and are stored within the CACHELIB
database) from the File > Open dialog by selecting the Show System check box at the bottom.

Studio opens % classes as read-only if you open them while connected to a namespace other than %SYS.

What does File > Connect do?

Studio maintains a connection to a specific Caché namespace and server. It uses this connection to provide a list of classes
(such as for specifying property types, super classes, etc.). It also uses this connection for debugging. File > Connect lets
you connect to a different server.

Debugging

How do I start the debugger?

You can connect the debugger to a target process in of the following ways:

• Define a “debugging target” (name of program or routine to debug) for the current project with Project > Settings.
Then select Debug > Go to start the target program and connect to its server process.

• Select Debug > Attach to select from a list of running processes on a Caché server to connect to.

Using InterSystems Development Environments — Atelier and Studio 139

Frequently Asked Questions About Studio

For more details refer to the chapter “Using the Studio Debugger” in this book.

How can I debug a class?

The Studio debugger lets you step through the execution of programs running on a Caché server. These programs can
include INT files, MAC files, methods within CLS files, CSP classes responding to HTTP requests, server-side methods
invoked from Java or ActiveX clients, or server-hosted applications.

1. To view the INT file during debugging and to save the INT for further review later, set the Keep Generated Source

Code option before you compile your class, located on the Tools > Options > Compiler > General Flags page.

2. Set a breakpoint at the desired location in a class method (or any of the other files mentioned above) by pressing F9

(toggles breakpoint) on the desired source line.

3. Set a debug target to specify where you want the debugger to begin code execution using Debug > Debug Target. Enter
the name of the class and the method that you want to step through.

4. Start the debugger with Ctrl+F5 or Debug > Go.

Can I watch variables?

Yes. While debugging, enter a variable name (or an expression) in the left-hand column of the Studio Watch Window.
Each time the debugger pauses, the variable or expression is reevaluated.

Editing

What do the different colors in the editor mean? Can I change the colors in the editor?

The Studio uses colors to differentiate the syntax elements of a given language.

You can change the colors used for the various syntax elements as follows:

1. Select Tools > Options > Editor > Colors.

2. Select a language.

3. Select an element (comment, variable, etc.)—the list of available elements depends on the selected language.

4. Select Foreground and Background colors andselect OK.

Why is there a wavy, red line underneath my code?

The wavy, red line indicates that the underlined code (or possibly code before it) contains syntax errors.

Does Studio support Kanji and Chinese characters?

Yes. Studio has complete support for Unicode and Kanji characters.

Does Studio support Hebrew and Arabic characters?

Yes. The Studio Editor supports Hebrew and Arabic characters, as well as bidirectional editing.

140 Using InterSystems Development Environments — Atelier and Studio

Frequently Asked Questions About Studio

Importing Files

Can I import class definitions or routines from external files?

Yes. Select Tools > Import.

What is the difference between Local and Remote files?

Studio is a client/server application; the Studio itself runs on a client system and talks to a server. The server can either be
on the same machine or on a remote machine. The Studio uses the terms “Local” and “Remote” to refer to operating
system files (such as when you are importing or exporting) that are stored on the client and server systems, respectively.

If both the client and server are on the same system then there is no difference between Local and Remote.

Printing

Can I print from Studio?

Yes. Select File > Print or File > Print Preview.

Templates

What is a Template?

Templates are a mechanism for creating user-defined Studio add-ins. A template is a program that enters a code fragment
into the current document at the current cursor point. You can customize the code fragment to your needs. See the chapter
“Using Studio Templates” in this book for more information.

Is there a list of available Templates?

Yes. Select Tools > Templates > Templates.

Can I create a new Template?

Yes. See the chapter “Using Studio Templates” in this book.

Multiuser Support

Does Studio support development by multiple users?

Yes. You can do this in several ways:

• Set up a common Caché server system and have all developers store their code on it.

• Use local Caché servers (on the developer's system) and store source code in a source control system as exported XML
files.

Using InterSystems Development Environments — Atelier and Studio 141

Frequently Asked Questions About Studio

What happens if I try to open a class (or routine) that someone else is editing?

Studio displays a dialog stating that the class (or routine) is in use by someone else and asks you if you want to open it in
read-only mode.

What if someone wants to edit a super class of a class that I am working on?

Studio does not prevent another developer from modifying the super class of a class you are working on.

While Studio could take out locks on all subclasses whenever a class is opened for editing, in practice this would be
annoying and unwieldy. Instead, a development team needs to work out rules and procedures for defining and modifying
super classes. This is similar to how development teams in other languages (say Java) usually work with class definitions
in source control systems.

Classes

How do I create a new class?

Use the New command in the File menu and ask for a new Class Definition. This invokes the New Class Wizard.

For more details, see the chapter Class Definitions in this book.

Can I see the source code generated for my class?

Yes. You can see all the source code generated by the Class Compiler with View > View Other Code (available when the
current window contains a class definition).

Make sure that the Keep Generated Source Code option is set before you compile your class. This option is located on the
Tools > Options > Compiler > General Flags page.

When I try to compile my class, the Studio says it is up to date and does not need to be compiled. Can I force a
compile to happen?

Yes. Turn off the Skip related up-to-date documents option. This option is located on the Tools > Options > Compiler >

General Flags page.

Routines

How do I create an INT routine?

Create a new ObjectScript routine using the New command in the File menu and then save the new routine using a name
with a .INT extension. You can create an include (.INC) file in the same fashion.

142 Using InterSystems Development Environments — Atelier and Studio

Frequently Asked Questions About Studio

SQL

How do I define an SQL View?

Studio does not include a mechanism for defining SQL views. To do this, as well as other SQL tasks, use the Management
Portal.

Source Control

Does Studio integrate with external Source Control systems?

Yes. The procedure is:

1. Create a subclass of the system-supplied class %Studio.SourceControl.Base where you implement the methods to
interact with your source-control system. The class that you create is called from Studio in response to particular events
and then performs the actions that you have specified.

2. In the Management Portal, navigate to System Administration > Configuration > Additional Settings > Source Control,
select the site-specific source-control class from the list, and select OK.

At this point, Studio has been configured to interact with the source-control system. When Studio attempts to open a document,
prior to opening it, the OnBeforeLoad method of your source-control class is invoked; typically, this method checks the
timestamp on a file representation of the document and, if it is newer in the file, the method calls a Caché function to import
this into the current namespace. This makes sure that the user is seeing the most up-to-date version of the file.

If you modify the file and save it, then Studio calls the OnAfterSave method of the source-control class, which typically
exports this document to the filesystem. (This keeps these files in sync with the routines, classes, etc. that are in Caché.)

When you attempt to modify a document, Studio attempts to get a lock on it, which also triggers a call to a source control
method GetStatus. If the file is locked in source control, Studio can then ask if you want to check it out. This triggers a
call to the CheckOut method which performs the actions required to check the item out.

%Studio.SourceControl.Base and %Studio.Extension.Base provide a set of methods that allow you to create interactions
between Studio and your source-control system that are as simple or complex as you choose.

Can I create my own hooks?

Yes. You can define hooks—code that is executed whenever items are saved to or loaded from the server. For details see
the appendix “Using Studio Source Control Hooks”.

Compatibility

Can I connect a Studio client to any Caché server?

A Studio client must be running either the same version of Caché or a higher version than the Caché server that it is con-
necting to. Example: Caché 2015.1 Studio can connect to a Caché 2015.1 (or earlier version) server. Caché 2014.1 Studio
cannot connect to a Caché 2015.1 (or later) server. This applies also to maintenance releases. Example: Caché 2014.1.2
Studio can connect to a Caché 2014.1.1 (or earlier maintenance release or version) server. Caché 2014.1.0 Studio cannot
connect to a Caché 2014.1.1 (or later maintenance release or version) server.

Using InterSystems Development Environments — Atelier and Studio 143

Frequently Asked Questions About Studio

Can I run Studio on Linux?

The Studio client only runs on Windows platforms. You can use a Windows-client to talk to any server. You can also use
a partition manager, such as VMWARE, to run both Windows and Linux partitions on your development system and run
Studio in the Windows partition with Caché running in the Linux partition. The only trick is to configure your networking
so that the Windows partition can talk to the Linux partition via TCP/IP. Studio can also run under Windows on an Intel-
based Macintosh.

Studio Implementation

Why doesn't Studio use the licensed components of Microsoft Visual Studio?

There are several reasons why we built Studio from the “ground up” instead of licensing or extending Visual Studio:

• The Studio editor uses advanced parsing technology not available within the Microsoft Studio framework.

• Microsoft cannot guarantee the compatibility of future versions of Visual Studio.

Why wasn't the Studio interface developed using Java?

At this time, the only way to get acceptable performance for the Studio editor is to use direct calls to the Windows API.
While there are syntax-coloring editors developed using Java they do not offer the sophisticated multi-language parsing
used by Studio and they typically require very high performance computers for decent performance.

144 Using InterSystems Development Environments — Atelier and Studio

Frequently Asked Questions About Studio

	Table of Contents
	About This Book
	1 Introduction to Atelier
	2 Introduction to Studio
	2.1 Overview of the Studio Window
	2.1.1 Running Studio from the Command Line

	2.2 Projects
	2.3 Class Definitions
	2.3.1 Class Definitions as Text

	2.4 CSP Files
	2.5 Routine Editor
	2.6 Multiple User Support
	2.7 Importing and Exporting Caché Documents Locally
	2.8 Debugging
	2.8.1 Debugging Object-Based Applications

	2.9 Integration with Caché Security
	2.10 Source Control Hooks

	3 Building a Simple Application with Studio
	3.1 Creating a Project
	3.2 Creating a Database
	3.2.1 Defining a New Class
	3.2.2 Adding Properties
	3.2.3 Saving and Compiling Your Class
	3.2.4 Viewing Documentation for Your Class

	3.3 Creating a Web User Interface using CSP
	3.3.1 Creating a CSP File
	3.3.2 Saving and Compiling Your CSP File
	3.3.3 Viewing Your Web Page

	3.4 Creating a Web User Interface using Zen
	3.4.1 Making Your Class a Data Adaptor
	3.4.2 Creating a Zen Page
	3.4.3 Adding a Zen Form
	3.4.4 Adding Client-side Methods
	3.4.5 Viewing the Database in a Table

	4 Creating Class Definitions
	4.1 Creating New Class Definitions
	4.1.1 New Class Wizard
	4.1.2 Results of Running the New Class Wizard

	4.2 Opening Class Definitions
	4.3 Editing Class Definitions
	4.4 Saving and Deleting Class Definitions
	4.5 Compiling Class Definitions
	4.5.1 Incremental Compilation

	4.6 Renaming Class Definitions
	4.7 Class Inspector
	4.7.1 Activating the Class Inspector

	4.8 Class Browser
	4.9 Superclass Browser and Derived Class Browser
	4.9.1 Superclass Browser
	4.9.2 Derived Class Browser

	4.10 Package Information

	5 Adding Properties to a Class
	5.1 New Property Wizard
	5.1.1 Name and Description Page
	5.1.2 Property Type Page
	5.1.3 Property Characteristics Page
	5.1.4 Data Type Parameters Page
	5.1.5 Property Accessors Page
	5.1.6 Results of Running the New Property Wizard

	6 Adding Methods to a Class
	6.1 New Method Wizard
	6.1.1 Name and Description Page
	6.1.2 Method Signature Page
	6.1.3 Method Characteristics Page
	6.1.4 Implementation Page
	6.1.5 Results of Running the New Method Wizard

	6.2 Overriding a Method

	7 Adding Class Parameters to a Class
	7.1 New Class Parameter Wizard

	8 Adding Relationships to a Class
	8.1 New Property Wizard to Create a Relationship Property
	8.1.1 Name and Description Page
	8.1.2 Property Type Page
	8.1.3 Relationship Characteristics Page
	8.1.4 Additional Changes
	8.1.5 Results of Creating a New Relationship with the New Property Wizard

	9 Adding Queries to a Class
	9.1 New Query Wizard
	9.1.1 Name, Implementation, and Description Page
	9.1.2 Input Parameters Page
	9.1.3 Columns Page
	9.1.4 Conditions Page
	9.1.5 Order By Page
	9.1.6 Row Specification Page
	9.1.7 Results of Running the New Query Wizard

	10 Adding Indices to a Class
	10.1 New Index Wizard
	10.1.1 Name and Description Page
	10.1.2 Index Type Page
	10.1.3 Index Properties Page
	10.1.4 Index Data Page
	10.1.5 Results of Running the New Index Wizard

	10.2 Populating an Index

	11 Adding Projections to a Class
	11.1 New Projection Wizard
	11.1.1 Name and Description Page
	11.1.2 Projection Type Page
	11.1.3 Results of Running the New Projection Wizard

	12 Adding XData Blocks to a Class
	12.1 New XData Wizard

	13 Adding SQL Triggers and Foreign Keys to a Class
	13.1 SQL Aliases
	13.2 SQL Stored Procedures
	13.2.1 Query-Based Stored Procedure
	13.2.2 Creating Method-Based Stored Procedure

	13.3 Adding SQL Triggers to a Class
	13.3.1 New SQL Trigger Wizard

	13.4 Adding New SQL Foreign Keys to a Class
	13.4.1 New SQL Foreign Key Wizard

	14 Adding Storage Definitions to a Class
	14.1 Adding Storage Definitions to a Class
	14.1.1 Using the New Storage Wizard

	14.2 Using the Class Inspector with Storage Definitions
	14.3 Using the Class Editor with Storage Definitions

	15 Working with CSP Files
	15.1 Sample CSP Page
	15.2 Creating a New CSP File
	15.2.1 Default.csp Template File

	15.3 Editing a CSP File
	15.3.1 Insert Options

	15.4 Saving a CSP File
	15.5 Compiling a CSP File
	15.6 Viewing the Results of a CSP File
	15.7 Viewing Syntax-Colored Source for Any URL

	16 Working with Routines and Include Files
	16.1 Routine Editor
	16.2 Routine Source Formats
	16.3 Creating a New Routine or Include File
	16.4 Opening an Existing Routine or Include File
	16.5 Routine Template File
	16.6 Saving, Compiling, and Deleting Routines
	16.7 Save Automatically Backs Up Routines, Include, and CSP Files

	17 Using the Studio Debugger
	17.1 Sample Debugging Session: Debugging a Routine
	17.2 Debugger Settings for the Current Project
	17.2.1 Debug Target
	17.2.2 Breakpoints

	17.3 Debug Menu
	17.4 Watch Window
	17.4.1 Debugger Watch Window Context Menu

	18 Using Studio Templates
	18.1 Accessing Studio Templates
	18.2 Caché-Supplied Standard Studio Templates
	18.2.1 Templates
	18.2.2 Class Definition Templates
	18.2.3 Zen Templates
	18.2.4 Add-In Templates

	18.3 Making Your Own Studio Templates
	18.3.1 Template Architecture
	18.3.2 Default Template Timeout
	18.3.3 Simple Text Templates
	18.3.4 Interactive Studio Templates
	18.3.5 New Document Studio Templates
	18.3.6 Add Text to End of a Document
	18.3.7 Add-in Studio Templates

	19 Studio Menu Reference
	19.1 File Menu
	19.2 Edit Menu
	19.2.1 Basic Editing
	19.2.2 Find and Replace
	19.2.3 Bookmarks
	19.2.4 Advanced Editing

	19.3 View Menu
	19.3.1 Toolbars
	19.3.2 Customize Toolbars

	19.4 Project Menu
	19.4.1 Common Project Tasks

	19.5 Class Menu
	19.6 Build Menu
	19.7 Debug Menu
	19.8 Tools Menu
	19.9 Utilities Menu
	19.10 Window Menu
	19.11 Help Menu
	19.12 Context Menus
	19.12.1 Editor Context Menu
	19.12.2 Workspace Context Menu
	19.12.3 Inspector Context Menu
	19.12.4 Tab Context Menu
	19.12.5 Window Display Context Menu
	19.12.6 Debugger Watch Context Menu

	19.13 Keyboard Accelerators
	19.13.1 Inserting MultiValue Characters

	19.14 Adding to a Studio Menu

	20 Setting Studio Options
	20.1 Environment Options
	20.2 Editor Options
	20.3 Compiler Options
	20.4 SQL Options
	20.5 Studio Look Options

	Appendix A: Using Studio Source Control Hooks
	A.1 Overview
	A.2 Caché Documents
	A.2.1 Tools for Managing Documents and Files
	A.2.2 Deciding How to Map Internal and External Names

	A.3 Creating and Activating a Source Control Class
	A.3.1 Extending Studio
	A.3.2 Creating a Source Control Class
	A.3.3 Activating a Source Control Class

	A.4 Accessing Your Source Control System
	A.4.1 Example 1
	A.4.2 Example 2

	A.5 Sample Source Control Class
	A.5.1 Introduction
	A.5.2 Global
	A.5.3 Determining the External Names
	A.5.4 Synchronizing the Caché Document and the External File
	A.5.5 Controlling the Status of the Caché Document
	A.5.6 Source Control Actions
	A.5.7 Other Details

	Appendix B: Frequently Asked Questions About Studio

