InterSystems:

Caché

Using the Caché ActiveX
Gateway

\ersion 2017.2
2020-06-25

Using the Caché ActiveX Gateway

Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

ADOUL THIS BOOK ...ttt bbbt bbb bbbttt e et et e e b et ebe e 1
IR g (T U Tox 4 o] o IO PP PTTRTRRTRRO 3
I AN (o 1 (o (3 SRR 3

1.2 Overview Of ACHIVEX / COM ..ottt et ettt sre e naas 4
1.2.1 What IS @ COM ODJECL?cvviiiiiiiesisese ettt st e e ne e nesne e 4

1.2.2 COM INTEITACESeviitiieiteste sttt ettt bbb st b et ettt eb et st sbe b b saenas 4

1.2.3 The IDISPatCh INEITACEc.eiueieiiiiie e e 4

1.2.4 TYPE LIDIAIIES ..ottt ettt 5

2 USING CACNE ACHIVALE ..ottt ettt et sttt b et b et b et b e eb et ebe e 7
2.1 The Cach@ ACHIVALE WIZAITcviveiiiiiiie ettt ettt 7

2.2 Using the Generated WrapPer CIASSEScvivieieririrerieseesieieseeeeesessessesseseessessessessessesseseensens 9
2.2.1 Example: ACCESSING @ PIOPEITYcouiiiitiiierieriirieie ettt s e 9

2.2.2 Example: Enumerating COM INEEITACESccooeiiririiiiine s 9

2.2.3 Special Considerations fOr PrOPErtiescccuoeereireireirieiseeseesese s 10

2.3 EXCEPLION HANAIING ..cveiiiiiiiieie ettt e 11
2.3.1 Example: Exception HandliNgcccovvereviniiieieieeese e snens 11

2.4 %Activate.IDispatch and %Activate.GeneriCODJECEcvvvvviie i 11
2.4.1 Example: USiNg CreateODJECTciiieriirieieieeicieie ettt 11

2.5 IVIONTKEIS ..ttt ettt h et bt bbbt b e s bt sb e s b e b e nbe st et et e et eneer e ne e 12
2.5.1 Example: USING GELODJECTc.ervevirieiirieiirieisieesieeste ettt 12

2.6 The BeCOME METNOMc.eouiieiiiiecie et eneens 12

2.7 EVBNTS ettt h bR E R R R R R e Rt bt R bR R e erens 12
2.7.1 Example: USING COM EVENLSccuevueiieiieieieieieeeteseste e se e sreste e ssessessesaessesessesssssenees 12

Using the Caché ActiveX Gateway

About This Book

This book is a guide to using Caché Activate to manipulate an external ActiveX object as if it were a native Caché object.
This book contains the following sections:
* Introduction

e Using Caché Activate

There is also a detailed Table of Contents.

For general information, see Using Inter Systems Documentation.

Using the Caché ActiveX Gateway 1

Introduction

Caché Activate gives Caché applications an easy way to interoperate with ActiveX (also known as COM) components
from within a Caché server. By means of wrapper classes, ActiveX components are made available as instances of Caché
object classes and can be used in the same manner as any other class. Caché Activate provides the ability to instantiate an
external COM object and manipulate it as if it were a native Caché object.

Note: The terms “ActiveX” and “COM?” are used interchangeably within this document.

Caché Activate is available only on platforms that support ActiveX (both 32-bit and 64-bit versions of Microsoft Windows).
Caché Activate works as follows:

1. Using the Caché Activate Wizard, you can create one or more wrapper classes. These are Caché classes that provide
methods that correspond to the interface of an ActiveX component.

2. Within a Caché application, you can create an instance of an ActiveX wrapper class. Caché Activate transparently
creates an instance of the appropriate ActiveX component within the same process. When you invoke the methods of
the wrapper class, it automatically dispatches them to a method of the appropriate ActiveX interface.

You must exercise caution when using ActiveX components within Caché. Caché is designed to provide a safe environment
for running application code. Every Caché server process runs an instance of the Caché virtual machine, is isolated from
other service processes, and can handle application errors quite safely. ActiveX, unfortunately, is not a safe technology.
Using ActiveX incorrectly or using poorly implemented ActiveX components can lead to memory leaks or unexpected
application crashes. If you are using ActiveX components within a critical application, you should take extra care to ensure
that you are using the interfaces of the component interfaces correctly and that the components have been thoroughly tested.
It is a good idea to test any components using a tool such as Visual Basic before using them within your application.

1.1 Architecture

Caché Activate consists of the following components:

» The Caché Activate Wizard: This provides a simple graphical interface that lets you choose from the ActiveX components
on your Caché server and automatically creates Caché wrapper classes for the components you select. The Caché
Activate Wizard is accessible from the Add-Ins item on the Tools menu of the Atelier development environment. The
Activate Wizard is available only on Windows systems.

» The Caché Activate Class Hierarchy: These are helper classes used by the generated wrapper classes in order to com-
municate with ActiveX.

Using the Caché ActiveX Gateway 3

Introduction

» The Caché ActiveX Gateway: This is a shared library (DLL) loaded by and used by a Caché process to perform oper-
ations (loading, invoking methods, and releasing) on ActiveX components.

1.2 Overview of ActiveX / COM

The following is a simple overview of ActiveX / COM component architecture as it relates to Caché. If you intend to make
use of ActiveX within your application, you should consult one of the many published works on the subject.

1.2.1What Is a COM Object?

A COM obiject is a piece of code that conforms to the COM specification and provides one or more services that may be
consumed by client programs. A certain class of COM objects, those which support the notion of Automation, are specially
designed to be easily accessible from high-level programming languages such as VisualBasic, Delphi and now Caché. Such
automation objects may be implemented as a dynamic link library and provide a simple function such as encryption of a
text string or they may be full-blown executable applications such as Microsoft Excel or Microsoft Word which provide
dozens of different services.

1.2.2 COM Interfaces

COM objects expose their functionality as interfaces. An interface is simply a collection of methods and properties that
encapsulate some particular functionality. For example, a word processing object may provide a spell checking interface
as well as a printing interface. Each implementation of a COM object is given a unique identifier in the form of a class id
and each interface which it exposes also has a unique identifier referred to as an interface id. Once the class id of a particular
object and the interface id of the required interface is known, it is possible for a client application to instantiate the COM
object and avail itself of the services provided by the requested interface. By convention, when the name of an interface is
written it is preceded by a capital “1”, so the SpellCheck interface becomes ISpellCheck.

1.2.3The IDispatch Interface

Different programing languages have different internal data types which are incompatible at a binary level. For example,
a Caché local variable has a completely different implementation from that of a VisualBasic string or a C++ string. This
makes it difficult to call an object written in one language from another, because conversion has to be done from say, a
C++ data type to a Caché variable and vice versa. To solve this problem and enable different programming languages to
communicate, the notion of the VARIANT data type and the IDispatch interface was developed.

At its simplest, IDispatch provides the ability to call a method or access a property in an external COM object by specifying
the name of the method or parameter and passing the appropriate arguments. Arguments are represented by a VARIANT

type, which is a standardized data type that the operating system supports. This standardized type is “understood” by all
programming languages that support the use of COM automation.

By creating a COM object and requesting its IDispatch interface, a client program or language, such as Caché, can easily
access the functionality exposed by the object.

Although IDispatch provides a generic means to access a COM Automation object, it is really intended as a technique that
a programming language uses internally to provide COM object services via the particular constructs of that language. In
other words, the high-level language should abstract the details of calling IDispatch and provide programming language
constructs to ease use of external objects. Ideally such COM objects should act as if they are native objects within a pro-
gramming environment. In Caché Activate, the key to this is to exploit the information contained in a COM objects type
library.

4 Using the Caché ActiveX Gateway

Overview of ActiveX / COM

1.2.4Type Libraries

Most, if not all, COM Automation objects expose their metadata, i.e., a description of the types, methods and properties,
in the form of a type library. The type library may be bound into a .DLL (dynamic link library), within an executable file
as a binary resource, or it may exist in a separate file with an extension such as .tlb. Within the type library, each object is
identified by a class id and is known as a CoClass. A CoClass may expose at most one IDispatch-derived interface known
as the default interface. (Another interface known as the source interface may or may not be present. However it is not
directly callable, and can safely be ignored for now). Some objects do not implement an IDispatch-derived interface at all
and consequently are not callable via the IDispatch based mechanisms.

Caché Activate exploits the metadata contained in the type library by reading and decoding the information and creating
Caché classes that expose the methods and properties defined therein. A type-library may contain one or more CoClass
objects and potentially many IDispatch-derived interface definitions. There may be many interfaces because, although a
CoClass may not expose more than a single IDispatch derived interface as its default interface, it is free to define methods
and properties that either return or are typed as interfaces. In fact, this situation is common where a single CoClass (object)
may define a rich object model. Consider a word processor for instance. It may provide a default interface of 1Application,
which has methods such as AboutBox, Exit, etc. It also may provide a collection of documents (IDocuments*) as property
called Documents.

Note: Many COM interfaces are quite complex; they may contain hundreds of methods and may use many additional
COM obijects as parameters. If your application needs to use only a small subset of a specific interface, you should
consider building a wrapper COM component (for example using Visual Basic) to expose only the interfaces you
actually need and to pass any requests to these interfaces to the original COM component.

Using the Caché ActiveX Gateway 5

Using Caché Activate

This chapter describes how to create a Caché wrapper class for an ActiveX component and how to use this wrapper class
within an application.

2.1 The Caché Activate Wizard

The Caché Activate Wizard automatically creates one or more Caché wrapper classes for a given set of ActiveX interfaces.
To use the Wizard:

1. Start Atelier.

Select a project for your application.

Select Tools > Add-Ins... from the main menu and press the Next button.

Expand the item Standard Add-Ins and select Activate Wizard.

A

Press the Finish button to start the Activate Wizard:

M Activate Wizard |

Studio Template
Activate Wizard Namespacall

This wizard will help you create Caché classes which provide you with access to COM
Objects from within Caché.

Enter package name: |Activate
If left empty, default 'Activate’ will be used.

[Display details during processing

Back | Next | Finish | Cancel | Help IvI

Enter the package name you wish to use for the generated classes, and press the Next button.

Using the Caché ActiveX Gateway 7

Using Caché Activate

6. The Wizard displays a list of available COM interfaces (these are interfaces available on the Caché server, not the
machine on which Atelier is running):

M Activate Wizard |
Studio Template
Activate Wizard
Select object(s) from the list below then press FINISH to create Caché classes.
Page size: |2:|D | Results: 463 | Fage: J1]2 3 »» »] of3 | |
. = - - - <
— hpgsensv 1.0 Type Library 1.0
— hpgwiamd 1.0 Type Library 1.0
— hpisen 1.1 Type Library 1.1
I~ |hpge4600 1.0 Type Library i.0
» | |HTML Dizlogs 1.0 Type Library 1.0
T |HTML Inline Multimedia 1.0
I- IAS Core Components 1.0 1.0
[T |1AS DataStorez 1.0 1.0 —I
[~ |1AS Network Access Policy 1.0 1.0
I_ IAS 500 1.0 Type Library 1.0
— Ietag 1.0 Type Library 1.0
— iextag 1.0 Type Library 1.0 =
Location
{C:\Program Files\Microsoft Office\OFFICE11\VS Runtime\HTMDLGS.DLL ‘
Back | fex Finish Cancel | Help I I

Choose one or more interfaces and press the Next button.

7. The Wizard automatically generates wrapper classes within the selected package and compiles them:

Il Activate Wizard
Studio Template

Activate Wizard

|»

Package Name: Activate

—————— Wow Processing C:\Program Files\Microsoft Office‘\OFFICE
Reading Type Library done.

Generating Proxy Classes

creating class Activate.HTMDLGSLib.IFilterBuilder

creating class Actiwvate.HTMDLGSLib.IHTMLColorPicker

creating class Activate.HTMDLGSLib.IURLFicker frs
creating class Activate.HTMDLGSLib.FilterBuilder

creating class Activate.HTMDLGSLib.HTMLColorPicker7

creating class Activate.HTMDLGSLib.URLPicker ... done.

Compiling Proxy Classes

Compilation started on 04/10/2009 13:22:39 with gualifiers '/displaylog=1'
Class Activate.HTMDLGSLibk.LCHNGuPTER is up-to-date. -
>|

Al) |

Back | next | Exit Cancel | Help Iv

8 Using the Caché ActiveX Gateway

Using the Generated Wrapper Classes

Note: 64-bit ActiveX Controls

On a 64-bit version of Windows with a 64-bit cache, you can call 64-bit ActiveX controls. This will not enable
a 64-bit cache to use 32-bit ActiveX controls (which is impossible due to operating system constraints). However,
some companies are now releasing 64-bit versions of their existing 32-bit controls, allowing customers to migrate
to 64-bit systems.

2.2 Using the Generated Wrapper Classes

The classes that are generated in Caché are proxy classes for the COM objects. Once the classes have been generated and
compiled, you can then use them in Caché applications.

For example, using the Activate Wizard, you can generate wrapper classes for the Microsoft Sysinfo Control, which provides
some information regarding system resources.

The Caché Activate Wizard creates the following classes for the Sysinfo COM object:

* Activate.SyslInfoLib.ISysInfo — An abstract interface class that defines the methods and properties which the 1Sysinfo
interface provides. It cannot be instantiated.

Among others it has a calculated property called BatteryLifePercent along with corresponding get and set methods for
that property.

* Activate.SyslInfoLib.SysInfo — This is a concrete class that inherits from the ISysinfo class. It contains the code that
finds and instantiates the external COM object and maintains a “connection” to that object. You use this concrete
class to manipulate the external object. When the object is closed, the external COM object is closed (released) also.

2.2.1 Example: Accessing a Property

Here is an example that uses the Sysinfo wrapper object to obtain the remaining battery life percentage for a laptop computer:

Set obj = ##Class(Activate.SysInfoLib.SysInfo).%New()
Write obj.BatteryLifePercent,!
Set obj = """

The object is created in the same manner as any other within Caché. The BatteryLifePercent property is written out and
finally the object is closed.

2.2.2 Example: Enumerating COM Interfaces

The Caché Activate Wizard enumerates the type libraries on a Caché Server by using a COM object called TL.dIl (or TL64.dlI
on 64-bit systems. The file is placed in the <CacheRoot>\Bin directory and automatically registered during Caché installation).
The Caché classes that are generated from this object are preloaded into the %Activate. TLLib package.

These classes consists of:

* 9%Activate. TLLib.IUtils — an abstract interface class that has a single property, libraries of type ILibraries. Use this
property to retrieve the ILibraries interface for enumerating the type libraries on the system.

* 9%Activate.TLLib.ILibraries — an abstract interface class that exposes the Count and Item properties. Use these properties
to enumerate the type libraries on the system.

* 9%Activate. TLLib.Utils — a concrete subclass that expresses the IUtils interface. Instantiate this class to access the Libraries
property

Using the Caché ActiveX Gateway 9

Using Caché Activate

Here is an example ObjectScript method that enumerates the type libraries on the system by using these classes. A concrete
instance of the Utils class is created and the objlibs property is retrieved. Notice that the Item property is called via the
ItemGet method, because Caché does not currently support calculated, indexed properties:

Class MyApp.ActivateTest
// ...

/// Demonstrate COM object Access and provide type library enumeration
ClassMethod ListTypeLibs() {
Set objUtils = "
Set objLibs = """
Set $ZT = "tlerr”
Set objUtils = ##class(WActivate.TLLib.Utils) . %New()
Set objLibs = objUtils.Libraries
For i = 1:1:objLibs.Count {
Set tld = objLibs.1temGet(i)
// tld is a | delimited string
Write !, $Piece(tld,”|'"), !, $Piece(tld,”|",2), !, $Piece(tld,”|",3), I!
3
xit ; Exit point
If objLibs"="" Set objLibs = """
If objUtils™="" Set objUtils = ""

Quit

tlerr ; Exception handler
Set $z2T1 = "
Goto xit

>

}

2.2.3 Special Considerations for Properties
As shown in the previous example, in COM, some properties have parameters. Furthermore, some objects have what is
known as a “default property,” which means you can reference that property without specifying its name explicitly.

For example, collections (as in the previous example) always have the Count and Item property. You will note that the Item
property is (obviously) not a method but that it does take an argument. An Item property is often the default property of a
collection. Consider an example with Microsoft Excel. If we have a collection of workbooks, then in Visual Basic, we can
access a specific workbook by name in this manner:

Application.Workbooks(*'Sheetl™)

Although we are accessing the Item called *Sheetl1”, Item is not explicitly referenced. What the code is really doing is
calling:

Application.Workbooks. Item(*'Sheetl™)

Caché distinguishes between method call and property reference by the presence or absence of parentheses. This means
that it interprets “person.Name™ as a property and “person.RaiseSalary()” as a method. This makes default properties
awkward because, unlike Visual Basic, Caché does not have the ability to define a default parameter nor the ability to do
a property reference while passing parameters. For example, Caché cannot support the following Visual Basic syntax that
has an implicit reference to an property:

Workbooks(*'Sheet1'™) " Implicit reference to ltem property

Neither can Caché support the following syntax, where Item is a property:

Workbooks. Item(*'Sheetl'™) " ltem is a property!

This does not work, because the Caché Interpreter considers Item to be a method. To work around this difference in the
languages, use the following syntax:

Workbooks . 1temGet(*'Sheetl)

10 Using the Caché ActiveX Gateway

Exception Handling

This works because ItemGet is the method that retrieves the Item property.

2.3 Exception Handling

Any COM object may raise an exception as the result of some operation, be it a method call or a property set/get. When
an exception is raised, the exception is propagated into Caché via the ZTrap mechanism. The calling code will receive an
error with the error code <ZACTX> and the local variable %objlasterror will contain a complete textual description of the
error. Programmers should plan for this error and take action accordingly.

2.3.1 Example: Exception Handling

Here is an example of using a COM object which retrieves files by FTP. The object is created and the CurrentDirectory
property is queried. The COM object throws an exception because it is not valid to try to determine the current directory
until the FTP connection has been made. We will try this from a Caché command line (terminal session):

Set obj = ##Class(Activate.RETRIEVERLib.FtpRetriever) .%New()
Write obj.CurrentDirectory

In this case, this will throw an error:

<ZACTX>CurrentDirectoryGet+4™Activate.RETRIEVERLib.FtpRetriever.1

The error code associated with the <ZATCX> error should be in the local variable %objlasterror. We can retrieve the
complete text of the error message by calling $system.OBJ.DisplayError:

Do $system.OBJ.DisplayError(%objlasterror)

Which will result in the following output:

ERROR #1101: Com Exception: "-2147220888 Ftp Retriever Connection must
be established before attempting this operation*

2.4 %Activate.IDispatch and %Activate.GenericObject

Some COM objects do not come with a type library or you may find that the return type of a method or a property type of
a COM obiject is just an IDispatch interface. How do you call methods and access properties for such objects?

Caché Activate provides two classes which assist with this problem, %Activate.IDispatch and %Activate.GenericObject.

Many COM obijects are identified by what is called a “Progld”, a string usually consisting of a library/object name which
can be used to identify an object. In Visual Basic there is a CreateObject call which takes a Progid and returns an object
reference which can be used to manipulate the object. Caché provides a CreateObject method too, as a class Mmethod of
the %Activate.GenericObject class. Here is how it is used:

2.4.1 Example: Using CreateObject

Using the same Microsoft Sysinfo object as above, we instantiate the object via its Progld. Because the object is generic,
that is, we have no type information for this object when instantiated in this manner, we must call the generic methods from
the IDispatch interface which get and set properties and invoke methods by name:

Set obj = ##Class(%Activate.GenericObject) .CreateObject("'SYSINFO.SysInfo™)

Write obj.GetProperty(‘'BatteryLifePercent™)
Set obj = "

Using the Caché ActiveX Gateway 11

Using Caché Activate

2.5 Monikers

COM provides an alternative way of instantiating an object indirectly by using what is known as a moniker as a substitute
for the Progld. Visual Basic provides the GetObject call which takes a moniker and returns an object reference which can
be used to manipulate the object. Caché provides a GetObject method as a Class Method in the %Activate.GenericObject
class. Here is how it is used:

2.5.1 Example: Using GetObject

Here a moniker that accesses the LDAP protocol of the Active Directory service. It is used to return a reference to a collection
of nodes which represents users in the current domain. The count of users is written out and the object closed:
Set obj = ##Class(%Activate.GenericObject) .GetObject(''LDAP://CN=USERS')

Write obj.Count()
Set obj = "

2.6 The Become Method

Sometimes a type library specifies a method or a property which has a return type of the generic IDispatch interface. This
can be very inconvenient because what you get is, in effect, an instance of %Activate.IDispatch on which you are forced to
use generic methods (such as GetProperty) in order to get and set properties and invoke methods. If you know the interface
that it really should be (from documentation or otherwise), then you can call the Become method on an instance of
%Activate.IDispatch object and retrieve the new (now typed) interface. The Become method takes the name of a class as
its argument. Effectively, %Activate.IDispatch becomes an instance of the class name you pass to the method. Become will
throw an exception if the object you call does not support the new typed interface.

2.1 Events

Some COM components have the ability to fire events during the processing of a method. The events are grouped into an
event or “source” interface given a name. For example, given a COM object called MyClass, the interface may be called
“MyClassEvents” or in the case of a COM object created with Visual Basic “__MyClass”.

Caché Activate provides for the event handling via two classes: %Activate.RegisterEvents and %Activate.HandleEvents. If
a COM obiject generates events, the generated Caché class will inherit from the %Activate.RegisterEvents interface class.
This adds two methods %6RegisterHandler and %oUnRegisterHandler. In addition to the regular COM object proxy class,
another class is generated which represents the Event interface. This will inherit from %Activate.HandleEvents and implements
the %0Advise and %6UnAdvise methods as well methods to handle specific events as defined by the event interface.

2.7.1 Example: Using COM Events

An example may make things clearer. Suppose we have a hypothetical COM object which does an FTP transfer. As well
as implementing methods such as Connect, Close, and Download, the object implements an Event interface which expresses
a single method, BytesTransferred. Following a successful connection and initiation of a download, the FTP object will
fire the “BytesTransferred” Event after each 1 kilobyte of data that it has downloaded. The Event will be represented by
a BytesTransferred method which has two parameters, an integer, Bytesand a boolean, Cancel which is passed by reference.
When the Event fires, the BytesTransferred method will be called passing the current value of the arguments, Bytes and
Cancel. These values are then available for processing. Typically the Bytesargument will be displayed via the user interface.

12 Using the Caché ActiveX Gateway

Events

Because the Cancel argument has been passed by reference, its value may be set and returned to the COM object which
fired the event. In this instance setting Cancel to True (-1 for COM) will indicate to the COM object that the current oper-
ation should be interrupted and the call to Download should return immediately. If the download completes normally, the
call to Download will return control to the caller and no more events will be fired. In Caché, the FTP COM object would
be represented by a generated class such as Activate.SomeLibrary.FTP and the event interface by the class
Activate.SomeLibrary.FTPEvents.

This example would look something like this. First an instance of the FTP object would be created:

Set FTP = ##Class(Activate.SomelLibrary.FTP) _%New()

We want to handle events so we create an instance of an event handler:

Set FTPHandler = ##Class(Activate.SomeLibrary._FTPEvents) . %New()

Before events can be handled the event handler must be registered with the object that actually fires the events, so we call:

Do FTP.%RegisterHandler(FTPHandler)

Now we connect and do a download:

Do FTP.Connect('ftp.intersys.com™)
Do FTP.Download(*'/public/somefile.txt")

During the download the following method would be called on the Activate.SomeLibrary.FTPEvents class:

Class MyApp.Test
//. ..
Method BytesTransferred(Bytes As %Integer,Cancel As %Boolean)

//. ..

}
}

Note: It is up the developer to actually implement the BytesTransferred method by editing the
Activate.SomelLibrary. FTPEvents class directly or preferably by subclassing the class and providing the implemen-
tation in the subclass.

Following the download, we do not want events to be handled anymore so we unregister the handler:

Do FTP.%UnRegisterHandler(FTPHandler)

and tidy up:

Set FTPHandler = "
Set FTP = "

Using the Caché ActiveX Gateway 13

	Table of Contents
	About This Book
	1 Introduction
	1.1 Architecture
	1.2 Overview of ActiveX / COM
	1.2.1 What Is a COM Object?
	1.2.2 COM Interfaces
	1.2.3 The IDispatch Interface
	1.2.4 Type Libraries

	2 Using Caché Activate
	2.1 The Caché Activate Wizard
	2.2 Using the Generated Wrapper Classes
	2.2.1 Example: Accessing a Property
	2.2.2 Example: Enumerating COM Interfaces
	2.2.3 Special Considerations for Properties

	2.3 Exception Handling
	2.3.1 Example: Exception Handling

	2.4 %Activate.IDispatch and %Activate.GenericObject
	2.4.1 Example: Using CreateObject

	2.5 Monikers
	2.5.1 Example: Using GetObject

	2.6 The Become Method
	2.7 Events
	2.7.1 Example: Using COM Events

