
Caché Security Administration
Guide

Version 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Caché Security Administration Guide
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 About Caché Security ... 3
1.1 Authentication: Establishing Identity ... 4

1.1.1 About Kerberos .. 4
1.1.2 About Operating-System–Based Authentication ... 5
1.1.3 About LDAP Authentication .. 5
1.1.4 About Caché Login .. 5
1.1.5 About Delegated Authentication .. 5

1.2 Authorization: Controlling User Access ... 6
1.2.1 Authorization Basics .. 6
1.2.2 Resources and What They Protect .. 8
1.2.3 For More Information on Authorization .. 10

1.3 Auditing: Knowing What Happened .. 11
1.4 Managed Key Encryption: Protecting Data on Disk .. 11
1.5 Managing Security with the Management Portal ... 12
1.6 Notes on Technology, Policy, and Action ... 12
1.7 A Note on Certification .. 12

2 Authentication ... 13
2.1 Authentication Basics ... 13
2.2 About the Different Authentication Mechanisms ... 14

2.2.1 Kerberos Authentication ... 15
2.2.2 Operating-System–Based Authentication .. 15
2.2.3 Caché Authentication ... 15
2.2.4 LDAP Authentication ... 16
2.2.5 Delegated Authentication ... 16
2.2.6 Unauthenticated Access ... 16

2.3 About the Different Access Modes ... 16
2.3.1 About Local Access .. 16
2.3.2 About Client/Server Access .. 17
2.3.3 About Web Access .. 17

2.4 Configuring for Kerberos Authentication ... 18
2.4.1 About Kerberos and the Access Modes .. 19
2.4.2 Specifying Connection Security Levels ... 20
2.4.3 Setting Up a Client ... 21
2.4.4 Obtaining User Credentials .. 23
2.4.5 Setting Up a Secure Channel for a Web Connection ... 26

2.5 Configuring for Operating-System–Based Authentication .. 27
2.5.1 A Note on %Service_Console .. 28
2.5.2 A Note on %Service_Callin ... 28

2.6 Configuring for Authentication with Caché Login .. 28
2.6.1 Web ... 29
2.6.2 ODBC ... 30
2.6.3 Telnet and Caché Direct ... 30

2.7 Configuring Two-Factor Authentication .. 31
2.7.1 Overview of Setting Up Two-Factor Authentication .. 31
2.7.2 Configuring Two-Factor Authentication for the Server ... 34

Caché Security Administration Guide iii

2.7.3 Enabling or Disabling Two-Factor Authentication for a Service 36
2.7.4 Configuring Web Applications for Two-Factor Authentication 36
2.7.5 Configuring an End-User for Two-Factor Authentication ... 36
2.7.6 Configuring Bindings Clients for Two-Factor Authentication 37

2.8 Other Topics ... 42
2.8.1 System Variables and Authentication ... 42
2.8.2 Using Multiple Authentication Mechanisms .. 43
2.8.3 Cascading Authentication .. 43
2.8.4 Establishing Connections with the UnknownUser Account .. 44
2.8.5 Programmatic Logins ... 44
2.8.6 The JOB Command and Establishing a New User Identity ... 45

3 Assets and Resources .. 47
3.1 About Resources ... 47
3.2 System Resources ... 48

3.2.1 Administrative Resources ... 48
3.2.2 The %Development Resource .. 50
3.2.3 The %System_Callout Resource .. 50
3.2.4 The %Secure_Break Resource ... 51

3.3 Database Resources .. 51
3.3.1 Database Resource Privileges .. 51
3.3.2 Shared Database Resources ... 51
3.3.3 Default Database Resource .. 52
3.3.4 Unknown or Non-Valid Resource Names .. 52
3.3.5 Namespaces .. 52
3.3.6 Databases that Ship with Caché ... 53

3.4 Application Resources .. 54
3.5 Creating or Editing a Resource .. 54

3.5.1 Resource Naming Conventions .. 55
3.6 Using Custom Resources with the Management Portal ... 55

3.6.1 Defining and Applying a Custom Resource to a Page ... 56
3.6.2 Removing a Custom Resource from a Page ... 56

4 Privileges and Permissions ... 57
4.1 How Privileges Work .. 57
4.2 Public Permissions ... 57
4.3 Checking Privileges .. 58
4.4 When Changes in Privileges Take Effect .. 58

5 Roles ... 59
5.1 About Roles .. 59
5.2 Roles, Users, Members, and Assignments ... 60

5.2.1 An Example of Multiple Role Assignment .. 61
5.3 Creating Roles .. 62

5.3.1 Naming Conventions .. 63
5.4 Managing Roles .. 63

5.4.1 Viewing Existing Roles .. 64
5.4.2 Deleting a Role ... 64
5.4.3 Giving New Privileges to a Role .. 64
5.4.4 Modifying Privileges for a Role ... 64
5.4.5 Removing Privileges from a Role .. 65
5.4.6 Assigning Users or Roles to the Current Role ... 65

iv Caché Security Administration Guide

5.4.7 Removing Users or Roles from the Current Role .. 65
5.4.8 Assigning the Current Role to Another Role ... 66
5.4.9 Removing the Current Role from Another Role .. 66
5.4.10 Modifying a Role’s SQL-Related Options ... 66

5.5 Predefined Roles .. 69
5.5.1 %All ... 70
5.5.2 Default Database Resource Roles .. 70

5.6 Login Roles and Added Roles .. 71
5.6.1 A Note on Added Roles and Access in the Management Portal 71

5.7 Programmatically Managing Roles .. 71

6 Users ... 73
6.1 Properties of Users ... 73

6.1.1 About User Types ... 74
6.2 Creating and Editing Users .. 75

6.2.1 Creating a New User .. 75
6.2.2 Editing an Existing User .. 76

6.3 Viewing and Managing Existing Users .. 80
6.3.1 Deleting a User ... 80
6.3.2 Viewing a User Profile ... 80

6.4 Predefined User Accounts .. 81
6.4.1 Default Predefined Account Behavior .. 82
6.4.2 Notes on Various Accounts .. 83

6.5 Validating User Accounts ... 84

7 Services .. 87
7.1 Available Services .. 87

7.1.1 Notes on Individual Services ... 88
7.2 Service Properties ... 90
7.3 Services and Authentication ... 91
7.4 Services and Their Resources ... 92

8 Applications ... 93
8.1 Applications, Their Properties, and Their Privileges .. 93

8.1.1 Applications and Their Properties .. 94
8.1.2 Associating Applications with Resources .. 95
8.1.3 Applications and Privilege Escalation .. 95
8.1.4 Checking for Privileges Programmatically .. 97

8.2 Application Types ... 97
8.2.1 Web Applications ... 98
8.2.2 Privileged Routine Applications ... 98
8.2.3 Client Applications ... 101

8.3 Creating and Editing Applications ... 102
8.3.1 Creating and Editing an Application: The General Tab ... 102
8.3.2 Editing an Application: The Application Roles Tab ... 106
8.3.3 Editing an Application: The Matching Roles Tab .. 107
8.3.4 Editing an Application: The Routines/Classes Tab .. 107

8.4 System Applications ... 108

9 Auditing ... 109
9.1 Basic Auditing Concepts .. 109

9.1.1 Enabling or Disabling Auditing ... 109
9.2 About Audit Events .. 110

Caché Security Administration Guide v

9.2.1 Elements of an Audit Event .. 110
9.2.2 About System Audit Events ... 112
9.2.3 Enabling and Disabling System Events ... 117
9.2.4 About User Events .. 118

9.3 Managing Auditing and the Audit Database .. 119
9.3.1 Viewing the Audit Database ... 119
9.3.2 Copying, Exporting, and Purging the Audit Database ... 120
9.3.3 Encrypting the Audit Database .. 122
9.3.4 General Management Functions .. 122

9.4 Other Auditing Issues ... 123
9.4.1 Freezing Caché If There Can Be No Audit Log Writes ... 123
9.4.2 About Counters .. 124

10 Managed Key Encryption .. 125
10.1 Managing Keys and Key Files .. 126

10.1.1 Creating a Key File .. 127
10.1.2 Adding a Key to a Key File .. 128
10.1.3 Deleting a Key from a Key File ... 129
10.1.4 Adding an Administrator to a Key File .. 129
10.1.5 Deleting an Administrator from a Key File .. 130
10.1.6 Activating a Database Encryption Key ... 130
10.1.7 Deactivating a Database Encryption Key ... 131
10.1.8 Specifying the Default Database Encryption Key or Journal Encryption Key for an Instance
.. 132
10.1.9 Activating a Data Element Encryption Key ... 133
10.1.10 Deactivating a Data Element Encryption Key .. 133
10.1.11 Testing for a Valid Administrator Username-Password Pair 133
10.1.12 Managing Keys and Key Files with Multiple-Instance Technologies 134

10.2 Recommended Policies for Managing Keys and Key Files ... 135
10.2.1 Protection from Accidental Loss of Access to Encrypted Data 135
10.2.2 Protection from Unauthorized Access to Encrypted Data ... 136

10.3 Using Encrypted Databases .. 136
10.3.1 Creating an Encrypted Database .. 137
10.3.2 Establishing Access to an Encrypted Database .. 137
10.3.3 Closing the Connection to an Encrypted Database .. 138
10.3.4 Moving an Encrypted Database Between Instances .. 138
10.3.5 Configuring Caché Database Encryption Startup Settings .. 138
10.3.6 About Encrypting the Databases that Ship with Caché .. 142

10.4 Using Data Element Encryption ... 143
10.4.1 Programmatically Managing Keys ... 143
10.4.2 Data Element Encryption Calls .. 144
10.4.3 Support for Re-Keying Data in Real Time ... 145

10.5 Emergency Situations ... 146
10.5.1 If the File Containing an Activated Key is Damaged or Missing 146
10.5.2 If the Database-Encryption Key File Is Required at Startup and Is Not Present 149

10.6 Other Information ... 151
10.6.1 Key File Encryption Information ... 151
10.6.2 Encryption and Database-Related Caché Facilities ... 151

11 SQL Security ... 153
11.1 SQL Privileges and System Privileges ... 153
11.2 The SQL Service .. 154

vi Caché Security Administration Guide

11.2.1 CREATE USER ... 154
11.2.2 Effect of Changes ... 154
11.2.3 Required Privileges for Working with Tables .. 154

12 System Management and Security .. 157
12.1 System Security Settings Page ... 157
12.2 System-Wide Security Parameters ... 157

12.2.1 Protecting Sensitive Data in Memory Images .. 159
12.3 Authentication Options ... 159
12.4 The Secure Debug Shell ... 160

12.4.1 Enabling Use of the Secure Shell ... 160
12.4.2 Restricted Commands and Functions ... 160

12.5 Password Strength and Password Policies ... 162
12.5.1 Suggested Administrator Password Strength ... 163

12.6 Protecting Caché Configuration Information ... 163
12.7 Managing Caché Security Domains ... 164

12.7.1 Single and Multiple Domains .. 164
12.7.2 The Default Security Domain .. 164
12.7.3 Listing, Editing, and Creating Domains ... 164

12.8 Security Advisor ... 165
12.8.1 Auditing .. 165
12.8.2 Services .. 165
12.8.3 Roles ... 166
12.8.4 Users ... 166
12.8.5 CSP, Privileged Routine, and Client Applications ... 167

12.9 Effect of Changes ... 167
12.10 Emergency Access .. 167

12.10.1 Invoking Emergency Access Mode .. 168
12.10.2 Emergency Access Mode Behavior .. 169

13 Using SSL/TLS with Caché ... 171
13.1 About SSL/TLS .. 171
13.2 About Configurations ... 172

13.2.1 Creating or Editing an SSL/TLS Configuration .. 173
13.2.2 Deleting a Configuration .. 176
13.2.3 Reserved Configuration Names ... 176

13.3 Configuring the Caché Superserver to Use SSL/TLS .. 176
13.4 Configuring the Caché Telnet Service to Use SSL/TLS .. 177

13.4.1 Configuring the Caché Telnet Server for SSL/TLS ... 177
13.4.2 Configuring Telnet Clients for SSL/TLS ... 177

13.5 Configuring Java Clients to Use SSL/TLS with Caché .. 178
13.5.1 Determining the Need for a Keystore and a Truststore .. 178
13.5.2 Creating a Client Configuration ... 179
13.5.3 Specifying the Use of the Client Configuration ... 181

13.6 Configuring .NET Clients to Use SSL/TLS with Caché .. 182
13.7 Connecting from a Windows Client Using a Settings File ... 183

13.7.1 Overview of the Process ... 183
13.7.2 About the Settings File ... 184
13.7.3 A Sample Settings File ... 187
13.7.4 How It Works ... 187

13.8 Configuring Caché to Use SSL/TLS with Mirroring ... 188
13.8.1 About Mirroring and SSL/TLS .. 188

Caché Security Administration Guide vii

13.8.2 Creating and Editing an SSL/TLS Configuration for a Mirror 189
13.9 Configuring Caché to Use SSL/TLS with TCP Devices .. 191

13.9.1 Configuring a Client to Use SSL/TLS with a TCP Connection 192
13.9.2 Configuring a Server to Use SSL/TLS with a TCP Socket .. 193

13.10 Configuring the CSP Gateway to Connect to Caché Using SSL/TLS 195
13.11 Establishing the Required Certificate Chain .. 196

14 The InterSystems Public Key Infrastructure ... 199
14.1 About the InterSystems Public Key Infrastructure (PKI) ... 199

14.1.1 Help for Management Portal PKI Tasks .. 200
14.2 Certificate Authority Server Tasks ... 200

14.2.1 Configuring a Caché Instance as a Certificate Authority Server 200
14.2.2 Managing Pending Certificate Signing Requests ... 204

14.3 Certificate Authority Client Tasks .. 206
14.3.1 Configuring a Caché Instance as a Certificate Authority Client 206
14.3.2 Submitting a Certificate Signing Request to a Certificate Authority Server 207
14.3.3 Getting Certificate(s) from Certificate Authority Server ... 208

15 Using Delegated Authentication .. 211
15.1 Overview of Delegated Authentication .. 211

15.1.1 How Delegated Authentication Works ... 212
15.2 Creating Delegated (User-Defined) Authentication Code .. 212

15.2.1 Authentication Code Fundamentals ... 213
15.2.2 Signature .. 213
15.2.3 Authentication Code ... 213
15.2.4 Setting Values for Roles and Other User Characteristics ... 215
15.2.5 Return Value and Error Messages .. 217

15.3 Setting Up Delegated Authentication ... 218
15.4 After Delegated Authentication Succeeds .. 219

15.4.1 The State of the System .. 219
15.4.2 Changing Passwords .. 219

16 Using LDAP ... 221
16.1 Overview of Using LDAP with Caché ... 221

16.1.1 Using LDAP Authorization .. 222
16.2 Configuring Caché to Use an LDAP Server ... 224

16.2.1 Specifying Configuration Information for LDAP in Caché 224
16.2.2 Specifying a Certificate File on Windows .. 226
16.2.3 Searching the LDAP Database ... 226

16.3 Setting Up LDAP-Based Authentication .. 227
16.4 After Authentication — The State of the System ... 228
16.5 Configuring the LDAP Server to Use Registered LDAP Properties 228
16.6 Using LDAP Authorization with OS-Based Authentication .. 229

17 Using Delegated Authorization .. 231
17.1 Overview of Delegated Authorization .. 231
17.2 Creating Delegated (User-defined) Authorization Code .. 231

17.2.1 Working from the ZAUTHORIZE.mac Template .. 232
17.2.2 ZAUTHORIZE Signature .. 232
17.2.3 Authorization Code with ZAUTHORIZE .. 233
17.2.4 ZAUTHORIZE Return Value and Error Messages .. 235

17.3 Configuring an Instance to Use Delegated Authorization .. 236
17.3.1 Delegated Authorization and User Types ... 237

viii Caché Security Administration Guide

17.4 After Authorization — The State of the System ... 237

Appendix A: Tightening Security for a Caché Instance ... 239
A.1 Enabling Auditing .. 239
A.2 Changing the Authentication Mechanism for an Application ... 240

A.2.1 Giving the %Service_CSP:Use Privilege to the CSPSystem User 241
A.2.2 Changing the Password of the CSPSystem User .. 242
A.2.3 Configuring the CSP Gateway to Provide a Username and Password 242
A.2.4 Configuring %Service_CSP to Require Password Authentication 243
A.2.5 Removing the Public Status of the %Service_CSP:Use Privilege 243
A.2.6 Configuring the Management Portal to Accept Password Authentication Only 243
A.2.7 Specifying the Appropriate Privilege Level for the Instance’s Users 244
A.2.8 Making the Documentation or Samples Available .. 245
A.2.9 Beginning Enforcement of New Policies .. 246

A.3 Limiting the Number of Public Resources .. 247
A.4 Restricting Access to Services ... 247

A.4.1 Limiting the Number of Enabled Services .. 247
A.4.2 Limiting the Number of Public Services ... 248
A.4.3 Restricting Access to Services by IP Address or Machine Name 248

A.5 Restricting Public Privileges ... 249
A.6 Limiting the Number of Privileged Users ... 250
A.7 Disabling the _SYSTEM User .. 250
A.8 Restricting Access for UnknownUser ... 251

A.8.1 Potential Lockout Issue with the UnknownUser Account ... 251
A.9 Configuring Third-Party Software ... 251

Appendix B: Using the cvencrypt Utility ... 253
B.1 Converting an Unencrypted Database to be Encrypted ... 253
B.2 Converting an Encrypted Database to be Unencrypted ... 254
B.3 Converting an Encrypted Database to Use a New Key .. 256
B.4 Using Command-line Options with cvencrypt .. 257

Appendix C: Frequently Asked Questions about Caché Security ... 261

Appendix D: Relevant Cryptographic Standards and RFCs .. 263

Appendix E: About PKI (Public Key Infrastructure) .. 265
E.1 The Underlying Need ... 265
E.2 About Public-Key Cryptography ... 266
E.3 Authentication, Certificates, and Certificate Authorities ... 266
E.4 How the CA Creates a Certificate .. 267
E.5 Limitations on Certificates: Expiration and Revocation .. 267
E.6 Recapping PKI Functionality ... 268

Appendix F: Using Character-based Security Management Routines ... 269
F.1 ^SECURITY ... 270
F.2 ^EncryptionKey .. 272
F.3 ^DATABASE .. 272
F.4 ^%AUDIT ... 273

Caché Security Administration Guide ix

List of Figures

Figure 1–1: Caché Security and Different Levels of the Computing Environment 3
Figure 1–2: Caché Auditing System .. 11
Figure 2–1: Architecture of a Web Connection ... 17
Figure 2–2: Architecture of a Kerberos-Protected Web Connection ... 20
Figure 2–3: A TOTP Issuer, Account, Key, and QR Code .. 33

x Caché Security Administration Guide

List of Tables

Table 1–1: Authentication Mechanisms and Role-Assignment Mechanisms ... 8
Table 2–1: Connection Tools, Their Access Modes, and Their Services ... 19
Table 3–1: Database Privileges .. 51
Table 3–2: %DB_%DEFAULT Privileges ... 52
Table 4–1: Default Public Privileges ... 57
Table 5–1: Role Properties .. 60
Table 5–2: Predefined Roles and Their Privileges ... 69
Table 6–1: User Account Properties .. 73
Table 6–2: User Profile Properties ... 80
Table 6–3: Predefined Users .. 82
Table 7–1: Services with Authentication Mechanisms .. 91
Table 8–1: Protection/Escalation Matrix for Secured Applications .. 96
Table 8–2: Edit Web Application Settings — General Tab ... 102
Table 8–3: Caché System Web Applications ... 108
Table 9–1: System Audit Events .. 112
Table 13–1: Valid Certificate Distribution Schemes .. 196
Table I–1: Required Public Resources and Their Permissions .. 247

Caché Security Administration Guide xi

About This Book

This book describes the functionality for securing Caché applications and deployed instances.

This book covers the following fundamental topics:

• “About Caché Security” provides an overview of the available security features.

• “Authentication” explains the theory and practice of configuring Caché to authenticate its users.

• “Assets and Resources” begins the authorization chapters by describing the data and activities Caché protects —
called assets — and how they are represented within Caché — as what are called “resources.”

• “Privileges and Permissions” continues the authorization chapters by describing the mechanism for granting access
to those resources.

• “Roles” continues the authorization chapters by describing how privileges are aggregated into the logical form called
“roles” and how users can be associated with roles.

• “Users” continues the authorization chapters by describing the representation of those entities — called “users” —
within Caché.

• “Services” continues the authorization chapters by describing how Caché protects the various means by which users
and programs can connect to it, which are called “services.”

• “Applications” concludes the authorization chapters by describing how to create and use application-based security
with Caché

• “Auditing” describes how to configure Caché to log various activities.

• “Managed Key Encryption” explains how to encrypt data on disk.

This book’s advanced topics are:

• SQL Security

• System Management and Security

• Using SSL/TLS with Caché

• The InterSystems Public Key Infrastructure

• Using Delegated Authentication

• Using LDAP Authentication

• Using Delegated Authorization

The book’s appendices are:

• Tightening Security for a Caché Instance

• Using the cvencrypt Utility

• Frequently Asked Questions about Caché Security

• Relevant Cryptographic Standards and RFCs

• Using Character-based Security Management Routines

• About Public Key Infrastructure (PKI)

Caché Security Administration Guide 1

For a detailed outline, see the Table of Contents.

Other related topics in the Caché documentation set are:

• The Caché Installation Guide, the “Preparing for Caché Security” appendix provides preliminary setup information
for an instance that will use security.

• Using Caché Server Pages (CSP), the “CSP Architecture” chapter describes how to configure CSP applications,
including security-related properties.

• Using Caché SQL, the Users, Roles, and Privileges chapter provides the SQL perspective on Caché security.

For general information, see Using InterSystems Documentation.

2 Caché Security Administration Guide

About This Book

1
About Caché Security

Caché provides a simple, unified security architecture with the following features:

• It offers a strong, consistent, and high-performance security infrastructure for applications.

• It meets certification standards.

• It makes it easy for developers to build security features into applications.

• It places a minimal burden on performance and operations.

• It ensures that Caché can operate effectively as part of a secure environment and that other applications and Caché can
work together well.

• It provides infrastructure for policy management and enforcement.

Figure 1–1: Caché Security and Different Levels of the Computing Environment

Caché security is based on authentication, authorization, auditing, and database encryption:

• Authentication verifies the identity of all users. It is described in the section “Authentication: Establishing Identity.”

• Authorization ensures that users can access the resources that they need, and no others. It is described in the section
“Authorization: Controlling User Access.”

• Auditing keeps a log of predefined system and application-specific events. It is described in the section “Auditing:
Knowing What Happened.”

• Managed key encryption protects information against unauthorized viewing. It is described in the section “Managed
Key Encryption: Protecting Data on Disk.”

Caché also supports the use of SSL/TLS and provides tools for a public key infrastructure (PKI).

Caché Security Administration Guide 3

Note: Caché SQL security uses the Caché authentication infrastructure. The tools for Caché security authorization are
described in this book, while the Caché SQL security authorization system is described in the “Users, Roles, and
Privileges” chapter of the Using Caché SQL book.

1.1 Authentication: Establishing Identity
Authentication is how you prove to Caché that you are who you say you are. Without trustworthy authentication, authorization
is moot — one user can impersonate another and then take advantage of the fraudulently-obtained privileges.

The authentication mechanisms available depend on how you are accessing Caché. Caché has a number of available
authentication mechanisms:

• Kerberos — The most secure means of authentication. The Kerberos Authentication System provides mathematically
proven strong authentication over a network.

• Operating-system–based — OS-based authentication uses the operating system’s identity for each user to identify that
user for Caché purposes.

• LDAP — With the Lightweight Directory Access Protocol (LDAP), Caché authenticates the user based on information
in a central repository, known as the LDAP server.

• Caché login — With Caché login, Caché prompts the user for a password and compares a hash of the provided password
against a value it has stored.

• Delegated authentication — Delegated authentication provides a means for creating customized authentication mech-
anisms. The application developer entirely controls the content of delegated authentication code.

You can also allow all users to connect to Caché without performing any authentication. This option is appropriate for
organizations with strongly protected perimeters or in which neither the application nor its data are an attractive target for
attackers.

1.1.1 About Kerberos

For maximally secure connections, Caché supports the Kerberos authentication system, which provides a highly secure
and effective means of verifying user identities. Kerberos was developed at the Massachusetts Institute of Technology
(MIT) to provide authentication over an unsecured network, and protects communications using it against sophisticated
attacks. The most evident aspect of this protection is that a user’s password is never transmitted over the network — even
encrypted.

Kerberos is what is called a trusted-third-party system: the Kerberos server holds all sensitive authentication information
(such as passwords) and is itself kept in a physically secure location.

Kerberos is also:

• Time-tested — Kerberos was originally developed in the late nineteen-eighties. Its principal architecture and design
have been used for many years at many sites; subsequent revisions have addressed issues that have been discovered
over the years.

• Available on all supported Caché platforms — Originally developed for UNIX®, Kerberos is available on all Caché-
supported variants of UNIX®; Microsoft has integrated Kerberos into Windows 2000 and subsequent versions of
Windows. (Note that because the Microsoft .NET framework does not include direct Kerberos support, Caché does
not support Kerberos for the Caché Managed Provider for .NET.)

• Flexibly configurable — It accommodates heterogeneous networks.

4 Caché Security Administration Guide

About Caché Security

• Scalable — The Kerberos protocol minimizes the number of interactions with its Key Distribution Center (KDC); this
prevents such interactions from becoming a bottleneck on larger systems.

• Fast — As an open-source product, the Kerberos code has been scrutinized and optimized extensively over the years.

Underlying Kerberos authentication is the AES encryption algorithm. AES — the Advanced Encryption Standard — is a
royalty-free, publicly-defined symmetric block cipher that supports key sizes of 128, 192, and 256 bits. It is part of the US
Federal Information Processing Standard (FIPS), as chosen by United States National Institute of Standards and Technology
(NIST).

For detailed content, see “Configuring for Kerberos Authentication” in the “Authentication” chapter.

1.1.2 About Operating-System–Based Authentication

Caché supports what is called operating-system–based (or OS-based) authentication. With operating system authentication,
Caché uses the operating system’s user identity to identify the user for Caché. When operating system authentication is
enabled, the user authenticates to the operating system using according to the operating system’s protocols. For example,
on UNIX®, this is traditionally a login prompt where the operating system compares a hash of the password to the value
stored in the /etc/passwd file. When the user first attempts to connect to Caché, Caché obtains the process’ operating system
level user identity. If this identity matches a Caché username, then that user is authenticated.

This capability only applies to server-side processes, such as terminal-based applications (for example, connecting through
the Terminal) or batch processes started from the operating system. It is not available for an application that is connecting
to Caché from another machine, such as when a copy of Studio on one machine is connecting to a Caché server on another.

This mechanism is typically used for UNIX® systems, in addition to the Windows console.

For detailed content, see “Configuring for Operating-System–Based Authentication” in the “Authentication” chapter.

1.1.3 About LDAP Authentication

Caché supports authentication through the Lightweight Directory Access Protocol (LDAP). In this case, Caché contacts
an LDAP server to authenticate users, relying on its database of users and their associated information to perform authenti-
cation. The LDAP server also controls all aspects of password management, password policies, and so on.

For detailed content, see the “Using LDAP” chapter.

1.1.4 About Caché Login

Caché itself can provide a login mechanism. Specifically, Caché maintains a password value for each user account and
compares that value to the one provided by the user at each login. (As with traditional OS-based authentication, Caché
stores a hashed version of the password. When the user logs in, the password value entered is hashed and the two hashed
versions are compared.) The system manager can configure certain password criteria, such as minimum length, to ensure
a desired degree of robustness in the passwords selected by users.

For detailed content, see “Configuring for Authentication with Caché Login” in the “Authentication” chapter.

1.1.5 About Delegated Authentication

Caché supports delegated authentication, which allows you to create your own authentication mechanism. As the application
developer, you fully control the content of delegated authentication code. Caché includes a routine, ZAUTHENTICATE.mac,
that serves as a template for creating custom authentication code.

For detailed content, see the “Using Delegated Authentication” chapter.

Caché Security Administration Guide 5

Authentication: Establishing Identity

1.2 Authorization: Controlling User Access
Once a user is authenticated, the next security-related question to answer is what that person is allowed to use, view, or
alter. This determination and control of access is known as authorization. Authorization manages the relationships of users
and resources — entities being protected. Resources are as diverse as databases, Caché services (such as for controlling
web access), and user-created applications. Each user has one or more roles, each of which authorizes the user to perform
particular activities with particular resources Caché provides tools so you can manage each resource, as well as each role’s
privileges in relation to each resource.

Caché also supports various role-assignment mechanisms. A role-assignment mechanism allows you to associate particular
roles with particular authenticated users. Caché uses these associations to determine the authorized activities for the user.
Each role-assignment mechanism is associated with one or more authentication mechanisms; configuring Caché includes
specifying the supported combination(s) of authentication and role-assignment mechanisms.

The available role-assignment mechanisms are:

• Native authorization — Role assignment occurs within Caché. Available with the Kerberos, OS-based, and Caché
login authentication mechanisms.

• Delegated authorization (ZAUTHORIZE) — Role assignment occurs as part of the ZAUTHORIZE routine. Available
with the Kerberos and OS-based authentication mechanisms.

• LDAP — An LDAP (Lightweight Directory Access Protocol) server performs role assignment. Available with the
OS-based and LDAP authentication mechanisms.

• ZAUTHENTICATE — Role assignment occurs as part of the ZAUTHENTICATE routine. Available with the del-
egated authentication mechanism, which calls ZAUTHENTICATE.

For a list of authentication mechanisms, role-assignment mechanisms, user types, and other security elements, see the
“Authentication-Authorization Matrix” section of the “Authentication” chapter.

1.2.1 Authorization Basics

The fundamental purpose of Caché security is to establish the relationships between users and the resources that they attempt
to use.

1.2.1.1 Resources, Permissions, and Privileges

The primary goal of security is the protection of resources — information or capabilities in one form or another. With
Caché, resources can be databases, services, applications, tools, and even administrative actions. The system administrator
grants access to these by assigning permissions. Together, a resource and an associated, assigned permission are known as
a privilege. This is often described using the following shorthand:

Resource-Name:Permission

where Resource-Name is the specific resource for which permissions are being granted and Permission is one or more
permissions being associated with the resource. For example, the granting of read and write permissions on the EmployeeInfo
database is represented as:

%DB_EmployeeInfo:Read,Write

or

%DB_EmployeeInfo:RW

6 Caché Security Administration Guide

About Caché Security

For most resource types, the relevant permission is Use; for databases, the permissions are Read and Write. Granting or
revoking this permission enables or disables access to the resource’s action(s).

For most resources, the name of a resource is <resource-type>_<specific-resource>, such as %Admin_Operate,
%Service_SQL, or the %DB_SAMPLES database.

Differences between Resources and Assets
Resources differ from assets as follows:

• Assets are the items being protected while resources are their logical representation within the Caché security system.

• A single resource can protect multiple assets.

1.2.1.2 Users and Roles

Caché uses Role-Based Access Control (RBAC) for its authorization model. With this type of model, a user gains the
ability to manipulate resources as follows:

1. Resources are associated with permissions to establish privileges.

2. Privileges are assigned to roles.

3. Roles have members, such as users.

A user connects to Caché to perform some set of tasks. A role describes a set of privileges that a user holds.

Roles provide an intermediary between users and privileges. Instead of creating as many sets of privileges as there are
users, roles allow you to create sets of task-specific privileges. You can grant, alter, or remove the privileges held by a role;
this automatically propagates to all the users associated with that role. Instead of managing a separate set of privileges for
each and every user, you instead manage a far smaller number of roles.

For example, an application for a hospital might have roles for both a doctor making rounds (RoundsDoctor) and a
doctor in the emergency room (ERDoctor), where each role would have the appropriate privileges. An individual user
could be a member of just one of the two roles, or of both of them.

Caché comes with a set of pre-defined roles: %Manager, %Operator, %Developer, %SQL, and a role for each of the
initially-installed databases; the database-related roles have names of the form %DB_<database-name>.

Caché also comes with a role called %All, which holds all privileges — that is, all permissions on all resources. There is
no way to reduce this role’s privileges, and at least one user must always belong to this role.

Each user has an associated $Roles variable, which contains the list of roles held. Once Caché authenticates a user (using
one of the mechanisms described in the section “Authentication: Establishing Identity”), it grants that user all associated
roles. This set of initially granted roles is known as login roles. A user’s login roles establishes a default value for the $Roles
variable. Once logged in, a user may temporarily be a member of additional roles — either from a Caché application or
from some part of the Caché system itself; these are reflected in the value of the $Roles variable. The set of roles that a
user has at any particular moment is called that user’s active roles. If, at any point, a call sets the value of $Roles to NULL
(""), then the value of $Roles reverts to the login roles.

When Caché adds new items to the list of roles in the $Roles variable, this is known as escalating roles. The removal of
roles from the list is known as role de-escalation.

About Role Assignment
Role assignment depends on the role-assignment mechanism in use, which, in turn, varies by the authentication mechanism
in use:

Caché Security Administration Guide 7

Authorization: Controlling User Access

Table 1–1: Authentication Mechanisms and Role-Assignment Mechanisms

Role-Assignment MechanismsAuthentication Mechanism

Caché authorizationKerberos

Delegated authorization (ZAUTHORIZE)

Caché authorizationOperating System

Delegated authorization (ZAUTHORIZE)

LDAP

Caché authorizationCaché login

LDAPLDAP

ZAUTHENTICATEDelegated Authentication (ZAUTHENTICATE)

For more information about the relationship between authentication and role assignment, see the “Authentication-Autho-
rization Matrix” in the “Authentication” chapter.

For an instance that supports unauthenticated access, all users hold the privileges associated with the UnknownUser and
_PUBLIC accounts; these accounts are described in the sections “The UnknownUser Account” and “The _PUBLIC
Account,” both of which are in the “Users” chapter.

Note: Regardless of how role assignment occurs, role management — that is, associating particular privileges with
particular roles — occurs within Caché.

1.2.2 Resources and What They Protect

At the foundation of any security system is that which it protects. With Caché, resources are being protected. There are a
number of kinds of resources and each governs a different key aspect of Caché:

• System resources — The ability to perform various tasks for system management, security administration, or application
development. See the section “System Resources” for more information.

• Database resources — Caché databases, which can be altered or read, and which have executable code that can also
be altered or run. See “Database Resources” for more information.

• Service resources — Tools for connecting to or among Caché servers. See the section “Service Resources” for more
information.

• Application resources — User-defined applications, applications that come with Caché, an action in code, or a page
in the Management Portal. See the section “Application Resources” for more information.

1.2.2.1 System Resources

There are several predefined administrative resources:

• %Admin_Operate — Controls a set of tasks for system operators. These include:

– Starting and stopping (but not configuring) Caché

– Performing backups

• %Admin_Secure — Controls a set of tasks for security administrators. These include:

– User account management

8 Caché Security Administration Guide

About Caché Security

– Role management

– Resource management

– Starting and stopping services

– Database encryption tasks

• %Admin_Manage — Controls a set of tasks related to managing a Caché instance. In addition to those listed for
%Admin_Operate and %Admin_Secure, these include

– Configuration management

– Adding, modifying, and deleting databases

– Modifying namespace mappings

– Managing backup definition

– Performing database restores

– Performing journal restores

• %Development — Controls development tasks and tools, including:

– Using direct mode (the programmer prompt)

– Establishing Studio connections to a server

– Using the global, routine, class, table, or SQL capabilities of the Management Portal.

– Access to global, routine, class, table, or SQL capabilities programmatically

– Caché debugging facilities

For each system resource, the Use permission enables access.

1.2.2.2 Service Resources

A service controls a user’s ability to connect to Caché. For example, Telnet and ECP each have associated services. Each
service can be enabled or disabled. If disabled, no one, regardless of privilege level, can use the service. If enabled, the
service’s specified authentication mechanism is used to authenticate the user; once authenticated, the service grants access
according to the privilege level specified by the user’s roles. (For services that support multiple authentication mechanisms,
these are used in a pre-determined order.)

There are a large number of services available as part of Caché. These include:

• Client/server services, such as for SQL

• Console, Telnet, and the Terminal (for various kinds of terminal connections)

• A CSP connection service (for CSP and Zen web applications)

• Networking services, such as ECP

To use a service, you must hold the Use permission on the service’s resource.

1.2.2.3 Database Resources

A database refers to a physical file that resides in a particular location. A database resource governs one or more Caché
databases.

Caché Security Administration Guide 9

Authorization: Controlling User Access

Note: Caché security does not directly control access to namespaces. Since a namespace can be mapped to multiple
databases, there can be different security settings for its different underlying parts.

For database resources, there are two permissions available:

• Read — Allows viewing but not modification of content, and also running of routines

• Write — Allows viewing and modification of content

The Manager’s Database
For each Caché instance (that is, each separately installed copy of Caché), there is a database called CACHESYS, which
contains routines and globals required to administer the instance. This database is also known as the manager’s database.

Because of the powerful tools available in the manager’s database, it is necessary to carefully control access to it. Data and
routines in it can affect the operation of Caché itself; therefore, to protect the instance as a whole, access to it should be
carefully restricted.

1.2.2.4 Application Resources

Application resources can protect a number of different kinds of assets, all of which are associated with either user-defined
applications or applications that come with Caché, and can include entire applications, individual actions in code, or pages
in the Management Portal.

For the purposes of Caché security, an application is a software program or group of Caché routines. To protect applications,
Caché supports what is called an “application definition.” You can associate an application definition with an Application
resource (that is, a resource of type Application); this allows you to establish a privilege that regulates its use. Any role
that holds the privilege is entitled to run the application.

There are three types of application definitions:

• A privileged routine application definition is associated with one or more Caché routines.

• A web application definition is associated with a specific Caché Server Pages (CSP) or Zen application.

• A client application definition is associated with one or more specific executable programs, which have been created
as clients for a Caché server.

For example, Caché comes with the DocBook web application for displaying documentation; if you are reading this in a
browser, then you are using the DocBook application right now. For more information on applications, see the “Applications”
chapter.

In addition to using Application resources to protect the application as a whole, you can also use these resources to perform
authorization for a particular piece of code or with a particular Portal page. For more information on adding authorization
code into an application, see the section “Checking Privileges” in the “Privileges and Permissions” chapter; for more
information on authorization checks for a particular Portal page, see the section “Using Custom Resources with the Man-
agement Portal” in the “Resources” chapter.

1.2.3 For More Information on Authorization

For more information on authorization, see the following chapters in this book: “Assets and Resources,” “Privileges and
Permissions,” “Roles,” and “Users.”

10 Caché Security Administration Guide

About Caché Security

1.3 Auditing: Knowing What Happened
Auditing provides a verifiable and trustworthy trail of actions related to the system. Auditing serves multiple security
functions:

• It provides proof — the proverbial “paper trail” — recording the actions of the authentication and authorization systems
in Caché and its applications.

• It provides the basis for reconstructing the sequence of events after any security-related incident.

• Knowledge of its existence can serve as a deterrent for attackers (since they know they will reveal information about
themselves during their attack).

The auditing facility allows you to enable logging for various system events, as well as user-defined events. Authorized
users can then create reports based on this audit log, using tools that are part of Caché. Because the audit log can contain
sensitive information, running an audit report itself generates an entry for the audit log. The included Caché tools support
archiving the audit log and other tasks.

Figure 1–2: Caché Auditing System

For more information on auditing, see the “Auditing” chapter.

1.4 Managed Key Encryption: Protecting Data on Disk
The purpose of authentication is to ensure that Caché users are who they say they are. The purpose of authorization is to
control access to data through Caché. The purpose of auditing is to keep a record of what has happened during interactions
with Caché and its data. In addition to this, there is the need to prevent unauthorized access to data on disk. To protect
against such access, Caché provides managed key encryption, a suite of technologies that protects data at rest. This suite
includes block-level database encryption, data element encryption for applications, and encryption key management.

The tools protect data at rest — that is, they secure information stored on disk — by preventing unauthorized users from
viewing this information. Caché implements encryption using the AES (Advanced Encryption Standard) algorithm. Database
encryption and decryption occur when Caché writes to or reads from disk, and the information handled includes the data
itself, indices, bitmaps, pointers, allocation maps, and incremental backup maps. Data element encryption is supported by
a set of methods that allow an application to encrypt and decrypt content as desired. And, underlying the encryption tools
are key management tools that allow for simple creation and management of data encryption keys and the key files that
contain them.

Caché Security Administration Guide 11

Auditing: Knowing What Happened

Those experienced with encryption systems for databases may have concerns about encryption having dire effects on per-
formance, but, with Caché, these concerns are unfounded. Encryption and decryption have been optimized, and their effects
are both deterministic and small for any Caché platform; in fact, there is no added time at all for writing to the database.

For more information on these tools, see the chapter “Managed Key Encryption.”

1.5 Managing Security with the Management Portal
To manage security for a Caché instance, use the Management Portal. From the Management Portal home page, the System

Administration menu includes submenus for Security and Encryption. The Security submenu contains choices for managing
the Caché instance as a whole, including users, roles, services, resources, auditing, and the security properties of any
applications defined for the Caché instance. The Encryption submenu contains choices related to the technologies of managed
key encryption: database encryption, data element encryption, and encryption key management.

1.6 Notes on Technology, Policy, and Action
Caché can play a significant role in providing security. However, it constitutes only part of a computing environment. To
properly and fully secure that environment, Caché must be part of a solution that employs other security products and tools
(such as firewalls and the security features of operating systems). This is why the security features in Caché are designed
to successfully interoperate with those of other products.

Also, although Caché can do much to prevent attacks and misuse of data, it cannot do the entire job. If a user goes to lunch
with a Terminal window open, your organization’s data is vulnerable to attack.

And while technology can solve many security problems, it cannot teach users to behave responsibly. An organization must
define clear policies that specify what can, cannot, and must be done. Further, it must educate its members in how to follow
these policies and why. Without such an action, all the security in Caché and other products will do no good; with such an
action, Caché can be part of a secure and productive environment.

1.7 A Note on Certification
Security certifications are a frequent requirement for government purchases, and are increasingly requested for private
sector purchases. Effective February 15, 2007, Caché received certification according to the Common Criteria standard
(EAL 3).

Common Criteria standard provides a set of common security standards for a wide and growing number of nations around
the globe. It provides an evaluation assurance scale with levels from 1 to 4 (EAL), where a product’s rating indicates the
rigor of evaluation to which it has been subjected; commercially available products are rated from one (least rigorous) to
four (most rigorous). Caché is certified at EAL 3. Such a level indicates that Caché can effectively serve as part of a highly
secure operational environment.

12 Caché Security Administration Guide

About Caché Security

2
Authentication

• Authentication Basics

• About the Different Authentication Mechanisms

• About the Different Access Modes

• Configuring for Kerberos Authentication

• Configuring for Operating-System–Based Authentication

• Configuring for Authentication with Caché Login

• Configuring Two-Factor Authentication

• Other Topics

2.1 Authentication Basics
Authentication verifies the identity of any user attempting to connect to Caché. Once authenticated, a user has established
communications with Caché, so that its data and tools are available. There are a number of different ways that a user can
be authenticated; each is known as an authentication mechanism. Caché is typically configured to use only one of them.
The supported authentication mechanisms are:

• Kerberos

• Operating-System–Based

• Caché Login

• LDAP Authentication

• Delegated Authentication

Caché supports authentication using user-defined code, which is known as delegated authentication. It also supports
authentication using LDAP, the Lightweight Directory Access Protocol. Finally, for those sites that prefer no authentication
at all, Caché supports unauthenticated access.

The authentication mechanism is used by what are called connection tools. These specify the means by which users establish
their connection with Caché. Each connection tool (such as the Terminal, Java, or CSP) uses a Caché service that allows
the administrator to specify the supported authentication mechanism(s). (A Caché service is a gatekeeper for connecting
to Caché; for more information on services, see the chapter “Services.”)

Caché Security Administration Guide 13

There are three categories of connection tools, each of which is known as an access mode. Each access mode has its own
characteristics and has its own supported services. The access modes are:

• Local — The user interacts directly with the Caché executable on the machine where that executable is running.

• Client/Server — The user is operating a separate executable that connects to Caché.

• Web — The user has a Web browser and is interacting with Caché through a Web-based application.

An end-user uses a connection tool to interact with Caché in a particular access mode using a particular authentication
mechanism. Remember that the processes described in this chapter do not themselves establish authenticated access. Rather,
they establish the infrastructure that an application uses when authenticating users via a particular mechanism in a particular
access mode.

It is recommended that each instance of Caché use only one authentication mechanism and that you choose the instance’s
authentication mechanism prior to installing Caché. Once installation has occurred, you can then begin configuring Caché
to use the selected mechanism. This involves several steps:

• With Kerberos, ensure that all Caché users are listed in the Kerberos KDC (Key Distribution Center) or Windows
Domain Controller.

• With operating-system–based authentication, ensure that all Caché users appear in the operating system list.

• For all authentication mechanisms, configure all supported services to use only the selected authentication mechanism.

• For all authentication mechanisms, disable all unsupported services.

• For all authentication mechanisms, configure all applications to use only the selected authentication mechanism.

Note: Regardless of the selected authentication mechanism, during start-up and shut-down, operating system authenti-
cation is always used.

Here’s how to use this chapter:

1. If you have already chosen an authentication mechanism, read about it; if you have not chosen an authentication
mechanism, read about them all and choose one. The relevant section for this is “About the Different Authentication
Mechanisms.”

2. Read about those access modes that are relevant for your situation in the section “About the Different Access Modes.”

3. Configure your environment according to the instructions in “Configuring for Kerberos Authentication,” “Configuring
for Operating-System–Based Authentication,” or “Configuring for Authentication with Caché Login.” To use an
external mechanism for authentication, Caché includes support for LDAP authentication and delegated (user-defined)
authentication.

4. For all authentication mechanisms, Caché supports two-factor authentication. If you want to implement two-factor
authentication, configure the instance according to the instructions in the section “Configuring Two-factor Authenti-
cation.”

2.2 About the Different Authentication Mechanisms
Caché has several ways in which it can authenticate a user, that is, verify the identity of a user. These are:

• Kerberos Authentication

• Operating-System–Based Authentication

• Caché Authentication

14 Caché Security Administration Guide

Authentication

• LDAP Authentication

• Delegated Authentication

A site may also be configured for unauthenticated access.

2.2.1 Kerberos Authentication

Where strong authentication is required, Caché can use the Kerberos protocol to enable users and Caché itself to identify
each other and to ensure the validity of communications within a session. For a brief overview of Kerberos, see the “About
Kerberos” section in the “Introduction” chapter of this book; for more detailed information, see the MIT Kerberos Web
site and its list of available documentation.

In the Kerberos model, there are several different actors. All the different programs and people being authenticated by
Kerberos are known as principals. The Kerberos system is administered by a Kerberos Key Distribution Center (KDC);
on Windows, the Windows Domain Controller performs the tasks of a KDC. The KDC issues tickets to users so that they
can interact with programs, which are themselves represented by service principals. Once a user has authenticated and has
a service ticket, it can then use a program.

Specifically, Kerberos authentication involves three separate transactions:

1. The client receives what is called a “ ticket-granting ticket” (“TGT”) and an encrypted session key.

2. The client uses the TGT and session key to obtain both a service ticket for Caché as well as another encrypted session
key.

3. The client uses the service ticket and second session key to authenticate to Caché and optionally establish a protected
connection.

Aside from a possible initial password prompt, this is designed to be invisible to the user.

In order for strong authentication to be meaningful, all Caché services that support it must have Kerberos enabled and those
that don’t support it must be disabled. The exception to this is that services intended to operate within the Caché security
perimeter, such as ECP, do not support Kerberos; you can simply enable or disable these services, since they are designed
for use in an externally secured environment.

2.2.2 Operating-System–Based Authentication

With operating-system–based authentication, Caché uses the operating system’s user identity to identify the user for Caché
purposes. Specifically, the process is:

1. Caché obtains the process’ operating-system user identity.

2. Caché checks if the operating system identity matches a Caché username. If so, then the user is automatically authen-
ticated for Caché as well.

2.2.3 Caché Authentication

Caché has its own algorithms for providing password-based authentication. This mechanism is listed in the Management
Portal as “Password” authentication. Since Kerberos and OS-based authentication both typically use passwords, this doc-
umentation refers to the native Caché mechanism as Caché login.

For password authentication, Caché maintains a password value for each user account and compares that value to the one
provided by the user at each log in. (In actuality, Caché does not store the password value itself but a hashed version of it.
When the user logs in, that entered password value is hashed and the two hashed versions are compared.) The system
manager can establish certain password criteria, such as minimum length, to ensure a certain degree of robustness in the

Caché Security Administration Guide 15

About the Different Authentication Mechanisms

http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/
http://web.mit.edu/kerberos/www/papers.html

passwords selected by users; the criteria are described in the section “Password Strength and Password Policies” in the
chapter “System Management and Security.”

Caché stores only irreversible cryptographic hashes of passwords. The hashes are calculated using the PBKDF2 algorithm
with the HMAC-SHA-1 pseudorandom function, as defined in Public Key Cryptography Standard #5 v2.1: “Password-
Based Cryptography Standard.” The current implementation uses 1024 iterations, 64 bits of salt, and generates 20 byte
hash values. There are no known techniques for recovering original passwords from these hash values.

2.2.4 LDAP Authentication

Caché supports authentication based on LDAP (the Lightweight Directory Access Protocol). With LDAP authentication,
Caché retrieves user information from a central LDAP repository. Because an environment may already support LDAP
authentication, such as with Windows Active Directory, an instance of Caché may be able to use LDAP for its authentication
and simply fit into this larger infrastructure. For more details about LDAP authentication, see the chapter “Using LDAP
Authentication.”

2.2.5 Delegated Authentication

Caché supports the use of custom authentication mechanisms through what is known as “delegated authentication.” Delegated
authentication occurs if an instance of Caché has a ZAUTHENTICATE routine in its %SYS namespace. If such a routine
exists, Caché uses it to authenticate users, either with calls to new or existing code. For more details about delegated
authentication, see the chapter “Using Delegated Authentication.”

2.2.6 Unauthenticated Access

You can configure any Caché service to operate without any authentication mechanism. This is known as unauthenticated
access. Generally, if you configure Caché services to allow unauthenticated access, it is recommended there be unauthen-
ticated access exclusively. If there is support for an authentication mechanism and then unauthenticated access if authenti-
cation fails, this is what is called cascading authentication, which is described in the section “Cascading Authentication”;
the circumstances for using more than one authentication mechanism are described in the section “Using Multiple
Authentication Mechanisms.”

2.3 About the Different Access Modes
Caché supports three access modes:

• Local

• Client/Server

• Web

2.3.1 About Local Access

With local access, the end-user is on the same machine as the Caché server. To gain access to the data, the user runs a private
image of Caché that is reading from and writing to shared memory. If there are multiple local users, each has an individual
copy of the Caché executable and all the executables point to the same shared memory. Because the user and the executable
are on the same machine, there is no need to protect or encrypt communications between the two, since nothing is being
passed from one executable to another. Because communications between the user and Caché go on within a single process,
this is also known as in-process authentication.

16 Caché Security Administration Guide

Authentication

Local access is available for:

• The terminal — The Terminal uses the %Service_Console service on Windows and the %Service_Terminal
service on other operating systems.

• Callin — Callin uses the %Service_CallIn service.

2.3.2 About Client/Server Access

With client/server access, the Caché executable is the server and there is a client executable that can reside on a separate
machine. Caché accepts a connection, possibly over a wire, from the client. This connection can use any language or pro-
tocol that Caché supports. These include:

• ActiveX — Uses %Service_Bindings

• C++ — Uses %Service_Bindings

• Caché Direct — Uses %Service_CacheDirect

• ComPort — Uses %Service_ComPort

• Java — Uses %Service_Bindings

• JDBC — Uses %Service_Bindings

• ODBC — Uses %Service_Bindings

• Perl — Uses %Service_Bindings

• Python — Uses %Service_Bindings

• Telnet — Uses %Service_Telnet

All connection tools support authentication through Kerberos or Caché login except %Service_ComPort, which only
supports authentication through Caché login.

In each case, the server specifies the supported authentication type(s). When the client initiates contact with the server, it
must attempt to use one of these supported types; otherwise, the connection attempt is rejected. Not all authentication types
are available for all connection tools.

2.3.3 About Web Access

The web access mode supports connections of the following form:

Figure 2–1: Architecture of a Web Connection

1. A user requests content or an action in a Web browser.

2. The Web browser passes along the request to the Web server.

3. The Web server is co-located with the CSP Gateway and passes the request to the Gateway.

Caché Security Administration Guide 17

About the Different Access Modes

4. The Gateway passes the request to the Caché server.

When the Caché server provides content for or performs an action relating to the user, the entire process happens in the
other direction.

For the user to authenticate to Caché, a username and password must be passed down the line. Hence, this access mode is
also known as a proxy mode or proxy connection. Once the information reaches the Caché machine, the arrangement
between user and server is similar to that in the local access mode. In fact, the web access mode also uses in-process
authentication.

2.4 Configuring for Kerberos Authentication
To configure a Caché instance for Kerberos authentication, the process is:

1. Ensure that Caché is set up to run as a Kerberos service.

The procedure varies, depending on the operating system of the Caché server and the type of environment; see the
“Preparing the Security Environment for Kerberos” section of the “Preparing for Caché Security” appendix of the
Caché Installation Guide for more information.

2. Enable the relevant Kerberos mechanisms on the Authentication/CSP Session Options page (System Administration >
Security > System Security > Authentication/CSP Session Options).

3. Determine which services will be used to connect to Caché and disable all other services. For a list of which services
are used by what connection tools, see the table “Connection Tools, Their Access Modes, and Their Services.”

4. For client/server connections, specify what Kerberos connection security level the server requires. This is how you
determine which Kerberos features are to be part of connections that use the service. See the section “Specifying
Connection Security Levels” for more information.

5. For client/server connections, perform client-side setup. This ensures that the application has access to the information
it needs at runtime. This information includes:

• The name of the service principal representing Caché.

• The allowed connection security levels.

Setting up this information may involve configuring a Windows preferred server or some other configuration mechanism.
See the section “Setting Up a Client” for more information.

6. Specify how the authentication process obtains user credentials. This is either by checking the user’s Kerberos credentials
cache or by providing a Kerberos password prompt for the user. See the section “Obtaining User Credentials” for
more information.

7. To maximally secure web connections, set up secure channels for the following connections:

• Web browser to Web server

• CSP Gateway to Caché server

Important: On Windows, when logged in using a domain account, OS-based and Kerberos authentication are the same.
When logged on locally, Kerberos is subject to a KDC spoofing attack and is therefore neither secure nor
recommended.

18 Caché Security Administration Guide

Authentication

2.4.1 About Kerberos and the Access Modes

Each connection tool uses a service to establish communications with Caché. It also uses a particular access mode. To
ensure maximum protection, determine which services you need, based on which connection tools you are using. If you
are not using a service, disable it.

The following is a list of connection tools, their access modes, and their services:

Table 2–1: Connection Tools,Their Access Modes, and Their Services

ServiceAccess ModeConnection Tool

%Service_BindingsClient/ServerActiveX

%Service_BindingsClient/ServerC++

%Service_TelnetClient/ServerCaché Telnet

%Service_CallInLocalCallIn

%Service_ConsoleLocalConsole

%Service_CSPWebCSP

%Service_BindingsClient/ServerJava

%Service_BindingsClient/ServerJDBC

%Service_BindingsClient/ServerODBC

%Service_TerminalLocalTerminal

%Service_CSPWebZen

2.4.1.1 Local

Kerberos authentication for a local service establishes that the user and Caché are both valid Kerberos principals. There is
only one machine in use and only one process on that machine; hence, the configuration pages for these services in the
Portal allow you to specify whether to use Kerberos prompting (labeled simply as Kerberos in the Management Portal) or
Kerberos credentials cache.

In this scenario, there is no connection between the user and Caché, since both are using the same process on the same
machine. Because the two are sharing a process, there is no information being passed through an insecure medium and
therefore no need to offer special protections for this data. (This situation is known as in-process authentication.)

2.4.1.2 Client/Server

Client/server applications include connections from ActiveX, C++, Java, JDBC, ODBC, Perl, Python, and through Caché
Direct and Telnet. For a client/server application using Kerberos authentication, the user needs credentials to interact with
Caché via the application.

The server and client each require configuration. Server configuration specifies which type of connections are accepted;
client configuration specifies what type of connection is attempted and may also specify how to obtain the user’s credentials.

With client/server connections, Kerberos supports various connection security levels, which are configured on the Caché
server machine:

• Kerberos — Kerberos manages the initial authentication between the user and Caché. Subsequent communications are
not protected.

Caché Security Administration Guide 19

Configuring for Kerberos Authentication

• Kerberos with Packet Integrity — Kerberos manages the initial authentication between the user and Caché; each sub-
sequent message has a hash that provides source and content validation. This provides verification that each message
in each direction is actually from its purported sender; it also provides verification that the message has not been altered
in transit from sender to receiver.

• Kerberos with Encryption — Kerberos manages initial authentication, ensures the integrity of all communications,
and also encrypts all communications. This involves end-to-end encryption for all messages in each direction between
the user and Caché.

2.4.1.3 Web

When running a web application (using either CSP or Zen), the user does not interact directly with the Caché server. To
protect all information from monitoring, you need to encrypt the connections between the user and Caché as follows:

• Configure the Web server so that it uses SSL to secure browser connections to it.

• Co-locate the Web server and the CSP Gateway, so there is no need to secure the connection between them.

• Configure the CSP Gateway to use Kerberos authentication and encryption. Use the Gateway’s Kerberos principal to
establish such a connection.

This applies to both CSP and Zen, since Zen uses CSP for its underlying connection.

The architecture is:

Figure 2–2: Architecture of a Kerberos-Protected Web Connection

Any communications between the end-user and Caché occurs through SSL-encrypted or Kerberos-encrypted pipes. For
Kerberos-secured connections, this includes the end-user’s Kerberos authentication.

Because the Caché server cannot prompt the end-user for a password, it invokes an API that sends HTML content to the
browser to prompt. The user completes this form that has been sent; it travels back to the Web server, which hands it to the
CSP Gateway, which then hands it to the CSP server (which is part of Caché itself). The CSP server acts as a proxy on
behalf of the user at the browser; this is why this kind of a connection is known as a proxy connection. At the same time,
all information related to the user resides on the server machine (as with the local access mode); hence a web connection
is also a form of in-process authentication.

2.4.2 Specifying Connection Security Levels

Client/server connections to Caché use one of the following services:

• %Service_Bindings — ActiveX, C++, Java, JDBC, ODBC, Perl, Python

• %Service_CacheDirect — Caché Direct

20 Caché Security Administration Guide

Authentication

• %Service_Telnet — Telnet

For any Kerberos connection using one of these services, you must specify the connection security levels which the server
accepts. To configure the service’s supported connection security levels, the procedure is:

1. On the Authentication/CSP Session Options page (System Administration > Security > System Security > Authentica-

tion/CSP Session Options), specify which connection security levels to enable for the entire Caché instance, where
these can be:

• Kerberos — Initial authentication only

• Kerberos with Packet Integrity — Initial authentication and packet integrity

• Kerberos with Encryption — Initial authentication, packet integrity, and encrypting all messages

For more information on the Authentication Options page, see the section “Authentication Options” in the chapter
“System Management and Security.”

2. On the Services page (System Administration > Security > Services), click the service name (in the Name column); this
displays the Edit Service page for the service.

3. On the Edit Service page, specify which connection security levels to require as part of a Kerberos connection. After
making this selection, click Save.

If a client attempts to connect to the server using a lower level of security than that which is specified for the server, then
the connection is not accepted. If a client attempts to connect to the server using a higher level of security than that which
is specified for the server, then the server connection attempts to perform authentication using the level of security that it
specified.

2.4.3 Setting Up a Client

When using the client/server access mode, you need to configure the client. The particulars of this process depend on the
connection technology being used.

2.4.3.1 Telnet and Caché Direct: Setting Up the Preferred Server for Use with Kerberos

With a Windows client, when establishing a connection using Caché Direct or Caché telnet for Windows, the client uses
configuration information that has been stored as part of a remote server.

Important: Caché has its own telnet server for Windows. When connecting to a non-Windows machine, there is no
Caché telnet server available — you simply use the telnet server that comes with the operating system.
Once you have established the connection to the server machine, you can then start Caché using the
%Service_Terminal service.

To configure a client connection coming in through telnet or Caché Direct, go to the client machine. On that machine, the
procedure is:

1. Click on the Caché cube and select Preferred Server from the menu (the Preferred Server choice also displays the name
of the current preferred server).

2. From the submenu that appears, choose Add/Edit.

3. To create a new remote server, click the Add button; to configure an already-existing server, choose the Caché server
to which you are connecting and click the Edit button.

4. This displays the Add Connection dialog. In the Authentication Method area on that dialog, click Kerberos. This expands
the dialog to display a number of additional fields.

Caché Security Administration Guide 21

Configuring for Kerberos Authentication

5. If you are editing the values for an already-existing server, there should be no need to change or add values for the
more general fields in this dialog, as they are determined by the server that you chose to edit.

If you are adding a new server, the fields to complete are described in the section “Define a Remote Server Connection”
of the “Connecting to Remote Servers” chapter of the Caché System Administration Guide.

6. In the dialog’s Kerberos-related fields, specify values for the following fields:

• The connection security level, where the choices are Kerberos authentication only; Kerberos authentication with
packet integrity; or Kerberos authentication, packet integrity, and encryption

• The service principal name. For information on setting up service principal names, see the section “Names and
Naming Conventions” in the appendix “Preparing for Caché Security” of the Caché Installation Guide.

• If you are configuring a telnet connection to a Windows machine, check the box specifying that the connection
use the Windows Caché Telnet server.

7. Click OK to save the specified values and dismiss the dialog.

2.4.3.2 Setting Up an ODBC DSN for Use with Kerberos

Caché supports Kerberized ODBC connections from clients on Windows, UNIX®, and Mac to DSNs (Data Source Nodes)
on all platforms. The ways of configuring client behavior vary by platform:

• On all platforms, the SQLDriverConnect function is available, which accepts a set of name-value pairs.
SQLDriverConnect is a C call that is part of the ODBC API and is documented at the Microsoft Web site. Its name-
value pairs are the same as those for the initialization file available on non-Windows platforms.

• On non-Windows platforms, use the Caché ODBC initialization file to specify name-value pairs that provide connection
information. This file is described generally in Using Caché ODBC. The file has the following Kerberos-related variables:

– Authentication Method — Specifies how the ODBC client authenticates to the DSN. 0 specifies Caché login; 1
specifies Kerberos.

– Security Level — For Kerberos connections, specifies which functionality is used to protect the connection. 1
specifies that Kerberos is used for authentication only; 2 specifies that Kerberos is used for authentication and to
ensure the integrity of all packets passed between client and server; and 3 specifies that Kerberos is used for
authentication, packet integrity, and to encrypt all messages.

– Service Principal Name — Specifies the name of Caché service that is serving as the DSN. For example, the service
principal might have “cache/localhost.domain.com” as its name.

The names of these variables must have spaces between the words. They are not case-sensitive.

• On a Windows client, you can specify connection information through a GUI: the ODBC DSN configuration dialog.
Caché provides options on the System DSN tab. This screen has associated help that describes its fields. The path on
the Windows Start menu to display this screen varies by version of Windows; it may be listed under Administrative

Tools.

Important: On 64-bit Windows, there are two versions of odbcad32.exe: one is located in the C:\Windows\System32\

directory and the other is located in the C:\Windows\SysWOW64\ directory. If you are running 64-bit
Windows, configure DSNs through the one in C:\Windows\SysWOW64\.

2.4.3.3 Setting Up a Java or JDBC Client for Use with Kerberos

Caché provides a Java class that serves as a utility to assist with Java client configuration. Run it when you are ready to
configure the client. The procedure is:

22 Caché Security Administration Guide

Authentication

http://msdn.microsoft.com/en-us/library/ms715433.aspx

1. Make sure that the path to cachejdbc.jar and cachedb.jar is available to the CLASSPATH variable on the client. By
default, this file is in the <cache-install-dir>/dev/java/lib/JDK16 directory. (For general information on setting up Java
clients, see the “Installation and Configuration” section of “The Caché Java Binding” chapter of Using Java with
Caché; for a description of the jar files, see “The Caché Java Class Packages” in the same chapter.)

2. To configure the client, issue the Java Configure command:

> java com.intersys.jgss.Configure

Note: This command is case-sensitive.

This program uses Java Generic Security Services (JGSS) to perform the following actions:

• If necessary, modifies the java.security file.

• Creates or modifies the isclogin.conf file.

Note: The parameters to the login module that appear in the isclogin.conf file depend on whether the server is
using the Sun Java implementation or the IBM Java implementation. IBM AIX® and SUSE Linux use
the IBM implementation; all other supported Caché platforms use the Sun implementation.

3. The program then prompts you to create and configure the krb5.conf file. If the file exists, the command prompts if
you wish to use the existing krb5.conf or replace it; if you choose to replace it, it prompts for the following information:

a. Kerberos realm — It offers the local domain in lowercase as a default value for the domain.

b. Primary KDC — You only need include the local machine name, as the program appends the Kerberos realm
name to the machine name for you.

c. Secondary KDC(s) — You can specify the names of zero or more KDCs to replicate the content of the primary
KDC.

4. After receiving this information, run the command a second time. (It instructs you to do this.)

5. When prompted to replace krb5.conf, choose to leave the existing file. The command then tests the connection by
prompting for the username and password of a principal in the specified Kerberos realm.

If this succeeds, then client configuration is complete.

2.4.3.4 Setting Up a Client on C++, Perl, Python, and ActiveX for Use with Kerberos

To be able to establish a Kerberized connections through these bindings, you need only configure the Caché server to accept
Kerberos connections. Once the server is properly configured, the application then can establish the connection by using
the appropriate calls. For information on the appropriate language-specific calls, see the Caché Language Bindings books.

2.4.4 Obtaining User Credentials

For all access modes, you need to specify whether the application obtains the user’s credentials from an existing credentials
cache or by prompting for a username and password.

2.4.4.1 Obtaining Credentials for Local Access Mode

For the local access mode, the user’s credentials reside on the same machine as Caché. In this situation, the application is
using a service to connect to Caché. This includes the following services:

• %Service_CallIn

• %Service_Console

Caché Security Administration Guide 23

Configuring for Kerberos Authentication

• %Service_Terminal

To specify how to get credentials, the procedure is:

1. On the Services page (System Administration > Security > Services) and select the service from the Name column. This
displays the Edit Service page for the service.

2. On the Edit Service page, specify how to get credentials. Either select prompting (the Kerberos check box) or by using
a credentials cache (the Kerberos Credentials Cache check box). Do not mark both.

Click Save to use the settings.

Note: If you enable both Kerberos (prompting) and Kerberos credentials cache authentication for the service, then the
credentials cache authentication takes precedence. This is behavior specified by Kerberos, not Caché.

On Windows with a Domain Controller (the likely configuration for Windows), logging in establishes a Kerberos credentials
cache. On UNIX®, Linux, and MacOS, the typical default condition is to have no Kerberos credentials, so that Caché is
then configured to use Kerberos prompting; on these systems, the user can obtain credentials in either of the following
ways:

• Running kinit before invoking the Terminal

• Logging in to a system where the login process performs Kerberos authentication for the user

In these situations, Caché can be configured to use the credentials cache.

2.4.4.2 Obtaining Credentials for Client/Server Access Mode

For client/server access mode, the user’s credentials reside on the machine that hosts the client application. In this case,
the manner in which you specify how to obtain credentials varies according to how the client is connecting:

• ActiveX, Caché Direct, C++, ODBC, Perl, Python, and Telnet

• Java and JDBC

ActiveX, Caché Direct, C++, ODBC, Perl, Python, and Telnet
The underlying Caché code used by these connection tools assumes that end-users already have their credentials; no
prompting is necessary.

On Windows, every user logged on in the domain has a credentials cache.

On other operating systems, a user has a credentials cache if the operating system has performed Kerberos authentication
for the user, or if the user has explicitly run kinit. Otherwise, the user has no credentials in the cache and the connection
tool fails authentication.

Note: Not all connection tools are available on all operating systems.

Java and JDBC
When using Java and JDBC, there are two different implementations of Java available — either Sun or IBM. These have
several common behaviors and several differing behaviors.

Both implementations store information about a connection in properties of an instance of the java.util.Properties class.
These properties are:

• user — The name of the user who is connecting to the Caché server. This value is only set for certain connection
behaviors.

• password — That user’s password. This value is only set for certain connection behaviors.

24 Caché Security Administration Guide

Authentication

• service principal name — The Kerberos principal name for the Caché server. This value is set for all connection
behaviors.

• connection security level — The type of protection that Kerberos provides for this connection. 1 specifies that Kerberos
is used for authentication only; 2 specifies that Kerberos is used for authentication and to ensure the integrity of all
packets passed between client and server; and 3 specifies that Kerberos is used for authentication, packet integrity, and
to encrypt all messages. This value is set for all connection behaviors.

In the following discussions, the instance of the java.util.Properties class is referred to as the connection_properties object,
where the value of each of its properties is set with a call to the connection_properties.put method, such as

 String principalName = "MyCacheServer";
 connection_properties.put("service principal name",principalName);

For both implementations, credentials-related behavior is determined by the value of a parameter in the isclogin.conf file
(see “Setting Up a Java or JDBC Client for Use with Kerberos” for more information on this file).

There are two differences between the behavior of the two Java implementations:

• To specify credentials-related behavior, the parameter name to set in the isclogin.conf file differs for each implementation:

– For IBM, it is useDefaultCcache.

– For Sun, it is useTicketCache.

• There are different behaviors available on each implementation. These are described in the following sections.

Specifying Behavior on a Client Using the IBM Implementation

The options are:

• To use a credentials cache, set the value of the useDefaultCcache parameter to TRUE and do not set the values of the
user or password properties. Note that if no credentials cache is available, then an exception is thrown.

• To use a username and password that are passed in programmatically, set the value of the useDefaultCcache parameter
to FALSE and set the values of the user and password properties.

• To prompt for a username and password, set the value of the useDefaultCcache parameter to FALSE and do not set
the values of the user or password properties. Because these properties do not have values set, classes from libraries
supplied with Caché can be used to generate prompts for them.

Specifying Behavior on a Client Using the Sun Implementation

The options are:

• To exclusively use a username and password that are passed in programmatically, set the value of the useTicketCache
parameter to FALSE and set the values of the user and password properties.

• To exclusively prompt for a username and password, set the value of the useTicketCache parameter to FALSE and do
not set the values of the user or password properties. Because these properties do not have values set, classes from
libraries supplied with Caché can be used to generate prompts for them.

• To exclusively use a credentials cache, set the value of the useTicketCache parameter to TRUE. To prevent any further
action, set the values of the user and password properties to bogus values; this prevents prompting from occurring and
ensures the failure of any authentication attempt based on the properties’ values.

• To attempt to use a credentials cache and then fall through to using a username and password that are passed in pro-
grammatically, set the value of the useTicketCache parameter to TRUE and set the values of the user and password
properties. If there is no credentials cache, then the properties’ values are used.

Caché Security Administration Guide 25

Configuring for Kerberos Authentication

• To attempt to use a credentials cache and then fall through to prompting for a username and password, set the value
of the useTicketCache parameter to TRUE and do not set the values of the user or password properties. If there is no
credentials cache, then classes from libraries supplied with Caché can be used to generate prompts for them.

2.4.4.3 Obtaining Credentials for Web Access Mode

With a Web-based connection that uses Kerberos, there is always a username and password prompt. If these result in
authentication, the user’s credentials are placed in memory and then discarded when no longer needed.

2.4.5 Setting Up a Secure Channel for a Web Connection

To maximally secure a web connection, it is recommended that the two legs of communication — both between the browser
and the Web server and then between the CSP Gateway and Caché — use secure channels. This ensures that any information,
such as Kerberos usernames and passwords, be protected in transmission from one point to another. To secure each com-
munications channel, the procedure is:

• Between the Web browser and Web server

• Between the CSP Gateway and Caché

2.4.5.1 Securing the Connection between a Web Browser and Web Server

The typical means of securing a connection between a Web browser and a Web server is to use SSL (Secure Sockets Layer)
or TLS (Transport Layer Security), its successor. While Caché does not provide implementations of these technologies to
accomplish this, various third-party products provide this capability.

2.4.5.2 Setting Up a Kerberized Connection from the CSP Gateway to Caché

To set up a secure, encrypted channel between the CSP Gateway and the Caché server, you need a Kerberos principal that
represents the Gateway. This principal establishes an encrypted connection to Caché, and all information is transmitted
through the connection. This allows an end-user to authenticate to Caché and prevents any snooping during that process.

Note: For information on setting up a connection between the CSP Gateway and the Caché server that is protected by
SSL/TLS, see the “Configuring the CSP Gateway to Connect to Caché Using SSL/TLS” section of the “Using
SSL/TLS with Caché” chapter.

The procedure is:

1. Determine or choose the name of the Kerberos principal that represents the Gateway.

For Windows, this is the principal name representing the Gateway host’s network service session (that is, the name of
the machine hosting the Gateway with the “$” appended to it — machine_name$, , such as Athens$). For other plat-
forms, this is any valid principal name entered as the username in the Gateway configuration screen; this identifies the
appropriate key in the key table file.

2. Create a user in Caché with the same name as the Gateway’s Kerberos principal. To do this, follow the instructions in
the section “Creating a New User” in the “Users” chapter.

3. Give that user permissions to use, read, or write any required resources (these are also known as privileges). This is
done by associating those privileges with a role and then associating the user with the role.

4. Configure the %Service_CSP service. To do this, complete the fields described in the section “Service Properties”
in the “Services” chapter.

5. Configure the Gateway so that it can contact the server. The procedure is:

26 Caché Security Administration Guide

Authentication

a. From the Management Portal home page, go to the Web Gateway Management page (System Administration >
Configuration > CSP Gateway Management).

b. On the Web Gateway management page, there are a set of choices on the left. Under Configuration, click Server

Access. This displays the Server Access page.

c. On the Server Access page, you can add a new configuration or edit an existing one. To add a new configuration,
click the Add Server button; to edit an existing one, select it from the list on the left, select the Edit Server radio
button, and click Submit. This displays the page for editing or configuring server access parameters. In addition
to the general parameters on this page (described on its help screen), this page allows you to specify security-
related parameters for the Gateway. For Kerberos connections, these are:

• Connection Security Level — Choose the kind of protection that you would like Kerberos to attempt to provide
this connection. (Note that this must match or exceed the type of security specified for the CSP service in the
previous step.)

• User Name — The name of the Kerberos principal that represents the Gateway. (This must be the same prin-
cipal as was used in the first step of this process.)

• Password — Do not specify a value for this. (This field is used when configuring the Gateway for use with
Caché login.)

• Product — Caché or Ensemble, depending on which product you are using.

• Service Principal Name — The name of the principal that represents the Caché server. This is typically a
standard Kerberos principal name, of the form “cache/machine.domain”, where cache is a fixed string
indicating that the service is for Caché, machine is the machine name, and domain is the domain name, such
as “intersystems.com”.

• Key Table — When connecting to an instance of Caché on Windows, leave this field blank; for other operating
systems, provide the name of the keytab file containing the permanent key belonging to the CSP Gateway,
including the full path.

After entering all these values, click the Save Configuration button to save them.

The CSP service is now ready to configured. This means that it can now provide the necessary underlying infrastructure
to support a web application.

When creating a secured web application, the application developer needs to:

1. Choose an authentication method.

2. Configure the roles for the application.

3. If required, make sure the browser-to-Web server connection uses SSL.

2.5 Configuring for Operating-System–Based
Authentication
Operating-system–based authentication (sometimes called “OS-based authentication”) is only available for local processes,
namely:

• Callin (%Service_Callin)

• Console (%Service_Console)

Caché Security Administration Guide 27

Configuring for Operating-System–Based Authentication

• Terminal (%Service_Terminal)

To set up the use of this type of authentication, the procedure is:

1. On the Authentication/CSP Session Options page (System Administration > Security > System Security > Authentica-

tion/CSP Session Options), select Allow Operating System authentication.

2. On to the Services page (System Administration > Security > Services) and select the service from the Name column.
This displays the Edit Service page for the service.

3. On the Edit Service page, choose operating-system–based (the Operating System check box).

Click Save to use the settings.

This type of authentication requires no other configuration actions.

Note: On Windows, when logged in using a domain account, OS-based and Kerberos authentication are the same.

2.5.1 A Note on %Service_Console

Since the console (%Service_Console) is a Windows-based service and Windows domain logins typically use Kerberos,
console’s OS-based authentication provides authentication for local logins.

2.5.2 A Note on %Service_Callin

With callin (%Service_Callin), OS-based authentication is only available from an OS-level prompt. When using callin
programmatically, OS-based authentication is not supported — only unauthenticated access is available.

2.6 Configuring for Authentication with Caché Login
The services available for authentication with Caché login are:

• %Service_Binding

• %Service_CSP

• %Service_CacheDirect

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Telnet

• %Service_Terminal

For a service to use Caché login, you must configure it as follows:

1. On the Authentication/CSP Sessions Options page (System Administration > Security > System Security > Authentica-

tion/CSP Session Options), enable authentication with Caché login by selecting Allow Password authentication).

2. For the particular service, go to the Services page (System Administration > Security > Services) and select that service,
such as %Service_Bindings, in the Name column; this displays the Edit Service page for the service.

3. On this page, choose Caché login, listed simply as Password from the list of authentication types.

28 Caché Security Administration Guide

Authentication

4. Click Save to save this setting.

5. In addition to this basic procedure, certain services require further configuration. This is described in the following
sections:

• Web

• ODBC

• Telnet and Caché Direct

2.6.1 Web

For web access, you can optionally require that the CSP Gateway authenticate itself to the Caché server through Caché
login. To perform this configuration, the procedure is:

1. From the Management Portal home page, go to the Web Gateway Management page (System Administration > Config-

uration > CSP Gateway Management).

2. On the Web Gateway management page, there are a set of choices on the left. Under Configuration, click Server Access.
This displays the Server Access page.

3. On the Server Access page, you can add a new configuration or edit an existing one. To add a new configuration, click
the Add Server button; to edit an existing one, select it from the list on the left, select the Edit Server radio button, and
click Submit. This displays the page for editing or configuring server access parameters. In addition to the general
parameters on this page (described on its help screen), this page allows you to specify security-related parameters for
the Gateway. For Caché login connections, these are:

• Connection Security Level — Choose Password from the drop-down list to use Caché login.

• User Name — The user name under which the Gateway service runs (the installation process creates the CSPSystem
user for this purpose). This user (CSPSystem or any other) should have no expiration date; that is, its Expiration

Date property should have a value of 0.

• Password — The password associated with the user account just entered.

• Product — Caché or Ensemble, depending on which product you are using.

• Service Principal Name — Do not specify a value for this. (This field is used when configuring the Gateway for
use with Kerberos.)

• Key Table — Do not specify a value for this. (This field is used when configuring the Gateway for use with Ker-
beros.)

After entering all these values, click the Save Configuration button to save them.

It is important to remember that the authentication requirements for the Gateway are not directly related to those for an
application that uses the Gateway. For example, you can require Caché login as the authentication mechanism for a web
application, while configuring the Gateway to use Kerberos authentication — or no authentication at all. In fact, choosing
a particular authentication mechanism for the Gateway itself makes no technical requirement for the web application, and
vice versa. At the same time, some pairings are more likely to occur than others. If a web application uses Kerberos
authentication, then using any other form of authentication for the Gateway means that Kerberos authentication information
will be flowing through an unencrypted channel, thereby potentially reducing its effectiveness.

With a web application that uses Caché login, the username and password of the end-user are passed from the browser to
the Web server, which then hands them to the co-located CSP Gateway. Since the Gateway has its own connection to the
Caché server, it then passes the username and password to the Caché server. To establish its connection to the Caché server,
the Gateway uses the CSPSystem account, which is one of the Caché predefined accounts.

Caché Security Administration Guide 29

Configuring for Authentication with Caché Login

By default, all these transactions are unencrypted. You can use SSL to encrypt messages from the browser to the Web
server. You can use Kerberos to encrypt messages from the Gateway to the Caché server as described in the section “Setting
Up a Secure Channel for a CSP Connection”; if you are not using Kerberos, you may prefer to physically secure the con-
nection between the host machines, such as by co-locating the Gateway and Caché server machines in a locked area with
a direct physical connection between them.

2.6.2 ODBC

Caché supports Caché login for ODBC connections among all its supported platforms. This requires client-side configuration.
The ways of configuring client behavior vary by platform:

• On non-Windows platforms, use the Caché ODBC initialization file to specify name-value pairs that provide connection
information . This file is described generally in Using Caché ODBC. The file has the following variables relevant to
Caché login:

– Authentication Method — Specifies how the ODBC client authenticates to the DSN. 0 specifies Caché login; 1
specifies Kerberos.

– UID — Specifies the name for the default user account for connecting to the DSN. At runtime, depending on
application behavior, the end-user may be permitted to override this value with a different user account.

– Password — Specifies the password associated with the default user account. If the end-user has been permitted
to override the UID value, the application will accept a value for the newly specified user’s password.

• On a Windows client, you can specify connection information either through a GUI or programmatically:

– Through a GUI, there is an ODBC DSN configuration dialog. Caché provides options on the System DSN tab.
This screen has associated help that describes its fields. The path from the Windows Start menu to display this
screen varies by version of Windows; it may be listed in the Windows Control Panel, under Administrative Tools,
on the screen for Data Sources (ODBC).

– Programmatically, the SQLDriverConnect function is available, which accepts a set of name-value pairs.
SQLDriverConnect is a C call that is part of the ODBC API and is documented at the Microsoft Web site. Its
name-value pairs are the same as those for the initialization file available on non-Windows platforms, except that
the password is identified with the PWD keyword.

2.6.3 Telnet and Caché Direct

When establishing a connection using Caché Direct and the Caché Telnet server for Windows, the client uses configuration
information that has been stored as part of a Caché remote server. To configure a remote server, go to the client machine.
On that machine, the procedure is:

1. Click on the Caché cube and select Preferred Server from the menu (the Preferred Server choice also displays the name
of the current preferred server).

2. From the submenu that appears, choose Add/Edit.

3. To create a new remote server, click the Add button; to configure an already-existing server, choose the Caché server
to which you are connecting and click the Edit button.

4. This displays the Add Connection dialog. In the Authentication Method area on that dialog, click Password for Caché
login.

5. If you are editing the values for an already-existing server, there should be no need to change or add values for the
more general fields in this dialog, as they are determined by the server that you chose to edit.

30 Caché Security Administration Guide

Authentication

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/odbcsql/od_odbc_d_4x4k.asp

If you are adding a new server, the fields to complete are described in the section “Define a Remote Server Connection”
of the “Connecting to Remote Servers” chapter of the Caché System Administration Guide.

6. Click OK to save the specified values and dismiss the dialog.

Important: When connecting to a non-Windows machine using telnet, there is no Caché telnet server available — you
simply use the telnet server that comes with the operating system. Once you have established the connection
to the server machine, you can then connect to Caché using the %Service_Terminal service.

2.7 Configuring Two-Factor Authentication
In addition to the authentication mechanism in use, Caché supports the use of two-factor authentication. This means that
Caché authentication can require the end-user to possess two separate elements or “factors.” From the end-user’s perspective,
the first factor is something that you know — for example, a password; the second factor is something that you have —
for example, a smart phone. Caché performs two-factor authentication on its end-users using either of two mechanisms:

• SMS text authentication — Caché sends a security code to the end-user’s phone via SMS. The end-user enters that
code when prompted.

• Time-based one-time password (TOTP) — The end-user initially receives a secret key from Caché. That key is a shared
secret between Caché and the end-user’s application (such as an app on a mobile phone) or physical authentication
device; both use the key and other information to generate a TOTP that serves as a verification code and that the end-
user enters at a Caché prompt. The TOTP expires after 60 seconds and the end-user can only use it a single time, which
is why it is called time-based and one-time.

This section covers the following topics:

• Overview of Setting Up Two-Factor Authentication

• Configuring Two-Factor Authentication for the Server

• Enabling or Disabling Two-Factor Authentication for a Service

• Configuring Web Applications for Two-Factor Authentication

• Configuring an End-User for Two-Factor Authentication

• Configuring Bindings Clients for Two-Factor Authentication

2.7.1 Overview of Setting Up Two-Factor Authentication

The major steps to setting up two-factor authentication are:

1. Enable and configure two-factor authentication for the instance as a whole. You can configure the instance to use SMS
text authentication, TOTP authentication, or both. For details about TOTP authentication, see the “Two-Factor TOTP
Overview” section.

2. For SMS text authentication, configure the mobile phone service provider(s), if necessary. This includes:

• Adding any mobile phone service providers if any are required and are not included in the list of default providers.

• Changing configuration information as necessary for any existing providers (default or added).

3. Configure the service, as appropriate:

• %Service_Bindings — Enable two-factor authentication for the service and continue to the next step.

Caché Security Administration Guide 31

Configuring Two-Factor Authentication

• %Service_Console and %Service_Terminal — Simply enable two-factor authentication for the service.
This is all that is required.

• %Service_CSP — There is no central means of enabling two-factor authentication for %Service_CSP. Continue
to the next step.

You can enable either or both types of authentication for each service. For more information about services, see the
“Services” chapter.

4. Configure client/server applications and web applications, as appropriate:

a. For client/server applications (those that use %Service_Bindings), add the appropriate calls into the client
application to support it; this is a programming task that varies according to the client-side component in use (for
example, ODBC, JDBC, C++, Java, .NET, Python, or Perl).

Important: Two-factor authentication is designed to receive a response from a human end-user in real time.
If what the end-user considers a single session actually consists of multiple, sequential sessions,
then the repeated prompting for the second factor may result in an unexpectedly difficult user
experience. With client/server applications, the underlying protocol often causes clients to establish,
disconnect, and reestablish connections repeatedly; such activity makes the use of two-factor
authentication less desirable for this type of application.

b. For web applications (those that use %Service_CSP), configure each application to support it.

Note: For the Caché Terminal, which uses the %Service_Console service on Windows and the
%Service_Terminal service on other operating systems, there is no configuration required other than
server-side setup; since Caché controls the prompting in these, it simply follows the standard prompt
(regardless of the authentication mechanism) with the two-factor authentication prompt and processes end-
user input accordingly.

5. If you are using delegated authentication, modify the ZAUTHENTICATE.mac routine as required. See “Using
Delegated Authentication” for more information.

6. Configure each end-user to enable SMS text authentication or TOTP authentication. An end-user can be configured
to use both mechanisms, but cannot have both mechanisms enabled simultaneously.

2.7.1.1 Two-Factor TOTP Overview

Two-factor authentication using a time-based one-time password (TOTP) authentication works as follows:

1. As a requirement, each end-user must have either an authentication device or an application that generates such pass-
words. For example, end-users can use one of the following apps for mobile phones:

• Google Authenticator, for Android, BlackBerry, or iPhone

• Duo Mobile, for Android or iPhone

• Amazon AWS MFA, for Android

• Authenticator, for Windows Phone 7

2. When you configure an end-user for two-factor TOTP authentication, the system generates a secret key, which is dis-
played as a base-32 encoded randomized bit string. Caché and the end-user share this secret key (which is why it is
known as a shared secret). Both Caché and the end-user’s authentication device or application use it to generate the
TOTP itself, which serves as a verification code. The TOTP, which the end-user enters into a Verification code field
or prompt, is a string of six digits, and a new one is generated at a regular interval (thirty seconds, by default).

32 Caché Security Administration Guide

Authentication

http://support.google.com/accounts/bin/answer.py?hl=en&answer=1066447
http://guide.duosecurity.com/third-party-accounts
http://www.amazon.com/gp/product/B0061MU68M
http://www.windowsphone.com/en-US/apps/021dd79f-0598-e011-986b-78e7d1fa76f8

3. At login time, after the end-user provides Caché with a password, Caché then additionally prompts for the TOTP. The
end-user provides the TOTP, and then completes the login process.

The end-user can get the secret key from Caché in several ways:

• When you configure the end-user’s account to support two-factor TOTP authentication, the Edit User page for the end-
user displays the end-user’s secret key, as well as the name of the issuer and the end-user’s account name. It also displays
a QR code that includes all this information (a QR code is a machine-readable code such as the one pictured below).
The end-user can then enter the information into an authentication device or an application by scanning the code or
entering the information manually.

• If you choose to show the end-user their secret key during the login to a web application or the Terminal session (using
%Service_Console or %Service_Terminal), you can enable this behavior by selecting the Display Time-Based

One-time Password QR Code on next login field on the Edit User page. The Terminal session will then display the end-
user’s issuer, account, and secret key. A web application will display the end-user’s issuer, account, and secret key,
along with a QR code; here, the end-user can then scan the code or enter the information manually.

Important: InterSystems does not recommend this option. See the following caution for more details.

CAUTION: The following are critical security concerns when using two-factor TOTP authentication:

• Do not transmit the secret key or QR code in an unsecured environment. Out-of-band transmission is
preferable to transmission even on a secure network. (The secret key gives an end-user the means to
log into Caché or a Caché application. If you and your end-users do not ensure the secret key’s safety,
then an attacker may gain access to it, which renders it useless for security.)

• When configuring two-factor TOTP authentication for your organization, InterSystems strongly rec-
ommends that you provide the secret key to each end-user in person or by phone, or that you have the
end-user scan the QR code in the physical presence of an administrator. This provides the opportunity
to authenticate the individual who obtains the secret key.

Delivering the secret key over the network increases the possibility of exposing it. This includes dis-
playing the secret key to the end-user when they first log into a web application, console, or the Ter-
minal; this also includes displaying the QR code to the end-user when they first log into a web appli-
cation.

Figure 2–3: A TOTP Issuer, Account, Key, and QR Code

Caché Security Administration Guide 33

Configuring Two-Factor Authentication

Note: If you are using two-factor TOTP authentication and wish to generate QR codes, Java 1.7 or higher must be running
on the Caché server. Without Java, Caché can use two-factor TOTP authentication, but the end-user enters the
values for the issuer, account, and key manually on the authentication device or in the application.

2.7.2 Configuring Two-Factor Authentication for the Server

The steps in configuring two-factor authentication for the Caché server are:

1. Enable and configure two-factor authentication for the instance as a whole. You can configure the instance to use SMS
text authentication, TOTP authentication, or both.

2. For SMS text authentication, configure the mobile phone service provider(s), if necessary. This includes:

• Adding any mobile phone service providers if any are required and are not included in the list of default providers.

• Changing configuration information as necessary for any existing providers (default or added).

2.7.2.1 Enabling and Configuring Two-Factor Authentication Settings for an Instance

When setting up two-factor authentication for a Caché instance (server), you can enable one or both of:

• Two-factor time-based one-time password authentication (TOTP authentication)

• Two-factor SMS text authentication

To enable either form of two-factor authentication, the procedure is:

1. From the Management Portal home page, go to the Authentication/CSP Session Options page (System Administration

> Security > System Security > Authentication/CSP Session Options).

2. To enable two-factor TOTP authentication, on the Authentication/CSP Session Options page, select the Allow Two-

Factor Time-Based One-Time Password Authentication check box. This displays the Two-Factor Time-Based One-Time

Password Issuer field; here, enter a string to identify this instance of Caché.

3. To enable two-factor SMS text authentication, on the Authentication/CSP Session Options page, select the Allow Two-

Factor SMS Text Authentication check box. This displays the following fields:

• Two-Factor Timeout (secs) — Optional timeout in seconds for entering the one-time security token.

• DNS name of SMTP server — The DNS (Domain Name Service) name of the SMTP (Simple Mail Transfer Protocol)
server that this instance of Caché is using to send SMS text messages, such as smtp.example.com (required).

• From (address) — Address to appear in the “From” field of message (required).

• SMTP username — Optional username for SMTP authentication (if the SMTP server requires it).

• SMTP Password and SMTP Password (confirm) — Optional password (entered and confirmed) for SMTP authen-
tication (if the SMTP server requires it).

4. Click Save.

5. If the instance is supporting SMS text authentication, configure mobile phone service providers as required. These
procedures are described in the next section.

After completing this process for the instance itself, you may need to perform other configuration, such as for the instance’s
services, web applications, and client/server applications; you will need to configure the instance’s users. “The Overview
of Setting Up Two-Factor Authentication” provides general direction about this.

34 Caché Security Administration Guide

Authentication

2.7.2.2 Configuring Mobile Phone Service Providers

The topics related to configuring mobile phone service providers are:

• Creating or Editing a Mobile Phone Service Provider

• Deleting a Mobile Phone Service Provider

• Predefined Mobile Phone Service Providers

Creating or Editing a Mobile Phone Service Provider
To create or edit a mobile phone service provider, the procedure is:

1. From the Management Portal home page, go to the Mobile Phone Service Providers page (System Administration >
Security > Mobile Phone):

• To create a new provider, click Create New Provider.

• To edit an existing provider, click Edit on the provider’s row in the table of providers.

This displays the Edit Phone Provider page for the selected mobile phone service provider.

2. On the Edit Phone Provider page, enter or change the value for each of the following fields:

• Service Provider — The name of the mobile phone service provider (typically, its company name).

• SMS Gateway — The address of the server that the mobile phone service provider uses to dispatch SMS (short
message service) messages.

Deleting a Mobile Phone Service Provider
To delete a mobile phone service provider, the procedure is:

1. From the Management Portal home page, go to the Mobile Phone Service Providers page (System Administration >
Security > Mobile Phone).

2. On the Mobile Phone Service Providers page, in the row of the provider, click Delete.

3. When prompted to confirm the deletion, click OK.

Predefined Mobile Phone Service Providers
Caché ships with a predefined list of mobile phone service providers, each with its SMS (short message service) gateway
preset. These are:

• AT&T Wireless — txt.att.net

• Alltel — message.alltel.com

• Cellular One — mobile.celloneusa.com

• Nextel — messaging.nextel.com

• Sprint PCS — messaging.sprintpcs.com

• T-Mobile — tmomail.net

• Verizon — vtext.com

Caché Security Administration Guide 35

Configuring Two-Factor Authentication

2.7.3 Enabling or Disabling Two-Factor Authentication for a Service

Important: For %Service_CSP, there is no central location for enabling or disabling two-factor authentication. Enable
or disable it for each application as described in “Configuring Web Applications for Two-factor Authen-
tication.”

To enable or disable two-factor authentication for %Service_Bindings, %Service_Console, and %Service
_Terminal, procedure is:

1. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

2. On the Services page, click the name of the service for which you wish to enable either form of two-factor authentication.
This displays the Edit Service page for the service.

3. On the service’s Edit Service page, select or clear the Two-factor SMS check box, Two-factor Time-based One-time

Password check box, or both. Note that each of these check boxes only appear if two-factor authentication is enabled
for the instance.

4. Click Save.

2.7.4 Configuring Web Applications for Two-Factor Authentication

Once you have enabled two-factor authentication for an instance, you must enable it for all web applications that will use
it. The procedure to enable it for an application is:

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. On the Web Applications page, for the application you wish to enable two-factor authentication, click the name of the
application, which displays its Edit page.

3. On the Edit page, in the Security Settings section of the page, select or clear the Two-factor SMS check box, Two-factor

Time-based One-time Password check box, or both. Note that each of these check boxes only appear if two-factor
authentication is enabled for the instance.

For general information about the Edit Web Application page, see the “CSP Application Options” section of the “CSP
Architecture” chapter of the Using Caché Server Pages (CSP) book.

Note: A web application cannot simultaneously support both two-factor authentication and web services.

2.7.5 Configuring an End-User for Two-Factor Authentication

To configure an end-user to receive a one-time security token for two-factor authentication, the procedure is:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users):

2. For an existing user, click the name of the user to edit; for a new user, begin creating the user by clicking Create New

User (for details about creating a new user, see the “Creating a New User” section of the “Users” chapter). Either of
these actions displays the Edit page for the end-user.

3. On the Edit User page, select SMS text enabled or Time-based One-time Password enabled, as appropriate.

4. If you select SMS Text, you must complete the following fields:

• Mobile phone service provider — The company that provides mobile phone service for the user. Either select a
provider from those listed or, if the provider does not appear in the list, click Create new provider to add a new
provider for the Caché instance. (Clicking Create a new provider displays the Create a New Mobile Phone Provider

36 Caché Security Administration Guide

Authentication

window, which has fields for the Service Provider and the SMS Gateway, the purpose of which are identical to
those described in the section Creating or Editing a Mobile Phone Service Provider.)

• Mobile phone number — The user’s mobile phone number. This is the second factor, and is where the user receives
the text message containing the one-time security token.

5. If you select Time-based One-time Password enabled, the page displays the following fields and information:

• Display Time-Based One-time Password QR Code on next login — Whether or not to display a QR code when the
user next logs in. If selected, Caché displays the code at the next login and prompts the user to scan it into the
authentication device or application, and then to provide the displayed token to complete the authentication process.
By default, this option is not selected. InterSystems recommends that you do not use this option.

• Generate a new Time-based One-time Password Key — Creates and displays both a new shared secret for the end-
user and a new QR code.

Important: If you generate a new time-based one-time password key for a user, the current key in the user’s
authenticator application will no longer work. Before logging in, the user must enter the new key
into the authenticator, either by scanning the QR code or by manually entering it. (This does not
affect existing sessions.)

• Issuer — The identifier for the Caché instance, which you established when configuring two-factor TOTP
authentication for the instance.

• Account — The identifier for the Caché account, which is the account’s username.

• Base-32 Time-Based One-Time Password (OTP) Key — The secret key that the end-user enters into the authentication
device or application.

• QR Code — A scannable code that contains the values of the issuer, account, and secret key.

6. Click Save to save these values for the user.

If a service uses two-factor authentication and an end-user has two-factor authentication enabled, then authentication
requires:

• For SMS text authentication, a mobile phone that is able to receive text messages on that phone.

• For TOTP authentication, an application or authentication device that can generate verification codes.

Otherwise, the end-user cannot authenticate:

• For SMS text authentication, the end-user must have a mobile phone and be able to receive text messages on that
phone. This is the phone number at which the user receives a text message containing the one-time security token as
an SMS text.

• For TOTP authentication, the user must have an authentication device or application that can either scan a QR code
or that can accept the secret key and other information required to generate each TOTP (which serves as a verification
code).

2.7.6 Configuring Bindings Clients for Two-Factor Authentication

Client/server connections use %Service_Bindings. For these connections, the code required to use two-factor authenti-
cation varies by programming language. (Note that Console, the Terminal, and web applications do not require any client-
side configuration.) Supported languages include:

• C++

• Java and JDBC

Caché Security Administration Guide 37

Configuring Two-Factor Authentication

• .NET

• ODBC

• Perl

• Python

Client-side code performs three operations:

1. After establishing a connection to the Caché server, it checks if two-factor authentication is enabled on the server.
Typically, this uses a method of the client’s connection object.

2. It gets the one-time security token from the user. This generally involves user-interface code that is not specifically
related to Caché.

3. It provides the one-time security token to the Caché server. This also typically uses a connection object method.

Note: When a user logs in through %Service_Bindings, Caché does not present a QR code to scan. The user must
have previously set up the authentication device or application.

Important: Studio, which connects to the Caché server using %Service_Bindings, does not support two-factor
authentication.

2.7.6.1 C++

With C++, support for two-factor authentication uses two methods of the tcp_conn class:

• bool tcp_conn::is_two_factor_enabled()

This method checks if two-factor authentication is enabled on the server. It returns a boolean; true means that two-
factor authentication is enabled.

• bool tcp_conn::send_two_factor_token(const wchar_t* token, Conn_err* err)

This method provides the two-factor authentication token to the server. It returns a boolean; true means that the user
has been authenticated. It takes two arguments:

– token, the two-factor authentication token that the user has received. Note that the client application is responsible
for obtaining the value of the token from the user.

– err, an error that the method throws if the user does not successfully authenticate.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails. Note that the sample code here
assumes that the application code has stored the one-time security token in a variable of type std::string; it then uses
the c_str method of the string class to extract the one-time security token as a null-terminated string to pass to the
server.

38 Caché Security Administration Guide

Authentication

// Given a connection called "conn"
if (conn->is_two_factor_enabled()) {
 // Prompt the user for the one-time security token.
 // Store the token in the "token" variable of type std::string.
 Conn_err err;
 if (!conn->send_two_factor_token(token.c_str(), &err;))
 // Process the error from a invalid authentication token here.
}

Note: The light C++ binding does not support two-factor authentication.

2.7.6.2 Java and JDBC

With Java, support for two-factor authentication uses two methods of the CacheConnection class:

• public boolean isTwoFactorEnabled() throws Exception

This method checks if two-factor authentication is enabled on the server. It returns a boolean; true means that two-
factor authentication is enabled.

• public void sendTwoFactorToken(String token) throws Exception

This method provides the one-time security token to the server. It takes one argument, token, the one-time security
token that the user has received.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

// Given a connection called "conn"
if (conn.isTwoFactorEnabled()) {
 // Prompt the user for the two-factor authentication token.
 // Store the token in the "token" variable.
 try {
 conn.sendTwoFactorToken(token);
 }
 catch (Exception ex) {
 // Process the error from a invalid authentication token here.
 }
}

2.7.6.3 .NET

For .NET, Caché supports connections with two-factor authentication with the managed provider and with ADO.NET.
Support for two-factor authentication uses two methods of the tcp_conn class:

• bool CacheConnection.isTwoFactorEnabledOpen()

This method opens a connection to the Caché server and checks if two-factor authentication is enabled there. It returns
a boolean; true means that two-factor authentication is enabled.

• void CacheConnection.sendTwoFactorToken(token)

This method provides the one-time security token to the server. It has no return value. It takes one argument, token,
the one-time security token that the user has received. If there is a problem with either the token (such as if it is not
valid) or the connection, then the method throws an exception.

Caché Security Administration Guide 39

Configuring Two-Factor Authentication

Important: A client application makes a call to isTwoFactorEnabledOpen instead of a call to CacheConnection.Open.
The isTwoFactorEnabledOpen method requires a subsequent call to sendTwoFactorToken.

Also, if two-factor authentication is enabled on the server and the client code does not implement two-
factor authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails.

// Given a connection called "conn"
try {
 if (conn.isTwoFactorEnabledOpen()) {
 // Prompt the user for the two-factor authentication token.
 // Store the token in the "token" variable.
 conn.sendTwoFactorToken(token);
 }
}
catch (Exception ex) {
 // Process exception
}

2.7.6.4 ODBC

With ODBC, support for two-factor authentication uses two standard ODBC function calls (which are documented in the
Microsoft ODBC API Reference):

• SQLRETURN rc = SQLGetConnectAttr(conn, 1002, &attr, sizeof(attr), &stringLengthPtr);

The SQLGetConnectAttr function, part of the Microsoft ODBC API, returns the current value of a specified connection
attribute. The Caché ODBC client uses this function to determine if the server supports two-factor authentication. The
value of the first argument is a handle to the connection from the client to the server; the value of the second argument
is 1002, the ODBC attribute that specifies whether or not two-factor authentication is supported; the values of the
subsequent arguments are for the string containing the value of attribute 1002, as well as relevant variable sizes.

• SQLRETURN rc = SQLSetConnectAttr(conn, 1002, unicodeToken, SQL_NTS);

The SQLSetConnectAttr function, also part of the Microsoft ODBC API, sets the value of a specified connection
attribute. The Caché ODBC client uses this function to send the value of the two-factor authentication token to the
server. The values of the four arguments are, respectively:

– The connection from the client to the server.

– 1002, the ODBC attribute that specifies whether or not two-factor authentication is supported.

– The value of the one-time security token.

– SQLNTS, which indicates that the one-time security token is stored in a string.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses SQLGetConnectAttr to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server with the SQLSetConnectAttr call and performs error processing if this
fails. If SQLSetConnectAttr fails, the server drops the connection, so you need to reestablish the connection before
you can attempt authentication again.

40 Caché Security Administration Guide

Authentication

http://msdn.microsoft.com/en-us/library/ms714562(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms710297(VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms713605(VS.85).aspx

// Given a connection called "conn"
SQLINTEGER stringLengthPtr;
SQLINTEGER attr;
SQLRETURN rc = SQLGetConnectAttr(conn, 1002, &attr, sizeof(attr), &stringLengthPtr);
if attr {
 // Prompt the user for the two-factor authentication token.
 wstring token;
 SQLRETURN rc = SQLSetConnectAttr(conn, 1002, token, SQL_NTS);
 if !rc {
 // Process the error from a invalid authentication token.
 }
}

2.7.6.5 Perl

With Perl, support for two-factor authentication uses two methods of the Intersys::PERLBIND::Connection class:

• is_two_factor_enabled()

This method checks if two-factor authentication is enabled on the server. It returns a integer; 1 means that two-factor
authentication is enabled and 0 means that it is disabled.

• send_two_factor_token($token)

This method provides the two-factor authentication token to the server. It returns a integer; 1 indicates success and 0
indicates failure. Its argument, $token, is the two-factor authentication token that the user has received and then entered
at the client prompt. Note that the client application is responsible for obtaining the value of the token from the user.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails.

// Given a connection called "conn"
if ($conn->is_two_factor_enabled()) {
 # Prompt the user for the one-time security token.
 # Store the token in the "token" variable of type std::string.
 if (!$conn->send_two_factor_token($token)) {
 # Process the error from a invalid authentication token here.
 } else {
 # two-factor authentication succeeded
}
else {
 # Handle if two-factor authentication is not enabled on the server.
}

Caché comes with sample programs that demonstrate two-factor authentication with Perl. These programs are in the
install-dir\dev\perl\ directory, and are samples\two_factor.pl. For more information on Perl sample programs for use with
Caché, see the “Sample Programs” section of the “Caché Perl Binding” chapter of Using Perl with Caché.

2.7.6.6 Python

With Python, support for two-factor authentication uses two methods of the intersys.pythonbind.connection class:

• is_two_factor_enabled()

This method checks if two-factor authentication is enabled on the server. It returns a boolean; true means that two-
factor authentication is enabled.

• send_two_factor_token(token)

Caché Security Administration Guide 41

Configuring Two-Factor Authentication

This method provides the two-factor authentication token to the server. It returns a boolean; true means that the user
has been authenticated. It takes one argument, token, the two-factor authentication token that the user has received.
Note that the client application is responsible for obtaining the value of the token from the user.

Note: Python leaves carriage returns in input. This means that, when processing the one-time security token, it is
necessary to strip any carriage returns out of it.

Important: If two-factor authentication is enabled on the server and the client code does not implement two-factor
authentication calls, then the server will drop the connection with the client.

The following example uses an instance of a connection called conn:

1. It uses that instance’s methods to check if two-factor authentication is enabled.

2. It attempts to provide the token to the server and performs error processing if this fails.

// Given a connection called "conn"
if conn.is_two_factor_enabled():
 # Prompt the user for the one-time security token.
 # Store the token in the "token" variable of type std::string.
 # Make sure that the carriage returns are stripped from the string.
 if !conn.send_two_factor_token(token):
 # Process the error from a invalid authentication token here.
 else:
 # two-factor authentication succeeded
else:
 # Handle if two-factor authentication is not enabled on the server.

Caché comes with sample programs that demonstrate two-factor authentication with Python. These programs are in the
install-dir\dev\Python\ directory; they are samples\two_factor.py for Python 2.6 and samples3\two_factor.py for Python 3.0.
For more information on Python sample programs for use with Caché, see the “Sample Programs” section of the “Caché
Python Binding” chapter of Using Python with Caché.

2.8 Other Topics
Areas covered in this section are:

• System Variables and Authentication

• Using Multiple Authentication Mechanisms

• Cascading Authentication

• Establishing Connections with the UnknownUser Account

• Programmatic Logins

• The JOB Command and Establishing a New User Identity

2.8.1 System Variables and Authentication

After authentication, two variables have values:

• $USERNAME contains the username

• $ROLES contains a comma-delimited list of the roles held by the user

42 Caché Security Administration Guide

Authentication

The $ROLES variable allows you to manage roles programmatically. For more information on this, see the section “Pro-
grammatically Managing Roles” in the “Roles” chapter.

2.8.2 Using Multiple Authentication Mechanisms

The one situation in which InterSystems recommends the use of multiple authentication mechanisms is when moving from
a less rigorous mechanism to a more rigorous one. For example, if an instance has been using no authentication and plans
to make a transition to Kerberos, the following scenario might occur:

1. For the transition period, configure all supported services to allow both unauthenticated and Kerberos-authenticated
access. Users can then connect using either mechanism.

2. If appropriate, install new client software (which uses Kerberos for authentication).

3. Once the list of Caché users has been synchronized with that in the Kerberos database, shut off unauthenticated access
for all services.

The use of multiple authentication mechanisms is often in conjunction with cascading authentication, described in the next
section.

2.8.3 Cascading Authentication

While Caché supports for a number of different authentication mechanisms, InterSystems recommends that you do not use
any other password-based authentication mechanism along with Kerberos. Also, there are limited sets of circumstances
when it is advisable for an instance to have multiple authentication mechanisms in use.

If a service supports multiple authentication mechanisms, Caché uses what is called “cascading authentication” to manage
user access. With cascading authentication, Caché attempts to authenticate users via the specified mechanisms in the fol-
lowing order:

• Kerberos cache (includes Kerberos with or without integrity-checking or encryption)

• OS-based

• LDAP (with checking the LDAP credentials cache second)

• Delegated

• Caché login

• Unauthenticated

Note: If a service specifies Kerberos prompting and this fails, there is no cascading authentication. If a service specifies
both Kerberos prompting and Kerberos cache, then Caché uses Kerberos cache only.

For example, if a service supports authentication through:

1. Kerberos cache

2. OS-based

3. Unauthenticated

If a user attempts to connect to Caché, then there is a check if the user has a Kerberos ticket-granting ticket; if there is such
a ticket, there is an attempt to obtain a service ticket for Caché. If this succeeds, the user gets in. If either there is no initial
TGT or a Caché service cannot be obtained, authentication fails and, so, cascades downward.

If the user has an OS-based identity that is in the Caché list of users, then the user gets in. If the user’s OS-based identity
is not in the Caché list of users, then authentication fails and cascades downward again.

Caché Security Administration Guide 43

Other Topics

When the final option in cascading authentication is unauthenticated access, then all users who reach this level gain access
to Caché.

Note: If an instance supports cascading authentication and a user is authenticated with the second or subsequent
authentication mechanism, then there have been login failures with any mechanisms attempted prior to the suc-
cessful one. If the %System/%Login/LoginFailure audit event is enabled, these login failures will appear in the
instance’s audit log.

2.8.4 Establishing Connections with the UnknownUser Account

If Caché login and unauthenticated mode are both enabled, then a user can simply press Enter at the Username and Password

prompts to connect to the service in unauthenticated mode, using the UnknownUser account. If only Caché login is enabled,
then pressing Enter at the Username and Password prompts denies access to the service; Caché treats this as a user
attempting to log in as the UnknownUser account and providing the wrong password.

2.8.5 Programmatic Logins

In some situations, it may be necessary for a user to log in after execution of an application has begun. For example, an
application may offer some functionality for unauthenticated users and later request the user to log in before some protected
functionality is provided.

An application can call the Caché log in functionality through the Login method of the $SYSTEM.Security class with the
following syntax:

 set success = $SYSTEM.Security.Login(username,password)

where

• success is a boolean where 1 indicates success and 0 indicates failure

• username is a string holding the name of the account logging in

• password is a string holding the password for the username account

If the username and password are valid and the user account is enabled and its expiration date has not been reached, then
the user is logged in, $USERNAME and $ROLES are updated accordingly, and the function returns 1. Otherwise,
$USERNAME and $ROLES are unchanged and the function returns 0.

No checking of privileges occurs as a result of executing $SYSTEM.Security.Login. As a result, it is possible that the
process has lost privileges that were previously held.

There is also a one-argument form of $SYSTEM.Security.Login:

 set success = $SYSTEM.Security.Login(username)

It behaves exactly the same as the two-argument form except that no password checking is performed. The single-argument
form of $SYSTEM.Security.Login is useful when applications have performed their own authentication and want to set
the Caché user identity accordingly. It can also be used in situations where a process is executing on behalf of a specific
user but is not started by that user.

Note: The single-argument Login method is a restricted system capability as described in the section “Special Capabil-
ities” in the “Resources” chapter.

44 Caché Security Administration Guide

Authentication

2.8.6 The JOB Command and Establishing a New User Identity

When a process is created using the JOB command, it inherits the security characteristics (that is, the values of $USERNAME
and $ROLES) of the process that created it. Note that all roles held by the parent process, User as well as Added, are
inherited.

In some cases, it is desirable for the newly created process to have $USERNAME and $ROLES values that are different
from its parent’s values. For example, a task manager might be created to start certain tasks at certain times on behalf of
certain users. While the task manager itself would likely have significant privileges, the tasks should run with the privileges
of the users on whose behalf they are executing, not with the task manager’s privileges.

The following pseudocode illustrates how this can be done:

WHILE ConditionToTest {
 IF SomeThingToStart {
 DO Start(Routine, User)
 }
}

Start(Routine, User) {
 NEW $ROLES // Preserve $USERNAME and $ROLES

 // Try to change username and roles
 IF $SYSTEM.Security.Login(User) {
 JOB ...
 QUIT $TEST
 }
 QUIT 0 // Login call failed
}

Caché Security Administration Guide 45

Other Topics

3
Assets and Resources

Once a user has authenticated, the available resources are determined by the authorization facilities in Caché security.
Authorization protects Caché components from inappropriate use, and involves the following concepts:

1. An asset is something that is protected. For instance, a Caché database is an asset, the ability to connect to Caché using
SQL is an asset, and the ability to perform a backup is an asset.

2. Assets are protected via resources. Sometimes there is a one-to-one correspondence between assets and resources, that
is a single asset (such as a database) is protected by one resource. In other cases, multiple assets are protected by a
single resource, in order to simplify security management. For instance, a variety of system management functions are
protected by a single resource.

3. A privilege grants permission to do something with one or more assets protected by a resource, such as being able to
read the orders database. A privilege is written as a resource name followed by a permission separated by a colon,
such as:

%DB_Sales:Read

For more information on privileges, see the chapter “Privileges and Permissions.”

Caché includes a set of resources for assets that it protects — that is, to which it provides access for users based on the
rights that they hold. You can also define your own resources.

This chapter addresses issues related to resources and the assets that they protect. Topics include:

• About Resources

• System Resources

• Database Resources

• Application Resources

• Creating or Editing a Resource

• Using Custom Resources with the Management Portal

3.1 About Resources
There are multiple resource types:

• System Resources — For controlling the ability to perform various actions for a Caché instance. For more information
on these resources, see the “System Resources” section of this chapter.

Caché Security Administration Guide 47

These resources are %Admin_Journal, %Admin_Manage, %Admin_Operate, %Admin_Secure, %Admin_Task,
%Development, and %System_Callout.

• Database Resources — For controlling read and write access to Caché databases. For more information on these
resources, see the “Database Resources” section of this chapter.

The database resources for a newly installed Caché instance are %DB_CACHE, %DB_CACHEAUDIT, %DB_CACHELIB,
%DB_CACHESYS, %DB_CACHETEMP, %DB_DOCBOOK, %DB_SAMPLES, %DB_USER, and %DB_%DEFAULT.

• Service Resources — For controlling the ability to connect to Caché using various Caché connection technologies.
For more information on these resources and the functionality that they control, see the chapter “Services.”

Not all services have associated privileges — only those services for which Caché provides user-based access; other
services, such as database shadowing, are not user-based and, as a result, do not have associated security resources.
For more information on managing services, see the chapter “Services.”

The service resources are %Service_CSP, %Service_CacheDirect, %Service_Callin, %Service_ComPort,
%Service_Console, %Service_Login, %Service_Object, %Service_SQL, %Service_Telnet, and
%Service_Terminal.

• DeepSee Resources — For controlling the ability to use various aspects of DeepSee. For more information on these
resources, see the “Setting Up Security” chapter in the DeepSee II Implementation Guide.

• Application Resources — Either for controlling the whole of a user-defined application or for perform authorization
checks anywhere in user code. For information on these resources generally, see the “Application Resources” section
of this chapter. For information on creating these resources, see the “Creating or Editing a Resource” section of this
chapter.

3.2 System Resources
Caché comes with a set of built-in resources that govern actions in relation to the installed Caché instance. (These were
formerly known collectively as the administrative and development resources.) System resources include:

• Administrative Resources

• The %Development Resource

• The %System_Callout Resource

• The %Secure_Break Resource

System resources also include the resources associated with resource-based services. For more details on services, see the
“Services” chapter.

3.2.1 Administrative Resources

If you receive privileges involving an administrative resource, then you can perform designated Caché systems administration
tasks. Their associated permission is Use — Read and Write are not relevant for them.

%Admin_Journal

Having the Use permission on this resource allows users to set and clear the no-journaling process flag via the
DISABLE^%SYS.NOJRN and ENABLE^%SYS.NOJRN entry points, respectively, in programmer mode in
the Terminal. This resource allows you to establish users who can perform this action without having to give them
the Use permission on the %Admin_Manage resource, which might give them more privileges than necessary or
desired.

48 Caché Security Administration Guide

Assets and Resources

%Admin_Manage

Most visibly, this resource controls access to various pages in the Management Portal. Specifically, it controls the
ability to:

• Create, modify, and delete Caché configurations.

• Create, modify, and delete backup definitions.

• Add databases, modify database characteristics, and delete databases.

• Modify namespace map.

• Perform database and journal restores.

• Set and clear the no-journaling process flag via the ENABLE^%SYS.NOJRN and DISABLE^%SYS.NOJRN
entry points, respectively, in programmer mode in the Terminal. Note that if you wish for a user to be able to
perform this task without other managerial privileges, use the %Admin_Journal resource.

%Admin_Operate

Most visibly, this resource controls access to various pages in the Management Portal. Specifically, it controls the
ability to:

• Start and stop Caché.

• Examine and terminate processes.

• Mount and dismount databases.

• Perform integrity checks.

• Start, stop, and switch journals.

• Perform database backups.

• Examine and delete locks.

• Examine logs.

• Start and stop services.

The %Admin_Operate:Use privilege is required to mount a database, either explicitly (such as when using a
Caché utility) or implicitly (such as when making a global reference to an un-mounted database).

%Admin_Secure

Most visibly, this resource controls access to various pages in the Management Portal. Specifically, it controls the
ability to:

• Create, modify, delete users.

• Create, modify, delete roles.

• Create, modify, delete application definitions and application resources.

• Modify audit settings.

• Modify services.

%Admin_Tasks

Most visibly, this resource controls the ability to create, modify, or run a task, such as through the Management
Portal’s Task Manager (System Operation > Task Manager).

Caché Security Administration Guide 49

System Resources

Note that users holding privileges on %Admin_* resources can carry out administrative functions without having any
database privileges (%DB_<database-name>:R/W). For example, a user (presumably a system operator) holding the
%Admin_Operate:Use privilege can perform backups without holding privileges on any of the databases being backed
up. This is as it should be, since there is no reason for an operator to have access to the contents of databases other than
through applications such as the Caché database backup system.

3.2.2 The %Development Resource

The %Development resource controls access to Caché development facilities and various pages in the Management Portal.
Specifically, it controls the ability to:

• Enter direct mode.

• Use Studio. The %Development:Use privilege is checked whenever the Studio connects to a server.

• Use the global, routine, class, table, or SQL capabilities of the Caché system manager utility. (This privilege is also
required to call any APIs that provide programmatic access to this functionality.)

• Use the debugging facilities of Caché, including the BREAK and ZBREAK commands and the debug option of the
process display in the Caché system manager utility.

The %Development:Use privilege works in conjunction with database privileges to control developer access to Caché
as follows:

• For Studio, the %Development:Use privilege is checked whenever the Studio connects to a server. In order to connect,
the user must have the %Development:Use privilege for the server and be able to read the default global database
for the namespace (that is, have the %DB_<database-name>:R privilege for it). In order to open a routine, class or
other definition, the user must have the Read privilege for the database in which it is stored (which may or may not be
the default routine database). In order to compile or save a definition, the user must have the Write privilege for that
database.

• For the global, routine, or class capabilities of the Caché system manager utility, the user must have the Read or Write
privileges for the database to access or modify globals.

• For the SQL capabilities of the Caché system manager utility, the user must have the appropriate SQL privileges for
the tables, views, stored procedures, or other SQL assets. If you have some form of SQL access to a table in a database,
you are also granted Read or Write access to that database.

To debug a Caché application, you need no specific database privileges. If you hold the %Development:Use privilege
for the system, you can set a breakpoint in any routine stored in any database on that system. However, you must have the
Read privilege for a database to:

• View routine source via the debugger

• Execute a routine

3.2.3 The %System_Callout Resource

The %System_Callout resource controls access to various tools that perform actions outside of Caché. These include:

• In ObjectScript, using the $ZF(-100) function, which supports invoking operating system commands from within
ObjectScript code. Also see “Issuing Operating System Commands” in Using the Callout Gateway, which includes
detailed instructions for adding the %System_Callout:Use privilege.

• At the Terminal of the Terminal, using “!” and “$” as control characters for operating system access. For details, see
the $ZF(-100) documentation.

• In Zen Reports, using the built-in PDF rendering engine.

50 Caché Security Administration Guide

Assets and Resources

BGCL_syscall
BGCL_preface

• In local interprocess communication with ObjectScript, opening an interprocess communications device in Q mode.
For details, see the “OPEN-only Command Keywords for Interprocess Communications Pipes” table in the “Local
Interprocess Communication” chapter of the Caché I/O Device Guide.

• In the MultiValue shell, using the SH and DOS commands.

Note: %System_Callout also controls interactions with the deprecated $ZF(-1) and $ZF(-2) functions.

3.2.4 The %Secure_Break Resource

The %Secure_Break resource enforces the use of the secure debug shell, which restricts programmer access at a <BREAK>
prompt. For more information on the secure debug shell, see the “The Secure Shell” section in the “System Management
and Security” chapter.

3.3 Database Resources
Database resources control access to the contents of Caché databases. The name of the database resource that governs
access to a database is stored in the label block of that database.

All database resource names must start with the string “%DB_” and, for custom resources, the first character after the
underscore should not be the percent sign. The default database resource name is %DB_<database-name>. You can
change the resource name assigned to a database by using the Management Portal.

3.3.1 Database Resource Privileges

The available database privileges are:

Table 3–1: Database Privileges

EnablesPermission

Data access and routine executionRead

Modification and deletion of data (including executable code)Write

Read and Write permissions provide access to all contents of a database, including source and executable code as well as
data. Caché security management utilities automatically grant the Read permission for any database resource where there
is Write access.

Database privileges do not enable protection of individual items, such as routines or globals, within a database. Rather, the
same protection is applied to all items of a resource within a database. You can establish higher granularity of protection
by storing globals and routines in separate databases. Caché namespace mapping allows you to do this without any appli-
cation-level modifications.

Note: SQL security grants table-level access, specifying which particular action can be performed, such as SELECT
or UPDATE. For more information on SQL and security, see the chapter “SQL Security.”

3.3.2 Shared Database Resources

Often, there is a one-to-one correspondence between databases and the resources used to protect them. For instance, protection
for the CACHESYS database is specified using the %DB_CACHESYS resource and protection for the SAMPLES database

Caché Security Administration Guide 51

Database Resources

is specified using the %DB_SAMPLES resource. However, this is not a requirement and, when several databases share the
same security definitions they can share the same security resource.

Consider a sales application with three databases. Rather than define access for each of these individually, the system
manager has the choice option to:

1. Create a new database resource, such as %DB_SALES.

2. Assign this resource to the three databases.

3. Specify suitable access to %DB_SALES which then governs access to all three databases.

3.3.3 Default Database Resource

When mounting an existing database that has no database resource name, Caché assigns the default resource, %DB_%DEFAULT,
to the database. By default, %DB_%DEFAULT has the following permissions:

Table 3–2: %DB_%DEFAULT Privileges

PermissionsRole

Read, Write%Developer

Read, Write%Manager

While you can change the privileges associated with %DB_%DEFAULT resource, you cannot delete the %DB_%DEFAULT
resource itself, since it must be available if an unnamed database is mounted.

3.3.4 Unknown or Non-Valid Resource Names

With one exception (see below), if you attempt to mount a database that has an unknown or invalid database resource name,
the attempt fails. (This might occur if a database were moved from one Caché instance to another.) An automatic mount
attempt fails with an error and an explicit mount attempt prompts you with the choice of creating the resource named in
the database label or changing the database to use a valid resource.

The one exception to this rule is that a user who is a member of the %All role can mount a database that does not have a
resource (such as if its resource was deleted or the database was previously on a different system).

3.3.5 Namespaces

Users and applications interact with Caché databases through namespaces. While there are no privileges associated with
namespaces, access to a namespace is granted or denied based on the privileges associated with the underlying databases.
More specifically, to access a namespace, you must hold the Read privilege on the default globals database associated with
that namespace. This requirement is checked when:

• A process attempts to change to a different namespace, such as by using the $NAMESPACE special variable, the
ZNSPACE command, or the %CD utility

• There is an attempt to connect to Caché using any service that connects to a namespace, such as an SQL connection
or an object connection

Note: This requirement is not checked when a global or routine reference is made, implicitly or explicitly, to a namespace.

The fact that namespace privileges depend on privileges for the underlying databases can lead to unexpected behavior. For
example, suppose that namespace NSCust refers to data in three databases: DBCust1, DBCust2, and DBCust3. Suppose also

52 Caché Security Administration Guide

Assets and Resources

that the role AverageUser has the privileges %DB_DBCust1:R and %DB_DBCust3:R. Because the role has no privilege
associated with DBCust2, any attempt to access data in that database fails (including if it is through the namespace).

3.3.6 Databases that Ship with Caché

A number of databases ship with Caché. Some of these have special characteristics, where described in the following sections.
These include:

• CACHESYS

• SAMPLES

3.3.6.1 CACHESYS, the Manager’s Database

Caché ships with a database that provides a repository for administrative routines and globals. This is the CACHESYS
database, and is sometimes known as the manager’s database.

Within this database, there are groups of globals and routines whose names begin with the percent sign (these are often
known as “percent globals” or “percent routines”). These globals and routines have a special role in the management of
a Caché site and have special rules that apply to them:

• All users have Read permission for percent routines and percent globals.

Note that via mappings, it is possible to change where these items are stored, but that has no effect on their visibility.
Percent globals and percent globals are always visible in all namespaces.

• All percent routines have Write permission for all globals located in the same database (percent as well as non-percent).
For instance, percent routines in the CACHESYS database have Write access to globals stored in that database, but
not to globals in any other database. Simultaneously, percent routines in any other database have implicit Write access
to globals stored in that same database but not to percent globals in CACHESYS. This implicit Write permission is
only available during normal routine execution. It is disabled if the routine has been modified and it is not available
in XECUTE commands or through argument indirection.

• You can control Write access to percent globals from non-percent routines with the Enable writing to percent globals

field on the System-wide Security Parameters page (System Administration > Security > System Security > System-

wide Security Parameters); this page is described in the System-wide Security Parameters section of the “System
Management and Security” chapter.

CAUTION: Do not move, replace, or delete the CACHESYS database.

Special Capabilities
There are special capabilities available to code located in the CACHESYS database. These capabilities are sometimes
called “restricted system capabilities.” They are:

• Invoking protected VIEW commands and $VIEW functions.

• Using protected class methods.

• Modifying the roles of a process with a SET $ROLES = ... call.

• Invoking the single-argument form of the $SYSTEM.Security.Login function (which is the Login method of the
%SYSTEM.Security class).

• Invoking the two-argument form of the $SYSTEM.Security.ChangePassword function (which is the ChangePassword
method of the %SYSTEM.Security class). (Note that the new password must conform to the general password constraints
described in “Properties of Users” section of the “Users” chapter and the instance-specific password constraints
described in the “Password Strength and Password Policies” section of the “System Management and Security”
chapter.

Caché Security Administration Guide 53

Database Resources

Note: You need no database privileges to read or write database blocks with the VIEW command.

The only code that can perform these actions is:

• Routines stored in the CACHESYS database, but only during “normal” routine execution. They are disabled if a
ZINSERT into the current routine has modified the routine, and they are also not available in XECUTE commands
or through argument indirection.

• Processes with the Write permission on the %DB_CACHESYS resource.

3.3.6.2 The SAMPLES Database

Caché ships with a database of example data, called the SAMPLES database. By default, all users are granted SQL access
to this database. Further, if a user has any SQL system privileges in the namespace (or if a user has any SQL privileges for
any table, view, or procedure in a namespace), then the user is granted the %SQL role and the database role. For this reason,
all users can connect to the SAMPLES database.

3.4 Application Resources
Caché supports several forms of custom authorization, all of which depend on user-defined resources, known as Application
resources. These include:

• Supplementary authorization checking for a Portal page — for more information, see the section “Using Custom
Resources with the Management Portal.”

• Authorization checking at a particular point in an application — for more information, see the next section, “Creating
or Editing a Resource.”

• Authorization for the whole of an application

For the whole of an application, Caché allows you to create an application definition associated with a user-defined appli-
cation (which itself is defined as a named entity composed of executable code). Application resources then allow you to
perform authorization checking for the application. There are three types of applications:

• Web application definitions — These are associated with a specific CSP or Zen application.

• Privileged Routine application definitions — These are associated with one or more routines.

• Client application definitions — These are associated with one or more Caché Direct executables.

Application resources provide a means of controlling access to applications. To use this feature, create a custom resource
as described in the next section, “Creating or Editing a Resource” and use it in association with the application as described
in the “Creating and Editing an Application: The General Tab” section of the “Applications” chapter.

For example, if a Zen application has an associated resource, then users can only run the application if they have Use per-
mission on the resource. If an application uses other resource-regulated entities, such as databases, then users must also
have appropriate permissions on those resources in order to operate the application effectively. For more information on
applications, consult the “Applications” chapter.

3.5 Creating or Editing a Resource
To create a new resource, on the Resources page (System Administration > Security > Resources), click Create New Resource.

54 Caché Security Administration Guide

Assets and Resources

To edit an existing resource, on the Resources page (System Administration > Security > Resources), click the Edit button
to the right of the resource you wish to edit.

This displays the Edit Resource page. The Edit Resource page has fields for the following:

• Resource Name — The string by which the resource is identified. For more information on resource names, see the
section “Resource Naming Conventions.” When creating a resource, this is an editable field; when editing an existing
resource, this is a non-editable, displayed string.

• Description — Optional text related to the resource.

• Public Permission —

– Read — When selected, specifies that all users can view this resource.

– Write — When selected, specifies that all users can view or change this resource.

– Use — When selected, specifies that all users can run or otherwise employ this resource.

Once you have added a resource, it appears in the table of resources and is of type Application. You can then use it as part
of application-specific authorization. See the section “Checking Privileges” in the “Privileges and Permissions” chapter
for more information.

3.5.1 Resource Naming Conventions

The names of Caché resources begin with a percent sign character. The names of application-defined resources should not
begin with a percent sign character.

Resource names are not case-sensitive. This means that:

• Names are defined using mixed case and the name is preserved exactly as it is entered.

• Names that differ only by case are prohibited.

• When a name is looked up, Caché ignores differences in case.

For example, if there is a resource named “Accounting”. An attempt to create another resource named “ACCOUNTING”
will fail. References to the resource using name values of “Accounting”, “accounting”, and “ACCOUNTING” will all
succeed.

3.6 Using Custom Resources with the Management Portal
By default, the %Admin_Manage, %Admin_Operate, %Admin_Secure, and %Development system resources control
access to the Management Portal. As a supplement to these that allows for more granular Portal security, you can associate
an additional custom resource with each Portal page. If a Portal page has an associated custom resource, then the user must
hold both the system and custom resource for the page in order to view that page.

For example, access to the Lock Table page requires the %Operator role. You can also associate a custom resource (for
example, called MyLockTable) with the Lock Table page; once you have created this association, a user must both be a
member of the %Operator role and also have the MyLockTable:Use privilege in order to view the Lock Table page.
With this arrangement, the %Operator role grants access to fewer pages than in an instance with default settings, and you
can define a new role that can view the Lock Table page and all the other pages to which %Operator role grants access.
You can also create multiple custom resources, so that various roles would have access to various subsets of what a predefined
role would have available by default.

This section describes:

Caché Security Administration Guide 55

Using Custom Resources with the Management Portal

• Defining and Applying a Custom Resource to a Page

• Removing a Custom Resource from a Page

Important: Because there can be complex interactions among the various pages, resources, and roles, system adminis-
trators should plan carefully before implementing custom resources for the Management Portal.

3.6.1 Defining and Applying a Custom Resource to a Page

To define and apply a custom resource, the procedure is:

1. Log in as a user who holds the %Admin_Secure:Use privilege or is a member of the %All role.

2. Create the custom resource. To do this, on the Resources page (System Administration > Security > Resources), click
Create New Resource. When creating the resource, make sure that you properly set its public permissions according
to the instance’s needs.

3. Associate the privilege to use the custom resource with a role. For an existing role, on the Roles page (System Admin-

istration > Security > Roles), simply add the privilege to the role; alternately, (also on the Roles page), create a new
role and then add the privilege to it immediately after creating it. Either way, the privilege consists of the custom
resource and the Use permission.

4. Assign the custom resource to the page. To do this:

a. Use the finder feature of the Portal to select the page. Note that clicking on the name of the page takes you directly
to that page; click inside the box (but not on the name itself) to display the page’s action pane.

b. At the very bottom of the page’s action pane, click Assign. This displays the Assign Custom Resource dialog.

c. In that dialog, select the desired resource from the Custom Resource Name list and click OK.

3.6.2 Removing a Custom Resource from a Page

To disassociate a custom resource from a page, the procedure is:

1. Log in as a user who holds the %Admin_Secure:Use privilege or is a member of the %All role.

2. Use the finder feature of the Portal to select the page. Note that clicking on the name of the page takes you directly to
that page; click inside the box (but not on the name itself) to display the page’s action pane.

3. At the very bottom of the page’s action pane, click Assign. This displays the Assign Custom Resource dialog.

4. In that dialog, select the empty item from the Custom Resource Name list and click OK.

56 Caché Security Administration Guide

Assets and Resources

4
Privileges and Permissions

Permissions allow you to perform some action, such as reading or writing data, or using a tool. Permissions are associated
with resources, forming privileges. This model allows a user to perform a particular action in relation to a particular resource.

4.1 How Privileges Work
A privilege associates a resource with a permission, so that a role that holds the privilege can perform a particular action,
such as read or write to a database or use an application. The possible permissions are:

• Read — View (but not change) the contents of a resource, such as in a database

• Write — View or change the contents of a resource, such as in a database

• Use — Run or otherwise employ an executable program or tool, such as an application or a Caché service

The meaning of each permission depends on the resource with which it is used. Permission names can appear as the full
word or the first letter of the word; their names are not case-sensitive.

4.2 Public Permissions
For each resource, permissions can be designated as Public. Effectively, this is equivalent to all users holding that permission
on the resource. For example, if the %Service_CacheDirect:Use privilege is Public, then any user can connect to
Caché using the Caché Direct technology. Similarly, if the %DB_SALES:Read privilege is Public, then any user can read
from any database protected by the %DB_SALES resource. This does not, however, enable all users to write those databases
because (in this example) the %DB_SALES:Write privilege is not Public.

The following database privileges are Public by default:

Table 4–1: Default Public Privileges

PermissionResource

Read%DB_CACHE

Read%DB_CACHELIB

Read, Write%DB_CACHETEMP

Read%DB_DOCBOOK

Caché Security Administration Guide 57

4.3 Checking Privileges
Caché provides a method, $SYSTEM.Security.Check, to check on privileges held by the current process. Its one-argument
form lists what privileges the process holds on a particular resource; its two-argument form returns whether or not the
process holds privileges for a particular resource.

The one-argument form returns a comma-delimited list of the permissions held by the process on a resource. For example:

$SYSTEM.Security.Check("%DB_Samples")

returns READ,WRITE if the process holds Read and Write permissions for %DB_Samples. The permission names are
always returned as full words in uppercase letters. The function returns an empty string if the process holds no permissions
on the resource.

The two-argument form returns True or False (1 or 0) to indicate whether the process holds a specific privilege. For
example:

$SYSTEM.Security.Check("%DB_Samples", "WRITE")

returns 1 if the process holds the Write permission on the %DB_Samples resource.

You can also call the function with a list of permissions, such as:

$SYSTEM.Security.Check("%DB_Samples", "WRITE,READ")

It returns 1 if the process holds all of the requested permissions and 0 otherwise. You can also simply use the first letter of
the privileges to be checked:

$SYSTEM.Security.Check("%DB_Samples", "W,R")

The method has the following general behaviors:

• The method always returns 1 for a public resource privilege, whether or not the process explicitly holds that privilege.

• Permission names are not case-sensitive.

• Permission names can be fully spelled out, as in the example above, or abbreviated by their first character. Also, per-
mission names are not case-sensitive. Thus, “WRITE,READ”, “W,R”, and “R,Write” are equivalent.

4.4 When Changes in Privileges Take Effect
Caché maintains a persistent database of the security settings. When Caché starts, it extracts this information and places it
into a segment of shared memory that allows quick access to the consolidated settings. While a process is executing, it
maintains its own per-process cache of the privileges it has been granted. This is updated as new privileges are needed (and
authorized).

Editing roles, privileges, and so on makes changes to the persistent copy of the information. This becomes visible to users
or applications the next time they are subsequently authenticated.

58 Caché Security Administration Guide

Privileges and Permissions

5
Roles

A role is a named collection of privileges. Roles are useful because multiple users often need the same set of privileges.
For example, all users of an application or all developers working on a particular project might need a common set of
privileges. By using a role, such sets of privileges can be defined once (which makes future modification much easier) and
shared by the relevant users. Privileges are assigned exclusively to roles; privileges are not assigned directly to users. To
assign some privileges to a single user, create a role for that purpose.

Major topics related to roles include:

• About roles

• Roles, users, members, and assignments

• Creating roles

• Managing roles

• Predefined roles

• Login roles and added roles

• Programmatically managing roles

Note: For SQL access to data in tables, Caché supports row-level security. For information on setting this up, see the
section “Adding Row-Level Security” in the chapter “Other Options for Persistent Classes” in the book Using
Caché Objects.

5.1 About Roles
Every role has the following properties:

Caché Security Administration Guide 59

Table 5–1: Role Properties

Property DescriptionProperty Name

Unique role identifier. See the section “Naming Conventions” for more information
on valid names.

Name

Any text.Description

Resource-permission pair(s) associated with the role. A role can hold zero or more
privileges.

Privileges

Users or roles that have been assigned to the role (listed on the Members tab of the
Edit Role page).

Members

These are displayed on the General tab of the Edit Role page, which is accessible by selecting Edit in the row for any role
in the table on the Roles page (System Administration > Security > Roles).

Each role also may have members that are assigned to it or other roles to which it is assigned. These relations are described
in the next section.

5.2 Roles, Users, Members, and Assignments
A role is a container that holds one or more privileges. If a user is associated with a role, then that user is able to exercise
the role’s privileges. The terminology for the association of a user and role is:

• The user is assigned to the role.

• The user is a member of the role.

• The role includes the user.

These phrases are all equivalent in meaning to each other.

Each user can be assigned to multiple roles and each role can have multiple users as its members. Similarly, each role can
also be assigned to multiple roles and can also have multiple roles as its members. A role can have both users and roles as
its members.

Suppose one role is assigned to another role. In this case, if role A is assigned to role B, then role A is described as a
“member” of role B; this is equivalent to saying that role A is assigned to role B or that role B includes role A.

If one role is assigned to another, that first role holds the privileges associated with the second role. This is analogous to
the relationship of assigning a user to role, whereby the user then holds the privileges associated with the role. Hence, if a
user is a member of one role and that role is a member of another role, then the user holds privileges associated with both
the roles.

For example, suppose a university has three roles available for its students: UndergraduateStudent, GraduateStudent,
and GeneralStudent. Each student is assigned to either UndergraduateStudent or GraduateStudent, and these
two roles are both assigned to GeneralStudent. If Elizabeth is assigned to GraduateStudent, she holds the privileges
associated with both GraduateStudent and GeneralStudent; if James is assigned to UndergraduateStudent,
he holds the privileges associated with both UndergraduateStudent and GeneralStudent.

A role’s members are listed on the Edit Role page’s Members tab; on this tab, you can also assign new members to a role.
If a role has been assigned to other roles, these are listed on the Assigned To tab of the Edit Role page; you can also assign
a role to additional roles on that tab.

60 Caché Security Administration Guide

Roles

5.2.1 An Example of Multiple Role Assignment

This section provides an example of how users and roles interact in Caché.

Suppose there is a user named Lee, a role named FirstRole, and a role named SecondRole. FirstRole protects a
resource called FirstResource and SecondRole protects a resource called SecondResource.

When first created, Lee is not a member of any roles. This is reflected in Lee’s profile:

When Lee is assigned to the role FirstRole, this changes Lee’s profile:

When the role FirstRole is assigned to the role SecondRole, this also changes Lee’s profile:

Caché Security Administration Guide 61

Roles, Users, Members, and Assignments

The list of Lee’s privileges specifies which privileges originate with which roles:

5.3 Creating Roles
You can define roles for use by developers, operators, system managers and other classes of users. Once created, there are
various features available to edit a role.

To create a new role:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Create New Role. This displays the Edit Role page.

3. On the Edit Role page, the General tab is visible. Here, enter values for the following properties:

• Name (required) — Specifies the name of the new role. See the following section, Naming Conventions, for
naming rules.

• Description (optional) — Specifies descriptive information about the role.

The role’s resources are listed, but empty, as a role cannot receive resources until it has been created, except under the
conditions described in the next step.

4. As a shortcut, if you wish to create multiple roles with similar characteristics, you can use the Copy from field on the
Role page to begin the process of creating a new role. When you select an existing role from this field’s drop-down
menu, all its privileges appear in the list of resources; you can then add or delete privileges as desired, and modify its
Description property.

5. Click Save to create the role.

Once a role exists, you can edit it as described in the section “Managing Roles.” For example, the Resources table allows
you to add new privileges to the role; do this by clicking Add.

Note: InterSystems recommends that you do not modify predefined roles.

62 Caché Security Administration Guide

Roles

5.3.1 Naming Conventions

The name of a user-defined role is subject to the following rules in its use of characters:

• It can include all alphanumeric characters.

• It can include symbols, except for the following prohibited characters: “ ,” (comma), “ :” (colon), and “/” (slash).

• It cannot begin with “%” (the percent-sign character), which is reserved for Caché predefined roles.

• It can include Unicode characters.

Also, a role name is not case-sensitive. This means that:

• For names that are defined using mixed case, the name is preserved exactly as it is entered.

• Names that differ only by case are prohibited.

• When a name is looked up, Caché ignores differences in case.

A role name can be up to 64 characters long.

For example, if there is a role named BasicUser, any attempt to create another resource named BASICUSER will fail.
References to the resource using name values of BasicUser, basicuser, and BASICUSER will all succeed.

5.4 Managing Roles
Once you have created a role, you modify it in a number of different ways, each of which is described in one of the following
sections. The actions fall into several categories:

• General tasks. This includes:

– Viewing Existing Roles

– Deleting a Role

• Creating, modifying, and removing a role’s privileges. This includes:

– Giving a Role New Privileges

– Modifying Privileges for a Role

– Removing Privileges from a Role

• Creating and removing assignments among roles and users. This includes:

– Assigning Users or Roles to the Current Role

– Removing Users or Roles from the Current Role

– Assigning the Current Role to Another Role

– Removing the Current Role from Another Role

• Modifying a Role’s SQL-related Options

Note: Changing a user’s roles or changing a role’s privileges does not affect the assigned privileges associated with the
user’s existing processes. For new privileges to become active, the user must log out and log in again, restart the
process, or perform an equivalent action.

Caché Security Administration Guide 63

Managing Roles

5.4.1 Viewing Existing Roles

To view a list of the currently existing roles, see the Roles page in the Portal (System Administration > Security > Roles).
This page displays information on the following fields:

• Name — The role’s name (cannot be edited)

• Description — Any text that has been provided to describe the role

• Created By — What user created the role

For each role, you can

• Edit the role’s properties, which includes all actions for privilege management, assignment management, and SQL-
related options.

• Delete the role

5.4.2 Deleting a Role

To delete a role:

1. On the Roles page (System Administration > Security > Roles), for the role you wish to delete, click Delete in that role’s
row.

2. Caché displays a confirmation dialog. Click OK to delete the role and Cancel otherwise.

5.4.3 Giving New Privileges to a Role

To give a role new privileges:

1. On the Edit Role page (System Administration > Security > Roles > Edit Role) for an existing role, click Add in the
Privileges table.

2. This displays a page listing all resources. To select a resource to assign to the role, click it. You can select multiple
resources simultaneously using the Ctrl or Shift keys.

3. To add the selected resources to the role, click Save. This gives the role all possible permissions on the resource; you
can then modify the available permissions for the resource (such as changing permissions on a database from Read-
Write to just Read).

5.4.4 Modifying Privileges for a Role

To modify the privileges that a role holds:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, in the Resources table, click Edit for the resource whose privileges you wish to modify.

4. This displays the page for editing the permissions on the selected resource. Check or clear the boxes for each permission
as appropriate.

Note: This page does not let you clear all permissions for an individual resource. This is because eliminating all a
role’s permissions for a resource is equivalent to deleting the role’s privileges for the resource.

64 Caché Security Administration Guide

Roles

5. Click Save to save the privileges in their new state.

These changes should be reflected in the Resources table on the Role page.

5.4.5 Removing Privileges from a Role

To remove privileges from a role:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, in the Resources table, click Delete. This removes the privileges for the resource from the role.

4. Click Save to save the privileges in their new state.

5.4.6 Assigning Users or Roles to the Current Role

A role can have users or other roles as members that are assigned to it. If a user is assigned to a role, then that user holds
the privileges associated with that role. If one role is assigned to another role, then a user assigned to the first role holds
the privileges associated with both roles.

The role being edited is known as the “current” role. The users and roles that are assigned to the current role are listed on
the Members tab of the Edit Role page (these users and roles are known as its members).

To assign a user or role to the current role, the procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, select the Members tab.

4. On the Members tab, choose either the Users or Roles option to specify whether to assign users or roles to the role.
(Users is the default.)

5. The list of users or roles that can be assigned to the current role appears in the Available list. You can move them to
and from the Selected list using the arrow buttons between the lists.

6. When you have the final list of users or roles to add, click Assign or Assign with Grant Option. Clicking Assign simply
assigns the new members (users or roles) to the role being edited. Clicking Assign with Grant Option also gives the
new members the ability to assign other users or roles to the current role when using SQL commands.

5.4.7 Removing Users or Roles from the Current Role

If a user or role has been assigned to the current role, it is known as a member of that role. The procedure to remove a
member from a role is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, select the Members tab.

4. On the Members tab, there is a table of users and roles assigned to the current role. For the specified members, click

the button in the right-most column of the member’s row.

5. A prompt appears to confirm the removal. Click OK.

Caché Security Administration Guide 65

Managing Roles

The user or role has now been removed from the current role.

5.4.8 Assigning the Current Role to Another Role

One role can be assigned to another role. If one role is assigned to another role, then a user assigned to the first role holds
the privileges associated with both roles.

The role being edited is known as the “current” role. The roles to which the current is assigned are listed on the Assigned

To tab of the Edit Role page.

To assign the current role to another role, the procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, select the Assigned To tab.

4. The list of roles that the current role can be assigned to appears in the Available list. You can move them to and from
the Selected list using the arrow buttons between the lists.

5. When you have the final list of roles, click Assign or Assign with Grant Option. Clicking Assign simply assigns the
current role to the selected roles. Clicking Assign with Grant Option also gives the current role the ability to assign
other users or roles to the selected role(s) when using SQL commands.

5.4.9 Removing the Current Role from Another Role

If the current role has been assigned to another role, it is known as a member of that role. The procedure to remove the
current role from another role is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Edit for the role you wish to modify. This displays the Edit Role page.

3. On the Edit Role page, select the Assigned To tab.

4. On the Assigned To tab, there is a table of roles to which the current role is assigned. To remove the current role from

one of these roles, select the button in the right-most column of that role’s row.

5. A prompt appears to confirm the removal. Click OK.

The current role has now been removed from that role.

5.4.10 Modifying a Role’s SQL-Related Options

For every role, you can grant or remove the following SQL-related characteristics:

• General SQL Privileges

• Privileges for Tables

• Privileges on Views

• Privileges for Stored Procedures

5.4.10.1 General SQL Privileges

On the SQL Privileges tab of the Edit Role page, you can add or remove SQL privileges for a role:

66 Caché Security Administration Guide

Roles

• To add a privilege to a role, first move the privilege from the Available list to the Selected list (either double-click it
or select it and then click the single right-arrow); click Assign to give the privilege to the role. To also add the privilege
of being able to grant the added privilege to other roles, select the relevant check box below the Available list.

• To add all privileges to a role, click the double-arrow pointing from the Available list to the Selected list; click Assign

to give the privileges to the role. To also add the privileges of being able to grant the added privileges to other roles,
select the relevant check box below the Available list.

• To remove a privilege from a role, click Remove to the right of privilege name.

• To remove all privileges from a role, click Remove All below the table listing the currently assigned privileges.

The following privileges are available:

• %ALTER_TABLE — For a given namespace, allow the member of the role to run the ALTER TABLE command.

• %ALTER_VIEW — For a given namespace, allow the member of the role to run the ALTER VIEW command.

• %CREATE_FUNCTION — For a given namespace, allow the member of the role to run the CREATE FUNCTION
command.

• %CREATE_METHOD — For a given namespace, allow the member of the role to run the CREATE METHOD
command.

• %CREATE_PROCEDURE — For a given namespace, allow the member of the role to run the CREATE PROCEDURE
command.

• %CREATE_QUERY — For a given namespace, allow the member of the role to run the CREATE QUERY command.

• %CREATE_TABLE — For a given namespace, allow the member of the role to run the CREATE TABLE command.

• %CREATE_TRIGGER — For a given namespace, allow the member of the role to run the CREATE TRIGGER
command.

• %CREATE_VIEW — For a given namespace, allow the member of the role to run the CREATE VIEW command.

• %DROP_FUNCTION — For a given namespace, allow the member of the role to run the DROP FUNCTION command.

• %DROP_METHOD — For a given namespace, allow the member of the role to run the DROP METHOD command.

• %DROP_PROCEDURE — For a given namespace, allow the member of the role to run the DROP PROCEDURE
command.

• %DROP_QUERY — For a given namespace, allow the member of the role to run the DROP QUERY command.

• %DROP_TABLE — For a given namespace, allow the member of the role to run the DROP TABLE command.

• %DROP_TRIGGER — For a given namespace, allow the member of the role to run the DROP TRIGGER command.

• %DROP_VIEW — For a given namespace, allow the member of the role to run the DROP VIEWcommand.

5.4.10.2 Privileges for Tables

On the SQL Tables tab of the Edit Role page, you can add or remove table-related SQL privileges for a role:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s tables appears.

2. To change privileges for a table, click Edit in that table’s row. This displays a window for altering privileges.

3. In this window, you can check or clear any of the following items:

• ALTER

• DELETE

• INSERT

Caché Security Administration Guide 67

Managing Roles

• REFERENCES

• SELECT

• UPDATE

• Give the GRANT option to the role

4. After making your selection(s), click Apply to establish the new privileges for the table.

If a role has privileges for a table, it is listed in a table on this page. To revoke the role’s privileges for a table, click Revoke

at the far right of the role’s row. Clicking this displays a message containing the namespace and the full name of the table
(including the schema), such as the “SAMPLES Sample.Company” namespace and table.

5.4.10.3 Privileges on Views

On the SQL Views tab of the Edit Role page, you can add or remove view-related SQL privileges for a role.

To add privileges for the view:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s views will
appear.

2. To change privileges for a view, click Edit in that view’s row. This displays a window for altering privileges.

3. In this window, you can check or clear any of the following items:

• ALTER

• DELETE

• INSERT

• REFERENCES

• SELECT

• UPDATE

• Give the GRANT option to the role

4. After making your selection(s), click Apply to establish the new privileges for the table.

If a role has privileges for a view, it is listed in a table on this page. To revoke the role’s privileges for a view, click Revoke

at the far right of the role’s row. Clicking this displays a message containing the namespace and the full name of the view
(including the schema).

5.4.10.4 Privileges for Stored Procedures

On the SQL Procedures tab of the Edit Role page, you can add or remove a role’s SQL privileges related to stored procedures.

To add privileges for a stored procedure:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s stored procedures
then appears.

2. Below this window, click Add, which displays the Grant procedure privilege... dialog.

3. In this dialog, near the top, select the schema from the drop-down that contains the procedure that you wish to add.
This displays a list of the schema’s procedures in the Available window on the left part of the page.

4. Move one or more procedures into the Selected window. Make sure the EXECUTE box is checked, so that the role has
the privilege to execute the stored procedure.

68 Caché Security Administration Guide

Roles

5. Optionally, you can grant the roles the ability to grant this privilege on other roles; to do this, click the Grant privilege

box near the bottom of the page.

6. Click Apply to grant the privilege(s) to the role.

If a role has privileges for a stored procedure, it is listed in a table on this page. To revoke the role’s privileges for a stored
procedure, click Revoke at the far right of the role’s row. Clicking this displays a message containing the namespace and
the full name of the stored procedure (including the schema).

5.5 Predefined Roles
Caché includes a number of predefined roles. These include:

• %All — The ability to perform all operations.

• %Developer — The privileges typically associated with application development. These are roughly the privileges
associated with the Portal’s System Exploration menu. They include the ability to use the WebStress and UnitTest
pages in the Management Portal, as well as the documentation class reference (sometimes known as Documatic).

• %Manager — The privileges typically associated with system management. These are roughly the privileges associated
with the Portal’s System Administration and System Operation menus.

• %Operator — The privileges typically associated with system operation. These are roughly the privileges associated
with the Portal’s System Operation menu.

• %SQL — The privileges typically associated with SQL-related tasks.

• %SecureBreak — The %Secure_Break:Use privilege, which enforces use of the secure debug shell. For more
information on the secure debug shell, see the “The Secure Shell” section in the “System Management and Security”
chapter.

Note: InterSystems recommends that you do not modify predefined roles. Rather, create a new role based on the predefined
role and modify the role that you have created.

The following table has a column for each role. Each row of the table lists a system-defined resource and the privilege, if
any, that the role holds on it.

Table 5–2: Predefined Roles and Their Privileges

%SecureBreak%SQL%Operator%Manager%DeveloperResource

Use%Admin_Manage

UseUse%Admin_Operate

Use%Admin_Secure

Use%Admin_Task

ReadReadRead%DB_CACHE

Read%DB_CACHEAUDIT

Read, WriteRead%DB_CACHELIB

Read, WriteRead, Write%DB_CACHESYS

Read, WriteRead, WriteRead, Write%DB_CACHETEMP

Caché Security Administration Guide 69

Predefined Roles

%SecureBreak%SQL%Operator%Manager%DeveloperResource

ReadRead, WriteRead%DB_DOCBOOK

Read, WriteRead, Write%DB_SAMPLES

Read, WriteRead, Write%DB_USER

Read, WriteRead, Write%DB_%DEFAULT

UseUse%Development

Use%Secure_Break

%Service_Console

UseUseUse%Service_CSP

UseUse%Service_Object

UseUseUse%Service_SQL

UseUse%Service_Telnet

UseUse%Service_Terminal

The definitions of these predefined roles are set during a new Caché installation and are not modified during an upgrade
installation. With the exception of %All, the use of predefined roles is optional.

The %Admin_Secure resource is designed to make all the necessary security assets available or restricted as a single unit.
This makes it easy to separate these resources for use by the security administrator.

Note: The %Operator role does not hold the %Admin_Task:Use privilege by default; if you wish for members of
that role to be able to manage tasks, include %Admin_Task:Use among the role’s privileges. Further, any custom
roles based on %Operator must add the %DB_CACHESYS:RW privilege in order to use the Portal’s Operator

menu. They may also add the %Admin_Task:Use privilege so that they can manage tasks.

5.5.1 %All

The predefined role, %All, always holds all privileges for all resources on the system. This is why, for example, a user
belonging to the %All role can still mount a database for which there is no resource available. (One exception is the
restrictive %Secure_Break:Use privilege, which must always be explicitly granted.)

This role cannot be deleted or modified, and there must always be at least one user account holding the %All role. If there
is only one such account, it cannot be deleted or disabled. This is designed to protect a sole Caché system administrator
from being inadvertently locked out of the system.

Important: A user who is assigned to the %All role does not automatically have access to rows in a table that are
protected with row-level security. The application must explicitly provide the %All role with access to
such a row. For detailed information about how to do this, see the section “Adding Row-Level Security”
in the chapter “Other Options for Persistent Classes” in the book Using Caché Objects.

5.5.2 Default Database Resource Roles

When you create a database resource, the system automatically creates a role with the name
%DB_<database-resource-name> that has Read and Write permissions for that resource.

70 Caché Security Administration Guide

Roles

5.6 Login Roles and Added Roles
Each Caché process has, at any point in time, a set of roles that determine the current privileges for that process. The set
of roles includes both login roles, which come from the definition of the user (received at login time) and added roles,
which come from the currently running application (received by application role escalation). From a security standpoint,
the origin of a role is immaterial: a process either has a required privilege or it does not.

When an application is started, each role currently held by the process is looked up in a table and any associated application
roles are added.

For example, suppose there is an order entry application with two classes of users: normal users, who are assigned the
OrderEntryUser role, and managers, who are assigned the OrderEntryManager role. Both of these roles allow
someone to run the order entry application (that is, both are assigned the %Application_OrderEntry:Use privilege.)
But, when the application does role escalation, different roles are used (OrderEntryAppNormal versus
OrderEntryAppSpecial and OrderEntryAppReporting) to enable the application to perform different functions
on behalf of these user classes.

Added RolesMatching Role

OrderEntryAppNormalOrderEntryUser

OrderEntryAppSpecial,
OrderEntryAppReporting

OrderEntryManager

During the matching sequence, each role held by the process is considered, even if a match has already been found. In other
words, multiple roles may match and multiple sets of new roles may be added. However, this process is not recursive: roles
added as a result of the matching process are not considered for further matches.

Note: There is no way to restrict a user’s roles to fewer than the login roles.

5.6.1 A Note on Added Roles and Access in the Management Portal

When a user goes to a new Portal page, the Portal resets the process to have only the user’s login roles. The Portal then
checks if the page’s application requires a resource; if it does, then the Portal checks if the user has the appropriate permissions
on that resource. If the user’s privileges do not include the required privileges, the page will not be available.

If the user does have the required privileges, the Portal then adds any application roles and any applicable target roles. The
Portal then checks if any links on the page require custom resources; if the user has the appropriate resource(s), the Portal
displays those links.

5.7 Programmatically Managing Roles
Certain routines can directly modify the application roles of a running process by setting the $ROLES system variable, such
as

 SET $ROLES = "Payroll"

$ROLES contains a comma-separated list of the role names assigned to the current process. The union of all the privileges
granted to all roles in the list determines the privileges that the process possesses. $ROLES initially contains the roles
assigned at authentication (that is, login roles).

Caché Security Administration Guide 71

Login Roles and Added Roles

This command can only be invoked either from a routine that is part of the CACHESYS database or if the current privileges
held include Write permission for the CACHESYS database (%DB_CACHESYS:W).

Note that setting $ROLES only alters a process’s added roles, not its login roles. Thus if a process currently has the login
roles Employee and Manager and the added role Payroll, after the statement

 SET $ROLES = "Accounting"

$ROLES has the value “Employee,Manager,Payroll,Accounting”.

A role can be added to the process’s current roles by concatenating it to the current roles, with a call such as:

 SET $ROLES = $ROLES _ ",Payroll"

The statement

 SET $ROLES = ""

removes all added roles.

The NEW command can be used with $ROLES to stack the current set of roles (Login and Added) and the current value
of $USERNAME. This allows code to modify the list and, whether control leaves the containing block normally or abnormally,
the changes are undone upon exit.

With the exception of a null string argument, SET $ROLES = <role_name> is a system capability. NEW $ROLES and
SET $ROLES = "" can be executed by any code.

72 Caché Security Administration Guide

Roles

6
Users

This chapter includes the following sections:

• Properties of Users

• Creating and Editing Users

• Viewing and Managing Existing Users

• Predefined User Accounts

• Validating User Accounts

6.1 Properties of Users
Each Caché user account has a number of properties. The following are listed on the General tab for the user:

Table 6–1: User Account Properties

Property DescriptionProperty Name

Unique user identifier that is up to 128 characters long. This can include
any character except “@” or “*” . A name is not case-sensitive. All
usernames can include Unicode characters.

Name

The user’s displayable name.Full Name

Any text.Comment

New password value. This value is never visible, regardless of the
privileges of user viewing this page; a user either with the
%Admin_Secure:Use privilege or assigned to the %All role can change
another user’s password, such as if that user’s password has been
forgotten or lost. A password can be up to 128 characters long and is
case-sensitive. All paswords can include Unicode characters.

Password

Confirmation of new password value.Confirm Password

A check box specifying whether or not the user is required to change the
password at the next login.

Change Password on Next Login

Caché Security Administration Guide 73

Property DescriptionProperty Name

A check box specifying whether or not the system-wide password
expiration limit applies to this user. If selected, the user’s password does
not expire, even if it has been unchanged for longer than the system limit.
To set the password expiration limit, see the System-wide Security
Parameters page.

Password Never Expires

A check box specifying whether or not the account is currently enabled.User Enabled

The last date on which the account can be used.Expiration Date

A check box specifying whether or not the system-wide account inactivity
limit applies to this user. If selected, the user’s account does not expire,
even if it has been inactive for longer than the system limit. To set the
inactivity limit, see the System-wide Security Parameters page.

Account Never Expires

The namespace in which to begin execution following login from a
terminal-type service. This property overrides any namespace value
provided via the command invoking Caché.

Startup Namespace

The routine to execute automatically following login from a terminal-type
service. This property overrides any routine value provided via the
command invoking Caché.

Startup Tag^Routine

For two-factor authentication, the user’s mobile phone service provider.Mobile Phone Service Provider

For two-factor authentication, the mobile phone number at which the user
receives a text message containing the second authentication token
(factor).

Mobile Phone Number

The kind of user, which is determined by the authentication and
role-assignment mechanisms in use. Values can be Caché password
user, Delegated user, Kerberos user, LDAP user, or OS user. For
more information on user types, see the following section, “About User
Types.”

Type (only displayed on the Users

page)

6.1.1 About User Types

Among a user’s properties is the user’s Type. There are multiple possible types:

• Caché password user — This type is authenticated through Caché login, Kerberos (without delegated authorization),
or the operating system (without delegated authorization). The Caché tools for editing or otherwise altering users are
for use with Caché password users.

• Delegated user — This type is authenticated through a user-defined authentication mechanism. The Caché tools are
available only for viewing this type of user’s properties; the user’s properties must be edited through external means.

• Kerberos user — This type is authenticated using Kerberos when delegated authorization is in use; with delegated
authorization, Caché tools are available only for viewing this type of user’s properties; the user’s properties must be
edited through external means and specified by the ZAUTHORIZE routine, as described in the chapter “Delegated
Authorization.” If a user is authenticated through Kerberos without using delegated authorization, then the user is of
type Caché Password User.

• LDAP user — This type is authenticated through LDAP. The Caché tools are available only for viewing this type of
user’s properties; the user’s properties must be edited through external means.

• OS user — This type is authenticated through the operating system (OS) when delegated authorization is in use; with
delegated authorization, Caché tools are available only for viewing this type of user’s properties; the user’s properties

74 Caché Security Administration Guide

Users

must be edited through external means and specified by the ZAUTHORIZE routine, as described in the chapter
“Delegated Authorization.” If a user is authenticated through the operating system without using delegated authorization,
then the user is of type Caché Password User.

Important: A user can only have one type. A user of one type cannot log in using authentication mechanisms associated
with another type.

For more information about the relationship among user types, authentication, and role assignment, see the “Authentication-
Authorization Matrix” in the “Authentication” chapter.

6.2 Creating and Editing Users
To either create or edit a user, the Management Portal provides the Edit User page, which is off the Users page (System

Administration > Security > Users) for each user being created or edited. This page differs for creating and editing users as
follows:

• When creating a new user, the Name field accepts a value.

• When editing an existing user, the Name field is not writable.

6.2.1 Creating a New User

To create a new user:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users).

2. On the Users page, select Create New User. This displays the General tab of the Edit User page for creating and config-
uring users.

3. On the Edit User page, set values for the following user properties, which are described in the Properties of Users section:

• Name (required) — Unique user identifier.

• Copy from (optional) — The name of another user, the settings of which are to serve as the basis for the new user.
See the next step for details.

• Full Name (optional) — The account’s displayable name.

• Comment (optional) — Any text.

• Password (required) — New password value.

• Confirm Password (required) — Confirmation of new password value.

• Change Password on Next Login (optional) — Whether or not a password change is required at the next login.

• Password Never Expires (optional) — Whether or not the user’s password is valid past the system-wide password
expiration limit. For information about the password expiration limit, see the System-wide Security Parameters
page.

• User Enabled (required) — Whether or not the account is available for use.

• Expiration Date (optional) — The last date on which the account is available for use.

• Account Never Expires (optional) — Whether or not the user’s account remains active past the system-wide inac-
tivity limit. For information about the inactivity limit, see the System-wide Security Parameters page.

Caché Security Administration Guide 75

Creating and Editing Users

• Startup Namespace (optional) — The namespace in which to begin execution following login from a terminal-
type service.

• Startup Tag^Routine (optional) — The routine to execute automatically following login from a terminal-type service.

• Mobile phone service provider — For two-factor authentication, the user’s mobile phone service provider. (If the
user’s mobile phone service provide does not appear in the list, you can add a new provide by clicking Create new

provider; this displays fields for adding a new mobile phone service provider, which will then be visible.

• Mobile phone number — For two-factor authentication, the mobile phone number at which the user receives the
text message containing the second authentication token (factor).

4. As a shortcut, if you wish to create multiple users with similar characteristics, you can use the Copy from field on the
Edit User screen to begin the process of creating a new user. When you select an existing user from this field’s drop-
down menu, the following properties of the selected user receive values for the user being created:

• Full Name

• Expiration Date

• Default Namespace

• Default Tag^Routine

5. Click the Save button to create the new user.

Once you have created a user account, you can then edit its characteristics.

6.2.2 Editing an Existing User

Once you have created a user account, you can alter any of its basic properties (on the General tab of the Edit User page):

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users).

2. On the Users page, there is a table of users. To edit an existing user, select the name of the user from the table. This
displays the General tab of the Edit User page for creating and configuring users.

3. On the Edit User page, you can alter values for the following properties, which are described in the Properties of Users
section:

• Full Name

• Comment

• Password — If you use this page to set a new password, the password must conform to the pattern (types of
characters and length) specified in the Password Pattern field on the System Security Settings page (System

Administration > Security > System Security > System-wide Security Parameters).

• Change password on next login

• Password Never Expires

• User Enabled

• Expiration Date

• Account Never Expires

• Startup Namespace — This refers to the Terminal Namespace property.

• Startup Tag^Routine — This refers to the Terminal Routine property.

• Mobile phone service provider

76 Caché Security Administration Guide

Users

• Mobile phone number

4. Click the Save button to save the new values for the user.

You can also modify other aspects of the user account on this page’s other tabs:

• Roles — Lists the roles that the user currently holds. You can also give a user new roles (or take them away) on this
page.

• SQL Properties — This includes:

– SQL Privileges — Lists all the SQL privileges that a user currently holds, on a per-namespace basis. You can also
assign or revoke SQL privileges on this page.

– SQL Tables — Lists, by namespace, the tables for which a user has been granted privileges (%ALTER, DELETE,
INSERT, REFERENCES, SELECT, and UPDATE). You can also assign or revoke SQL table privileges on this
page.

– SQL Views — Lists, by namespace, the views for which a user has been granted privileges (%ALTER, DELETE,
INSERT, REFERENCES, SELECT, and UPDATE). You can also assign or revoke SQL view privileges on this
page.

– SQL Procedures — Lists, by namespace, the stored procedures which a user can run. You can also assign or revoke
the right to run procedures on this page.

Note: A change to a user account only takes effect after the user logs out and then logs back in.

6.2.2.1 Modifying a User’s Roles

On the Roles tab of the Edit User page, you can assign a user to a role or remove it from a role:

• To assign a user to a role, first move the role from the Available list to the Selected list (either double-click it or select
it and then click the single right-arrow); click the Assign button to assign the user to the role.

• To assign a user to all roles, click the double-arrow pointing from the Available list to the Selected list; click the Assign

button to assign the user to all the roles.

Note: If you assign a user to all roles, this includes the predefined %SecureBreak role, which limits (and does not
expand) the user’s abilities. If a user is assigned to the %SecureBreak role, this enables the Caché secure
debug shell, which restricts the commands that the user may issue. This may also have unexpected conse-
quences in other areas.

• To remove a user from a role, click the button to the right of role name.

• To remove a user from all roles, click Remove All below the table listing the currently assigned roles. (This button is
only present if a user is assigned to two or more roles.)

6.2.2.2 Modifying a User’s SQL-Related Options

For every user, you can grant or remove the following SQL-related characteristics:

• General privileges

• Privileges for tables

• Privileges on views

• Privileges for stored procedures

Caché Security Administration Guide 77

Creating and Editing Users

General SQL Privileges
On the SQL Privileges tab of the Edit User page, you can add or remove SQL privilege for a user:

• To add a privilege to a user, first move the privilege from the Available list to the Selected list (either double-click it
or select it and then click the single right-arrow); click the Assign button to give the privilege to the user. To also add
the privilege of being able to grant the added privilege to other users, click the relevant button below the Available list.

• To add all privileges to a user, click the double-arrow pointing from the Available list to the Selected list; click the
Assign button to give the privileges to the user. To also add the privileges of being able to grant the added privileges
to other users, click the relevant button below the Available list.

• To remove a privilege from a user, click the Remove link to the right of privilege name.

• To remove all privileges from a user, click the Remove All button below the table listing the currently assigned privileges.

The following privileges are available:

• %ALTER _TABLE — For a given namespace, allow the user to run the ALTER TABLE command.

• %ALTER_VIEW — For a given namespace, allow the user to run the ALTER VIEW command.

• %CREATE_FUNCTION — For a given namespace, allow the user to run the CREATE FUNCTION command.

• %CREATE_METHOD — For a given namespace, allow the user to run the CREATE METHOD command.

• %CREATE_PROCEDURE — For a given namespace, allow the user to run the CREATE PROCEDURE command.

• %CREATE_QUERY — For a given namespace, allow the user to run the CREATE QUERY command.

• %CREATE_TABLE — For a given namespace, allow the user to run the CREATE TABLE command.

• %CREATE_TRIGGER — For a given namespace, allow the user to run the CREATE TRIGGER command.

• %CREATE_VIEW — For a given namespace, allow the user to run the CREATE VIEW command.

• %DROP_FUNCTION — For a given namespace, allow the user to run the DROP FUNCTION command.

• %DROP_METHOD — For a given namespace, allow the user to run the DROP METHOD command.

• %DROP_PROCEDURE — For a given namespace, allow the user to run the DROP PROCEDURE command.

• %DROP_QUERY — For a given namespace, allow the user to run the DROP QUERY command.

• %DROP_TABLE — For a given namespace, allow the user to run the DROP TABLE command.

• %DROP_TRIGGER — For a given namespace, allow the user to run the DROP TRIGGER command.

• %DROP_VIEW — For a given namespace, allow the user to run the DROP VIEW command.

Privileges for Tables
On the SQL Tables tab of the Edit User page, you can add or remove table-related SQL privileges for a user:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s tables will
appear.

2. To change privileges for a table, select the Edit button in that table’s row. This displays a window for altering privileges.

3. In this window, you can check or uncheck any of the following items:

• ALTER

• SELECT

• INSERT

• UPDATE

78 Caché Security Administration Guide

Users

• DELETE

• REFERENCES

4. After making your selection(s), click the Apply button to establish the new privileges for the table.

Privileges on Views
On the SQL Views tab of the Edit User page, you can add or remove view-related SQL privileges for a user.

To add privileges for the view:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s views will
appear.

2. To change privileges for a view, select the Edit button in that view’s row. This displays a window for altering privileges.

3. In this window, you can check or uncheck any of the following items:

• ALTER

• SELECT

• INSERT

• UPDATE

• DELETE

• REFERENCES

4. After making your selection(s), click the Apply button to establish the new privileges for the table.

Privileges for Stored Procedures
On the SQL Procedures tab of the Edit User page, you can add or remove a user’s SQL privileges related to stored procedures.

To add privileges for a stored procedure:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s stored procedures
will appear.

2. Below this window, click the Add button, which displays the Grant procedure privilege... dialog.

3. In this dialog, near the top, select the Schema from the drop-down that contains the procedure that you wish to add.
This displays a list of the schema’s procedures in the Available window on the left part of the page.

4. Move one or more procedures into the Selected window. Make sure the EXECUTE box is checked, so that the user has
the privilege to execute the stored procedure.

5. Optionally, you can grant the users the ability to grant this privilege on other users; to do this, click the Grant privilege

box near the bottom of the page.

6. Click the Apply button to grant the privilege(s) to the user.

To remove a user’s stored procedure privileges:

1. Choose the relevant namespace from the drop-down near the top of the page. A list of the namespace’s stored procedures
will appear.

2. To change privileges for a stored procedure, select the Edit button in that table’s row. This displays a page for altering
privileges.

3. On the page that appears, uncheck the EXECUTE check box and the GRANT privilege check box as appropriate.

4. Click the Apply button to change the privilege(s) for the user.

Caché Security Administration Guide 79

Creating and Editing Users

6.3 Viewing and Managing Existing Users
To view a list of the currently existing users, see the Users page in the Portal (System Administration > Security > Users).
This page displays information on the following fields (as described in more detail in the Properties of Users section):

• User — A unique identifier for the user

• Full Name — The user’s displayable name

• Enabled — Whether or not the user is currently enabled

• Namespace (default namespace) — The initial namespace for a terminal-type connection

• Routine (default routine) — The initial routine executed for a terminal-type connection

• Type — The kind of user, which is determined by the authentication and role-assignment mechanisms in use

For each user, you can

• Edit the user’s properties

• Delete the user

• View the user profile

6.3.1 Deleting a User

To delete a user:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users).

2. On the Users page, for the user you wish to delete, select the Delete button in that user’s row.

3. Caché displays a confirmation dialog. Select OK to delete the user and Cancel otherwise.

6.3.2 Viewing a User Profile

A user profile provides security information about a user account, such as the roles to which the user is assigned and the
time of the user’s last login. To view a user’s profile, the procedure is:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users).

2. On the Users page, in the row for the user, click Profile. This displays the user’s profile.

Alternately, if the Edit User page is visible for a user, click Profile in the upper-left corner of the page.

The following properties are listed as part of the user profile.

Table 6–2: User Profile Properties

Property DescriptionProperty Name

Unique user identifier. This can include any characters except the @,
which is used to identify a domain. This is editable on the Edit User page.

Name

The user’s displayable name. This is editable on the Edit User page.Full Name

A comma-separated list of roles assigned to user. These are editable on
the Roles tab of the Edit User page.

Roles

80 Caché Security Administration Guide

Users

Property DescriptionProperty Name

The date and time of user’s most recent password change.Last Password Change

The date and time of most recent successful login or 0 if there has not yet
been a successful login. Read-only.

Last Login

The IP address of the host from which the user last logged in.Last Login Device

The number of invalid login attempts since the most recent successful
login. Read-only.

Invalid Login Attempts

The date and time of most recent invalid login attempt. Read-only.Last Invalid Login

The IP address of the host from which the user last unsuccessfully
attempted to log in.

Last Invalid Login Device

The error thrown for the most recent invalid login attempt. Read-only.Last Reason for Failing to Login

The date and time at which the user account was created. Read-only.Time account was created

The account name associated with the user who created the account.
Read-only.

Username who created account

The date and time at which the account was last modified. Read-only.Time account was last modified

The account name associated with the user who last modified the account.
Read-only.

Username who last modified
account

A list of properties that were last modified for the account. Read-only.Information last modified in
account

6.4 Predefined User Accounts
Every instance of Caché automatically includes the following accounts:

Caché Security Administration Guide 81

Predefined User Accounts

Table 6–3: Predefined Users

PurposeAssigned RolesUsername

Default administrator account. This account exists for all instances
of all InterSystems products to support instance administration.
InterSystems recommends that you change the password for this
account from its initial value prior to going into production.

%ManagerAdmin

Default account representing the CSP Gateway when it connects
to Caché via Caché login for Normal and Locked-down instances.
InterSystems recommends that you change the password for this
account from its initial value prior to going into production.

(None)CSPSystem

Default account with all privileges available. This account exists for
all instances of all InterSystems products to provide complete access
to all aspects of the product. InterSystems recommends that you
change the password for this account from its initial value prior to
going into production.

%AllSuperUser

Default account for a non-logged in user%All (Minimal
security) or None
(Normal or
Locked-Down
security)

UnknownUser

Set of privileges given to all users (not a login account).(None)_PUBLIC

Default SQL account. This account exists for all instances of all
InterSystems products to provide SQL access. InterSystems
recommends that you disable this account for production systems.

%All_SYSTEM

Internal Ensemble user (not a login account). Only on Ensemble
instances.

%All_Ensemble

There is also an account called a “privileged user account,” which is created during Normal and Locked Down installations
and for which you supply a username and password.

It is not possible to delete the following accounts:

• _Ensemble

• _PUBLIC

• _SYSTEM

• UnknownUser

You can delete other predefined user accounts, subject to the requirement that there be at least one user with the %All role.

CAUTION: If the _SYSTEM account is available with its default password of “SYS” on deployed systems, this is a
security vulnerability. To address this issue, you can disable the account or change its password. InterSystems
recommends disabling the account.

6.4.1 Default Predefined Account Behavior

The predefined accounts have different defaults and behavior depending on whether an installation uses Minimal security,
Normal security, or Locked Down security.

82 Caché Security Administration Guide

Users

6.4.1.1 Minimal Security Defaults

For an installation with Minimal security, all the created accounts except _PUBLIC have an initial default password of
“SYS”. With the exception of UnknownUser, you should change the account passwords after installation in order to prevent
unauthorized access to your Caché instance.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled.

6.4.1.2 Normal Security Defaults

For an installation with Normal security, all the created accounts except _PUBLIC receive the same password as is chosen
for the privileged user account. It is recommended that you change these passwords after installation, so that each account
has its own password.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled.

6.4.1.3 Locked Down Security Defaults

For an installation with Locked Down security, all the created accounts except _PUBLIC receive the same password as is
chosen for the privileged user account. It is recommended that you change these passwords after installation, so that each
account has its own password.

The _PUBLIC account has no password by default and should never be given a password, since it is never enabled. In
Locked-Down installations, the _SYSTEM account is also disabled.

6.4.2 Notes on Various Accounts

6.4.2.1 The UnknownUser Account

For certain applications, or certain parts of an application, unauthenticated users may have a legitimate reason to use Caché,
such as for a retail system to display availability of products, prior to the user initiating a purchase. For this type of situation,
Caché supports the UnknownUser account. When an unauthenticated user connects, a special name, UnknownUser, is
assigned to $USERNAME and the roles defined for that user are assigned to $ROLES.

Unauthenticated access is not used when authentication fails. For example, suppose that a user attempts to connect to Caché
via terminal and supplies a username and password that fails authentication. Here, the user is not connected to Caché, even
if unauthenticated access is permitted; on the other hand, if unauthenticated access is permitted and that same user connects
to Caché without supplying a username (such as by pressing the Enter key at the username prompt), then that user is connected
as UnknownUser, the unauthenticated user. Similarly, if an ODBC client attempts to connect with null strings for username
and password, that connection will be accepted if unauthenticated access is permitted for the service; if the same ODBC
client provides a non-empty username and password values that fail authentication, that client is not connected even if
unauthenticated access is permitted.

6.4.2.2 The _PUBLIC Account

The predefined user, _PUBLIC, is a special account that does not exist for logins. Rather, it holds a set of roles. These roles
are specified as the default roles for any user who connects to the system. This ensures a minimum set of roles for any user.
For example, if you associate the %Operator role with the _PUBLIC user, then the value of $Roles for any user will always
include %Operator.

Caché Security Administration Guide 83

Predefined User Accounts

6.5 Validating User Accounts
If you need to validate user accounts in application code, you can do this by creating a simple routine that attempts to log
the user in with the one-argument form of the $SYSTEM.Security.Login method. If the login succeeds, the user is valid;
if the login fails, the user is not valid. When the routine exits (regardless of the login’s success or failure), the current user
will be the user who invoked the routine.

Here is a sample routine to perform this task, called ValidateUser:

ValidateUser(TestUser) {
 Write "Validating ",TestUser,"...",!
 New $Roles
 Set sc = $SYSTEM.Security.Login(TestUser)
 If sc = 1 {
 Write $Username," is a valid user.",!
 Write $Username," belongs to the following login roles: ",$Roles,!
 } Else {
 Write TestUser," is not a valid user.",!
 }
 Quit sc
}

This routine takes as its single argument, a string that is the name of the user to be validated. It then performs the following
actions:

1. The call of New $Roles stacks both the $Roles variable and the $Username variable. For more information on $Roles,
see the $Roles reference page.

2. It then invokes the one-argument form of the $SYSTEM.Security.Login method, which attempts to log the user in
and does not require the user’s password. If the login succeeds, the method returns 1; this determines the information
that the routine displays and the routine’s return value.

3. When the routine exits, this implicitly logs out the user, if there has been a successful login.

Important: This routine uses the one-argument form of the $SYSTEM.Security.Login method. To successfully invoke
the one-argument form of $SYSTEM.Security.Login, a user must have the CACHESYS:Write and
%Service_Login:Use privileges. For more information on $SYSTEM.Security.Login, see the reference
page for the %SYSTEM.Security class.

Here is a sample routine that demonstrates invoking ValidateUser, called VUTest. It is hard-coded to test two users, one
called ValidUser and one called NonexistentUser:

VUTest() {
 Write $Username," is the current user.",!,!

 Set sc = $$^ValidateUser("ValidUser")
 Write !

 Write "Exited validation code. ",$Username," is the current user.",!,!

 Set sc = $$^ValidateUser("NonexistentUser")
 Write !

 Write "Testing complete.",!
 Write $Username," is the current user."
 Quit 1
}

Suppose the VUTest routine were created in the User namespace of a Caché instance, the PrivilegedUser account were a
member of the %All role, and only the ValidUser were to exist. Here are the results of invoking VUTest at a Terminal
prompt:

84 Caché Security Administration Guide

Users

Username: PrivilegedUser
Password: ***********
USER>d ^VUTest
PrivilegedUser is the current user.

Validating ValidUser...
ValidUser is a valid user.
ValidUser belongs to the following login roles: %Manager

Exited validation code. PrivilegedUser is the current user.

Validating NonexistentUser...
NonexistentUser is not a valid user.

Testing complete.
PrivilegedUser is the current user.
USER>

Caché Security Administration Guide 85

Validating User Accounts

7
Services

There are various pathways for connecting to a Caché instance for users, applications, and even other Caché instances.
These pathways are managed by Caché services, which serve as gatekeepers for connecting to Caché. Because Caché services
are the primary means by which users and computers connect to Caché, their management is an essential part of security
administration.

Topics in this chapter are:

• Available services

• Service properties

• Services and authentication

• Services and their resources

7.1 Available Services
The Services page (System Administration > Security > Services) provides a list of services that Caché provides.

There are two groups of services:

• Resource-based Services — These are services that provide user access to Caché. This kind of service needs the
authentication and authorization infrastructure of Caché security, so it has an associated resource and uses the various
available authentication mechanisms.

• Basic Services — These are services that provide connections between a Caché server and a Caché application. These
do not have associated resources, so they provide little more than the basic security functionality of being turned on
or off. Enabling or disabling them controls all forms of access.

The following lists the available services, what each controls, and what kind of service it is:

• %Service_Bindings — SQL or Objects; use of Studio [resource-based]

• %Service_CSP — Web application pages (CSP or Zen) [resource-based]

• %Service_CacheDirect — Cache Direct [resource-based]

• %Service_CallIn — The CallIn interface [resource-based]

• %Service_ComPort — COMM ports attached to a Windows system [resource-based]

Caché Security Administration Guide 87

• %Service_Console — Terminal from a Windows console (analogous to %Service_Terminal for MacOS,
UNIX®, and Linux) [resource-based]

• %Service_DataCheck — The DataCheck [basic]

• %Service_ECP — Enterprise Cache Protocol (ECP) [basic]

• %Service_Login — Use of $SYSTEM.Security.Login [resource-based]

• %Service_MSMActivate — MSM Activate protocol [basic]

• %Service_Mirror — Caché database mirroring [basic]

• %Service_Monitor — SNMP and remote Monitor commands [basic]

• %Service_Shadow — Access to this instance from shadow destinations [basic]

• %Service_Telnet — Telnet sessions on a Windows server [resource-based]

• %Service_Terminal — Terminal from a Mac, UNIX®, and Linux console (analogous to %Service_Console
for Windows) [resource-based]

• %Service_Weblink — WebLink [basic]

The table of services includes a column for each service property.

7.1.1 Notes on Individual Services

7.1.1.1 %Service_Bindings

For the %Service_Bindings service, there are a pair of resources that manage access: the %Service_Object resource
and the %Service_SQL resource. Once a user has authenticated, these two resources control whether data is accessible
to the user as either objects or SQL respectively. (If a user has table-level SQL privileges on data, then Caché automatically
grants an authenticated user the %Service_SQL:Use privilege for the duration of the connection.)

This service also controls access to Studio. For more information about Studio and security, see the section “Integration
with Caché Security” in the “Introduction to Studio” chapter of Using Studio.

7.1.1.2 %Service_CacheDirect

This service authenticates connections to Caché through the Caché Direct server. The Caché Direct server is available on
any supported platform; clients for this service can only be on Windows.

%Service_CacheDirect manages access for two types of client-side applications:

• Client applications that use the Caché Direct client software. These have all authentication mechanisms available.

• Client applications that use the legacy CacheObject.dll library. These have no security features available; for these
legacy applications, the %Service_CacheDirect service must enable the Unauthenticated mechanism only.

Since legacy applications can only support unauthenticated access and both types of client applications use the same service,
Kerberos authentication is not available for Caché Direct clients if Caché is configured to accept connections from a legacy
application; similarly, if a Caché instance is configured to accept Kerberos-authenticated connections from Caché Direct
clients, legacy clients cannot connect to it.

Note: CacheObject.dll is supported for legacy applications only. New development should use either the Caché Direct
client or the CacheActiveX.dll and the %Service_Bindings service.

88 Caché Security Administration Guide

Services

7.1.1.3 %Service_Console and %Service_Terminal

These two services both provide console or terminal-style access to Caché. This functionality is analogous for both Windows
and non-Windows systems; %Service_Console provides this functionality for Windows and %Service_Terminal
provides this functionality for UNIX®, Linux, and Mac.

CAUTION: Terminal or console access is one of the most sensitive aspects of Caché security. If an attacker gains
access to Caché in one of these ways, it can be possible to read or destroy sensitive data.

7.1.1.4 %Service_CSP

This service manages connections that serve up CSP pages. Specifically, it manages connections between the CSP Gateway
and the Caché server. If there is no unauthenticated access for the service and the CSP Gateway has no valid authentication
information, then there is no access to the server via CSP. Hence, if you disable unauthenticated access through this service,
then you must ensure that the CSP Gateway has the information it needs to authenticate to the Caché server. For Caché
login (password) access, this is a valid username-password pair; for Kerberos access, this is a valid service principal name
and key table location. To specify these values use the CSP Gateway Web Management interface; for a standard installation,
the URL for this is http://localhost:57772/csp/bin/systems/module.cxw, where localhost represents 127.0.0.1 for IPv4 and
::1 for IPv6.

Because %Service_CSP regulates the use of the Portal and its subapplications, disabling %Service_CSP does not disable
any system applications (/csp/broker, /csp/docbook, /csp/documatic, /csp/sys, /csp/sys/exp, /csp/sys/mgr, /csp/sys/op,
/csp/sys/sec, /isc/studio/rules, and /isc/studio/templates). For more information on system applications, see the section
System Applications in the “Applications” chapter.

Important: If you inadvertently lock yourself out of the Portal, you can use emergency access emergency access mode
to reach the Portal and correct the problem; this is described in the section Emergency Access in the
chapter “System Management and Security.”

7.1.1.5 %Service_DataCheck

This service regulates the use of the DataCheck utility, which provides a mechanism to compare the state of data on two
systems. For more details, see the “Data Consistency on Multiple Systems” chapter of the Caché Data Integrity Guide,
and, for security issues, particularly the section “Enabling the DataCheck Service.”

7.1.1.6 %Service_ECP

A resource does not govern the use of ECP. Rather, you either enable or disable the service (this makes ECP what is called
a “basic service”). This means that all the instances in an ECP configuration need to be within the secured Caché perimeter.

See the “Specifying ECP Privileges and Roles” section of the “Configuring Distributed Systems” chapter of the Caché
Distributed Data Management Guide for details on how privileges work within an ECP configuration.

7.1.1.7 %Service_Login

This service controls the ability to explicitly invoke the Login method of the %SYSTEM.Security class. Calls to this method
are of the form:

 Set Success = $SYSTEM.Security.Login(username, password)

where username is the user being logged in and password is that user’s password.

Caché Security Administration Guide 89

Available Services

7.1.1.8 %Service_Mirror

This service regulates the use of the Caché database mirroring, which provides automatic failover between two systems.
For more details about mirroring generally, see the “Mirroring” chapter of the Caché High Availability Guide; for more
details about security for mirroring (though the use of SSL/TLS), see the “Configuring Caché to Use SSL/TLS with Mir-
roring” section in the “Configuring Caché to Use SSL/TLS with Mirroring” chapter.

7.1.1.9 %Service_Shadow

This service regulates the use of a Caché instance as a shadow source. For more details, see “Configuring the Source
Database Server” in the “Shadowing” chapter of the Caché Data Integrity Guide.

7.1.1.10 Legacy Services

Caché includes support for a number of legacy services. These are all basic services, and can simply be enabled or disabled.
They include %Service_MSMActivate and %Service_Weblink.

7.2 Service Properties
Each service has a set of properties that control its behavior. These can include:

• Service Name — Specifies the identifier for the service.

• Description — Provides an optional description of the service.

• Service Enabled — Controls whether a service is on or off. When enabled, a service allows connections to Caché,
subject to user authentication and authorization; when disabled, a service does not permit any connections to Caché.

At system start up, each service has the same state (enabled or disabled) that it had when Caché was shut down. Note
that enabling or disabling a service is not simply a security setting. It determines whether or not a certain capability is
provided by Caché and may, for instance, determine whether certain daemon processes are started or memory structures
are allocated.

• Allowed Authentication Methods — Specifies the available authentication mechanisms for connecting to the service,
including either of the two-factor authentication mechanisms; if multiple mechanisms are selected, the user or client
can attempt to connect using any of these. The mechanisms available depend on what is selected on the Authentica-

tion/CSP Session Options page (System Administration > Security > System Security > Authentication/CSP Session

Options). If a service supports multiple authentication mechanisms, these are used according to the Caché rules of
cascading authentication.

If either two-factor authentication mechanism is enabled, it has a check box. If visible, these are:

– Two-factor Time-based One-time Password — A Caché user’s mobile phone or an authentication device serves as
a second authentication “factor”; Caché and the phone or device share a secret key. This key is used to generate
a time-based one-time password (TOTP), which the user must enter at a prompt as part of the authentication process.

– Two-factor SMS — A Caché user’s mobile phone serves as a second authentication “factor”; Caché sends a eight-
digit security token to the phone, which the user must enter at a prompt as part of the authentication process.

For more details, see the section “Configuring Two-factor Authentication” in the “Authentication” chapter.

Note: If two-factor authentication is enabled for an instance, this check box appears on the Edit Service page for
all its services. However, two-factor authentication is only available for %Service_Bindings,
%Service_Console, and %Service_Terminal (and only when it is enabled for the instance).

90 Caché Security Administration Guide

Services

• Allowed Incoming Connections — Specifies a list of IP addresses or machine names from which the service accepts
connections; if a service has no associated addresses or machine names, then it accepts connections from any machine.
This capability can be very useful with multi-tier configurations; for example, with the CSP service, it can be used to
limit the set of Web servers that can connect to Caché. The Allowed Incoming Connections facility for ECP has additional
features described in the Restricting ECP Application Server Access section of the Caché Distributed Data Management
Guide.

For a resource-based service, the service can be specified as public. Public services are available to all authenticated users,
while non-public services are available only to those users with Use permission on the service’s resource. This value is
displayed on the main Services page (System Administration > Security > Services) and is set on the Edit Resource page
for the service’s resource. Possible values are:

• N/A — The service has no associated resource; this means that service can simply be turned on or off.

• NO — Access is available to any user holding a role that has the Use permission on the service’s resource. This is
checked after authentication.

• YES — Access is available to any user.

Note: A change to a service only takes effect after the service is restarted.

7.3 Services and Authentication
Basic services do not support authentication for Caché security. They are simply turned on and off. For those services,
enabling the service ensures that it accepts all connections. For these services, the assumption is made that all instances or
machines using the service are within a secure perimeter and can only be accessed by valid users. This includes
%Service_ECP, %Service_MSMActivate, %Service_Monitor, %Service_Shadow, and %Service_Weblink.

To enable an authentication mechanism for a resource-based service, you must first enable it for the Caché instance on the
Authentication/CSP Session Options page (System Administration > Security > System Security > Authentication/CSP Session

Options). Resource-based services support authentication mechanisms as listed in the table below. If a service has more
than one authentication mechanism enabled, Caché supports cascading authentication.

Table 7–1: Services with Authentication Mechanisms

UnCachéOSLDAPDelKRB
Login

KRB
Cache

Service Name

YYNYYYN%Service_Bindings

YYNYYYN%Service_CSP

YYNYYYN%Service_CacheDirect

YNYYYNN%Service_CallIn

YYNYYNN%Service_ComPort

YYYYYYY%Service_Console

YYYYYNN%Service_Login

YYNYYYN%Service_Telnet

YYYYYYY%Service_Terminal

Caché Security Administration Guide 91

Services and Authentication

Key:

• KRB Cache — Kerberos Cache

• KRB Login — Kerberos Login

• Del — Delegated authentication

• LDAP — LDAP authentication

• OS — Operating-System–based authentication

• Caché — Caché Login

• Un — Unauthenticated access

For each resource-based service, if there are multiple enabled authentication mechanisms, then Caché attempts to authenticate
users going from the strongest enabled form of authentication to allowing unauthenticated access (if that is enabled). This
is process is described in the section Cascading Authentication in the “Authentication” chapter.

7.4 Services and Their Resources
For resource-based services, the properties of the service itself govern access to Caché; at the same time, the properties of
the service’s resource govern access to and behavior of the service. For all resource-based services except
%Service_Bindings, the service’s associated resource has the same name as the service itself; hence the %Service_CSP
resource manages access for the %Service_CSP service. (The %Service_SQL and %Service_Object resources
manage access for %Service_Bindings.)

A resource itself has only two related properties: whether or not it is public and, if it is public, what its public permissions
are; for a service resource, the only relevant permission is Use. If it is public, then all users have Use permission on the
service. For more information on resources, see the chapter “Resources.”

Independent of privileges for other resources, service privileges provide little to the user. For example, for the
%Service_CacheDirect:Use privilege to be useful, the user must also hold the %DB_<database-name>:Write
privilege for the database where updates are to occur.

92 Caché Security Administration Guide

Services

8
Applications

Applications are the primary way that most users interact with Caché. Because of this, application security can provide a
key set of tools for regulating user actions. Application security uses Caché authorization tools to ensure that only the
appropriate users can use an application. An application can also escalate its users’ privileges.

This chapter covers the following topics:

• Applications, Their Properties, and Their Privileges

• Application Types

• Creating and Editing Applications

• System Applications

8.1 Applications,Their Properties, and Their Privileges
From a security standpoint, an application:

• is an entity that allows users to perform actions

• is associated with one or more resources

• has properties that govern its behavior

• can enhance its users’ privileges while they are running it

• can include programmatic privilege checks

All these characteristics and capabilities are part of the Caché authorization tools. If an application is formally defined with
Caché, then it can use this functionality. There are three kinds of applications:

• web applications, which are applications built with CSP or Zen

• privileged routine applications, which are applications typically built from Caché classes, in ObjectScript routines, or
both

• client applications, which are applications built using Caché Direct

This section covers:

• Applications and Their Properties

• Associating Applications with Resources

Caché Security Administration Guide 93

• Applications and Privilege Escalation

• Checking for Privileges Programmatically

8.1.1 Applications and Their Properties

Applications allow you to specify a set of permitted actions, such as reading from and writing to databases or using other
assets. To do this, Caché supports what is called an application definition, which is a set of information that represents the
application within Caché. (The relationship of an application definition to an application is analogous to that of the relationship
of a resource to an asset.) By establishing an application definition, you can control and manage the application.

Important: Applications and application definitions are frequently referred to interchangeably. The distinction is only
important in settings where the executable code or user experience of that code differs from the represen-
tation of that code within Caché. The former is the application itself and the latter is the application defini-
tion.

Each application, through its application definition, has the following properties:

Name

The name of the application. This must start with an alphabetic character and must be followed by alphabetic,
numeric, or underscore characters. The application definition’s name is independent of the name of any resource.

Description

A description of the application.

Enabled

A switch that specifies if the application is available for use. If the application is not enabled, no one can run the
application — not even a member of the %All role. For more details on how this property governs each kind of
application, see the appropriate section: web applications, privileged routine applications, or client applications.

Resource

A resource that manages application behavior. The resource has different effects for different application types:
for web applications and client applications, it controls whether or not users have access to the application; for
privileged routine applications, it controls the application’s privilege escalation. If a web or client application has
no resource, then any user can run the application; if a privileged routine application has no resource, then the
application escalates privileges for any user.

Each application definition can only be associated with a single resource. For more details on how this property
affects each kind of application, see the appropriate section: web applications, privileged routine applications, or
client applications. For more information on how applications interact with resources, see “Associating Applications
with Resources.”

Application Roles

One or more roles to which application users are assigned. While running the application, the user is assigned to
its application roles by appending these roles to the list of roles in the $Roles variable. For more information on
using application roles, see the section “Applications and Privilege Escalation”.

Matching Roles

One or more roles that cause the user be assigned to some additional roles (called “target roles”) while running
the application. If users are assigned to a matching role, then, while using the application, they are also assigned
to any target roles. This is done by appending these roles to the list of roles in the $Roles variable. For example,

94 Caché Security Administration Guide

Applications

if %Admin_Manage is a matching role, then being a member of that role might cause the application user to also
become a member of the target role of %Admin_Secure. For more information on using matching roles, see the
section “Applications and Privilege Escalation”.

All applications have these properties. Each of the three application types also has its own other, unique characteristics.

8.1.2 Associating Applications with Resources

When an application (and therefore its application definition) is a single, unitary whole, it has a single resource — a one-
to-one relationship. You can also specify that multiple applications (and therefore multiple application definitions) are
associated with a single resource — a many-to-one relationship. For any number of applications, the situation reduces to
some combination of these two conditions.

A more complex case is when an application is composed of separate parts, each of which is known as a sub-application.
An application made up of a group of sub-applications is designed to behave as a single, unitary whole, while allowing
different sub-applications to require different kinds of or levels of security. In this situation, it is useful to give each sub-
application its own application definition and to associate it with a separate resource. This way, each sub-application can
have its own independent security-related behavior. While, from the application perspective, there are multiple sub-appli-
cations that compose the larger application, from the Caché security perspective, there are simply multiple, individual
applications — each with its own application definition — and users pass among them without knowing it. Again, this
reduces to the one-to-one and many-to-one cases, except that the multiple application definitions represent what appears
to the end-user as a single application. Because the users have already authenticated and by that process have established
their roles, then passing from one sub-application to another requires no authentication.

For example, suppose there is an expense-reporting application where all employees can enter expense reports, but only
accounting officers can generate checks. In this case, the application might appear as a single whole and the functionality
to generate checks would be grayed out for all employees except the accounting officers. To accomplish this, there would
be two separate sub-applications, one for entering reports and another for generating checks. All users would be able to
use the former and only accounting officers would be able to use the latter. For them, there would be no visible difference
between what might simply appear as two separate screens in a single application.

8.1.3 Applications and Privilege Escalation

Since you can use application resources to escalate a user’s roles, they provide a mechanism for meeting authorization
needs that shift dynamically. To perform privilege escalation for an application:

1. Given an existing application, create a resource and then associate the application with the resource.

2. Create one or more roles that hold the Use permission for the resource.

3. Determine the list of privileges that the application requires in order to run. If the application has sub-applications,
there may be more than one such list.

4. Associate each list of privileges with a particular role. Establish each role as an application role for the application or
sub-application.

5. Establish any matching roles for the application or sub-application. Each matching role has one or more target roles
associated with it.

6. When a user successfully invokes an application, Caché performs two actions:

• For the duration of application use, it assigns the user to any application roles. (For privileged routine applications,
this depends on successfully invoking the AddRoles method, as described in the section “Privileged Routine
Applications.”)

• If the user is assigned to any matching role, the application assigns the user to any target roles for the duration of
application use. (Again, for privileged routine applications, this depends on successfully invoking the AddRoles
method, as described in the section “Privileged Routine Applications.”)

Caché Security Administration Guide 95

Applications, Their Properties, and Their Privileges

For example, suppose that an application has its own resource, called AppRsrc. Two roles hold the AppRsrc:Use privilege;
these are AppUser and AppOperator. AppOperator is also a matching role, where the target role is %Manager. In
this scenario, when a user belonging to the AppUser role invokes the application, the value of $Roles does not change;
when a user belonging to AppOperator invokes the application, the value of $Roles expands to include %Manager. If
the application has an application role of AppExtra, then a user belonging to the AppUser role receives the AppExtra
role when invoking the application. In the first scenario (matching role only), belonging to the AppOperator role causes
privilege escalation; in the second scenario (matching role and application role), belonging to either role results in privilege
escalation.

8.1.3.1 User-Based and Application-Based Security

The Caché security model allows for flexible privilege assignment that can be user-based, application-based, or both. The
use of an application can be limited to specific users or open to any users. For those users authorized to use the application,
there can be several behaviors:

• The application can run with the user’s privileges alone.

• The application can escalate privileges for only some users (using matching and target roles).

• The application can escalate privileges for all users (using application roles).

• The application can escalate some privileges for all users and only escalate other privileges for certain users (using a
combination of matching/target roles and application roles).

Hence, you have control of whether application use is limited to specific users or open to any users; simultaneously, you
also have control of whether an application runs with the user’s privileges or with its own privileges. This enables Caché
to provide a very flexible model:

Table 8–1: Protection/Escalation Matrix for Secured Applications

Restricted ApplicationPublic ApplicationPrivilege Level /
Protection Level

2. Only specified users can run the
application. Application runs with user
privileges.

1. Any user can run the application.
Application runs with user privileges.

With User-Dependent
Privileges

4. Only specified users can run the
application. Application runs with
(expanded) application privileges
through application roles and matching
roles.

3. Any user can run the application.
Application runs with (expanded)
application privileges through
application roles and matching roles.

With Privilege Escalation

Each of the scenarios described in the previous table is commonly used for a different authorization model:

1. Public Application with User-Dependent Privileges
This describes an application available to any authenticated user; when run, the application grants no additional privileges.
For example, for a company’s contact database, any user belonging to the company-wide role can get the office phone
number and email address for any employee; managers hold greater privileges, which entitle them to view employee home
phone numbers; HR staff hold even greater privileges, which entitle them to view and update full records. The application
is accessible to all employees, and its behavior depends on privileges that each user already has when invoking it — the
application itself grants no roles.

2. Restricted Application with User-Dependent Privileges
This describes an application available only to a user who belongs to a specified role; when run, the application grants no
additional privileges. For example, a company may have a payroll application for its hourly employees, which displays the

96 Caché Security Administration Guide

Applications

number of hours worked, pay rate, and so on. To run the application, a user has to be a member of either the
HourlyEmployee role or the HourlyManager role. Once running, the application checks which role was present:
members of HourlyEmployee can see and not edit their own data, while members of HourlyManager can see and edit
data for their own reports. An employee who is a member of the HourlyEmployee role can run the application to check
the accuracy of personal data; any other employee (such as one on a salary and who is not a member of the required role)
cannot even run the application.

3. Public Application with Privilege Escalation
This describes an application available to any authenticated user; when run, the application escalates privileges based on
the roles to which the user belongs. (The application can also escalate privileges only for certain roles.) For example, suppose
a university has an application where students can review and update their records. Here, any student is an authenticated
user and can edit his or her own contact information. To support this functionality, the application includes code for editing
an entry; this code checks that the entry being edited matches the authenticated user and, if so, escalates its own privileges
to update the record, and then restores the privileges to their previous state. If one student attempts to update another’s
record, then the check fails, there is no privilege escalation, and the update does not occur. The application might also check
if the user is a member of the registrar’s office role, in which case it would be possible to update information more widely.

4. Restricted Application with Privilege Escalation
This describes an application available only to a user who belongs to a specified role; when run, the application escalates
privileges based on the roles to which the user belongs. (The application can also escalate privileges only for certain roles.)
For example, a hospital’s emergency room might have an application that grants the attending doctor special, wider privileges
for viewing the records of patients currently admitted for emergency care. Because of the potentially critical nature of
emergency-room cases, the doctor needs to be able to view more information in this setting than while simply making
rounds; hence, the privileges are escalated.

8.1.4 Checking for Privileges Programmatically

An application can also include code to check if its users have privileges required to perform a particular action. To do this,
use the $SYSTEM.Security.Check method. The syntax of this call is:

 Set status = $SYSTEM.Security.Check(app_resource, app_permission)

where

• app_resource is the resource for which the user must hold a permission

• app_permission is the permission that must be held.

• status is the method’s return value of TRUE or FALSE (1 or 0).

For example, if an application requires a user to have Write permission on the Application_Order_Customer resource,
then the Check call would be:

 Set status = $SYSTEM.Security.Check("Application_Order_Customer", "WRITE")

Note: No privilege is required to call $SYSTEM.Security.Check.

8.2 Application Types
There are three types of applications:

• Web Applications

• Privileged Routine Applications

Caché Security Administration Guide 97

Application Types

• Client Applications

8.2.1 Web Applications

These are applications built with CSP and Zen (which itself uses CSP). They connect to Caché using the %Service_CSP
service.

For web applications, security information is maintained as part of the CSP session. That is, the values of $USERNAME
and $ROLES are preserved across page requests. (More specifically, when processing begins for a page, $ROLES contains
the user’s roles as well as roles defined for the application. It does not contain roles that have been dynamically added
during processing of a previous page via SET $ROLES or $SYSTEM.Security.AddRoles. This is true for both stateless
and “state-full” sessions.

With Web applications (whether they are built with Caché Server Pages, Zen, or with some other technology), the client
(that is, the browser) typically does not send a username and password to the server when it connects. Instead, the user
requests a page and the server responds with a login page that must be completed before the rest of the application can be
accessed. If two-factor authentication is enabled, then, once the user has provided a username and password, the server
displays a page for entering the security code; if authentication succeeds, the user has access to the application.

Note: With two-factor authentication, the server always displays the page for entering the one-time security token —
even if the username-password pair is not valid. After the user enters the one-time security token, the server displays
a message that access is denied, and provides a minimum of information that could be used against the system.

CSP security processing occurs as follows:

1. As each page request is received, its application is determined from the URL. If the application is not enabled, there
is no connection.

2. If the application is the same as the application for the last page processed for the CSP session, then there is already a
connection, so no further security checking is required.

3. If the Use permission for %Service_CSP is not public and the user does not hold this permission, there is no connection.

4. If the application or the CSP service require authentication and the user has not already been authenticated, then Caché
checks if the request includes CacheUserName and CachePassword parameters:

a. If CacheUserName and CachePassword are present, the CSP server attempts to log in; if the login succeeds, it
checks if the user has the Use permission for the application resource. If either of these fail, there is no connection.

b. If CacheUserName and CachePassword are not present, CSP displays an application-specific login page, if one
is defined in the web application configuration. (This is the only page in a secure application that can be used prior
to login.) If there is no application-specific login page, the username and password fail authentication, or the user
does not have the Use permission on the application resource, there is no connection.

To edit a web application, the Portal provides the following pages:

• Creating and Editing an Application: The General Tab

• Editing an Application: The Application Roles Tab

• Editing an Application: The Matching Roles Tab

8.2.2 Privileged Routine Applications

A privileged routine application grants the privilege to escalate roles to one or more classes or routines for the users of
those classes or routines. The classes or routines in a privileged routine application are written in ObjectScript, Caché Basic,
or MVBasic. To use a privileged routine application:

98 Caché Security Administration Guide

Applications

1. As an administrative task, create an application definition in the Management Portal, as described in the “Creating
and Editing an Application: The General Tab” section.

2. As an administrative task, add classes or routines to it, as described in the “Editing an Application: The Routines/Classes
Tab” section.

3. As a development task, edit the application definition’s classes or routines in your development environment to escalate
roles, as described in the “Escalating Roles in a Privileged Routine Application: The AddRoles Method” section.

The Portal provides the following pages to edit a privileged routine application (which includes the first two mentioned
above):

• Creating and Editing an Application: The General Tab

• Editing an Application: The Application Roles Tab

• Editing an Application: The Matching Roles Tab

• Editing an Application: The Routines/Classes Tab

8.2.2.1 Escalating Roles in a Privileged Routine Application:The AddRoles Method

To escalate roles in a privileged routine application, invoke the AddRoles method of the %SYSTEM.Security class. To call
AddRoles, the syntax is:

 Set sc = $SYSTEM.Security.AddRoles("AppDefName")

where AppDefName is the name of the application definition and sc is a status code. If a class or routine is part of an
application definition and the user is appropriately privileged, then calling AddRoles from that class or routine escalates
privileges to include any application roles (as described in “Editing an Application: The Application Roles Tab”) and any
relevant matching roles (as described in “Editing an Application: The Matching Roles Tab”).

Important: If a routine does not use curly braces to delimit code in its entry points, then control can pass from one
entry point to another, possibly resulting in overprivileged users and unintended levels of access. For more
information on structuring routines, see the “User-Defined Code” chapter of Using Caché ObjectScript.

Processing of the call to AddRoles occurs as follows:

1. If the call is not from a privileged class or routine, then the call fails.

2. If the required resource specified in the application definition is not public and the user invoking the method or routine
does not have Use permission on this resource, then the call fails.

3. Otherwise, the call succeeds.

Tip: To cause the user to give up any application roles and to revert to login roles when control passes out of scope for
the routine that escalates privileges, include the following command prior to the call to AddRoles:

 New $Roles

For more information on these topics, see the “Programmatically Managing Roles” section of the “Roles” chapter.

8.2.2.2 An Example of Using a Privileged Routine Application

Suppose there is an application that uses a database called DB1. This application’s users hold the %DB_DB1 role only, so
they all have privileges for DB1. Some of the application’s users also require temporary access to another database, DB2.
Those users get access to DB2 through the PRAEscalate method (“PRA” for “Privileged Routine Application”) of the

Caché Security Administration Guide 99

Application Types

PRATestClass class, which escalates their privileges; specifically, PRAEscalate adds the %DB_DB2 role, which provides
access to DB2.

To enable the PRAEscalate method to add the %DB_DB2 role for the appropriate users, the following security items must
exist:

• A resource called PRATestResource, which is not public.

• A role called PRA_DB2, which has only one privilege: PRATestResource:Use.

• The %DB_DB2 role, which was created when the DB2 database was created.

• A privileged routine application called PRATestApp. Related to PRATestApp:

– Users must have the PRATestResource:Use privilege to run the PRATestApp application, Therefore, users
who require access to the DB2 database must have the PRA_DB2 role (which grants the PRATestResource:Use
privilege).

– The PRATestClass class is part of the PRATestApp application. (To include the class in the application, do so on
the Routines/Classes tab of the Edit page for PRATestApp.)

– The %DB_DB2 role is an application role for PRATestApp. (To specify an application role, do so on the Application

Roles tab of the Edit page for PRATestApp.)

Given this setup and two users, PRATestBasicUser and PRATestDB2User:

• PRATestBasicUser is a member of %DB_DB1 only. Therefore, the PRATestApp application does not escalate PRAT-
estBasicUser’s roles, and the user cannot use the part of the application that requires access to DB2.

• PRATestDB2User is a member of the %DB_DB1 and PRA_DB2 roles. Therefore, the PRATestApp application does
escalate PRATestBasicUser’s roles, and the user can use the part of the application that requires access to DB2.

Here is the code of PRAEscalate:

Method PRAEscalate()
 {
 Write "This method is a part of the privileged routine application ",!
 Write "called PRATestApp.",!
 Write "The user invoking this routine is ",$Username,!
 Write "The current value of $Roles is ",$Roles,!,!
 Write "Calling the AddRoles method...",!,!
 New $Roles
 Set sc = $SYSTEM.Security.AddRoles("PRATestApp")
 If sc = 1
 {
 Write "Application roles have been added.",!
 Write "$Roles now is ",$Roles,!,!
 } Else {
 Write "The call to AddRoles has failed.",!
 Do $system.Status.DecomposeStatus(sc,.Err)
 Write Err(Err),!
 }
 }

Here is the terminal session where PRATestDB2User runs this routine:

100 Caché Security Administration Guide

Applications

Username: PRATestDB2User
Password: ********
USER>set x = ##class(PRATestClass).PRATest()
This method is a part of the privileged routine application
called PRATestApp.
The user invoking this routine is PRATestDB2User
The current value of $Roles is %DB_DB1, PRA_DB2

Calling the AddRoles method...

Application roles have been added.
The current value of $Roles is %DB_DB1, %DB_DB2, PRA_DB2
Removing %DB_DB2 from $Roles...
$Roles now is %DB_DB1, PRA_DB2

USER>

Here is the terminal session where PRATestBasicUser runs this routine:

Username: PRATestBasicUser
Password: ********
USER>set x = ##class(PRATestClass).PRATestMethod()
This method is a part of the privileged routine application
called PRATestApp.
The user invoking this routine is PRATestUser
The current value of $Roles is %DB_DB1

Calling the AddRoles method...

The call to AddRoles has failed.
ERROR #862: User is restricted from running privileged application PRATestApp
-- cannot execute.

USER>

8.2.3 Client Applications

These are applications that use Caché Direct to connect to Caché.

Important: Client application security is available only for applications using Caché Direct. Any client/server application
using other technology, such as ActiveX, cannot use application security. For these applications, use the
authentication tools described in chapter “Authentication.”

Caché enables executables built using Caché Direct to be identified to the system. When such an executable attempts to
connect to the server, Caché performs the following processing:

1. If the %Service_CacheDirect is not enabled, there is no connection. If %Service_CacheDirect is enabled,
the attempt to connect proceeds.

2. If the Use permission for the %Service_CacheDirect service is not public and the user does not hold the permission
on the service, then the connection is rejected.

3. If the Use permission for a resource specified in the application definition is not public and the user does not hold the
permission on the application, then the connection is rejected.

4. If the process has Read or Write permission on the namespace to which the connection is being made, the connection
is accepted; otherwise, the connection is rejected.

5. Once the connection is accepted, application roles are added. Similarly, if the user is a member of any matching roles,
then the appropriate target roles are added.

To edit a client application, the Portal provides the following pages:

• Creating and Editing an Application: The General Tab

• Editing an Application: The Application Roles Tab

• Editing an Application: The Matching Roles Tab

Caché Security Administration Guide 101

Application Types

8.3 Creating and Editing Applications
This section describes several topics:

• Creating and Editing an Application: The General Tab

• Editing an Application: The Application Roles Tab

• Editing an Application: The Matching Roles Tab

• Editing an Application: The Routines/Classes Tab

8.3.1 Creating and Editing an Application:The General Tab

For creating and editing an application, the General tab holds fields that specify information needed for basic operation of
the application.

8.3.1.1 Creating an Application

To create an application, the procedure is:

1. In the Management Portal menu, select System Administration > Security > Applications, which displays the different
application types.

2. Choose Web Applications, Privileged Routine Applications, or Client Applications. This displays the page for the selected
application type.

3. In the upper-left corner of the applications page, click the button to create a new application. Depending on the appli-
cation you are attempting to create, select Create New Web Application, Create New Privileged Routine Application, or
Create New Client Application. This displays the application editing page for the selected application type. You can
then edit the application as if it already existed using the information in the next section.

8.3.1.2 Editing an Application’s General Attributes

You can create or modify settings for how you want Caché to process a specific CSP application on the Edit Web Application

page of the Management Portal as follows:

1. In the Management Portal menu, select System Administration > Security > Applications > Web Applications.

This lists configured web applications. The Type column identifies an application as a user application (CSP) or a
system application (CSP,System; a CSP-based utility included with Caché).

2. Select an application, click Edit, and enter or change the information.

3. When finished with edits, restart Caché for the new settings to take effect.

The General tab displays the following options:

Table 8–2: Edit Web Application Settings — General Tab

DescriptionField

Enter a name for the application. The name must include a leading slash (/), such
as in the /csp/acme application.

Name

Enter a description.Description

The Caché namespace in which pages for this application are run.Namespace

102 Caché Security Administration Guide

Applications

DescriptionField

Sets this application as the default application for this namespace. A call to
%System.CSP.GetDefaultApp returns this application as the default for the namespace.
Caché import functions use this to deal with cases such as importing a CSP page
from an XML file where the current namespace does not have the CSP application
that the CSP file was exported from. CSP imports the CSP file into the default CSP
application for the namespace.

Namespace Default
Application

Controls whether an application is available. When selected, an application is
available, subject to user authentication and authorization; when unchecked, it is
not available.

Application

Enables CSP to serve CSP and Zen pages. Uncheck to disable. For more information
on Zen, see the book Using Zen.

CSP/Zen

Enables the %-class required for DeepSee. Uncheck to disable.DeepSee

Enables the %-class required for iKnow. Uncheck to disable.iKnow

Enables CSP to serve SOAP requests. Uncheck to disable. For more information
on SOAP and Caché web services, see the book Creating Web Services and Web
Clients in Caché.

Inbound Web Services

Specify classes that may be run in this application in three ways: 1) ObjectScript
match pattern. Example: 1"myclass".3N allows myclass123.cls to run in this
application, but not myclassxy.cls. 2) ObjectScript expression that evaluates to a
boolean, prefixed with @. The requested class name is passed as a variable named
class. Example: @class = “PermittedClasses.PermittedPage” 3) Call to
a class method (can also use @syntax). Example:
##class(MyPackage).CheckClassIsPermitted(class) See also “Enabling
Application Access to %CSP Pages”.

Permitted Classes

Specifies a resource for which users must have the Use permission (enabled as
part of a privilege in a role) in order to run the application. For information on
resources and permissions, see the “About Resources” section in the Caché Security
Administration Guide.

Resource Required

Enter a group name for this application to share authentication privileges with all
other applications with this group name. All applications with this group name stay
in authentication sync. If you log out of any of these applications, you are logged
out of all of them. If you then try to return to a page of any of these applications, you
need to log in again. Once logged in, however, you can go from one application to
another without logging in again. (The only exception is that if any of these applica-
tions are unauthenticated, they are not treated as part of the authentication cluster.)
Note that Group by ID is attached to an application, not a namespace. So applications
with the same Group by ID share authentication regardless of namespace. For more
specifics, see the section “By-ID Groups”.

Group by ID

Caché Security Administration Guide 103

Creating and Editing Applications

DescriptionField

Specifies the available authentication mechanisms for connecting to the application.
The options displayed here are determined by what is checked on the Authentication

Options page (Management Portal >System Administration > Security > System Security >
Authentication/CSP Session Options). If an application supports multiple authentication
mechanisms, authentication occurs as follows:

• If more than one option is enabled including Unauthenticated, the user has the
choice of logging in without providing a username and password.

• If all options are enabled and the user enters a username and password, then
Caché attempts to perform cascading authentication.

• If the selected options are Kerberos and Password and Unauthenticated is not
selected, then the user must provide a username and password. Caché attempts
to perform authentication first using Kerberos and then Caché password login.
If either authentication succeeds, the user is authenticated; if both fail, the user
is denied access to the application.

For more information on authorization, see the chapter Authentication in the Caché
Security Administration Guide.

Allowed Authentication
Methods

The default session timeout in seconds.You can override this value using the
AppTimeout property of the %CSP.Session object.
Note that if a session changes CSP applications during its life span, its timeout value
will not be updated according to the default timeout defined in the application that
the session moved into. For example, if a session starts out in CSP Application A,
with a default timeout of 900 seconds, and then moves into CSP Application B,
which has a default timeout of 1800 seconds, the session will still timeout after 900
seconds.

If you want an application change to result in the session timeout being updated to
that of the new application, use a session event class, override the
OnApplicationChange callback method, and add code to handle the update of the
AppTimeout property of the %session object.

Session Timeout

Specifies the default name of the CSP class (a subclass of %CSP.SessionEvents)
whose methods are invoked for CSP application events, such as a timeout or session
termination.You can override this value using the EventClass property of the
%CSP.Session object. Note: Use only a class name without an extension (such as
.cls or .zen) as a value of this setting, for example MyApplication.SessionEvents.

Event Class

Whether you want CSP to track which session a browser is in by using cookies or
a URL-rewriting technique (placing a value in each URL). (In order for an application
to actually use cookies, regardless of this setting, the application has to be written
to use cookies.) Choices are always use cookies, never use cookies, or, the default,
automatically detect whether a user has disabled cookies.The specific choices are:
a) (default) Use cookies (Always), b) Do not use cookies (Never), c) Use cookies
unless the client browser has disabled cookies (Autodetect). This option does not
set whether an application uses cookies (this is dependent on how the application
is written); it merely controls how CSP manages sessions. If the user has disabled
cookies, the application uses URL rewriting.

Use Cookie for
Session

104 Caché Security Administration Guide

Applications

DescriptionField

Scope of the session cookie.This determines which URLs the browser uses to send
the session cookie back to Caché. If your application name is myapp, it defaults to
/myapp/ meaning it only sends the cookie for pages under /myapp/. If you restrict this
to only what is required by your application, it prevents this session cookie being
used by other CSP applications on this machine, or from being seen by any other
application on this web server. On the other hand, browsers and cookies are
case-sensitive. Setting the session cookie to '/' can prevent license or session
problems if, for example, an application name changes from capital to lowercase
letters.

Session Cookie Path

Identifies the corresponding custom subclass of %CSP.REST for implementing a
REST service. See Creating Rest Services for more information.

Dispatch Class

Serve Files

Length of time static files should be cached by the browser in seconds. Default is
3600.

Serve Files Timeout

The directory on the Caché server in which CSP source files are stored. The path
is relative to the install-dir/csp/ directory on the Caché server system.

CSP Files Physical
Path

The name of an optional package prefix used by the CSP compiler. This name is
prepended to the package names used for classes created from CSP files. If this
field is not specified, the default value of csp is used.

Package Name

The name of the default superclass used by the CSP compiler for classes created
from CSP files. The default is %CSP.Page.

Default SuperClass

Specifies whether to include subdirectories within this application or not. If UPath
is the URL Path and PPath is the Physical Path, then with Recurse set to Yes,
UPath/xxx/yyy looks for CSP files in PPath/xxx/yyy. If Recurse is set to No, only files
directly contained in UPath are used.

Recurse

Auto Compile works with Lock CSP Name to determine when an application is compiled.Auto Compile

If two Web applications both point to the same namespace and Lock CSP Name is
set to Yes (true) for both Web applications, then any CSP page in that namespace
is displayed only through the Web application where it was last compiled.You can
determine which Web application applies to a CSP page by looking at the page
class’s CSPURL parameter. For example:

Parameter CSPURL = "/csp/samples/zipcode.csp";

If you set Lock CSP Name to Yes, set Auto Compile to No. If Auto Compile is also set to
Yes, then a change to any CSP page in the namespace triggers a recompilation of
that page (including the CSPURL parameter) when it’s next requested. A change
to either Web application definition also triggers recompilation of any pages in the
namespace when next requested. In these cases, this allows the next request for
a page to use either of the Web applications, and from then on, the page is displayed
only through the last Web application used to request it.

For Zen pages in this scenario, if you set Lock CSP Name to Yes, set the CSPURL
parameter of each ZEN page. See %CSP.Page for details. The AutoCompile setting
doesn’t affect ZEN pages.

Lock CSP Name

Caché Security Administration Guide 105

Creating and Editing Applications

DescriptionField

The name can be the name of a CSP page, a Zen page, or a CSP-enabled class
which may be prefixed with the full CSP application path. All of the following are
acceptable: mylogin.csp, /csp/user/mylogin.csp, MyApp.LoginPage.zen,
/csp/user/MyApp.LoginPage.cls. In most cases, the login page is loaded before the user
has logged in to Cache, so the requesting process runs under the CSPSystem user
(or whatever user connects the CSP Gateway to Caché). As a result, the CSPSystem
user must have sufficient privileges to load and run the code in the login page, which
generally requires READ permissions on the resource protecting the database in
which the login page is located.

Login Page

Name of page to use when changing password.Change password
page

The name of a .csp or .cls page that is displayed if an error occurs when generating
a page within this application.

Custom Error Page

To perform general editing on a privileged routine application or a client application, the procedure is:

1. In the Management Portal menu, select System Administration > Security > Applications, which displays the different
application types.

2. Choose Web Applications, Privileged Routine Applications, or Client Applications. This displays the page for the selected
application type.

3. On the applications page, select the application to edit by clicking on its name. This displays the Edit page for the
application.

4. By default, the General tab appears. For privileged routine applications and client applications, the page’s fields are:

• Privileged routine application name or Application path and name — An identifier for the application

• Description — A description of the application

• Enabled — Whether or not the application is available. When enabled, an application is available, subject to user
authentication and authorization; when disabled, it is not available.

• Resource required to run the application — A resource for which users must have the Use permission (enabled as
part of a privilege in a role) in order to perform certain actions. For web and client applications, this resource is
required in order to simply operate the application; for privileged routine applications, this resource is required to
invoke the AddRoles method, which gives the application its ability to escalate roles.

8.3.2 Editing an Application:The Application Roles Tab

You can configure an application so all its users receive certain roles, which are known as application roles.

To specify application roles for an application, the procedure is:

1. In the Management Portal menu, select System Administration > Security > Applications, which displays the different
application types.

2. Choose Web Applications, Privileged Routine Applications, or Client Applications. This displays the page for the selected
application type.

3. On the applications page, select the application to edit by clicking on its name. This displays the Edit page for the
application.

4. On the Edit page, go to the Application Roles tab.

106 Caché Security Administration Guide

Applications

5. To specify one or more application roles, click on the roles listed in the Available list. Move them into the Selected list
with the arrows.

6. Click Assign to establish the application roles.

8.3.3 Editing an Application:The Matching Roles Tab

You can configure an application to support what are called matching roles and target roles. If a user is assigned to a
matching role, then running the application causes Caché to assign the user to any associated target roles. An application
can have multiple matching roles; for each matching role, it can have multiple target roles; and multiple matching roles
can have the same target role.

To establish a matching role and its target roles for an application, the procedure is:

1. In the Management Portal menu, select System Administration > Security > Applications, which displays the different
application types.

2. Choose Web Applications, Privileged Routine Applications, or Client Applications. This displays the page for the selected
application type.

3. On the applications page, select the application to edit by clicking on its name. This displays the Edit page for the
application.

4. On the Edit page, go to the Matching Roles tab.

5. On the Matching Roles tab, choose the role to be a matching role from the Select a matching role drop-down.

6. To select the accompanying target role(s), click on the roles listed in the Available list. Move them into the Selected

list with the arrows.

7. Click Assign to establish the matching role and its target role(s).

8.3.4 Editing an Application:The Routines/Classes Tab

This tab is for privileged routine applications only. On this tab, you can specify the classes or routines that are part of a
privileged routine application.

To add a class or routine to privileged routine application, the procedure is:

1. In the Management Portal menu, go to the Privileged Routine Applications page (System Administration > Security >
Applications > Privileged Routine Applications).

2. On the Privileged Routine Applications page, there is a list of applications that can be edited. Click the Name of the
relevant application. This displays the Edit Privileged Routine Application page for the application.

3. On the Edit Privileged Routine Application page, go to the Routines/Classes tab.

4. In the Routine/Class name field, enter the name of the routine or class to be added to the application.

5. Specify whether you are adding a Routine or a Class by selecting the corresponding check box.

6. Click Assign to add the routine or class to the application.

Caché Security Administration Guide 107

Creating and Editing Applications

8.4 System Applications
Each Caché instance comes with a number of system applications. There is always access to these applications, even if the
%Service_CSP service is disabled. The system applications are:

Table 8–3: Caché System Web Applications

Associated ResourcePurpose or Managed InteractionsName

Common static file store. For InterSystems internal
use only.

/csp/broker

InterSystems main documentation (including this
book).

/csp/docbook

%DevelopmentInterSystems class reference documentation./csp/documatic

General Portal access./csp/sys

%DevelopmentData Management options in the Portal./csp/sys/exp

%Admin_ManageConfiguration and Licensing options in the Portal./csp/sys/mgr

%Admin_OperateOperations options in the Portal./csp/sys/op

%Admin_SecureSecurity Management and Encryption options in
the Portal.

/csp/sys/sec

Mapping to the CSP rules files./isc/studio/rules

%DevelopmentMapping to system-defined Studio template files./isc/studio/templates

For more information on the /isc/studio/rules, application, see the chapter “Developing Custom Tags” in Using Caché
Server Pages (CSP). For more information on the /isc/studio/templates application, see the chapter “Using Studio Templates”
in Using Studio.

108 Caché Security Administration Guide

Applications

9
Auditing

Logging certain key events in a secure audit database is a major aspect of Caché security. Caché allows you to monitor
events and add entries to the audit database when those events occur. These events can be within Caché itself or part of an
application. The knowledge that all activities are being monitored and that all logs can be reviewed is often an effective
deterrent.

This chapter provides information on various topics:

• Basic Auditing Concepts

• About Audit Events

• Managing Auditing and the Audit Database

• Other Auditing Issues

9.1 Basic Auditing Concepts
Caché allows you to enable or disable auditing for the entire Caché instance. When auditing is enabled, Caché logs all
requested events. Auditable events fall into two categories:

• System events — Caché system events that are only logged if they are explicitly enabled.

• User events — Application events, which are only logged if they are explicitly enabled.

Caché system events are built-in events that monitor actions within Caché, such as start-up, shutdown, logins, and so on;
system events also monitor security-related events, such as changes to security or audit settings.

Caché does not automatically audit database activity, such as inserts, updates, or deletes for a table, because this kind of
activity typically generates so many audit entries as to be useless — or even counterproductive — due to the performance
impact on the system. For example, if a medical records application were to log all access to patient medical information,
then one such access event might result in hundreds or thousands of database accesses. It is much more efficient to have
the application create a single audit entry, rather than have the database manager generate thousands.

9.1.1 Enabling or Disabling Auditing

In the Auditing menu (System Administration > Security > Auditing), there are selections to enable and disable auditing. If
the Enable Auditing choice is available, this means that auditing is disabled; if the Disable Auditing choice is available, this
means that auditing is enabled. Caché auditing is disabled by default for minimal-security installations; it is enabled by
default for normal and locked-down installations.

Caché Security Administration Guide 109

Enabling Auditing
To turn on auditing, on the Auditing menu (System Administration > Security > Auditing), select the Enable Auditing choice.

Disabling Auditing
To turn off auditing, on the Auditing menu (System Administration > Security > Auditing), select the Disable Auditing choice.

If you enable (turn on) auditing, then Caché audits:

• All system events that are enabled

• All user events that are enabled

9.2 About Audit Events
The following sections describe different aspects of audit events:

• Elements of an Audit Event

• About System Audit Events

• Enabling and Disabling System Events

• About User Events

Note: This section describes how to manage audit events with the Management Portal. To manage audit events program-
matically, use the Security.Events class.

9.2.1 Elements of an Audit Event

Audit information is available in the CACHEAUDIT database. New entries are added to the end of the log. When you view
the audit log, you see the following elements for each entry:

Time (also called UTCTimestamp)

UTC date/time when the event was logged.

Event Source*

The component of the Caché instance that is the source of the event. For Caché events, this is always “%System”.
For user-defined events, the name can be any string that includes alphanumeric characters or punctuation, except
for colons and commas; it can begin with any of these characters except for the percent sign. This can be up to 64
bytes.

Event Type*

Categorizing information for the event. This string can include any alphanumeric characters or punctuation, except
for colons and commas; it can begin with any of these characters except for the percent sign. This can be up to 64
bytes.

Event* (also called Event Name)

Identifier of the event being logged. This string can include any alphanumeric characters or punctuation, except
for colons and commas; it can begin with any of these characters except for the percent sign. This can be up to 64
bytes.

110 Caché Security Administration Guide

Auditing

PID (also known as a Process ID)

Operating system ID of the Caché process that logged the event. Caché uses the OS PID in its native form.

CSP Session (search results only)

The session ID, if there is one, of the CSP session that caused the event.

User (also called Username)

Value of $USERNAME for the process that logged the event.

Description

A short field which can be used by applications to summarize the audit event. This field is intended for display/expla-
nation purposes only. The combination of EventSource, EventType, and Event uniquely define a particular kind
of audit event. The Description is a user readable explanation. This can be up to 128 characters.

*Each different kind of event is uniquely identified by the combination of its EventSource, its EventType, and the Event
itself.

When you click Details, you see some of the same elements and the following additional elements:

Timestamp

Date/time when the event was logged, in local time.

JobId

ID of the job.

IP Address

IP address of client associated with the process that logged the event.

Executable

The client application associated with the process that logged the event, if there is one.

System ID

The machine and Caché instance that logged the event. For example, for the machine MyMachine and the instance
MyInstance, the system ID is MyMachine:MyInstance.

Index

The index entry in the data structure containing the audit log.

Roles

For all events except LoginFailure, the value of $ROLES for the process that logged the event. For LoginFailure,
a value of “ ” , as the user is not logged in.

Namespace

The namespace that was current when the event was logged.

Routine

The routine or subroutine that was running when the event was logged.

Caché Security Administration Guide 111

About Audit Events

User Info

User-defined information about the process, added programmatically via the %SYS.ProcessQuery interface.

O/S Username

Username given to the process by the operating system. When displayed, this is truncated to 16 characters.

This is the actual operating system username only for UNIX® systems.

For Windows:

• For a console process, this is the operating system username.

• For Telnet, this is the $USERNAME of the process.

• For client connections, this is the operating system username of the client.

Status

The value of any %Status object that was audited.

Event Data

A memo field where applications can store up to 3632952 bytes of data associated with the audit event. For
example, it can contain a set of application values at the time of the event or can summarize the old and new states
of a record or field.

9.2.2 About System Audit Events

System audit events are predefined events that are available for auditing by default. General information about them appears
in the table on the System Audit Events page (System Administration > Security > Auditing > Configure System Events),
where the columns are:

• Event Name — The Event Source (which is always %SYSTEM), Event Type, and Event proper, all together and
concatenated with slashes (“ /”).

• Enabled — Whether or not the event is enabled (turned on) for auditing.

• Total — The number of events of this type that have occurred since the last startup of Caché.

• Written — The number of events of this type that have been written to the audit log since the last startup of Caché.
This number may differ from the total occurrences.

• Reset — Allows you to clear the audit log for this event reset its counter to zero. For more information on counters,
see “About Counters.”

• Change Status — Allows you to enable or disable the event.

They monitor events within the Caché system and are distinguishable by their EventSource value of %SYSTEM:

Table 9–1: System Audit Events

Default
Status

EventData ContentsOccurs WhenEvent Type and
Event

OffText of command.Any command is executed in direct
mode.

%DirectMode/

DirectMode

112 Caché Security Administration Guide

Auditing

Default
Status

EventData ContentsOccurs WhenEvent Type and
Event

OffA user successfully logs in.%Login/

Login

Varies*Username.A login attempt fails.%Login/

LoginFailure

OffA user logs out.%Login/

Logout

OffVaries, as does the Description
field’s content; see below.

A process terminates abnormally.%Login/

Terminate

OffVaries, as does the Description
field, depending on the action
taken. Includes relevant content
such as the compile flags or the
schema and table being dropped.

Data is altered using the Portal,
such as by creating, editing,
deleting, compiling, dropping,
replacing, or purging classes or
tables.

%SMPExplorer/

Change

OffThe syntax of the executed query.A query is executed using on the
Portal’s SQL page.

%SMPExplorer/

ExecuteQuery

OffThe options selected for data
export.

Data is exported through the
Portal.

%SMPExplorer/

Export

OffThe options selected for data
import.

Data is imported through the
Portal.

%SMPExplorer/

Import

OffThe filters that determined what
data was viewed. The Description
field specifies what was viewed,
such as a list of classes, an
individual global, or process
information.

Data is viewed through the Portal.%SMPExplorer/

ViewContents

OffThe statement text and the values
of any host-variable arguments
passed to it. If the total length of
the statement and its parameters
exceeds 3,632,952 characters, the
event data is truncated.

A dynamic SQL call is executed.%SQL/

DynamicStatement

OffThe statement text and the values
of any host-variable arguments
passed to it. If the total length of
the statement and its parameters
exceeds 3,632,952 characters, the
event data is truncated.

An embedded SQL call is
executed.

%SQL/

EmbeddedStatement

Caché Security Administration Guide 113

About Audit Events

Default
Status

EventData ContentsOccurs WhenEvent Type and
Event

OffThe statement text and the values
of any host-variable arguments
passed to it. If the total length of
the statement and its parameters
exceeds 3,632,952 characters, the
event data is truncated.

A remote SQL call is executed
using ODBC or JDBC.

%SQL/

XDBCStatement

OnAction (create new, modify, or
delete), old and new application
data.

An application definition is created,
changed, or deleted.

%Security/

ApplicationChange

OnAction (stop, start, erase, delete,
or specify), old and new audit
settings.

Auditing is stopped or started,
entries are erased or deleted, or
the list of events being audited is
changed.

%Security/

AuditChange

OnIdentification of audit report.Any standard audit report is run.%Security/

AuditReport

OnVaries, as does the Description
field’s content. See below.

There is a change related to
database or data-element
encryption.

%Security/

DBEncChange

OnAction (new, modify, delete), old
and new domain data.

A domain definition is created,
changed, or deleted.

%Security/

DomainChange

OnThis event is not currently in use.
Even when it is enabled (On), it
does not appear in the audit log.

%Security/

LoginRuleChange

OffError.A process generates a security
protection error.

%Security/

Protect

OnAction (new, modify, or delete), old
and new resource data.

A resource definition is created,
changed, or deleted.

%Security/

ResourceChange

OnAction (create new, modify, or
delete), old and new role data.

A role definition is created,
changed, or deleted.

%Security/

RoleChange

OnThe changed fields with old and
new values.

An SSL/TLS configuration’s
settings are changed.

%Security/

SSLConfigChange

OnOld and new service security
settings.

A service’s security settings are
changed.

%Security/

ServiceChange

OnOld and new security settings.System security settings are
changed.

%Security/

SystemChange

114 Caché Security Administration Guide

Auditing

Default
Status

EventData ContentsOccurs WhenEvent Type and
Event

OnAction (create new, modify, or
delete), old and new user data.

A user definition is created,
changed, or deleted.

%Security/

UserChange

OnNone.An audit entry has not been added
to the audit database due to
resource limitations that constrain
the audit system (such as disk or
database full).

%System/

AuditRecordLost

OnUsername for the user who made
the change; previous and new
values of the changed element. For
deleted locks, information about
which lock was deleted.

Caché successfully starts with a
configuration different than the
previous start, a new configuration
is activated while Caché is running,
or a lock is deleted through the
Portal or through the ^LOCKTAB
utility.

%System/

ConfigurationChange

OnDetails about the particular
change. See below.

There are changes to database
properties. See below.

%System/

DatabaseChange

OnWhen journaling is started, the
name of the database and its
maximum size; when journaling is
stopped, none.

Journaling is started or stopped for
a database or process.

%System/

JournalChange

OnThe operating system command
that was invoked; the directory in
which it was invoked; and any flags
associated with the command.

An operating-system command is
issued from within the system,
such as through a call to the
$ZF(-100) function.

%System/

OSCommand

OffNo content, though the Description
field depends on the change itself;
see below.

A method or routine is compiled or
deleted on the local instance. For
more details, see below.

%System/

RoutineChange

OnIndication of whether recovery was
performed.

The system starts.%System/

Start

OnCaché is shut down.%System/

Stop

OffThe process ID of the process.A process is suspended or
resumed.

%System/

SuspendResume

OnThe name of the event that the
application attempted to log.

An application attempts to log an
undefined event.

%System/

UserEventOverflow

*The LoginFailure event is off by default for minimal-security installations; it is on by default for normal and locked-down
installations.

Caché Security Administration Guide 115

About Audit Events

Important: If auditing is enabled, then all enabled events are audited.

9.2.2.1 About the %System/%Login/Logout and %System/%Login/Terminate Events

A process generates a %System/%Login/Logout event if the process ends because of:

• A HALT command

• Exiting application mode because of a QUIT command

• Executing the Terminate method of the SYS.Process class to terminate itself (which is the same as executing HALT).

A process generates a %System/%Login/Terminate event if the process exits for any other reason, including:

• The user closes the Terminal window, resulting in a Terminal disconnect. If the process is in application mode, the
Description field of the audit record includes the statement “^routinename client disconnect” (where routinename is
the first routine that the process ran); if the process is in programmer mode, the Description field includes the statement
“Programmer mode disconnect.”

• A Terminal session is ended by an action in another process, including ^RESJOB, ^JOBEXAM, or the Management
Portal. If the process is in application mode, the Description field of the audit record includes the statement “^routine-
name client disconnect” (where routinename is the first routine that the process ran) ; if the process is in programmer
mode, the Description field includes the statement “Programmer mode disconnect.” Note that the event data will
contain the pid of the process which terminated them.

• A core dump or process exception. When a process gets a core dump or exception, it is too late for it to write to the
audit file. Therefore, when the clean daemon runs to clean up the state of the process, it writes an audit record to the
log with a description “Pid <process nunber> Cleaned”.

• A TCP Client disconnect. When a process detects that a client has disconnected, this results in an audit record with a
Description field which contains the name of the executable that disconnected, such as “<client application> client
disconnect” .

9.2.2.2 About the %System/%Security/DBEncChange Event

A process generates a %System/%Security/DBEncChange event because of:

• Encryption key activation

• Encryption key deactivation

• Encryption key and key file creation

• Encryption key file modification

• Encryption settings modification

The EventData includes the encryption key’s ID and key file when these are relevant to the event.

9.2.2.3 About the %System/%System/DatabaseChange Event

A process generates a %System/%System/DatabaseChange because of any of the following changes to a database:

• Creation

• Modification

• Mounting

• Dismounting

116 Caché Security Administration Guide

Auditing

• Compaction

• Truncation

• Global compaction

• Defragmentation

For creation and modification, changes to the following properties cause auditing events (which are included in the event
data):

• BlockSize (Create only)

• ClusterMountMode (Cluster systems only)

• ExpansionSize

• GlobalJournalState

• MaxSize

• NewGlobalCollation

• NewGlobalGrowthBlock

• NewGlobalIsKeep

• NewGlobalPointerBlock

• ReadOnly

• ResourceName

• Size

For mounting and dismounting, the event data records the database that was mounted or dismounted. For compaction,
truncation, global compaction, and defragmentation, the event data includes include the parameters that the user selected.

9.2.2.4 About the %System/%System/RoutineChange Event

A process generates a %System/%System/RoutineChange event because a routine has been compiled or deleted. When
enabled, this event causes a record to be written to the audit log whenever a routine or class is compiled. The Description
field of the audit record includes the database directory where the modification took place, what routine or class was mod-
ified, and the word “Deleted” if the routine was deleted.

Caché audits events on the local server but not for associated instances. For example, if one instance of Caché is an appli-
cation server that is associated with another instance that is a database server, creating and compiling a new routine on the
application server is not audited on the database server, even if the RoutineChange audit event is enabled on the database
server. To create a comprehensive list of all changes on all associated instances, enable the relevant events on all the
instances and combine their audit logs.

9.2.3 Enabling and Disabling System Events

To enable or disable system events:

1. From the Management Portal home page, go to the System Audit Events page (System Administration > Security >
Auditing > Configure System Events).

2. On the Configure System Audit Events page, locate the event that you wish to enable or disable and select Change

Status from the right-most column of the table. This changes the Enabled status from No to Yes, or vice versa.

Caché Security Administration Guide 117

About Audit Events

9.2.4 About User Events

In addition to system events, Caché allows you to create custom events that can be added to the audit database through
your application. All currently defined events are listed on the User-Defined Audit Events page (System Administration >
Security > Auditing > Configure User Events).

9.2.4.1 Creating a User-defined Event

For Caché to audit a user-defined event, it must be added to the list of events and then enabled. The procedure is:

1. In the Management Portal, go to the User-Defined Audit Events page (System Administration > Security > Auditing >
Configure User Events).

2. Click Create New Event. This displays the Edit Audit Event page.

3. On this page, enter values in the Event Source, Event Type, Event Name, and Description fields where these components
have the purposes described in “ Elements of an Audit Log Entry.”

4. By default, the Enabled check box on this page is selected. Click it to disable the event.

5. Click the page’s Save button to create the event.

6. Make sure that auditing is enabled.

7. Once the event is defined and auditing is enabled, you can add the event to the audit log by executing the following
command:

Do $SYSTEM.Security.Audit(EventSource,EventType,Event,EventData,Description)

using the EventSource, EventType, Event, and EventData values that you defined in the Portal. For more details, see
the section “ Adding an Entry to the Audit Log.”

9.2.4.2 Adding an Entry to the Audit Log

Applications can add their own entries to the audit log with the $SYSTEM.Security.Audit function:

Do $SYSTEM.Security.Audit(EventSource,EventType,Event,EventData,Description)

where EventSource, EventType, Event, EventData, and Description are as described in the section “Elements of an Audit
Log Entry.” Both the EventData and Description arguments can hold variables or literal values (where strings must appear
in quotation marks). Caché provides all other elements of the log item automatically.

The content of EventData can span multiple lines. Its content is processed in a manner similar to the argument of the
ObjectScript Write command, so it uses the following form:

"Line 1"_$Char(13,10)_"Line 2"

In this case, the content listed in the Audit Detail is displayed as “Line 1”, then $Char(13,10) is a carriage return and
line feed, then there is “Line 2”.

For example, a medical records application from XYZ Software Company might use values such as:

 $SYSTEM.Security.Audit(
 "XYZ Software",
 "Medical Record",
 "Patient Record Access",
 765432,
 "Access to medical record for patient 765432"
)

Note that the application uses the EventData element to record the ID of the patient whose record was accessed.

118 Caché Security Administration Guide

Auditing

Further, if there is an “XYZ Software/Record Update/Modify Assignment” event defined and enabled, then the following
code changes the value of a user-selected element of a list and notes the change in the audit database:

 For i=1:1:10 {
 Kill fVal(i)
 Set fVal(i) = i * i
 }

 Read "Which field to change? ",fNum,!
 Read "What is the new value? ",newVal,!
 Set oldVal = fVal(fNum)
 Set fVal(fNum) = newVal
 Set Data = "Changed field " _ fNum _ " from " _ oldVal _ " to "_ newVal _ "."
 Set Description = "Record changed by user with an application manager role"
 Do $SYSTEM.Security.Audit(
 "XYZ Software",
 "Record Update",
 "Modify Assignment",
 Data,
 Description
)
 Write "Field changed; change noted in audit database."

Audit returns 1 or 0 to indicate that the addition succeeded or failed.

No privilege is required to add an entry to the audit log.

9.2.4.3 Deleting User Events

If you delete a user event, it is no longer available as part of the Caché instance for auditing. To delete a user event:

1. From the Management Portal home page, go to the User-Defined Audit Events page (System Administration > Security

> Auditing > Configure User Events).

2. On this page, locate the event that you wish to enable or disable and select Delete from the column near the right-hand
part of the table.

3. When prompted, confirm that you wish to delete the event.

9.3 Managing Auditing and the Audit Database
When events are logged, they are visible in the audit database, CACHEAUDIT. The audit database also contains general
information, including the name of the server, the name of the Caché configuration, when the log was started, and when
the log was closed.

The following actions are available for managing the audit log:

• Viewing the Audit Database

• Copying, Exporting, and Purging the Audit Database

• Encrypting the Audit Database

• General Management Functions

9.3.1 Viewing the Audit Database

To view the audit database, select View Audit Database from the Auditing menu. This displays the View Audit Database page
(System Administration > Security > Auditing > View Audit Database). This page allows you to view the audit database and
refine a search based on the following fields:

Caché Security Administration Guide 119

Managing Auditing and the Audit Database

• Event Source — The component of the Caché instance that is the source of the event, as described in “Elements of an
Audit Event.” Clicking the button to the right of the field displays a list of values in use. The asterisk (“*”) chooses
all values; no other wildcards are supported.

• Event Type — Any categorizing information for the event, as described in “Elements of an Audit Event.” Clicking
the button to the right of the field displays a list of values in use. The asterisk (“*”) chooses all values; no other
wildcards are supported.

• Event Name (also called Event) — The identifier of the event being logged, as described in “Elements of an Audit
Event.” Clicking the button to the right of the field displays a list of values in use. The asterisk (“*”) chooses all
values; no other wildcards are supported.

• System IDs — An identifier for the instance of Caché that appears in each audit log entry. This identifier is of the form
machine_name:instance_name, so that if you have an instance of Caché called “MyCache” running on a machine
called “MyMachine”, then its System ID is “MyMachine:MyCache”. To search for multiple system IDs, provide a
comma-separated list. The asterisk (“*”) chooses all values; no other wildcards are supported.

• PIDs — The operating-system ID of the Caché process that logged the event, as described in “Elements of an Audit
Event.”

• Begin Date & Time — The date and time for the first event to be displayed (midnight at the beginning of the current
day, by default).

• End Date & Time — The date and time for the last (most recent) event to be displayed (the current time, by default)

• Sort by — Orders the results by:

– Reverse Date — From most recent to least recent

– Events — By event name, in alphabetical order

– Users — By username, in alphabetical order

– PID — By operating-system process ID, from lowest to highest

• Maximum Rows — The maximum number of rows to display in a listing of the audit log (up to 10,000).

• Color by — The field (if any) that determines how the search results are colored. Fields that can determine search
result coloring are Description, Event, Event Source, Event Type, PID, Time Stamp, and Username.

• Users — The user who has caused the event. The asterisk (“*”) chooses events causes by all users; no other wildcards
are supported.

9.3.2 Copying, Exporting, and Purging the Audit Database

The audit log is stored in the %SYS.Audit table in the %SYS namespace; all audit data is mapped to the CACHEAUDIT
database and protected by the %DB_CACHEAUDIT resource. By default, the %Manager role holds the Read permission on
this resource and no role holds the Write permission.

The audit log database is managed with the same tools other Caché databases. For example, you can use the Management
Portal to specify its initial size, growth increment, and location; while the audit log database does not have a specified
maximum size, it is constrained by disk space and other such factors.

The Management Portal allows you to perform special management operations on the audit database:

• Copying — You can copy entries for one or more days to a specified namespace.

• Exporting — You can export entries for one or more days from the log to a file.

• Purging — You can remove entries for one or more days from the log.

120 Caché Security Administration Guide

Auditing

Note: All these operations act on all entries for one or more days. There are no operations for particular entries.

9.3.2.1 Copying the Audit Database

Caché allows you to copy all or part of an audit database to a namespace other than CACHEAUDIT. To do this:

1. From the Management Portal home page, go to the Copy Audit Log page (System Administration > Security > Auditing

> Copy Audit Log).

2. On the Copy Audit Log page, first select either:

• Copy all items from the audit log

• Copy items that are older than this many days from audit log In the field here, enter a number of days; any item
older than this is copied to the new namespace.

3. Next, use the drop-down menu to choose the namespace where you wish to copy the audit entries.

4. If you wish to delete the audit items after they are copied, select the check box with that choice.

5. Click OK to copy the entries.

Caché places the selected audit log entries in the ^CacheAuditD global in the selected namespace. To view this data:

1. From the Management Portal home page, go to the Globals page (System Explorer > Globals).

2. From the Globals page, select the following items in the following order:

a. The Databases radio button from the upper left area of the page.

b. The name of the database holding the copied audit log entries.

c. The System check box that appears above the list of globals.

This displays a list of globals in the database, including ^CacheAuditD. Globals are listed without the preceding “^”
character that is needed to manipulate them programmatically or in the Terminal.

Note: Clicking View Globals on this page refreshes the page but unchecks in the System check box, thereby making
^CacheAuditD unavailable.

3. Click Data from the CacheAuditD line to display detailed information on the audit log entries.

Once you have copied audit data to another namespace, you can use the queries of the %SYS.Audit class to look at that
data.

9.3.2.2 Exporting the Audit Database

Caché allows you to export all or part of an audit database. To do this:

1. From the Management Portal home page, go to the Export Audit Log page (System Administration > Security > Auditing

> Export Audit Log).

2. On the Export Audit Log page, first select either:

• Export all items from the audit log

• Export items that are older than this many days from audit log In the field here, enter a number of days; any item
older than this is exported to the new namespace.

Caché Security Administration Guide 121

Managing Auditing and the Audit Database

3. Next, in the Export to file field, enter the path of the file where you wish to export the audit entries. If you do not enter
a full path, the root for the path provided is cachesys/Mgr/ where cachesysis the default name of the installation
directory.

4. If you wish to delete the audit items after they are exported, select the check box with that choice.

5. Click OK to export the entries.

9.3.2.3 Purging the Audit Database

Caché allows you to purge all or part of a database.

Important: Purging the database is not a reversible action — purged items are permanently removed. You cannot
restore items to the audit database once you have purged them.

To do this:

1. From the Management Portal home page, go to the Purge Audit Log page (System Administration > Security > Auditing

> Purge Audit Log).

2. On the Purge Audit Log page, first select either:

• Purge all items from the audit log

• Purge items that are older than this many days from audit log In the field here, enter a number of days; any item
older than this is purged.

3. Click OK to purge the entries.

9.3.3 Encrypting the Audit Database

Caché allows you to encrypt the database that holds the audit log. This is described in the section “ Configuring Caché
Database Encryption Startup Settings” in the chapter “Managed Key Encryption” in the Caché Security Administration
Guide.

9.3.4 General Management Functions

Because the audit log is stored in a table, you can manage it with standard Caché system management tools and techniques:

• Journaling is always turned on for it.

• You can use standard Caché commands to read it. In addition, its contents are accessible via standard SQL and you
can use any standard SQL tool to work with it.

• You can back it up using standard Caché database backup facilities.

• If it becomes full, a <FILEFULL> error occurs and is handled in the same way as for any other Caché database. To
avoid this situation, see the “Maintaining the Size of the Audit Database” section.

Note: All access is subject to standard security restrictions at the database and/or namespace levels, or through SQL for
table-based activity.

The %SYS.Audit table in the %SYS namespace holds the audit log. All audit data is mapped to the CACHEAUDIT database.
(You can also copy audit data to any other database using the functionality described in the section “Copying the Audit
Database”; you can then use the %SYS.Audit class, which is available in every namespace, to query the audit log.)

122 Caché Security Administration Guide

Auditing

9.3.4.1 Maintaining the Size of the Audit Database

As Caché runs, it writes to the audit log. Without intervention, this will eventually fill the audit database. If the audit database
becomes full, Caché halts. To properly store audit information and also prevent any downtime, you should regularly export
and save the contents of the audit database and then purge its contents.

To do this:

1. Export the contents of the audit database as described in the “Exporting the Audit Database” section.

Note: InterSystems recommends that you export all entries from the database.

2. Check that the exported contents of the audit database are valid.

Important: InterSystems recommends that you confirm that this data is valid, as purging the data is a non-reversible
action.

3. Purge old entries from the existing database as described in “Purging the Audit Database”.

Important: InterSystems recommends that you purge all entries except those of the last day, which ensures that
there is an overlap in the different groups of saved entries.

CAUTION: If the audit database becomes full, Caché does not record audit entries for actions that cause audit events.
Further, in a forensic context, the existence of only a single AuditRecordLost audit entry indicates that at
least one record was lost.

9.4 Other Auditing Issues
This section covers the following topics:

• Freezing Caché If There Can Be No Audit Log Writes

• About Counters

9.4.1 Freezing Caché If There Can Be No Audit Log Writes

During operations of Caché, it may become impossible to write to the audit database. This can happen due to a filled disk,
a failed network connection, or some other reason. If this occurs, Caché can then work in either of two different modes:

• The default behavior is to generate an error when there is a problem writing to the Audit log.

• Alternatively, a switch can be set so that the system freezes if there is a problem writing to the Audit log.

To set this switch, use the ^SECURITY routine:

1. In the Terminal, go to the %SYS namespace:

> zn "%SYS"

2. Start ^SECURITY:

> Do ^SECURITY

3. Within ^SECURITY, choose option 6 (Auditing Setup); within Auditing Setup, choose option 1 (Enable auditing).

Caché Security Administration Guide 123

Other Auditing Issues

4. When it displays the prompt: Freeze system on audit database error? Enter “Yes” or “Y”. Confirm
any changes when prompted.

This establishes the behavior of freezing the system.

For a disk full error, the way to recover from this is to force down the system, free up space on the audit disk, then restart.
For an error caused by database corruption, the audit database must be moved or deleted, and a new one created or copied
into its place. Note that a restart of the system will not be enough to clear the error, since the restart may write audit records,
and cause the system to freeze again.

For example, with the default behavior, if the disk containing the audit database fills up, then the attempt to write to the
audit log will generate a <FILEFULL> error (disk full). The audit record is not written to the audit log, and is therefore
lost. When the problem is resolved, an entry is written into the audit log that lists how many audit events were lost.

When this switch is set, and a write error occurs when writing to the audit log, the process which was trying to write to the
audit log receives an error (such as <FILEFULL>). The process then writes the error message to the cconsole.log, and then
freezes the system.

9.4.2 About Counters

To facilitate security monitoring, Caché keeps a counter for each audit event type and makes these counters available via
the Caché monitoring interface. These counters are maintained even if auditing is not enabled. As an example, a site might
monitor the LoginFailure event counter, to help detect break-in attempts.

Note: Audit counters are reset when the instances is restarted.

9.4.2.1 Resetting the Counters for a System Event

To reset the counters for a system event:

1. From the Management Portal home page, go to the System Audit Events page (System Administration > Security >
Auditing > Configure System Events).

2. On this page, locate the event that you wish to enable or disable and select Reset from the column near the right-hand
part of the table.

3. When prompted, click OK. This resets both the Total and Written counters for the event.

9.4.2.2 Resetting the Counters for a User Event

To reset the counters for a user event:

1. From the Management Portal home page, go to the User-Defined Audit Events page (System Administration > Security

> Auditing > Configure User Events).

2. On this page, locate the event that you wish to enable or disable and select Reset from the column near the right-hand
part of the table. This resets both the Total and Written counters for the event.

3. When prompted, click OK. This resets both the Total and Written counters for the event.

124 Caché Security Administration Guide

Auditing

10
Managed Key Encryption

Caché includes support for managed key encryption, a suite of technologies that protects data at rest. These technologies
are:

• Block-level database encryption, also known simply as database encryption — A set of tools to allow creation and
management of databases in which all the data is encrypted. Such databases are managed through the Management
Portal.

• Data element encryption for applications, also known simply as data element encryption — A programmatic interface
so that applications can include code to encrypt and decrypt individual data elements (such as particular class properties)
as they are stored to and retrieved from disk.

• Encryption key management — A set of tools in the Management Portal for creating and managing data-encryption
keys and for managing key files. Both database encryption and data element encryption use key files to support their
functionality.

Each Caché instance can simultaneously have up to four data-encryption keys activated for database encryption and up to
four data-encryption keys activated for data element encryption (activating a key makes it available for encryption and
decryption operations); the database-encryption keys can be the same keys or other keys as the data-element encryption
keys.

When you create a data-encryption key, an encrypted copy of it is stored in a key file and must be decrypted to be used. It
is imperative that you store the key file in a secure location where it cannot be damaged in any way. Each key file can hold
up to four keys.

Caché uses AES (the Advanced Encryption Standard) to perform its encryption and decryption when Caché writes to or
reads from disk. For databases, Caché writes and reads in fixed-length blocks, and the entire database is encrypted, except
for the single label block. This includes the data itself, indices, bitmaps, pointers, allocation maps, and incremental backup
maps. For data elements, only the specified data is encrypted, and a unique identifier for the encryption key is included
with the encrypted data on disk.

Encryption and decryption have been optimized, and their effects are both deterministic and small for any Caché platform.
(This chapter also includes a section that addresses how the Caché database encryption facilities affect functionality related
to but separate from databases themselves.)

WARNING! The loss of or damage to all copies of a key file will prevent encrypted data — whether data elements
or databases — from being decrypted.

Topics in this chapter include:

• Managing Keys and Key Files

• Recommended Policies for Managing Keys and Key Files

Caché Security Administration Guide 125

• Using Encrypted Databases

• Using Data Element Encryption

• Emergency Situations

• Other Information

10.1 Managing Keys and Key Files
A key, short for data-encryption key, is a 128–, 196–, or 256–bit bit string that is used with a cryptographic algorithm to
reversibly encrypt or decrypt data. Each key has a unique identifier (known as a GUID), which Caché displays as part of
key management activities. Key management is the set of activities associated with creating encryption keys, activating
keys, and deactivating keys.

A key file is a file that holds encrypted copies of one or more data-encryption keys. Key file management is the set of
activities associated with key files themselves, such as adding administrators to or removing administrators from key files.

Within a key file, each key is available to every administrator in the key file. (In this chapter, the term administrator refers
to a key administrator, not a Caché administrator.) All keys are stored in an encrypted form along with administrator
information; each data-encryption key is individually encrypted using a master key. For each administrator in the key file,
there is a unique, encrypted copy of the master key, which is encrypted using a key-encryption key — where each key-
encryption key is derived from an individual key administrator’s password. Encryption tasks require an activated key, and
Caché requires an administrator username and password to decrypt the key so that the key can be activated.

Topics in this section involve tasks related to key files, keys, and administrators. All tasks are performed in the Management
Portal. Some tasks are for managing keys and key files, even if no keys in the key file have been activated on an instance
of Caché; other tasks are related to an instance of Caché, activating keys for it, and so on. There are also other miscellaneous
tasks.

For managing keys and key files (even if no keys in the key file have been activated on an instance of Caché), tasks are:

• Creating a Key File

• Adding a Key to a Key File

• Deleting a Key from a Key File

• Adding an Administrator to a Key File

• Deleting an Administrator from a Key File

Related to an instance of Caché and encryption keys for it, tasks are:

• Activating a Database Encryption Key

• Deactivating a Database Encryption Key

• Specifying the Default Encryption Key or Journaling Encryption Key for an Instance

• Activating a Data Element Encryption Key

• Deactivating a Data Element Encryption Key

Other miscellaneous tasks are:

• Testing for a Valid Administrator Username-Password Pair

• Managing Keys and Key Files with Multiple-Instance Technologies

126 Caché Security Administration Guide

Managed Key Encryption

Note: If you wish to configure encryption for journal files or the CACHETEMP and CACHE databases, this is part of
Caché startup configuration. See the section “Configuring Caché Database Encryption Startup Settings” for
details.

A Note about Encryption Key File Formats
Beginning in version 2015.1, Caché introduced support for encryption files that hold multiple keys (up to four), which are
version 2.0 key files. (The original key file format, version 1.0, holds only a single key.) Version 2.0 key files are the preferred
format, and are the default when creating a key file. To convert a version 1.0 key file to version 2.0, use the ̂ EncryptionKey
character-based utility.

Note: If an instance uses multiple keys at startup time (such as with journal files, the audit database, and other databases),
then those keys must all be in a single version 2.0 key file. This allows them all to be available when the instance
starts.

10.1.1 Creating a Key File

When you create an encryption key file, it contains one key. To create an encryption key file and its initial key, the procedure
is:

1. From the Management Portal home page, go to the Create Encryption Key File page (System Administration > Encryption

> Create New Encryption Key File).

2. On the Create Encryption Key File page, specify the following values:

• Key File — The name of the file where the encryption key is stored; this can be an absolute or relative path name.

If you enter an absolute file name, the key file is placed in the specified directory on the specified drive; if you
enter a relative file name, the key file is placed in the manager’s directory for the Caché instance (which is below
the Caché installation directory — that is, in <cache-install-dir>/mgr/). Also, no file suffix is appended to the file
name, so that the file MyKey is saved simply with that file name. You can also use the Browse button to the right
of this field to choose the directory where Caché will create the key file. (If you provide the name of an existing
file, Caché will not overwrite it and the save will fail.)

WARNING! Any key stored in <cache-install-dir>/Mgr/Temp is deleted when Caché next reboots — never
store a key in <cache-install-dir>/Mgr/Temp.

• Administrator Name — The name of an administrator who can activate the key. There must be at least one
administrator.

Because the database encryption functionality exists independent of Caché security, this name need not match any
user names that are part of Caché security. By default, the initial administrator name value is the current username.
The administrator name cannot include Unicode characters.

• Password — A password for this user.

Because the database encryption functionality exists independent of Caché security, this password need not match
the password that a user has for Caché security. Note that this password is not stored anywhere on disk; it is the
responsibility of the administrator to ensure that this information is not lost.

InterSystems suggests that this password follow the administrator password strength guidelines. If someone can
successfully guess a valid password, the password policy is too weak. Also, this password cannot include Unicode
characters.

• Confirm Password — The password for this user entered again to confirm its value.

• Cipher Security Level — The length of the key, where choices are 128–bit, 192–bit, and 256–bit.

• Key File Format — Either

Caché Security Administration Guide 127

Managing Keys and Key Files

– 1.0 - Single key only — the original data-encryption key format

– 2.0 - Single or multiple keys — (the default) the current data-encryption key format

Note: InterSystems recommends the use of the 2.0 key format.

• Key Description — For keys in 2.0 key format only, text to describe the key that is initially created and stored in
the key file. This text appears in the Description column of the Encryption Keys Defined in Key File table.

3. Click Save at the top of the page to save the key file to disk.

4. Having just created a key, follow the instructions in the section “Protection from Accidental Loss of Access to Encrypted
Data” to create and store a backup copy of the newly updated key file.

5. Refer to the section “Protection from Unauthorized Access to Encrypted Data” for details about measures to prevent
currently or formerly privileged users from gaining unsanctioned access to encrypted data.

This creates a key file with a single database-encryption key in it and with a single administrator. The page displays ID for
the key, which is a string such as 9158980E-AE52-4E12-82FD-AA5A2909D029. The key ID is a unique identifier for
the key which Caché displays here and on other pages. It provides a means for you to keep track of the key, regardless of
its location. This is important because, once you save the key file, you can move it anywhere you choose; this means that
Caché cannot track it by its location.

The key is encrypted using the master encryption key, and there is a single copy of master encryption key, which is encrypted
using the administrator’s key-encryption key (KEK). You can add additional keys to the key file according to the instructions
in the section “Creating a Key.” You can add administrators to the key file according to the instructions in the section
“Adding an Administrator to a Key File.”

WARNING! InterSystems strongly recommends that you create and store a backup copy of the key file. Each time
you create a database-encryption key, it is a unique key that cannot be re-created. Using the same
administrator and password for a new key still results in the creation of a different and unique key. If
an unactivated key is lost and cannot be recovered, the encrypted database that it protected will be
unreadable and its data will be permanently lost.

10.1.2 Adding a Key to a Key File

To create a key, you can either:

• Create a key file. This causes Caché to create a key and place it in the file. To create a key file, see the section “Creating
a Key File.”

• Add a key to an existing key file, as described in this section.

To add a key to an existing key file, the procedure is:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. On the Manage Encryption Key File page, in the Key File field, enter the name of the key file to which you want to add
and store the key; click OK. This displays information about that key file; at the bottom of the shaded area, the
Encryption Keys Defined in Key File table displays a list of the one to four keys in the key file. If there are three or fewer
keys in the file, you can create a new key and add it to the file.

3. Click the Add button below the Encryption Keys Defined in Key File table to add a key to the key file. This displays the
Add a New Encryption Key screen.

4. In the Add a New Encryption Key screen, enter values in the following fields:

128 Caché Security Administration Guide

Managed Key Encryption

• Existing Administrator Name — The name of an administrator associated with the key file. (Administrators associated
with the file appear in the Administrators Defined in Key File table on the Manage Encryption Key File page.)

• Existing Administrator Password — This administrator’s password.

• Description — Text to describe the key. This text appears in the Description column of the Encryption Keys Defined

in Key File table.

5. Click OK to save the key to the key file. This displays information about it in the Encryption Keys Defined in Key File

table, including its ID, which is a string such as 9158980E-AE52-4E12-82FD-AA5A2909D029. (The key ID is a
unique identifier for the key which Caché displays here and on other pages. It provides a means for you to keep track
of the key, regardless of its location. This is important because, once you save the key file, you can move it anywhere
you choose; this means that Caché cannot track it by its location.)

6. Having just added a new key to the key file, follow the instructions in the section “Protection from Accidental Loss
of Access to Encrypted Data” to create and store a backup copy of the newly updated key file.

7. Refer to the section “Protection from Unauthorized Access to Encrypted Data” for details about measures to prevent
currently or formerly privileged users from gaining unsanctioned access to encrypted data.

WARNING! InterSystems strongly recommends that you create and store a backup copy of the key file. Each time
you create a database-encryption key, it is a unique key that cannot be re-created. Using the same
administrator and password for a new key still results in the creation of a different and unique key. If
an unactivated key is lost and cannot be recovered, the encrypted database that it protected will be
unreadable and its data will be permanently lost.

10.1.3 Deleting a Key from a Key File

To delete a key from a key file, the procedure is:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. On the Manage Encryption Key File page, in the Key File field, enter the name of the key file from which you want to
delete the key; click OK. This displays information about that key file; at the bottom of the shaded area, the Encryption

Keys Defined in Key File table displays a list of the keys in the key file.

3. In the table of keys, click Delete in the row for a key to delete that key. Clicking Delete displays a confirmation page
for the action. (If there is only one key in the file, there is no Delete button, as it is not permitted to delete this key.)

If the key’s Delete button is not available, this is because the key is the default encryption key or the journal encryption
key for the file. To delete the key, first specify that another key is the default encryption key or the journal encryption
key for the file by clicking Set Default or Set Journal for the other key.

4. Click OK on the confirmation dialog to delete the key from the file.

10.1.4 Adding an Administrator to a Key File

To add an administrator to an existing key file, the procedure is:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. In the Key File field, enter the path and filename of the key file to open and click OK; you can also use the Browse

button to look for the key. Once the Portal opens the key file, it displays a table with the administrators listed in the
file; administrator names appear in all capital letters, regardless of how they were defined.

Caché Security Administration Guide 129

Managing Keys and Key Files

3. In the table of administrators, click Add to add a new administrator. This displays a page with the following fields:

• Existing Administrator Name — The name of an administrator already in the file.

• Existing Administrator Password — The password associated with the already existing administrator in the file.

• New Administrator Name — The name of the new administrator to be added to the file. Because the encryption
functionality is independent of Caché security, the administrator name need not match any user names that are
part of Caché security. This user name cannot include Unicode characters

• New Administrator Password — The password for the new administrator. InterSystems suggests that this password
follow the administrator password strength guidelines; also, this password cannot include Unicode characters.
Because the encryption functionality is independent of Caché security, the password need not match the password
that a user has for Caché security.

• Confirm New Administrator Password — Confirmation of the password for the new administrator.

Complete these fields and click OK. You have now added a new administrator to the key file.

Once you have added the new administrator to the key file, you may wish to copy the key file, making sure that each copy
is in a secure location. Further, InterSystems strongly recommends that you create multiple administrators for each key,
one of which has the name and password written down and stored in a secure location, such as in a fireproof safe. However,
if copies of the key file are made and later on, as an administrative function, a new administrator is added, only the copy
of the key file with the new administrator will be up to date.

Note: When you add a new administrator to a key file, that administrator’s password is permanently associated with the
entry for the administrator name created in the file. Once assigned, passwords cannot be changed. If you wish to
assign a new password, delete the entry in the key file for that administrator name and then create a new entry
with the same name and a new password.

10.1.5 Deleting an Administrator from a Key File

To delete an administrator from a key file, the procedure is:

1. From the Management Portal home page, go to the Manage Encryption Key File page (System Administration >
Encryption > Manage Encryption Key File).

2. In the Key File field, enter the path and filename of the key and click OK. This displays a table with the administrators
listed in the file (as well as a table of encryption keys in the file).

3. In the table of administrators, click Delete next to an administrator to remove that administrator for the key. Clicking
Delete displays a confirmation page for the action. (If there is only one administrator in the file, there is no Delete

button, as it is not permitted to delete this administrator.)

4. Click OK to delete the administrator from the file.

10.1.6 Activating a Database Encryption Key

Caché supports up to four simultaneously activated keys for database encryption. To activate a key for database encryption,
the procedure is:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption). If there are already any activated keys, the page displays a table listing these.

2. On this page, click Activate Key, which displays the fields for activating a key.

3. Enter values for the following fields:

130 Caché Security Administration Guide

Managed Key Encryption

• Key File — The name of the file where the encryption key is stored. If you enter an absolute file name, Caché
looks for the key file in the specified directory on the specified drive; if you enter a relative file name, Caché looks
for the key file starting in the manager’s directory for the Caché instance (which is below the Caché installation
directory — that is, in <cache-install-dir>/mgr/). You can also use the Browse button to display a dialog for opening
the key file.

• Administrator Name — The name of an administrator for this key, specified either when the key was created or
edited.

• Password — The password specified for the named administrator.

4. Click the Activate button.

Caché then attempts to activate all the keys in the specified file. If there are not enough slots to activate all the keys in the
file, then Caché opens as many keys as it can.

After key activation, the page displays the table of activated keys. For each key that Caché activates, the page adds the key
to table of activated keys and displays the key’s identifier. For each activated key, you can also perform various actions:

• Set Default — Click to specify that Caché uses this key when creating new encrypted databases. For more details, see
the section “Specifying the Default Encryption Key or Journaling Encryption Key for an Instance.”

• Set Journal — Click to specify that Caché uses this key to encrypt journal files. For more details, see the section
“Specifying the Default Encryption Key or Journaling Encryption Key for an Instance.”

• Deactivate — Click to deactivate this key. For more details, see the section “Deactivating a Database Encryption Key”

Note: The table of keys does not display any file or path information. This is because, once a key file is created, any
sufficiently privileged operating system user can move it; hence, Caché may not have accurate information about
the operating system location and can only rely on the accuracy of the GUID for the activated key in memory.
To activate a second or subsequent key, note the identifier(s) for the currently activated key(s) first, so that you
can identify the new one.

10.1.7 Deactivating a Database Encryption Key

To deactivate a database encryption key, the procedure is:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption). If a key is currently activated, its identifier appears in the table of keys.

2. You cannot deactivate a key if it is the default key either for new encrypted databases or for encrypting journal files.
If you wish to deactivate a key that is Caché is using for either of these activities, then you must select a different key
to be used for them. Do this by clicking Set Default or Set Journal for another key. Once the key is not in use for either
of these activities, its Deactivate button will be available.

3. To deactivate the key, click Deactivate in its row.

Caché Security Administration Guide 131

Managing Keys and Key Files

Note: If it is not possible to deactivate the key for some other reason, the Portal displays an error message. Caché
does not allow you deactivate a key under the following circumstances:

• The CACHETEMP and CACHE databases are encrypted.

• There is a currently-mounted encrypted database (other than CACHETEMP and CACHE) that is encrypted
with this key.

• The key is currently in use to encrypt journal files. (Note that if you change the journal file encryption
key, until you switch the journal file, Caché continues to use the old key for encryption.)

See below for information about how to address the underlying condition.

4. Click OK on the confirmation dialog to deactivate the key.

To deactivate the key, each underlying condition requires a different action:

• For any encrypted database except CACHETEMP and CACHE, dismount the database on the Databases page (System

Operation > Databases). You can then deactivate the key.

• For CACHETEMP and CACHE, specify that these databases are not to be encrypted and then restart Caché. To do
this, select Configure Startup Settings on the Database Encryption page; either you can choose not to activate a database
encryption key at startup (in which case Caché turns off encryption for CACHETEMP and CACHE) or you can choose
interactive or unattended database encryption key activation at startup (in which cases the choice whether or not to
encrypt CACHETEMP and CACHE becomes available — choose “No”).

• For encrypted journal files, ensure that no encrypted journal file is required for recovery. This is described in the section
“Encrypted Journal Files and Configuring Startup without Key Activation.”

10.1.8 Specifying the Default Database Encryption Key or Journal Encryption
Key for an Instance

Each instance has a default database encryption key and a default journal encryption key. The instance sets the initial value
for each of these when an administrator first activates a database encryption key; the key that is initially the default depends
on the key(s) that are in the activated key file. These values are preserved across Caché shutdowns and restarts.

To specify a new key for either of these purposes, the procedure is:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption. This displays a table of currently activated encryption keys for the instance.

2. In the table of encryption keys:

• To specify a new default encryption key, click Set Default for that key. The Set Default button for the current
default key is unavailable.

• To specify a new journal encryption key, click Set Journal for that key. The Set Journal button for the current
journal encryption key is unavailable.

3. When prompted to confirm your action, click OK.

Caché then sets the selected key as the default or journal encryption key. If a key is either the default or journal encryption
key, then it cannot be deleted (since it is required for operations on the Caché instance). Hence, specifying either of these
for a key makes the key’s Delete button unavailable.

132 Caché Security Administration Guide

Managed Key Encryption

10.1.9 Activating a Data Element Encryption Key

Caché supports up to four activated keys at one time for data element encryption. To activate a key for data element
encryption, the procedure is:

1. From the Management Portal home page, go to the Data Element Encryption page (System Administration > Encryption

> Data Element Encryption). If there are already any activated keys, the page displays a table listing these.

2. On the Data Element Encryption page, select Activate Key, which displays the fields for activating a key. If key activation
is not available, this is because there are already four activated data element keys.

3. Enter values for the following fields:

• Key File — The name of the file where the encryption key is stored. If you enter an absolute file name, Caché
looks for the key file in the specified directory on the specified drive; if you enter a relative file name, Caché looks
for the key file starting in the manager’s directory for the Caché instance (which is below the Caché installation
directory — that is, in <cache-install-dir>/mgr/).

• Administrator Name — The name of an administrator for this key, specified either when the key was created or
edited.

• Password — The password specified for the named administrator.

4. Click the Activate button.

Caché then attempts to activate all the keys in the specified file. If there are not enough slots to activate all the keys in the
file, then Caché opens as many keys as it can.

After key activation, the page displays the table of activated keys. For each key that Caché activates, the page adds the key
to table of activated keys and displays the key’s identifier.

Note: The table of keys does not display any file or path information. This is because, once the key file is activated, any
sufficiently privileged operating system user can move the key; hence, Caché may not have accurate information
about the operating system location and can only rely on the accuracy of the GUID for the activated key in
memory. To activate a second or subsequent key, note the identifier(s) for the currently activated key(s) first, so
that you can identify the new one.

10.1.10 Deactivating a Data Element Encryption Key

To deactivate a data element encryption key, the procedure is:

1. From the Management Portal home page, go to the Data Element Encryption page (System Administration > Encryption

> Data Element Encryption) page. If there are any activated keys, the page displays a table listing them.

2. In the table of activated keys, for the key you wish to deactivate, click Deactivate. This displays a confirmation dialog.

3. In the confirmation dialog, click OK.

When the Data Element Encryption page appears again, the row in the table for the deactivated key should no longer be
present.

10.1.11 Testing for a Valid Administrator Username-Password Pair

You can test interactively whether or not an administrator username-password pair is valid by attempting to activate a key
in Caché. You can:

Caché Security Administration Guide 133

Managing Keys and Key Files

• Use the Management Portal. For more information, see either “Activating a Database Encryption Key” or “Activating
a Data Element Encryption Key.”

• Use the ^DATABASE utility. For more information, see “^DATABASE” section of the “Using the Character-based
Security Management Routines” appendix.

• Run the database encryption conversion utility cvencrypt on an unmounted database (either encrypted with the database
encryption key or unencrypted), up to the confirmation prompt:

Continue? [Y/N]:

At this prompt, answer No. For more information on cvencrypt, see the chapter “Using the cvencrypt Utility.”

Do not perform this process programmatically, since it requires storing the password on disk, which is not recommended.
(Unattended key activation at startup is a highly restricted special exception to storing a password on disk, as described in
the section “Configuring Startup with Unattended Key Activation.”)

10.1.12 Managing Keys and Key Files with Multiple-Instance Technologies

If you are using encrypted databases or journal files within a Caché cluster, the Caché instances on all nodes in the cluster
must share a single database-encryption key.

Before enabling journal file encryption for any instance that belongs to a Caché mirror, see Activating Journal Encryption
in a Mirror in the “Mirroring” chapter of the Caché High Availability Guide for important information. (There are no
mirroring-related requirements in regard to database encryption.)

There are two ways to enable sharing of a single key:

• All of the instances share a single key file, which is located on one cluster node or mirror member.

In this case, if you change the single copy of the key file, then these changes are visible to all nodes or members.
However, if the host holding the key file becomes unavailable to the other nodes or members, any attempt to read the
key from the key file fails; this can prevent Caché instances from restarting properly.

• Each cluster node or mirror member has its own copy of the key file.

Here, if you change the key file, then you propagate copies of the key file (containing the same key) to all the other
nodes or members. This increases the burden of administering the key file (which is typically small), but ensures that
each instance of Caché always has a key available at startup.

Important: Whether there are single or multiple key files, the database-encryption key itself is the same for all instances.

10.1.12.1 Using a Single Key File

1. Create a database-encryption key on one node or member. For more information on this procedure, see the section
“Creating a Key File.”

2. Secure this key according to the instructions in the section “Protection from Accidental Loss of Access to Encrypted
Data.”

CAUTION: Failure to take these precautions can result in a situation in which the encrypted databases or journal
files are unreadable and permanently lost.

3. Configure each instance of Caché for unattended startup and provide Caché with the path to the key file. For more
information on this procedure, see the section “Configuring Startup with Unattended Key Activation.”

Since all the Caché instances use the same key, they are able to read data encrypted by each other. Any changes to the key
file are visible to all instances.

134 Caché Security Administration Guide

Managed Key Encryption

Important: Refer to the section “Protection from Unauthorized Access to Encrypted Data” for details about measures
to prevent currently or formerly privileged users from gaining unsanctioned access to encrypted data.

10.1.12.2 Using Multiple Key Files

If you choose to use multiple copies of the key file:

1. Create a database-encryption key on one node or member. For more information on this procedure, see the section
“Creating a Key File.”

2. Secure this key according to the instructions in the section “Protection from Accidental Loss of Access to Encrypted
Data.”

CAUTION: Failure to take these precautions can result in a situation in which the encrypted databases or journal
files are unreadable and permanently lost.

3. Make a copy of the key file for each of the remaining nodes or members.

4. On each node or member:

a. Get a copy of the key file and put it in a secure and stable location on that machine.

b. Configure each instance of Caché for unattended startup. For more information on this procedure, see the section
“Configuring Startup with Unattended Key Activation.”

Since each copy of the key file contains the same key, all the Caché instances are able to read data encrypted by each other.
Since each Caché instance has a key file on its machine, the key file should always be available for a Caché restart. If there
are any changes to the key file (such as adding or removing administrators), you must propagate new copies of the key file
to each machine and reconfigure each instance of Caché for unattended startup using the new copy of the key file (even if
that file is in the same location as the old file).

Important: Refer to the section “Protection from Unauthorized Access to Encrypted Data” for details about measures
to prevent currently or formerly privileged users from gaining unsanctioned access to encrypted data.

10.2 Recommended Policies for Managing Keys and Key
Files
The following sections address important topics for managing encrypted databases:

• Protection from Accidental Loss of Access to Encrypted Data

• Protection from Unauthorized Access to Encrypted Data

10.2.1 Protection from Accidental Loss of Access to Encrypted Data

Once you have created and activated a key, you can encrypt data. However, to ensure that such data is always available, it
is strongly suggested that you take the following preventative actions:

• Create a second copy of a key file (a backup) and place it in a secure location, such as on some removable media that
is stored in a fireproof safe.

Caché Security Administration Guide 135

Recommended Policies for Managing Keys and Key Files

• Create an additional administrator, the name and password of which are written down and stored in a secure location,
such as in a fireproof safe at a site that is sufficiently far from where the key is in use.

CAUTION: Failure to take these precautions can result in a situation where the encrypted data will be permanently
inaccessible — there will be no way to read it.

10.2.2 Protection from Unauthorized Access to Encrypted Data

To read or alter encrypted data, the appropriate encryption key for the Caché instance must be activated. Key activation
requires three separate and separable elements: (1) the encrypted database or database containing the encrypted data elements,
(2) the key itself, and (3) someone with a knowledge of a username and password for using the key. The design of the data
encryption mechanism allows for the separation of these three factors. This separation allows an organization to keep the
key in a secure location, separate from the encrypted data and under the control of authorized individuals who cannot use
the key. This prevents those individuals with knowledge of how to use the key from doing so in an unauthorized manner
— even if they have access to the data.

Put another way, Caché makes it possible to secure encryption keys so that those who have the key cannot use it and those
who can use the key do not have it. By this arrangement, the key can only be activated when those who have it make it
available to those who can use it.

CAUTION: If administrators have free access to a key file, then it is possible for them to make unauthorized copies of
the key file. Such copies might be used by formerly authorized members of an organization, could be lost,
and so on.

The degree of secure storage required is a function of the sensitivity of the data. Under the strictest circumstances, activation
might occur as follows:

1. A system administrator (who does not have the key but does have the information to use the key) needs to re-start
Caché. After or as part of a Caché re-start, the database encryption key needs to be activated, so that encrypted databases
or databases containing encrypted data can be mounted.

2. The system administrator contacts the key holder (who has the key but lacks the information to use it). The key holder
may be part of a site’s staff that provides physical security; the key itself may even be stored in a safe or vault.

3. The key holder retrieves the key, which may be on a CD, USB drive, or other portable storage device. The key holder
then brings the key to where it is used for key activation.

4. The system administrator then performs key activation — under the oversight of the key holder, who ensures that the
system administrator performs no other actions, such as copying the key file.

5. Once the key has been activated, the key holder returns the device holding the key to its physically secure location
until it is needed again.

Implementing this arrangement is for the purpose of preventing the system administrator from obtaining the key. Again,
this is because possessing the key would enable the administrator to gain potentially unauthorized access to the encrypted
data.

10.3 Using Encrypted Databases
To protect entire databases that contain sensitive information, Caché supports block-level database encryption (or, for short,
database encryption). Database encryption is technology that allows you to create and manage databases that, as entire
entities, are encrypted; it employs the Caché key management tools to support its activities.

136 Caché Security Administration Guide

Managed Key Encryption

When you create a database, you can choose to have it be encrypted; this option is available if there is a currently activated
key. Once you have created an encrypted database, you can use it in the same way as you would use an unencrypted database.
The encryption technology is transparent and has a small and deterministic performance effect.

The database encryption functionality also supports the ability to encrypt the audit log and journal files; for any instance
that serves as a destination shadow server, enabling journal file encryption also results in the encryption of the journal files
that the instance receives from its source production server. Both these features require access to the database encryption
key at startup time, as described in the section “Configuring Caché Encryption Startup Settings.”

Management tasks for encrypted databases include:

• Creating an Encrypted Database

• Establishing Access to an Encrypted Database

• Closing an Encrypted Database

• Moving an Encrypted Database between Instances

• Configuring Caché Database Encryption Startup Settings

• About Encrypting the Databases that Ship with Caché

10.3.1 Creating an Encrypted Database

When creating a new database, you can specify that it is encrypted. However, before you can create an encrypted database,
Caché must have an activated database-encryption key. Hence, the procedure is:

1. Activate a database-encryption key.

2. From the Management Portal home page, go to the Local Databases page (System Administration > Configuration >
System Configuration > Local Databases).

3. On the Local Databases page, select Create New Database. This displays the Create Database wizard.

4. On the second page of the wizard, in the Encrypt Database? box, select Yes. This causes Caché to create an encrypted
database. On all the other pages of the wizard, choose database characteristics as you would when creating any database.
(For more information on creating databases, see the “Create Local Databases” section of the “Configuring Caché”
chapter of the Caché System Administration Guide.)

Note: Caché also provides the cvencrypt utility to encrypt unencrypted databases or decrypt encrypted databases, if this
is necessary.

10.3.2 Establishing Access to an Encrypted Database

To perform various operations, such as adding a database to a mirror, the database must be mounted. However, for an
encrypted database to be mounted, its key must be activated. Hence, access to the database requires activating the key and
mounting the database, and the procedure for this is:

1. Activate the key.

2. From the Management Portal home page, go to the Databases page (System Operation > Databases).

3. On this page, for the database that you wish to mount, select the Mount button in the far right column of its row in the
table of databases. After selecting OK on the confirmation screen, the database is mounted. If the key is not activated,
Caché cannot mount the database and displays an error message.

You can now access the data within the database.

Caché Security Administration Guide 137

Using Encrypted Databases

10.3.3 Closing the Connection to an Encrypted Database

To close the connection to an encrypted database, the procedure is:

1. From the Management Portal home page, go to the Databases page (System Operation > Databases).

2. On this page, select the Dismount button on the right in the table of databases. After selecting OK on the confirmation
screen, the database is dismounted.

3. Deactivate the key.

Because the activated key is used for each read and write to the database, you cannot deactivate the key without first dis-
mounting the database. If you attempt to deactivate the key prior to dismounting the database, Caché displays an error
message.

10.3.4 Moving an Encrypted Database Between Instances

If your organization has multiple Caché instances, you may need to use an encrypted database on one instance that was
created on another instance using a different key. To move the data from one instance to another, back up and then re-key
the database using the cvencrypt utility. For more information on this process, see the section “Converting an Encrypted
Database to Use a New Key” in the “Using the cvencrypt Utility” appendix of this book.

10.3.5 Configuring Caché Database Encryption Startup Settings

By default, an instance of Caché does not have a database encryption key available at startup time. This means that, by
default, there are several features that are not available (see below). Caché can either gather the encryption key file infor-
mation interactively or without human intervention (called “unattended startup”). This section describes how to set up
three database-encryption startup options:

• Configuring Startup without Key Activation

• Configuring Startup with Interactive Key Activation

• Startup with Unattended Key Activation

The features that depend on having a key available at startup time are:

• Encrypting the Caché audit log.

• Encrypting the CACHETEMP and CACHE databases. (Either both are encrypted or neither.)

• Encrypting Caché journal files and, for a destination shadow server, encrypting the journal files received from the
source production server. (Either both are encrypted or neither.)

• Having an encrypted database mounted at startup time.

10.3.5.1 Configuring Startup without Key Activation

This is the default behavior for an instance of Caché prior to having any keys activated. If you have set up key activation
at startup and choose to turn it off, the procedure is:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

2. Select Configure Startup Settings. This displays the area with options for configuring Caché startup and other options
for encrypted databases.

3. In this area, from the Startup Options list, select None.

138 Caché Security Administration Guide

Managed Key Encryption

4. Click Save. Caché may prevent you from performing this action if:

• Any encrypted databases are required at startup. See “Required Encrypted Databases and Configuring Startup
without Key Activation” for more details.

• There are any encrypted journal files with open transactions. See “Encrypted Journal Files and Configuring Startup
without Key Activation” for more details.

• The audit log is encrypted. (The error message for this refers to an encrypted database because Caché stores the
audit log in a database called CACHEAUDIT.) See “The Caché Audit Log and Configuring Startup without Key
Activation” for more details.

Address the issue that is preventing the change and then perform this procedure again. Once any issues are corrected,
you will be able to successfully change to having startup without key activation.

Required Encrypted Databases and Configuring Startup without Key Activation
If the instance has encrypted databases that are required at startup and you attempt to configure startup not to involve key
activation, the Management Portal displays an error message stating this and indicating that the key activation option cannot
be changed. (If the error message refers to the CACHEAUDIT database, this is because the audit log is encrypted.)

To configure Caché to start without activating an encryption key, any encrypted databases can only be mounted after startup.
To configure a database to be mounted after startup, the procedure is:

1. Confirm that the database is mounted or mount it. To do this:

a. From the Management Portal home page, go to the Databases page (System Operation > Databases).

b. Find the database’s row in the table of databases. If it is mounted, there is a Dismount choice in its row; if it is not
mounted, there is no Dismount choice and there is a Mount choice.

c. If it is not mounted, select Mount

d. On the confirmation screen, select OK. (The database needs to be writeable, so do not select the Read Only check
box.)

2. Edit the database’s properties so that it is not mounted at startup. To do this:

a. Go to the Local Databases page (System Administration > Configuration > System Configuration > Local Databases).

b. Find the database’s row in the table of databases.

c. Select the database by clicking on its name. This displays the page for editing the database.

d. On this Edit page, clear the Mount Required at Startup check box.

e. Click Save.

The database will no longer be mounted at startup. This means that it will no longer require key activation at startup (though
it may be required for other reasons.)

Encrypted Journal Files and Configuring Startup without Key Activation
If the instance uses journaling and you attempt to configure startup not to involve key activation, you may be unable to
turn off key activation at startup. These conditions are:

• The instance is configured to encrypt its journal files (either as a source production server or as a destination shadow
server).

• There are open transactions in the journal file (which is fairly likely on a busy system).

If this occurs, you need to suspend the use of encrypted journal files before you change the startup key activation settings.
To do this, the procedure is:

Caché Security Administration Guide 139

Using Encrypted Databases

1. On the Database Encryption page (System Administration > Encryption > Database Encryption), change the Encrypt

Journal Files setting to “No.” Leave the Key Activation at Startup setting as it is.

2. Switch journal files. To do this, click Switch Journal on the Journals page (System Operation > Journals).

Once all open transactions within the encrypted journal files have either been committed or rolled back, you can then change
the Caché startup configuration.

CAUTION: Even after there are no open transactions, you may need the encrypted journal files to restore a database.
For this reason, it is very important that you maintain copies of the key file containing the key used to
encrypt these files.

For more information on journal files generally, see the “Journaling” chapter of the Caché Data Integrity Guide.

The Caché Audit Log and Configuring Startup without Key Activation
If the instance has an encrypted audit log and you attempt to configure startup not to involve key activation, Caché displays
an error message that an encrypted database is required at startup, such as:

ERROR #1217: Can not disable database encryption key activation at startup.
Encrypted databases are required at startup:
C:\InterSystems\Cache\Mgr\CacheAudit\

The error message refers to encrypted databases because the audit log is stored in the Caché database CACHEAUDIT.

The audit log cannot be encrypted if Caché starts without activating an encryption key. To configure startup not to involve
key activation, you must change the Caché setting to specify that the instance uses an unencrypted audit log. The procedure
is:

1. Back up the instance’s audit data.

2. Go to the Database Encryption page (System Administration > Encryption > Database Encryption).

3. Select Configure Startup Settings, which displays the area with options for configuring Caché startup and other options
for encrypted databases.

4. Under Optionally Encrypted Data, in the Encrypt Audit Log list, click “No”.

Changing this setting causes Caché to erase any existing audit data, to start using unencrypted auditing immediately, and
to write an AuditChange event to the audit log.

CAUTION: If you have not backed up audit data, changing the encryption setting for the audit log results in the loss
of that existing audit data.

10.3.5.2 Configuring Startup with Interactive Key Activation

This is the default behavior for an instance of Caché if a key has been activated. With interactive key activation, the Caché
instance prompts for the location of a key and its associated information during its startup.

Important: On Windows, interactive key activation is incompatible with configuring Caché as a service that starts
automatically as part of system startup.

To configure Caché for interactive key activation:

1. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

2. Select Configure Startup Settings. This displays the Startup Options area, which includes the Key Activation at Startup

list.

140 Caché Security Administration Guide

Managed Key Encryption

3. In the Key Activation at Startup list, select Interactive. If the previous value for the field was “None”, then this displays
the page’s Optionally Encrypted Data area.

4. The fields in this area are:

• Encrypt CACHETEMP and CACHE Databases — Allows you to specify whether or not the CACHETEMP and
CACHE databases are encrypted. To encrypt them, select “Yes”; to have them be unencrypted, select “No.”

• Encrypt Journal Files — Allows you to specify whether or not the instance encrypts its own journal files and, if it
is a destination shadow server, if it encrypts the journal files it receives from its source production server. To
encrypt journal files, select “Yes”; to have them be unencrypted, select “No.” This choice depends on startup
options because Caché startup creates a new journal file; if you choose encryption, startup requires a key.

Note: This change takes effect the next time that Caché switches journal files. To begin journal file encryption
without a restart, switch journal files after completing this page.

• Encrypt Audit Log — Allows you to specify whether or not Caché encrypts the audit log. To encrypt the audit log,
select “Yes”; to have it be unencrypted, select “No.” This choice depends on startup options because the Caché
startup procedure records various events in the audit log; if you choose encryption, startup requires a key.

CAUTION: This change takes effect immediately and deletes any existing audit data. Back up the audit
database prior to changing this setting; otherwise, audit data will be lost.

5. Click Save to save the selected settings.

Important: If Caché is configured to

• Encrypt CACHETEMP and CACHE, journal files, or the audit log

• Require an encrypted database at startup

then failure to activate the required encryption key causes a Caché startup failure. If this occurs, use Caché
emergency startup mode to configure Caché not to require any encrypted facilities at startup.

10.3.5.3 Configuring Startup with Unattended Key Activation

Unattended startup requires that all the elements required to decrypt an encrypted database be available when Caché starts
running. This includes the Caché instance itself, the encrypted database, the database-encryption key file, and the username
and password used for unattended database encryption key activation. By making all these items available, the security of
the data in Caché becomes entirely dependent on the physical security of the machine(s) holding these elements. If your
site cannot ensure this physical security, your data will then be subject to the same level of risk as if it were not encrypted;
to avoid this situation, either use interactive startup (which prevents the simultaneous exposure of these elements) or ensure
the physical security of the relevant machine(s).

CAUTION: InterSystems recommends that you do not use unattended key activation.

If you want Caché to activate a key at startup without requiring any human intervention, then:

1. You need to have a key currently activated. To activate a key, see the section “Activating a Key.”

2. From the Management Portal home page, go to the Database Encryption page (System Administration > Encryption >
Database Encryption).

3. Select Configure Startup Settings. This displays the Startup Options list.

4. In Startup Options, select Unattended (NOT RECOMMENDED). This changes the fields that the page displays.

5. The Startup Options area expands to display three fields. Complete these:

Caché Security Administration Guide 141

Using Encrypted Databases

• Key File — The path of the database-encryption key file. This can be an absolute or relative path; if you specify
a relative path, it is relative to the Caché installation directory. Click Browse to search for the database-encryption
key file on the file system.

• Administrator Name — An administrator for this key file.

• Password — The administrator’s password.

6. Complete the fields in the Optionally Encrypted Data area:

• Encrypt CACHETEMP and CACHE Databases — Allows you to specify whether or not the CACHETEMP and
CACHE databases are encrypted. To encrypt them, select “Yes”; to have them be unencrypted, select “No.”

• Encrypt Journal Files — Allows you to specify whether or not the instance encrypts its own journal files and, if it
is a destination shadow server, if it encrypts the journal files it receives from its source production server. To
encrypt journal files, select “Yes”; to have them be unencrypted, select “No.” This choice depends on startup
options because Caché startup creates a new journal file; if you choose encryption, startup requires a key.

Note: This change takes effect the next time that Caché switches journal files. By default, this occurs the next
time that Caché restarts. To begin journal file encryption without a restart, switch journal files after
completing this page.

• Encrypt Audit Log — Allows you to specify whether or not Caché encrypts the audit log. To encrypt the audit log,
select “Yes”; to have it be unencrypted, select “No.” This choice depends on startup options because the Caché
startup procedure records various events in the audit log; if you choose encryption, startup requires a key.

CAUTION: This change takes effect immediately and deletes any existing audit data. Back up the audit
database prior to changing this setting; otherwise, audit data will be lost.

7. Click Save to save the selected settings.

When you configure Caché for unattended startup, it adds another administrator to the database-encryption key file; that
administrator has a system-generated name and password. Ideally, the key file should be on a medium that can be physically
locked in place, such as a lockable CD-ROM or DVD drive in a rack; the data center facility where it is stored should be
locked and monitored. Do not store the database-encryption key on the same drive as any databases that it is used to encrypt.

Important: If Caché is configured to

• Encrypt CACHETEMP and CACHE, journal files, or the audit log

• Require an encrypted database at startup

then failure to activate the encryption key causes a Caché startup failure. If this occurs, use Caché emergency
startup mode to configure Caché not to require any encrypted facilities at startup.

10.3.6 About Encrypting the Databases that Ship with Caché

Each instance of Caché ships with a number of databases. The ability to encrypt and the value of encryption depends on
the database:

• CACHE: Can be encrypted in conjunction with the CACHETEMP database. Encrypting CACHE requires that a key be
available at startup, since the database is required at startup time.

• CACHEAUDIT: Can be encrypted. Encrypting CACHEAUDIT requires that a key be available at startup, since the database
is required at startup time.

• CACHELIB: Must not be encrypted. (Note that all content in CACHELIB is publicly available.)

142 Caché Security Administration Guide

Managed Key Encryption

• CACHESYS: Must not be encrypted. If an instance has an encrypted form of this database, Caché cannot start.

• CACHETEMP: Can be encrypted in conjunction with the CACHE database. Encrypting CACHETEMP requires that a
key be available at startup, since the database is required at startup time.

• DOCBOOK: Can be encrypted. (Note that all content in DOCBOOK is publicly available.)

• SAMPLES: Can be encrypted. (Note that all content in SAMPLES is publicly available.)

• USER: Can be encrypted.

10.4 Using Data Element Encryption
Data element encryption provides a means of encrypting application data at a finer level of granularity than the database
as a whole; it is for sensitive data elements whose exposure must be prevented. For example, customer records can exclusively
encrypt the credit card field; patient records can exclusively encrypt fields that display test results (such as for HIV testing);
or a record that includes a social security number can exclusively encrypt that field.

Data element encryption is available programmatically (via an API), rather than through the Management Portal. Because
it is accessible through an API, you can use it in your application code. You have the option of using data element encryption
with database encryption (though there is no requirement to use both).

For an application to use data element encryption, the required keys must be available when the application is running. To
make a key available, activate it; for details, either see the following section “Programmatically Managing Keys” or, if
using the Portal, see “Activating a Key for Data Element Encryption”. When a key is activated, Caché displays its unique
identifier in the table of activated keys; the application then uses this identifier to refer to the key so that it can be loaded
from memory for encryption operations. Since there can be up to four keys simultaneously activated, data element
encryption provides the infrastructure for tasks that require multiple keys.

When encrypting data for data element encryption, Caché stores the encryption key’s unique identifier with the resulting
ciphertext. The unique identifier enables the system to identify the key at decryption time using only the ciphertext itself.

This section describes:

• Programmatically Managing Keys

• Data Element Encryption Calls

• Support for Re-Keying Data in Real Time

10.4.1 Programmatically Managing Keys

Since data element encryption is available through an API, there are also a set of calls for managing keys:

• $SYSTEM.Encryption.CreateEncryptionKey

• $SYSTEM.Encryption.ActivateEncryptionKey

• $SYSTEM.Encryption.DeactivateEncryptionKey

• $SYSTEM.Encryption.ListEncryptionKeys

These are all methods of the %SYSTEM.Encryption class.

Caché Security Administration Guide 143

Using Data Element Encryption

10.4.2 Data Element Encryption Calls

The system methods available for data element encryption are all methods of the %SYSTEM.Encryption class and are:

• $SYSTEM.Encryption.AESCBCManagedKeyEncrypt

• $SYSTEM.Encryption.AESCBCManagedKeyDecrypt

• $SYSTEM.Encryption.AESCBCManagedKeyEncryptStream

• $SYSTEM.Encryption.AESCBCManagedKeyDecryptStream

These method names all begin with “AESCBCManagedKey” because the methods use AES (the Advanced Encryption
Standard) in cipher block chaining (CBC) mode and are part of the suite of tools for managed key encryption.

Important: The AESCBC methods that do not include “ManagedKey” in their names are older methods and cannot
be used for these purposes.

10.4.2.1 $SYSTEM.Encryption.AESCBCManagedKeyEncrypt

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyEncrypt
 (
 plaintext As %String,
 keyID As %String,
)
 As %String

where:

• plaintext — The unencrypted text to be encrypted.

• keyID — The GUID of the data-encryption key to be used to encrypt plaintext.

• The method returns the encrypted ciphertext.

If the method fails, it throws either the <FUNCTION> or <ILLEGAL VALUE> error. Place calls to this method in a
Try-Catch loop; for more information on Try-Catch, see the section “The TRY-CATCH Mechanism” in the “Error Pro-
cessing” chapter of Using Caché ObjectScript.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyEncrypt class reference content.

10.4.2.2 $SYSTEM.Encryption.AESCBCManagedKeyDecrypt

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyDecrypt
 (
 ciphertext As %String
)
 As %String

where:

• ciphertext — The encrypted text to be decrypted.

• The method returns the decrypted plaintext.

If the method fails, it throws either the <FUNCTION> or <ILLEGAL VALUE> error. Place calls to this method in a
Try-Catch loop; for more information on Try-Catch, see the section “The TRY-CATCH Mechanism” in the “Error Pro-
cessing” chapter of Using Caché ObjectScript.

144 Caché Security Administration Guide

Managed Key Encryption

You do not need to include the key ID with this call, as the key ID is associated with the ciphertext to be decrypted.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyDecrypt class reference content.

10.4.2.3 $SYSTEM.Encryption.AESCBCManagedKeyEncryptStream

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyEncryptStream
 (
 plaintext As %Stream.Object,
 ciphertext As %Stream.Object,
 keyID As %String,
)
 As %Status

where:

• plaintext — The unencrypted stream to be encrypted.

• ciphertext — The variable to receive the encrypted stream.

• keyID — The GUID of the data-encryption key to be used to encrypt plaintext.

• The method returns a %Status code.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyEncryptStream class reference content.

10.4.2.4 $SYSTEM.Encryption.AESCBCManagedKeyDecryptStream

The signature of this method as it is usually called is:

$SYSTEM.Encryption.AESCBCManagedKeyDecryptStream
 (
 ciphertext As %Stream.Object,
 plaintext As %Stream.Object
)
 As %Status

where:

• ciphertext — The encrypted stream to be decrypted.

• plaintext — The variable to receive the unencrypted stream.

• The method returns a %Status code.

You do not need to include the key ID with this call, as the key ID is associated with the ciphertext to be decrypted.

For more details, see the $SYSTEM.Encryption.AESCBCManagedKeyDecryptStream class reference content.

10.4.3 Support for Re-Keying Data in Real Time

Data element encryption allows Caché applications to support re-keying data, which is re-encrypting an encrypted data
element with a new key.

Because an encrypted data element has its encrypting key identifier stored with it, this simplifies the process of re-keying
data. Given merely the handle to ciphertext and an activated key, an application can perform re-keying. For example, data
element encryption supports the ability to re-key sensitive data without any downtime; this is particularly useful for users
required to perform this action for legal reasons, such as those fulfilling PCI DSS (Payment Card Industry Data Security
Standard) requirements.

If you need to re-key data, create a new key and specify to your application that this is the new encryption key. You can
then perform an action such as running a background application to decrypt the elements and encrypt them with the new

Caché Security Administration Guide 145

Using Data Element Encryption

key. This uses the specified key for encryption and always uses the correct key for decryption, since it is stored with the
encrypted data.

10.5 Emergency Situations
This section describes what to do under certain circumstances when you are in danger of losing data. These include:

• If the File Containing an Activated Key is Damaged or Missing

– If There Is a Backup Copy of the Key File with a Known Administrator Username and Password

– If There Is No Backup Copy of the Key File or the Key has No Known Administrator Username and Password

CAUTION: This is a dire situation. Act immediately.

• If the Database-Encryption Key File Is Required at Startup and Is Not Present

– If You Can Make the Key File Available

– If a Backup Key File Is Available

– If No Key File Is Available

10.5.1 If the File Containing an Activated Key is Damaged or Missing

In this situation, the following circumstances have occurred:

• A database-encryption key has been activated for the Caché instance.

• Caché is using encrypted data.

• The key file containing the database-encryption key becomes damaged.

10.5.1.1 If There Is a Backup Copy of the Key File with a Known Administrator Username and
Password

CAUTION: This procedure is for an emergency situation, where encrypted data in Caché databases is in danger of
being lost.

If the file containing an activated key becomes inaccessible or damaged, immediately perform the following procedure:

1. Get the backup copy of the key file. This is the copy that you stored as described in the section “Protection from
Accidental Loss of Access to Encrypted Data.”

2. Make a new backup copy of the key file and store it in a safe place. Follow all the precautions specified in the section
“Special Cautions to Preserve the Data in Encrypted Databases.”

3. Set up Caché to use the new copy of the key:

• If you are using interactive startup, incorporate the new copy of the key into your startup procedures.

• If you are using unattended startup, then re-configure your startup options using the new copy of the key file —
even if you are setting it up for the same options as before.

146 Caché Security Administration Guide

Managed Key Encryption

10.5.1.2 If There Is No Backup Copy of the Key File or the Key has No Known Administrator
Username and Password

Important: THIS PROCEDURE IS FOR AN EMERGENCY SITUATION, WHERE ENCRYPTED DATA IN CACHÉ
DATABASES IS IN DANGER OF BEING LOST.

If the file containing the activated key becomes inaccessible or damaged while Caché is running, immediately perform the
following procedure for each database encrypted with that key:

1. Do not shut down Caché.

Do not deactivate the currently active key.

WARNING! Shutting down Caché or deactivating the active key will cause the permanent loss of your data.

2. Contact the InterSystems Worldwide Response Center. Engineers there can help guide you through the following
procedure and answer any questions that may arise.

3. Prevent all users from making any changes to the database with encrypted content while copying its data to an unen-
crypted database. To do this, the procedure is:

a. From the Management Portal home page, go to the Databases page (System Operation > Databases).

b. On the Databases page, if the encrypted database is mounted, select the Dismount option in the next-to-last column
in that database’s row. Then select OK in the confirmation dialog.

c. When the Databases page appears again, select the Mount option in the last column in the database’s row.

d. On the Mount database confirmation screen, check the Read Only box and select OK.

It is critical that no one makes any changes to the database during this procedure. Mounting the database read-only
prevents any user from changing any data.

4. Copy all data in unencrypted form to another database. The procedure for copying the data is:

a. In the Terminal, go to the %SYS namespace:

REGULARNAMESPACE> zn "%SYS"

b. From that namespace, run the ^GBLOCKCOPY command:

%SYS>d ^GBLOCKCOPY

This routine will do a fast global copy from a database to another database or
to a namespace. If a namespace is the destination, the global will follow any
mappings set up for the namespace.

1) Interactive copy
2) Batch copy
3) Exit

Option?1

c. At the ^GBLOCKCOPY prompt, specify 1, for an interactive copy:

Option? 1

1) Copy from Database to Database
2) Copy from Database to Namespace
3) Exit

Option?

d. When ^GBLOCKCOPY prompts for a copy type, select 1, for copying from database to database

Option? 1
Source Directory for Copy (? for List)?

Caché Security Administration Guide 147

Emergency Situations

Here, either specify the name of the encrypted database or enter ? to see a numbered list of databases, which
includes the encrypted database. If you enter ?, ^GBLOCKCOPY displays a list such as this one:

Source Directory for Copy (? for List)? ?

1) C:\InterSystems\MyCache\mgr\
2) C:\InterSystems\MyCache\mgr\cache\
3) C:\InterSystems\MyCache\mgr\cacheaudit\
4) C:\InterSystems\MyCache\mgr\cachelib\
5) C:\InterSystems\MyCache\mgr\cachetemp\
6) C:\InterSystems\MyCache\mgr\docbook\
7) C:\InterSystems\MyCache\mgr\encrypted1\
8) C:\InterSystems\MyCache\mgr\encrypted2\
9) C:\InterSystems\MyCache\mgr\samples\
10) C:\InterSystems\MyCache\mgr\unencrypted\
11) C:\InterSystems\MyCache\mgr\user\

Source Directory for Copy (? for List)?

Enter the number of the encrypted database, such as 7 here.

e. When ̂ GBLOCKCOPY prompts for a destination directory for copying the data, enter the name of an unencrypted
database or ? for a list similar to the one for the source directory.

f. When ^GBLOCKCOPY asks if you wish to copy all globals, enter Yes (can be Yes, Y, y, and so on):

All Globals? No => y

g. If there is an empty global in the database, ̂ GBLOCKCOPY will now ask if you wish to copy it. This will appear
something like the following:

All Globals? No => y

^oddBIND contains no data
Include it anyway? No =>

Enter No (can be No, N, n, and so on), which is the default.

h. ^GBLOCKCOPY then asks if you wish to skip all the other empty globals. Enter Yes (can be Yes, Y, y, and so
on), which is the default:

Exclude any other similar globals without asking again? Yes =>

There then appears a list of all the empty globals that are not being copied:

Exclude any other similar globals without asking again? Yes => Yes
^oddCOM contains no data -- not included
^oddDEP contains no data -- not included
^oddEXT contains no data -- not included
^oddEXTR contains no data -- not included
^oddMAP contains no data -- not included
^oddPKG contains no data -- not included
^oddPROC contains no data -- not included
^oddPROJECT contains no data -- not included
^oddSQL contains no data -- not included
^oddStudioDocument contains no data -- not included
^oddStudioMenu contains no data -- not included
^oddTSQL contains no data -- not included
^oddXML contains no data -- not included
^rBACKUP contains no data -- not included
^rINC contains no data -- not included
^rINCSAVE contains no data -- not included
^rINDEXEXT contains no data -- not included
^rINDEXSQL contains no data -- not included
^rMACSAVE contains no data -- not included
9 items selected from
29 available globals

i. ^GBLOCKCOPY then asks if you wish to disable journaling for this operation:

Turn journaling off for this copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default.

148 Caché Security Administration Guide

Managed Key Encryption

j. ^GBLOCKCOPY then asks if to confirm that you wish to copy the data:

Confirm copy? Yes =>

Enter Yes (can be Yes, Y, y, and so on), which is the default. Depending on the size of the database and the speed
of the processor, you may see the status of the copy as it progresses. When it completes, ̂ GBLOCKCOPY displays
a message such as:

Copy of data has completed

k. ^GBLOCKCOPY then asks if you wish to save statistics associated with the copy. Enter No (can be No, N, n,
and so on), which is the default:

Do you want to save statistics for later review? No =>

Control then returns to the main prompt.

5. Test that the copied data is valid. You can do this by examining the classes, tables, or globals in the Management
Portal’s System Explorer for the database into which ^GBLOCKCOPY has copied the data.

6. If the data is valid, perform steps 3 and 4 of this procedure for each database encrypted with the inaccessible or damaged
key.

7. Once you have made copies of every encrypted database into an unencrypted database, make a second copy of each
database, preferably to a different machine than that which holds the first copy of each.

8. Now — and only now — you can dismount all encrypted databases and deactivate the active key (that is, the key for
which the key file is missing or damaged). Caché requires that you dismount all encrypted databases prior to deactivating
their key.

You now have your data in one or more unencrypted databases and there is no activated key.

To re-encrypt the formerly encrypted databases, the procedure is:

1. Create a new database-encryption key according to the procedure described in the section “Creating a Key.”

2. Create a new backup copy of the key file as described in “Protection from Accidental Loss of Access to Encrypted
Data.”

CAUTION: Make sure you take the precautions described in “Protection from Accidental Loss of Access to
Encrypted Data”; failure to follow these procedures can result in the permanent loss of data.

3. Create one or more new encrypted databases, using the new key.

4. Import the data exported in the previous procedure into the new encrypted database(s).

Your data is now stored in encrypted databases for which you have a valid key and a backup copy of the key file containing
that key.

10.5.2 If the Database-Encryption Key File Is Required at Startup and Is Not
Present

Under certain conditions related to the required use of a database-encryption key file at startup, the system starts in single-
user mode. These conditions are:

• Caché is configured for either interactive or unattended startup.

• Startup specifies that journal files and/or the CACHETEMP and CACHE databases are encrypted, or an encrypted
database is specified as required at startup.

Caché Security Administration Guide 149

Emergency Situations

• The database-encryption key file is not present.

10.5.2.1 If You Can Make the Key File Available

This situation may have been caused simply by the appropriate key file not being present at Caché startup time — such as
if the media holding it is not currently available.

To correct the condition, after Caché starts running in single-user mode, then the procedure is:

1. Shut down Caché. For example, if the instance of Caché is called “MyCache”, the command to do this would be:

ccontrol force MyCache

2. If you know the location where Caché is expecting to find the database-encryption key file, then place the key file
there. (Otherwise, you need to run ^STURECOV as specified in the next section.)

3. Start Caché again.

Caché should start in its typical mode (multi-user mode) and operate as expected.

10.5.2.2 If a Backup Key File Is Available

If the appropriate key file is not present at Caché startup time and is not available, you may have a backup key file available.
If so, then to correct the condition, after Caché starts running in single-user mode, then the procedure is:

1. Contact InterSystems Worldwide Response Center. Engineers there can help guide you through the following procedure
and answer any questions that may arise.

2. Start a Terminal session according to the instructions in the most recent entry in the cconsole.log file. Typically, this
specifies starting a Terminal session with the -B flag.

For example, at a Windows command line, for an instance of Caché called “MyCache” that is installed in the default
location, the command would be:

C:\MyCache\bin\cache -sC:\MyCache\mgr -B

This connects you with Caché in the operating system terminal window; the prompt in that window changes from the
operating system prompt to the Caché %SYS prompt.

3. If you have or can obtain a copy of the database-encryption key file (such as a backup), then place a copy of the key
file in a location accessible to Caché.

4. Run the ^STURECOV (startup recovery) routine at the Terminal prompt. In that routine, activate the encryption key
using an administrator username and password in that file. (You do not need to exit ^STURECOV when you have
completed this process.)

5. When you are satisfied that Caché is ready for use, use ^STURECOV to complete the startup procedure. Caché then
starts in multi-user mode.

Caché should now operate as expected.

10.5.2.3 If No Key File Is Available

If you do not have any copy of the database-encryption key file, then the procedure is:

1. Contact InterSystems Worldwide Response Center (WRC). Engineers there can help guide you through the following
procedure and answer any questions that may arise.

2. Start a Terminal session with the -B flag. For example, at a Windows command line, for an instance of Caché called
“MyCache” that is installed in the default location, the command would be:

150 Caché Security Administration Guide

Managed Key Encryption

C:\MyCache\bin\cache -sC:\MyCache\mgr -B

This connects you with Caché in the operating system terminal window; the prompt in that window changes from the
operating system prompt to the Caché %SYS prompt.

3. If any encrypted databases require mounting at startup, disable this feature for them:

a. From the Management Portal Home page, go to the Local Databases page (System Administration > Configuration

> System Configuration > Local Databases).

b. Click the name of the database in the table of databases. This displays the Edit: page for the database.

c. On the Edit: page, clear the Mount Required at Startup check box.

d. Click Save.

4. Run the ^STURECOV routine at the Terminal prompt. In that routine, configure Caché database startup options not
to require a database encryption key. This means that the CACHETEMP and CACHE databases as well as journal
files should now operate as expected; it also means that any encrypted databases cannot be mounted.

5. When you are satisfied that Caché is ready for use, use ^STURECOV to complete the startup procedure. Caché then
starts in multi-user mode.

As you perform this procedure, you may need to perform other actions, according to the instructions of the representative
from the WRC. Follow these instructions.

CAUTION: If you have not performed the actions described in the section “Protection from Accidental Loss of Access
to Encrypted Data,” then your data may no longer be available in any form. This is a very serious problem,
but if you do not have a key, there is no way to retrieve the lost data.

10.6 Other Information
This section addresses:

• Key File Encryption Information

• Encryption and Database-Related Caché Facilities

10.6.1 Key File Encryption Information

Database encryption administrator names are stored in the clear in the key file. Database encryption administrator passwords
are not stored; when entered, they are used, along with other data, to derive key-encryption keys. If someone can successfully
guess a valid password, the password policy is too weak. Key-encryption keys are derived using the PBKDF2 algorithm
with 512 bits of salt and 65,536 iterations, making dictionary and brute force attacks impractical. Nonetheless, database
encryption key files should be securely stored separately from the encrypted databases if you want three-factor security
(database, key file, password); for details on protecting data in this way, see the section “Protection from Unauthorized
Access to Encrypted Data.”

10.6.2 Encryption and Database-Related Caché Facilities

Caché database encryption protects database files themselves. Regarding related facilities in Caché:

Caché Security Administration Guide 151

Other Information

• Caché online backups are not encrypted. To ensure that the Caché database is encrypted in a backup, it is recommended
that you quiesce Caché and then perform a file system backup (as described in the section “External Backup” in the
“Backup and Restore” chapter of the Caché Data Integrity Guide).

• In the write image journal (WIJ) file, the blocks for encrypted databases are encrypted. (For clustered systems, the
same is true for the PIJ file.)

• The CACHETEMP and CACHE databases can optionally be encrypted. To provide encryption for CACHETEMP and
CACHE, see the section “Configuring Caché Encryption Settings.”

• You can optionally encrypt journal files; on a destination shadow server, this switch also encrypts all the journal files
that it receives from its source production server. To encrypt journal files, see the section “Configuring Caché
Encryption Settings.”

152 Caché Security Administration Guide

Managed Key Encryption

11
SQL Security

Caché has both system-level security, and an additional set of SQL-related security features. The Caché SQL security
provides an additional level of security capabilities beyond its database-level protections. Some of the key differences
between SQL and system-level security are:

• SQL protections are more granular than system-level protections. You can define privileges for tables, views, and
stored procedures.

• SQL privileges can be granted to users as well as to roles. System-level privileges are only assigned to roles.

• Holding an SQL privilege implicitly grants any related system privileges that are required to perform the SQL action.
(Conversely, system-level privileges do not imply table-level privileges.) The different types of privileges are described
in the “SQL Privileges and System Privileges” section.

11.1 SQL Privileges and System Privileges
To manipulate tables or other SQL entities through SQL-specific mechanisms, a user must have the appropriate SQL
privileges. System-level privileges are not sufficient.

Note: Roles are shared by SQL and system level security: a single role can include both system and SQL privileges.

Consider the following example for an instance of Caché on a Windows machine:

• There is a class in the USER namespace called User.MyPerson. This class is projected to SQL as the SQLUser.MyPerson

table.

• There is a user called Test, who belongs to no roles (and therefore has no system privileges) and who has all privileges
on the SQLUser.MyPerson table (and no other SQL privileges).

• There is a second user, called Test2. This user is assigned to the following roles: %DB_USER (and so can read or write
data on the USER database); %SQL (and so has SQL access through the %Service_Bindings service); and, through a
custom role, has privileges for using the Console and %Development.

If the Test user attempts to read or write data in the SQLUser.MyPerson table through any SQL-specific mechanism (such
as one that uses ODBC), the attempt succeeds. This is because Caché makes the Test user a member of the %DB_USER and
%SQL role to establish the connection; this is visible in audit events that the connection generates, such as the %Sys-
tem/%Login/Login event. (If the Test user attempts to use the Terminal or Management Portal, these attempts fail, because
the user lacks sufficient privilege for these.)

Caché Security Administration Guide 153

If the Test2 user attempts to read or write data in the SQLUser.MyPerson table through any SQL-specific mechanism (such
as one that uses ODBC), the attempt fails because the user does not have sufficient privileges for the table. (If the Test2
user attempts to view the same data in the Terminal using object mechanisms, the attempt succeeds — because the user is
sufficiently privileged for this type of connection.)

11.2 The SQL Service
The %Service_SQL:Use privilege controls a user’s ability to connect using a Caché object or SQL client and then use
SQL. When a user attempts to connect to Caché, the server determines whether the user holds any SQL-level privileges
for the namespace. If the user holds at least one such privilege, then the server automatically adds two roles: the %SQL role,
which has the %Service_SQL:Use privilege, and the implicit database role for the namespace’s default database. As a
result of this automatic role addition, it is not necessary for SQL users to hold any database privileges, because the server
adds them automatically.

With the exception of this role addition at connect-time, no automatic role escalation occurs during the processing of an
SQL statement. The user must hold the necessary system-level privileges when the SQL statement is executed.

Note that the %Service_SQL:Use privilege is only required to use SQL in a client/server configuration. For example, a
user running an application that employs server-side embedded SQL requests does not require this permission.

The %CREATE_TABLE command is namespace-specific: granting a user this privilege for a specific namespace enables
the user to create new tables in that namespace only.

11.2.1 CREATE USER

The SQL CREATE USER statement can be used to create Caché users. The newly created user has no roles.

Under some circumstances, a username can be implicitly used as an SQL schema name. This may pose problems if the
username contains characters that are forbidden in an SQL identifier. For example, in a multiple domain configuration the
username contains the “@” character.

Caché handles this situation differently depending on the setting of the Delimited Identifiers configuration parameter:

• If the use of delimited identifiers is enabled, no special processing occurs.

• If the use of delimited identifiers is disabled, then any forbidden characters are removed from the username to form a
schema name. For example, the username “documentation@intersystems.com” would become the schema name
“documentationintersystemscom”.

This does not affect the value returned by the SQL CURRENT_USER function. It is always the same as $USERNAME.

11.2.2 Effect of Changes

Setting an SQL security value takes effect when the user next connects, not during that user’s current session.

11.2.3 Required Privileges for Working with Tables

Creating a user in SQL, with the statement

CREATE USER <username> IDENTIFY BY <password>

is equivalent to performing the same action using the Management Portal. For the user to be able to work with a particular
table, privileges for that table must be explicitly granted, such as with the Management Portal.

154 Caché Security Administration Guide

SQL Security

The minimum privilege required to work with a particular table is: any SQL privilege, like SELECT, on the relevant table.
If the user has the right to perform a SELECT command, then this grants the ability to read and use but not write; analogously,
INSERT, UPDATE, and DELETE provide those privileges.

Caché Security Administration Guide 155

The SQL Service

12
System Management and Security

This chapter covers the following topics:

• System Security Settings Page

• System-wide Security Parameters

• Authentication Options

• The Secure Debug Shell

• Password Strength and Password Policies

• Protecting Caché Configuration Information

• Managing Caché Security Domains

• Security Advisor

• Effect of Changes

• Emergency Access

12.1 System Security Settings Page
The System Security Settings page (System Administration > Security > System Security) provides links to pages that con-
figure the entire Caché instance for security. These pages are:

• System-Wide Security Parameters

• Authentication/CSP Session Options

• LDAP Options

12.2 System-Wide Security Parameters
This section describes security issues that affect an entire Caché instance. This includes the system-wide security parameters
and handling sensitive data in memory images.

Caché Security Administration Guide 157

Caché includes a number of system-wide security parameters. You can configure these on the System Security Settings

page (System Administration > Security > System Security > System-wide Security Parameters). These are:

• Enable audit — Turns auditing on or off. This check box performs the same action as the Enable Auditing and Disable

Auditing links on the Auditing page (System Administration > Security > Auditing). For more information on auditing,
see the chapter “Auditing.” [Default is off]

• Enable configuration security — Specifies whether configuration security is on or off, as described in the section
“Protecting Caché Configuration Information.” [Default is off]

• Default security domain — Allows you to choose the instance’s default security domain. For more information on
security domains, see the section “Managing Caché Security Domains”. [Default is the domain established during
installation]

• Inactive limit (0–365) — Specifies the maximum number of days that a user account can be inactive, which is defined
as the amount of time between successful logins. When this limit is reached, the account is disabled. A value of 0 (zero)
means that there is no limit to the number of days between logins. [Default is 0 for minimal-security installations and
90 for normal and locked-down installations]

• Invalid login limit (0-64) — Specifies the maximum number of successive unsuccessful login attempts. After this limit
is reached, either the account is disabled or an escalating time delay is imposed on each attempt; the action depends
on the value of the Disable account if login limit reached field. A value of 0 (zero) means that there is no limit to the
number of invalid logins. [Default is 5]

• Disable account if login limit reached — If checked, specifies that reaching the number of invalid logins (specified in
the previous field) causes the user account to be disabled.

• Password Expiration Days (0–99999) — Specifies how frequently passwords expire and, therefore, how frequently users
must change their passwords (in days). When initially set, specifies the number of days until passwords expire. A value
of 0 (zero) means that the password never expires; however, setting this field to 0 does not affect users for whom the
Change Password on Next Login field has been set. [Default is 0]

CAUTION: This setting affects all accounts for the Caché instance, including those used by Caché itself. Until
passwords are updated for these accounts, it may impossible for various operations to proceed and
this may lead to unexpected results.

• Password pattern — Specifies the acceptable format of newly created passwords. See “Password Strength and Password
Policies” for more information. [Default for an instance with Minimal and Normal security is 3.32ANP; default for a
locked-down instance is 8.32ANP.]

• Password validation routine — Specifies a user-provided routine (or entry point) for validating a password. See the
PasswordValidationRoutine method in the Security.System class for more information.

• Role required to connect to this system — If set to an existing role, specifies that a user must be a member of this role
(as a login role) in order to log into the system.

If you are using LDAP authentication or OS-based LDAP authorization, InterSystems strongly recommends that you
create a role that is required to connect and that you specify its name in this field. For more information, see the
“Setting Up a Role Required for Login” section of the “Using LDAP” chapter.

• Enable writing to percent globals — Specifies whether write access to percent globals is implicitly granted to all users;
if not checked, write access is controlled by normal security mechanisms. For more information on the percent globals
and CACHESYS (the database that holds them), see the section “CACHESYS, the Manager’s Database” in the
chapter “Assets and Resources.” [Default is controlled by normal security mechanisms.]

• Allow multiple security domains — Specifies whether there is support for multiple Caché security domains. For more
information on security domains, see the section “Managing Caché Security Domains.” [Default is a single domain]

158 Caché Security Administration Guide

System Management and Security

• Superserver SSL/TLS Support — Specifies if the superserver supports or requires the use of SSL/TLS for client con-
nections.

Important: Before you can configure the superserver to use SSL/TLS, there must be an existing configuration
called %SuperServer. For more information about using SSL/TLS with the Caché superserver, see
“Configuring the Caché Superserver to Use SSL/TLS.”

Options are:

– Disabled — The superserver refuses client connections that use SSL/TLS. (That is, it only accepts client connections
that do not use SSL/TLS.)

– Enabled — The superserver accepts but does not require SSL/TLS.

– Required — The superserver requires client connections to use SSL/TLS.

12.2.1 Protecting Sensitive Data in Memory Images

Certain error conditions can cause the contents of a process’s memory to be written to a disk file, known as a “core dump.”
This file contains copies of all data that was in use by the process at the time of the dump, including potentially sensitive
application and system data. This can be prevented by disallowing core dumps on a system-wide basis. The method for
disallowing core dumps varies according to the operating system in use; for details, consult the documentation of your
operating system.

12.3 Authentication Options
The Authentication/CSP Sessions Options page (System Administration > Security > System Security > Authentication/CSP

Options) allows you to enable or disable authentication mechanisms for the entire Caché instance:

• If an authentication mechanism is disabled for the entire Caché instance, then it is not available for any service.

• If an authentication mechanism is enabled for the entire Caché instance, then it is available for all the services that
support it. To enable the authentication mechanism for a particular service, use the Edit Service page for that property;
this page is available by selecting the service from the Services page (System Administration > Security > Services).

Note: Not all services support all mechanisms.

The authentication options are:

• Allow Unauthenticated access — Users may connect without authenticating. (If login dialog appears, the user can
leave the Username and Password fields blank and click OK to log in.)

• Allow Operating System authentication — Caché uses the operating system’s user identity to identify the user.

• Allow Password authentication — Caché uses its own native tools to authenticate a username and password that are
registered with it. This mechanism is also known as “Caché login.”

• Allow Delegated authentication — Caché delegates the process of authentication to a user-defined function.

• Allow Kerberos authentication — Caché performs authentication using Kerberos.

• Allow LDAP authentication — Caché uses an available LDAP database to authenticate users.

• Allow LDAP cache credentials authentication — Caché keeps a cached copy of LDAP credentials so that it can
authenticate LDAP users if the LDAP database becomes unavailable.

Caché Security Administration Guide 159

Authentication Options

• Allow creation of Login Cookies — Caché uses cookies that are shared among enabled web applications to authenticate
users, so that they do not need to enter a username and password when first using a new application.

• Login Cookie expire time (secs) — The duration of a login cookie, in seconds. This field is only relevant if Login
Cookies are enabled for the instance.

• Allow Two-factor Time-based One-time Password authentication — Caché provides a verification code to the user
via an authentication device or an app that runs on the user’s phone; the user then enters the code to complete the
authentication process. If selected, the Authentication/CSP Session Options page displays the fields for configuring
two-factor authentication.

• Allow Two-factor SMS text authentication — Caché provides a security code to the user via a mobile phone text
message; the user then enters the code to complete the authentication process. If selected, the Authentication/CSP

Session Options page displays the fields for configuring two-factor authentication.

If there are multiple authentication options, Caché uses cascading authentication. For more information on authentication,
see the chapter “Authentication.”

12.4 The Secure Debug Shell
Caché includes the ability to suspend a routine and enter a shell that supports full debugging capabilities (as described in
the “Command-line Routine Debugging” chapter of Using Caché ObjectScript). Caché also includes a secure debug shell,
which has the advantage of ensuring that users are prevented from exceeding or circumventing their assigned privileges.

The secure debug shell helps better control access to sensitive data. It is an environment that allows users to perform basic
debugging, such as stepping and displaying variables, but does not allow them to do anything that changes the execution
path or results of a routine. This protects against access that can lead to issues such as manipulation, malicious role escalation,
and the injection of code to run with higher privileges.

The secure debug shell starts when a Break command is executed, a breakpoint or watchpoint is encountered, or an uncaught
error is issued.

Within the secure debug shell, the user cannot invoke:

• Any command that can modify a variable.

• Any function that can modify a variable.

• Any command that can call other routines.

• Any command that affects the flow of the routine or the environment.

Within the secure debug shell, when a user attempts to invoke a restricted command or function, Caché throws a <COM-
MAND> or <FUNCTION> error, respectively.

12.4.1 Enabling Use of the Secure Shell

By default, users at the debug prompt maintain their current level of privileges. To enable the secure shell for the debug
prompt and thereby restrict the commands that the user may issue, the user must hold the %Secure_Break:Use privilege
(the Use permission for the %Secure_Break resource). To give a user this privilege, make the user a member of a role
which includes the %Secure_Break:Use privilege, such as the predefined %SecureBreak role.

12.4.2 Restricted Commands and Functions

This section lists the restricted activities within the secure debug shell:

160 Caché Security Administration Guide

System Management and Security

• Restricted ObjectScript Commands

• Restricted ObjectScript Functions

• Restricted Object Constructions

• Restricted MultiValue Commands

12.4.2.1 Restricted ObjectScript Commands

The following are the restricted ObjectScript commands for the secure debug shell:

• CLOSE

• DO

• FOR

• GOTO with an argument

• KILL

• LOCK

• MERGE

• OPEN

• QUIT

• READ

• RETURN

• SET

• TCOMMIT

• TRESTART

• TROLLBACK

• TSTART

• VIEW

• XECUTE

• ZALLOCATE

• ZDEALLOCATE

• ZINSERT

• ZKILL

• ZREMOVE

• ZSAVE

• user commands except ZW and ZZDUMP

12.4.2.2 Restricted ObjectScript Functions

The following are the restricted ObjectScript functions for the secure debug shell:

• $CLASSMETHOD

Caché Security Administration Guide 161

The Secure Debug Shell

• $COMPILE

• $DATA(,var) — two-argument version only

• $INCREMENT

• $METHOD

• $ORDER(,,var) — three-argument version only

• $PROPERTY

• $QUERY(,,var) — three-argument version only

• $XECUTE

• $ZF

• $ZSEEK

• $ZUTIL

• any extrinsic function

12.4.2.3 Restricted Object Constructions

No method or property references are allowed. Property references are restricted because they could invoke a propertyGet
method. Some examples of the object method and property syntax constructions that are restricted are:

• #class(classname).ClassMethod()

• oref.Method()

• oref.Property

• $SYSTEM.Class.Method()

• ..Method()

• ..Property

Note: Even without passing a variable by reference, a method can modify public variables. Since a property reference
could invoke a propGet method, no property access is allowed.

12.4.2.4 Restricted MultiValue Commands

The following are the restricted MultiValue commands for the secure debug shell:

• MV

• MVCALL

• MVDIM

12.5 Password Strength and Password Policies
Caché allows you to specify requirements for user passwords by supplying a string of the form:

X.Y[ANP]

162 Caché Security Administration Guide

System Management and Security

where

• X is the minimum number of characters in the password.

• Y is the maximum number of characters in the password.

• A, N, and P specify whether Alphabetic characters, Numeric characters, and Punctuation characters are permitted in
the password.

These rules are based on the ObjectScript pattern matching functionality. This functionality is described in the “Pattern
Matching” section of the “Operators and Expressions” chapter of Using Caché ObjectScript.

Note: The value for this parameter does not affect existing passwords.

12.5.1 Suggested Administrator Password Strength

Ideally, administrator passwords should be a random mixture of uppercase and lowercase alphabetic characters, numerals,
and punctuation. InterSystems strongly recommends a minimum password length of 12 such random characters.

12.6 Protecting Caché Configuration Information
Caché configuration information is stored in a text file outside of Caché. This file is known as a Caché parameter file and
often referred to as a cache.cpf file. Because this file can be modified while Caché is not running, Caché controls the ability
to start a system with a modified cache.cpf.

To protect your instance against intentional or accidental misconfiguration, check the Configuration Security box to “on”.
If Caché startup detects that the Caché parameter file has been modified outside the control of the Management Portal since
the last time Caché was started, Caché startup requests a username and password to validate the changes. The username
supplied must have %Admin_Manage:Use privileges. If an appropriate username and password cannot be provided, Caché
allows the operator to choose as follows:

1. Re-enter the username and password.

2. Start using the last known good configuration.

3. Abort startup.

If the operator chooses option 2, Caché renames the parameter file that was invoked at startup (file.cpf) with the suffix
_rejected (file.cpf_rejected). Caché then overwrites the file.cpf with the last known good configuration (_LastGood_.cpf)
and starts up using this configuration.

Note: The protections for the cache.cpf file are not a substitute for operating-system–level security. It is recommended
that you protect the configuration file by strictly limiting the ability of users to modify it, at the operating-system
level.

For more information on the configuration file generally, see the Caché Parameter File Reference.

Caché Security Administration Guide 163

Protecting Caché Configuration Information

12.7 Managing Caché Security Domains
Caché security domains provide a grouping of users that corresponds to Kerberos realms and Windows domains. If your
instance is using Kerberos, its Caché domain corresponds to a Kerberos realm. If you are using a Windows domain, this
also corresponds to a Kerberos realm.

While a security domain name often takes the form of an Internet domain name, there is no requirement that it do so. A
security domain name can contain any character except “@”.

12.7.1 Single and Multiple Domains

You can configure Caché for either a single-domain or multiple-domain configuration.

For an instance with a single domain:

• The $USERNAME variable does not include the domain name.

• System utilities do not show the domain name when displaying usernames.

• It is prohibited to specify a username from any domain other than the default domain (described in the following section).

For an instance with multiple domains:

• The $USERNAME variable includes the domain name.

• System utilities show the domain name when displaying usernames.

In a multiple-domain configuration, a fully-qualified user identifier consists of a username, an at sign (“@”), and a domain
name, such as, “ info@intersystems.com”.

To specify support for a single domain or multiple domains, use the Allow multiple security domains field of the System-

wide Security Parameters page of the Management Portal (System Administration > Security > System Security > System-

wide Security Parameters), described in the System-wide Security Parameters section of this chapter.

12.7.2 The Default Security Domain

Each instance has a default security domain. This is the domain assumed for any username where no domain is specified.
For example, if the default domain is “ intersystems.com”, the user identifiers “ info” and “info@intersystems.com” are
equivalent. When Caché is installed, it uses the local domain name to provide an initial value for the parameter.

For instances with multiple security domains, you can select a new default security domain using the Default Security

Domain field of the System-wide Security Parameters page (System Administration > Security > System Security > System-

wide Security Parameters), described in the System-wide Security Parameters section of this chapter.

12.7.3 Listing, Editing, and Creating Domains

The Security Domains page (System Administration > Security > Security Domains) provides a table that lists the existing
security domains for a Caché instance.

For each domain, the table has:

• The domain’s name.

• The domain’s description.

• An Edit button, which allows you to edit the domain’s description (but not its name). Since you cannot change a
domain’s name, create a new domain with the preferred name and then delete the existing domain.

164 Caché Security Administration Guide

System Management and Security

• A Delete button, which, after prompting, allows you to remove a domain from the instance.

The page also has a Create New Domain button. Selecting this displays the Edit Domain page which accepts a domain name
and an optional domain description. After entering this information, select Save to create the domain.

12.8 Security Advisor
To assist system managers in securing a Caché system, Caché includes a Security Advisor. This is a Web page that shows
current information related to security in the system configuration. It recommends changes or areas for review, and provides
links into other system management Web pages to make the recommended changes.

Important: The Security Advisor provides general recommendations, but does not have any knowledge of an instance’s
needs or requirements. It is important to remember that each Caché instance has its own requirements and
constraints, so that issues listed in the Security Advisor may not be relevant for your instance; at the same
time, the Security Advisor may not list issues that are of high importance for you. For example, the Security
Advisor exclusively recommends that services use Kerberos authentication, but, depending on your circum-
stances, authentication through the operating system, Caché login, or even unauthenticated access may be
appropriate.

There are some general features in the Security Advisor:

• Details button — Each section has a Details button. Selecting this button displays the page for managing that aspect of
Caché regulated by the section.

• Name button — Each named item in each section is a link. Selecting one of these items displays the page for managing
that item.

• Ignore check box — Each named item in each section has an associated Ignore check box. Selecting this grays out the
line for the specified item. The line does not appear if Caché is set up according to the Security Advisor’s recommen-
dations, whether or not the Ignore check box is selected.

12.8.1 Auditing

This section displays recommendations on auditing itself and on particular audit events:

• Auditing should be enabled — Auditing creates a record that can provide forensic information after any notable or
unusual system events.

• Auditing for this event type should be enabled — Auditing particular events can provide more specific information
about various topics. Specifically, since the events noted when not enabled are:

– The DirectMode event — Auditing this event can provide information about connections to Caché that give users
significant privileges.

– The Login event — Auditing this event can provide information questionable logins.

– The LoginFailure event — Auditing this event can provide information about attempts to gain inappropriate access
to the system.

12.8.2 Services

This section displays recommendations on Caché services. For each service, depending on its settings, the Security Advisor
may address any of the following issues:

Caché Security Administration Guide 165

Security Advisor

• Ability to set % globals should be turned off — Since % globals often hold system information, allowing users to
manipulate these globals can result in serious, pervasive, and unpredictable effects.

• Unauthenticated should be off — Unauthenticated connections give all users, including the unidentified UnknownUser
account, unregulated access to Caché through the service.

• Service should be disabled unless required — Access through any service monitored by the Security Advisor can
provide an undue level of system access.

• Service should use Kerberos authentication — Access through any other authentication mechanism does not provide
the maximum level of security protection.

• Service should have client IP addresses assigned — By limiting the number of IP addresses from which connections
are accepted, Caché may be able to more tightly oversee the connections to it.

• Service is Public — Public services give all users, including the unidentified UnknownUser account, unregulated
access to Caché through the service.

12.8.3 Roles

This section displays recommendations for all roles that hold possibly undue privileges; other roles are not listed. For each
role, the Security Advisor may address any of the following issues:

• This role holds privileges on the Audit database — Read access to the Audit database may expose audited data inap-
propriately; Write access to the Audit database may allow the inappropriate insertion of data into that database.

• This role holds the %Admin_Secure privilege — This privilege can allow for the establishing, modifying, and
denying access of users to assets; it also allows the modification of other security-related features.

• This role holds Write privilege on the %CACHESYS database — Write access to the %CACHESYS database may allow
the compromise of system code and data.

12.8.4 Users

This section displays recommendations related to users generally and for individual user accounts. In this area, the Security
Advisor may address any of the following issues:

• At least 2 and at most 5 users should have the %All role — Too few users holding %All can lead to access problems
in an emergency; too many users holding it can open the system to compromise

• This user holds the %All role — Explicitly announcing which users hold %All can help eliminate any who hold it
unnecessarily.

• UnknownUser account should not have the %All role — A system cannot be properly secured if anonymous users
have all privileges. While this is part of any instance with a Minimal security level, such an instance is not properly
secured by design.

• Account has never been used — Unused accounts provide an attractive point of entry for those attempting to gain
unauthorized access.

• Account appears dormant and should be disabled — Dormant accounts (those that have not been used for over 30
days) provide an attractive point of entry for those attempting to gain unauthorized access.

• Password should be changed from default password — This is a commonly attempted point of entry for those
attempting to gain unauthorized access.

166 Caché Security Administration Guide

System Management and Security

12.8.5 CSP, Privileged Routine, and Client Applications

Each application type has its own section, which makes it simpler to review details for each application type. These sections
display recommendations related to access to and privileges granted by applications. In this area, the Security Advisor notes
the following issues:

• Application is Public — Public applications give all users, including the unidentified UnknownUser account, unreg-
ulated access to the data associated with the application and actions that the application supports. This is even more
notable if the application also grants the %All role, either conditionally or absolutely.

• Application conditionally grants the %All role — A system cannot be properly secured if users have the possibility
of holding all privileges. This is even more notable if the application is also public.

• Application grants the %All role — A system cannot be properly secured if users have all privileges. This is even
more notable if the application is also public.

12.9 Effect of Changes
When you make changes to various security settings, the amount of time for these to take effect are as follows:

• Changes to user properties, such as the roles assigned to the user, are effective with the next login for that user. They
have no effect on processes that are already running.

• Changes to services, such as whether a service is enabled or authentication is required, are effective for future connection
attempts. Existing connections are not affected.

• Changes to role definitions are effective immediately for any subsequent privilege checks. These affect database
resources immediately, because they are checked for each database access. For services and applications, they are
effective with subsequent connection attempts or application initiations.

Note: The times listed here are the latest times that changes take effect; in some cases, changes may be effective earlier
than indicated.

12.10 Emergency Access
Caché provides a special emergency access mode that can be used under certain dire circumstances, such as if there is
severe damage to security configuration information or if no users with the %Admin_Manage:Use or
%Admin_Security:Use privileges are available (that is, if all users are locked out). Although Caché attempts to prevent
this situation by ensuring that there is always at least one user with the %All role, that user may not be available or may
have forgotten the password.

When Caché is running in emergency access mode, only a single user (called the emergency user) is permitted. This username
does not have to be previously defined within Caché. In fact, even if the username is defined in Caché, the emergency user
is conceptually a different user. The emergency username and password are only valid for the single invocation of emergency
mode.

Other important points about emergency access mode:

• %Service_Console, %Service_Terminal, and %Service_CSP are the only services enabled.

• There is only access using Caché login — no other authentication mechanism is supported.

Caché Security Administration Guide 167

Effect of Changes

• For the web applications that control the Portal (/csp/sys and /csp/sys/*), the standard login page (%CSP.Login.cls) is
used during emergency access even if there is a custom login page available; this ensures that the emergency user has
access to the Portal, since a custom login page may prevent authentication from occurring. For other web applications,
if there is a custom login page, then that page is used during emergency login.

• Two-factor authentication is disabled. This avoids any situation where two-factor authentication might prevent the
emergency user from being able to authenticate.

12.10.1 Invoking Emergency Access Mode

To start Caché in emergency access mode, you must have the appropriate operating-system privileges:

• On Windows systems, the user must be a member of the Administrators group.

• On UNIX® and MacOS systems, the user must be root or the owner of the instance.

Caché performs authentication by checking operating-system-level characteristics.

12.10.1.1 Invoking Emergency Access Mode on Windows

To start Caché in emergency access mode:

1. Start a command prompt, running it as an administrator. This can either be:

• The Windows Command Prompt program. Right-click the Command Prompt choice in the menu and then choose
Run as Administrator.

• The Windows PowerShell. While you can run this as either an administrator or a user without extra privileges,
this procedure assumes that you are running as an administrator; to run as a user without extra privileges, use the
-verb runas argument when you invoke the command, which is described in PowerShell documentation.

2. Go to the bin directory for your Caché installation.

3. In that directory, invoke Caché at the command line using the appropriate switch and passing in the username and
password for the emergency user. This depends on the command prompt that you are using:

• For the Windows Command prompt, the command is:

ccontrol start <instance> /EmergencyId=<username>,<password>

This starts an emergency-mode Caché session with only one allowed user where:

– <instance> specifies the instance being started in emergency mode

– <username> is the sole user of the system

– <password> is that user’s password

• For the Windows PowerShell, the command is:

start-process .\ccontrol.exe -ArgumentList "start <instance> /EmergencyId=<username>,<password>"

This starts an emergency-mode Caché session with only one allowed user where:

– <instance> specifies the instance being started in emergency mode

– <username> is the sole user of the system

– <password> is that user’s password

168 Caché Security Administration Guide

System Management and Security

Note: On Windows, unlike other operating systems, the EmergencyId switch is preceded by a slash (“/”).

For example, at the instance MyCache, to start Caché in emergency mode with user Eugenia with the password 52601,
the command would be:

ccontrol start MyCache /EmergencyId=Eugenia,52601

The only user who can then log in is the emergency user, using the appropriate password, such as:

Username: Eugenia
Password: *****
Warning, bypassing system security, running with elevated privileges

Once Caché has started, you can start the Terminal from the Caché cube or run any CSP application. This provides access
to the Management Portal and all character-based utilities. Using this access, you can change any settings as necessary and
then restart Caché in its normal mode.

12.10.1.2 Invoking Emergency Access Mode on UNIX® and Mac OS

To start Caché in emergency access mode, invoke Caché at the command line using the appropriate switch and passing in
the username and password for the emergency user:

./ccontrol start <cache-instance-name> EmergencyId=<username>,<password>

This starts an emergency-mode Caché session with only one allowed user where:

• <cache-instance-name> specifies the instance being started in emergency mode

• <username> is the sole user of the system

• <password> is <username>’s password

Note: If going from one of these operating systems to Windows, remember that on Windows only, the EmergencyId
switch is preceded by a slash (“/”).

For example, at the instance MyCache, to start Caché in emergency mode with user Eugenia with the password 5262001,
the command would be:

./ccontrol start MyCache EmergencyId=Eugenia,52601

The only user who can then log in is the emergency user, using the appropriate password, such as:

Username: Eugenia
Password: *****
Warning, bypassing system security, running with elevated privileges

Once Caché has started, you can run Terminal or any CSP application. This provides access to the Management Portal and
all character-based utilities. Using this access, you can change any settings as necessary and then restart Caché in its normal
mode.

12.10.2 Emergency Access Mode Behavior

In emergency access mode, Caché has the following constraints and behaviors:

• The emergency user is the only permitted user. Any attempt by another user to log in will fail.

• The emergency user has the %ALL role.

Caché Security Administration Guide 169

Emergency Access

• Console, Terminal and CSP are the only services that are enabled. All other services are disabled. This does not affect
the enabled or disabled status of services when Caché starts in non-emergency mode; only the current (emergency),
in-memory information about services is affected.

• For the enabled services, only authenticated access is permitted. Caché uses its own password authentication for the
services, where the emergency access username and password must be used.

• After emergency access login, Caché attempts to audit all events for the active process; Caché start-up proceeds even
if this is not possible. Login failures in emergency access mode are not audited.

• The emergency user can make changes to the Caché configuration, but these changes are not activated until the next
time that Caché is started in normal (not emergency) mode. This is in contrast to the normal operation of Caché, in
which configuration changes are primarily activated without restarting Caché.

170 Caché Security Administration Guide

System Management and Security

13
Using SSL/TLS with Caché

This chapter describes the use of Caché with SSL (Secure Sockets Layer) and TLS (Transport Layer Security), its successor.
Caché supports the use of SSL/TLS to secure connections of several types:

• From various client applications that interact with the Caché superserver (including ODBC, JDBC, and Studio). This
also includes connections from Caché shadow destinations to Caché shadow sources.

• From Telnet clients that interact with the Telnet server.

• For use with TCP connections where a Caché instance is the client or server (or a Caché instance is at each end).

As a server, Caché accepts connections and establishes the use of SSL; as a client, Caché is able to connect to servers that
require the use of SSL. In all cases, Caché uses what is called an SSL/TLS configuration, which specifies the various
characteristics of a Caché instance as part of an SSL/TLS connection.

This chapter has the following sections:

• About SSL/TLS

• About Configurations

• Configuring the Caché Superserver to Use SSL/TLS

• Configuring the Caché Telnet Service to Use SSL/TLS

• Configuring Java Clients to Use SSL/TLS with Caché

• Configuring .NET Clients to Use SSL/TLS with Caché

• Connecting from a Windows Client Using a Settings File

• Configuring Caché to Use SSL/TLS with TCP Devices

• Configuring Caché to Use SSL/TLS with Mirroring

• Configuring the CSP Gateway to Connect to Caché Using SSL/TLS

• Establishing the Required Certificate Chain

13.1 About SSL/TLS
SSL/TLS provides strong protection for communication between pairs of entities. It allows you to perform authentication,
data integrity protection, and data encryption.

Caché Security Administration Guide 171

SSL was created at Netscape in the mid nineteen-nineties. Version 3.0, which is still in use, was released in 1996. TLS was
created as a standardization of SSL 3.0 and version 1.0 was released in 1999. The current version of TLS is 1.2. Among
the supported versions of SSL/TLS for Caché, InterSystems recommends the use of the latest version available.

The process by which an SSL/TLS connection is established between two entities is known as the SSL/TLS handshake,
and it uses a client/server model. Completion of the handshake means that, according to the requirements of the client and
the server:

• The client has authenticated the server.

• The server has authenticated the client. (If the client and the server have both authenticated each other, this known as
mutual authentication.)

• The client and server have agreed upon session keys. (Session keys are the keys for use with a symmetric-key algorithm
that allow the entities to protect data during subsequent communications.)

• Subsequent communication can be encrypted.

• The integrity of subsequent communication can be verified.

The ciphersuites of the client and server specify how these activities occur as part of the handshake or are supported for a
protected connection. Specifically, a peer’s ciphersuites specify what features and algorithms it supports. The client proposes
a set of possible ciphers for use; from among those proposed, the server selects one. (If there are no common ciphers between
the client and server, the handshake fails.)

To perform the handshake, SSL/TLS typically uses public-key cryptography (though it can use other means, such as the
Diffie-Hellman protocol). With public-key cryptography, each peer (either the client or the server) has a public key and a
private key. The private key is a sensitive secret value and the public key is a widely published value; typically, the public
key is encapsulated in a certificate, which also contains identifying information about the holder, such as a name, organization,
location, issuer validity, and so on. For Caché, an SSL/TLS configuration (described in the section “About Configurations”)
specifies a named set of SSL/TLS-related values, including a certificate file, a private key file, and an optional set of
ciphersuites.

If successful, the handshake creates session keys that are used to protect subsequent communications.

While Caché and applications require various interactions with SSL/TLS, the end-user typically has no such direct interactions.
For example, a browser uses SSL/TLS to establish a secure connection with a specified web site by requiring that the site
(the server, in this case) authenticate itself to the browser (which occurs unbeknownst to the browser’s user) and the lock
icon that appears in the browser is designed to indicate that SSL/TLS is protecting the connection.

13.2 About Configurations
Caché can support multiple configurations, each of which specifies a named set of SSL/TLS-related values. All its existing
configurations are activated at startup. When you create a new configuration from the Management Portal, Caché activates
it when you save it. The page for managing SSL/TLS configurations is the SSL/TLS Configurations page (System Adminis-

tration > Security > SSL/TLS Configurations).

This section covers the following topics:

• Creating or Editing an SSL/TLS Configuration

• Deleting a Configuration

• Reserved Configuration Names

172 Caché Security Administration Guide

Using SSL/TLS with Caché

13.2.1 Creating or Editing an SSL/TLS Configuration

The page for creating or editing an SSL/TLS configuration is the SSL/TLS Configurations page (System Administration >
Security > SSL/TLS Configurations). To create a new configuration, click Create New Configuration, which displays the New

SSL/TLS Configuration page; to edit an existing configuration, click Edit to the right of the name of the configuration. (You
can also create a new set of configurations for a mirror member by clicking Create Configurations for Mirror; for more
information on mirroring and SSL/TLS, see “Configuring Caché to Use SSL/TLS with Mirroring.”

When creating or editing an SSL/TLS configuration, the following fields are available:

• Configuration Name — The string by which the configuration is identified. Configuration names can contain any
alphanumeric character and any punctuation except the “ |” character. If you are creating a configuration for the Caché
superserver, the configuration name must be %SuperServer; for more information about this topic, see “Configuring
the Caché Superserver to use SSL/TLS.”

• Description — Any text.

• Enabled — Whether or not the configuration is available for activation.

• Type — Intended purpose for this configuration, where the choice is Client or Server; the default is Client. Clients ini-
tiate the use of the protocol and servers respond to the initial request. (The Caché superserver uses a server configuration;
SSL/TLS clients, such as a shadow destination, use a client configuration.) The value chosen for this field determines:

– Whether the next field is the Server certificate verification or Client certificate verification field. If the configuration
is for a client, the next field is the Server certificate verification, which specifies the verification that may be required
for the certificate of any server to which the client is connecting; if the configuration is for a server, the next field
is the Client certificate verification, which specifies the verification that may be required for the certificate of any
client that attempts to connect to the server.

– The behavior of the File containing trusted Certificate Authority certificate(s) field.

• Server certificate verification or Client certificate verification — Specifies whether or not the configuration requires the
verification of the peer to which it is connecting.

A configuration for a client must have a specified Server certificate verification and supports possible values of:

– None — Continues under all circumstances.

– Require — Continues only if certificate verification succeeds.

A configuration for a server must have a specified Client certificate verification and supports possible values of:

– None — Specifies that the server neither requests nor requires a client certificate.

– Request — Allows the client to provide or not provide a certificate. If the client provides no certificate, then
authentication proceeds; if the client provides a certificate and verification fails, then authentication fails.

– Require — Specifies that the client must provide a certificate; authentication depends on verification of the certifi-
cate.

• File containing trusted Certificate Authority certificate(s) — The path and name of a file that contains the X.509 certifi-
cate(s) in PEM format of the Certificate Authority (CA) or Certificate Authorities that this configuration trusts. The
configuration uses the certificates of the trusted CA(s) to verify peer certificates. Typically, a production system uses
certificates from commercial CAs with publicly available certificates.

Regarding this field, note the following:

– You can specify the path of the file as either an absolute path or as a path relative to the <install-dir>/mgr/
directory.

Caché Security Administration Guide 173

About Configurations

– For a server configuration with a Client certificate verification value of None, this field is not available, since there
is no peer verification.

– Certificates from the Windows Certificate Export Wizard must be in base-64-encoded X.509 format, not the default
of DER-encoded binary X.509.

– With mirroring, the configuration must also have enough information to verify its own certificate.

For information on how these certificates are used, see the section “Establishing the Required Certificate Chain.” For
information on file names for these certificates and how to verify a certificate chain, see the OpenSSL documentation
on the verify command.

• This client’s credentials or This server’s credentials — The files (if needed) containing the X.509 certificate and private
key for the local configuration:

– File containing this client’s certificate or File containing this server’s certificate — The full location of the configu-
ration’s own X.509 certificate(s), in PEM format. This can be specified as either an absolute or a relative path.
This can include a certificate chain. For information on how this is used for authentication, see the section
“Establishing the Required Certificate Chain.” (Note that certificates from the Windows Certificate Export Wizard
must be in base-64 encoded X.509 format, not the default of DER encoded binary X.509.)

– File containing associated private key — The full location of the configuration’s private key file, specified as either
an absolute or relative path.

– Private key type — The algorithm used to generate the private key, where valid options are DSA (Digital Signature
Algorithm) and RSA (Rivest, Shamir, and Adleman, for the algorithm’s inventors).

– Private key password — An optional password for encrypting and decrypting the configuration’s private key.

Note: If the private key is password-protected and you do not enter a value here, Caché cannot confirm that
the private key and the certificate’s public key match each other; this can result in mismatched keys
being saved as a key pair.

– Private key password (confirm) — A retyping of the optional password to ensure that it is the intended string.

• Cryptographic settings:

– Protocols — Those communications protocols that the configuration considers valid, where the choices are one
or more of SSLv3, TLSv1.0, TLSv1.1, and TLSv1.2. The protocols that are enabled by default are TLSv1.1 and
TLSv1.2.

Note: InterSystems recommends the use of TLSv1.1 or TLSv1.2 only. InterSystems recommends that you do
not use SSLv3 or earlier versions.

– Enabled ciphersuites — The set of ciphersuites used to protect communications between the client and the server.
See the “Enabled Ciphersuites Syntax” section for more information on this topic.

Note: The required fields vary, depending on whether the configuration is to be a client or server and on the desired
features. Not all fields are required for all SSL/TLS configurations.

To complete the process of creating or editing a configuration, use the following buttons, which appear at the top of this
page:

• Save — Dismisses the dialog, saving and then activating the configuration. This saves changes to an existing configu-
ration or the configuration being created.

• Cancel — Dismisses the dialog without saving changes to an existing configuration or without saving a configuration
being created.

174 Caché Security Administration Guide

Using SSL/TLS with Caché

http://www.openssl.org/
http://www.openssl.org/docs/apps/verify.html

• Test — Checks for valid configuration information. If the configuration’s role is as a client, selecting this button also
prompts for a server (its host name, not its URL) and a port number; Caché then tries to establish a test connection to
that server. (This button is not available when creating a server configuration.)

Note: The Test button may not be able to successfully connect with all TLS servers, even if the configuration has
no errors. This is because the connection test performs a TLS handshake followed by an HTTP request. If
the server expects a StartTLS message before the handshake (such as for use with LDAP, SMTP, FTPS, or
another protocol), then the test fails, even though the actual SSL/TLS connection to the server succeeds.

13.2.1.1 Required Information for Certificates

When a client authenticates a server, the client needs to have the full certificate chain from the server’s own certificate to
the server’s trusted CA certificate — including all intermediaries between the two.

There is an issue when setting up a server SSL/TLS configuration and the server’s trusted CA certificate is not a root cer-
tificate. In order for authentication to work properly, the client needs to have access to all the certificates that constitute
the certificate chain from the server’s personal certificate to a self-signed trusted CA certificate. This chain can be obtained
from the combination of the server’s certificate file (sent during the handshake) and the client’s trusted CA certificate file.
The self-signed trusted root CA certificate must be in the client’s CA certificate file, and the server’s personal certificate
must be the first entry in the server’s certificate file. Other certificates may be divided between the two locations. The same
constraints apply in reverse when a client authenticates to a server.

Regarding certificate formats, note that certificates from the Windows Certificate Export Wizard must be in base-64 encoded
X.509 format, not the default of DER encoded binary X.509.

13.2.1.2 Enabled Ciphersuites Syntax

A configuration only allows connections that use its enabled ciphersuites. To specify enabled ciphersuites, you can either:

• Provide a list of individual ciphersuites, using each one’s name.

• Use OpenSSL syntax for specifying which ciphersuites to enable and disable.

Both the list of ciphersuite names and the syntax for specifying enabled ciphersuites is described on the ciphers(1) man
page at openssl.org. This syntax allows you to specify guidelines for requiring or proscribing the use of various features
and algorithms for a configuration.

The default set of cipher suites for a Caché configuration is ALL:!aNULL:!eNULL:!EXP:!SSLv2 which breaks down
into the following group of colon-separated statements:

• ALL — Includes all cipher suites except the eNULL ciphers

• !aNULL — Excludes ciphers that do not offer authentication

• !eNULL — Excludes ciphers that do not offer encryption

• !EXP — Excludes export-approved algorithms (both 40- and 56-bit)

• !SSLv2 — Excludes SSL v2.0 cipher suites

13.2.1.3 A Note on Caché Client Applications Using SSL/TLS

For certain activities, you can use Caché instances to support client applications that interact with the Caché superserver.
For example, when using SSL/TLS to protect a shadowing connection, a Caché instance serving as a shadow destination
would be an SSL/TLS client.

When using client applications that interact with the Caché superserver using SSL/TLS, the following aspects of the con-
figuration require particular attention:

Caché Security Administration Guide 175

About Configurations

http://www.openssl.org/docs/apps/ciphers.html
http://www.openssl.org/docs/apps/ciphers.html

• Configuration Name — While there are no constraints on the name of clients, this information is required to configure
the connection.

• Type — Because the instance is serving with an SSL/TLS client, the type must be specified to be of type Client.

• Ciphersuites — The specified ciphersuites need to match those required or specified by the server.

It is also necessary to ensure that the client and the server are configured so that each may verify the other’s certificate
chain, as described in the section “Establishing the Required Certificate Chain.”

13.2.2 Deleting a Configuration

The page for deleting an SSL/TLS configuration is the SSL/TLS Configurations page (System Administration > Security >
SSL/TLS Configurations). To delete a configuration, click Delete to the right of the name of the configuration. The Portal
prompts you to confirm the action.

13.2.3 Reserved Configuration Names

Caché reserves several SSL/TLS configuration names for use with particular features. When using such a feature, you must
use the reserved configuration name(s). The reserved configuration names are:

• %MirrorClient — For a mirror member when acting as an SSL/TLS client. For more information on mirroring and
SSL/TLS, see “Configuring Caché to Use SSL/TLS with Mirroring.”

• %MirrorServer — For a mirror member when acting as an SSL/TLS server. For more information on mirroring
and SSL/TLS, see “Configuring Caché to Use SSL/TLS with Mirroring.”

• %SuperServer — For the Caché superserver when accepting connections from other Caché components. For more
information about configuring the superserver to use SSL/TLS, see the next section.

• %TELNET/SSL — For the Windows Telnet server when accepting connections protected by SSL/TLS. For more
information on mirroring and Telnet, see “Configuring the Caché Telnet Server for SSL/TLS.”

Important: For SSL/TLS to function properly, you must use the exact case for each configuration name as it appears
here.

13.3 Configuring the Caché Superserver to Use SSL/TLS
To use SSL/TLS for communications among components of Caché, configure the Caché superserver to use SSL/TLS. To
do this, the procedure is:

1. From the Management Portal home page, go to the SSL/TLS Configurations page (System Administration > Security >
SSL/TLS Configurations).

2. On the SSL/TLS Configurations page, select Create New Configuration, which displays the New SSL/TLS Configuration

page.

3. On the New SSL/TLS Configuration page, create an SSL/TLS server configuration with a configuration name of
%SuperServer (using the exact case as specified here). For details about creating an SSL/TLS configuration, see
the section “Creating or Editing an SSL/TLS Configuration.”

4. On the System-wide Security Parameters page (System Administration > Security > System Security > System-wide

Security Parameters), for the Superserver SSL/TLS Support field, choose Enabled. This specifies that the superserver
supports (but does not require) SSL/TLS-secured connections.

176 Caché Security Administration Guide

Using SSL/TLS with Caché

Note: If you wish to configure the superserver to require SSL/TLS-secured connections, first specify that SSL/TLS
is simply enabled.

5. Set up clients to use SSL/TLS as appropriate (see the next section).

13.4 Configuring the Caché Telnet Service to Use SSL/TLS
The Caché Telnet service (%Service_Telnet) supports SSL/TLS-protected connections. To establish the use of SSL/TLS
for the Telnet service, the steps are:

1. Configuring the Caché Telnet Server for SSL/TLS

2. Configuring Telnet Clients for SSL/TLS

13.4.1 Configuring the Caché Telnet Server for SSL/TLS

To configure the Caché Telnet server to use SSL/TLS, the procedure is:

1. If there is not already a %SuperServer SSL/TLS configuration associated with the Caché server, create one as
described in the section “Creating or Editing an SSL/TLS Configuration.”

2. From the Management Portal home page, go to the SSL/TLS Configurations page (System Administration > Security >
SSL/TLS Configurations).

3. On the SSL/TLS Configurations page, select Create New Configuration, which displays the New SSL/TLS Configuration

page.

4. On the New SSL/TLS Configuration page, create an SSL/TLS configuration with a configuration name of %TELNET/SSL.

5. On the System-wide Security Parameters page (System Administration > Security > System Security > System-wide

Security Parameters), for the Superserver SSL/TLS Support field, choose Enabled. This specifies that the Telnet server
supports (but does not require) SSL/TLS-secured connections.

Note: Even if you plan to configure the superserver to require SSL/TLS-secured connections, first specify that
SSL/TLS is simply enabled.

6. Make sure the Telnet service, %Service_Telnet, is enabled. To do this:

a. On the Services page (System Administration > Security > Services), click %Service_Telnet to display the Edit

Service page for the Telnet service.

b. On the Edit Service page, check Service Enabled if it is not already checked.

c. Click Save to save the settings and to return to the Services page.

13.4.2 Configuring Telnet Clients for SSL/TLS

Caché accepts SSL/TLS connections from third-party Telnet clients. The required or recommended actions for configuring
Telnet clients and servers depend on the selected ciphersuites and vary widely.

Important: To use SSL/TLS with the InterSystems Telnet client, contact the InterSystems Worldwide Response Center
(WRC).

The following guidelines apply:

Caché Security Administration Guide 177

Configuring the Caché Telnet Service to Use SSL/TLS

http://wrc.intersystems.com/
http://wrc.intersystems.com/

• If the Telnet client requires server authentication, then the server must provide a certificate and the client must have
access to the server’s certificate chain.

• If the Caché Telnet server requires client authentication, then the client must provide a certificate and the server must
have access to the client’s certificate chain.

• If the Caché Telnet server requests client authentication, then the client has the option of providing a certificate and a
certificate chain to its certificate authority (CA). If the client does not provide a certificate, then authentication succeeds;
if it provides a non-valid certificate or certificate chain, then authentication fails.

For information on how certificate and certificate chains are used for authentication, see the section “Establishing the
Required Certificate Chain.”

13.5 Configuring Java Clients to Use SSL/TLS with Caché
This section describes how to configure a Java client application to use SSL/TLS when it communicates with Caché. This
communication occurs through the superserver, so a related required step is setting up the superserver to use SSL/TLS; this
is described in the section “Configuring the Caché Superserver to Use SSL/TLS.” Java clients can be implemented using
either JDBC or object bindings.

The process for configuring a Java client application to use SSL/TLS with Caché is:

1. Determine if the client requires a keystore or a truststore. This depends on several factors: whether or not the Caché
server requests or requires client authentication; whether server authentication is required; and the ciphersuites in use.
See “Determining the Need for a Keystore and a Truststore” for more information.

2. Create a configuration file with properties in it to provide those features. See “Creating a Client Configuration” for
more information.

3. In the code for the client application, optionally specify the name of the client configuration; if you do not specify a
name, Java uses the default configuration information. See “Specifying the Use of the Client Configuration” for more
information.

13.5.1 Determining the Need for a Keystore and a Truststore

A keystore serves as a repository for the client’s private key, public key certificate, and any Certificate Authority (CA)
information. This information is needed (1) if the Caché server requires client authentication or (2) if the ciphersuite in use
requires a client key pair:

• Whether or not the Caché server requires client authentication is determined by the choice for the Peer certificate veri-

fication level field on the Edit SSL/TLS Configuration page for that Caché instance’s “%SuperServer” SSL/TLS con-
figuration. If the field has a value of Require, the client must have a certificate; if the field has a value of Request,
the server checks a certificate if one is available.

• The client and server agree upon a ciphersuite to use. This ciphersuite determines whether or not there is a client cer-
tificate, a key pair, or both. The enabled server ciphersuites are determined by the value of the Enabled ciphersuites

field on the Edit SSL/TLS Configuration page for that Caché instance’s “%SuperServer” SSL/TLS configuration. The
ciphersuites available to the client depend on the version of Java it is using.

If the client has a private key and certificate, these are stored in the client’s keystore; the keystore can also hold the client’s
root CA certificate and any intermediate CA certificates. To authenticate the server, the client may need to have the root
CA certificate for the server and any intermediate CA certificates, these can be stored either in the client’s truststore or

178 Caché Security Administration Guide

Using SSL/TLS with Caché

along with client certificate information in the keystore. For more information on keystores and truststores, see the section
“Keystores and Truststores” in the Java Secure Socket Extension (JSSE) Reference Guide.

13.5.2 Creating a Client Configuration

The behavior of a Java client depends on the values of properties in its configuration. The configuration gets these values
from what is known as a “configuration file,” either from the configuration file’s default values or from its configuration-
specific values. The following sections describe how configuration files work:

• Configuration Files, Configurations, Properties, Values, and Defaults

• Java Client Configuration Properties

• A Sample Configuration File

• Naming the Configuration File

13.5.2.1 Configuration Files, Configurations, Properties,Values, and Defaults

Each configuration file specifies values for the properties that one or more configurations use. The file includes both default
values and configuration-specific values, in the form of name-value pairs. Generally, unversioned property names specify
default values for properties and versioned property names specify configuration-specific values.

If a configuration file contains only one configuration definition, that single configuration can use unversioned properties.
However, it cannot have an associated name property. Without a named configuration, invoke the configuration without
specifying a name (as described in “Specifying the Use of the Client Configuration” and “Specifying a Configuration
without a Name”).

If a configuration file contains multiple configurations, each configuration is defined by the existence of a numbered version
of the name property of the form name.n, where n is the number of the configuration. The names of a configuration’s other
properties use the same version number as the name property, so that they have a form of propertyname.n where propertyname
is the name of the property and n is the number of the configuration.

The definitions in a configuration file are case-sensitive. Their use of spaces is flexible. The order of property definitions
is also flexible.

To specify the default value of a property for use by all configurations, specify an unversioned property name and its value
in the following form:

propertyName = propertyValue

For example, to specify the default value for the keyStoreType property as pkcs12, the form is:

keyStoreType = pkcs12

To override the default value for a property, specify a versioned property name, such as:

keyStoreType.1 = jceks

If a configuration file contains multiple configuration definitions, then these versions must use sequential ordering; if client
application code refers to a configuration that follows a sequential gap, then an error results. For example, suppose that a
configuration file has three versioned name properties: name.1, name.2, and name.4; the configuration associated with the
name.4 property will not ever be created and a reference to it will fail with an error.

13.5.2.2 Java Client Configuration Properties

The properties are:

Caché Security Administration Guide 179

Configuring Java Clients to Use SSL/TLS with Caché

http://docs.oracle.com/javase/7/docs/technotes/guides/security/jsse/JSSERefGuide.html

• cipherSuites — A comma-delimited list of ciphersuites, in order of preference for their use. The available ciphersuites
depend on the JRE (Java Runtime Environment) on the machine. [Optional]

• debug — Whether or not debugging information is logged to the Java system.err file. This property can have a value
of true or false (false is the default). The setting of this property has no effect on exception handling. [Optional]

• keyRecoveryPassword — Password used to access the client’s private key; this was created at the same time as the
private key pair. [Required if the private key has password protections and application code is not passing in the private
key as an input parameter.]

• keyStore — The file for storing the client private key and certificate information. The keystore can also hold the content
typically associated with the truststore. [Optional]

• keyStorePassword — Password to gain access to the keystore. [Required if a password was specified when the keystore
was created.]

• keyStoreType — The format of the keystore file, if one is specified. [Optional]

Supported formats are:

– jks — Java KeyStore, the Java proprietary format. [Default]

– jceks — Java Cryptography Extension KeyStore format.

– pkcs12 — Public Key Certificate Standard #12 format.

• logFile — The file in which Java records errors. [Optional]

• name — A versioned identifier for the Java client configuration. (Each name property must be versioned. Any unver-
sioned name property is not meaningful and is ignored.)

If the configuration file specifies only a single configuration and only uses unversioned property names, the name
property is not required (as described in “Specifying the Use of the Client Configuration”). For information about
specifying multiple configurations with a single configuration file, see the section “Configuration Files, Configurations,
Properties, Values, and Defaults”). [Optional]

• protocol — [Required] The SSL or TLS protocol to be used for the connection. The options and the protocols they
specify are:

– SSL — Some variant of SSL.

– SSLv3 — Version 3 of SSL.

– TLS — Some variant of TLS. [Default]

– TLSv1 — Version 1 of TLS (equivalent to version 3.1 of SSL).

– TLSv1.1 — Version 1.1 of TLS (equivalent to version 3.2 of SSL).

• trustStore — The file for storing the server’s root CA certificate; it can also hold the certificates for any intermediate
CAs. (This information can also be placed in the keystore.) [Optional]

• trustStorePassword — Password to gain access to the truststore. [Required if a password was specified when the keystore
was created.]

• trustStoreType — The format of the truststore file, if one is specified. [Optional]

Supported formats are:

– jks — Java KeyStore, the Java proprietary format. [Default]

– jceks — Java Cryptography Extension KeyStore format.

– pkcs12 — Public Key Certificate Standard #12 format.

180 Caché Security Administration Guide

Using SSL/TLS with Caché

13.5.2.3 A Sample Configuration File

The following is a sample configuration file for use with a Java client:

debug = true
protocol = SSLv3
cipherSuites = SSL_RSA_WITH_RC4_128_MD5
keyStoreType = JKS
trustStore = ca.ts
trustStoreType = JKS

name.1 = CacheJavaClient1
keyStore.1 = cjc1.ks
keyStorePassword.1 = cjc1kspw123&XtraChar$
trustStore.1 = cjc1.ts
trustStorePassword.1 = cjc1tspw[+0therNo|sechars]

name.2 = CacheJavaClient2
keyStore.2 = cjc2.ks
keyStoreType.2 = pkcs12

name.3 = CacheJavaClient3
debug.3 = false
cipherSuites.3 = TLS_RSA_WITH_AES_128_CBC_SHA

13.5.2.4 Naming the Configuration File

Either save the configuration file with the name SSLConfig.properties or set the value of the Java environment variable
com.intersys.SSL.ConfigFile to the name of the file. The code checks for the file in the current working directory.

13.5.3 Specifying the Use of the Client Configuration

Once a configuration has been defined, client application code invokes it when connecting to the server. You can do this
either with calls for the DriverManager object or the CacheDataSource object.

13.5.3.1 Using the DriverManager Object

With DriverManager, this involves the following steps:

1. Creating a Java Properties object.

2. Setting the value for various properties of that object.

3. Passing that object to Java Connection object for the connection from the client to the Caché server.

To specify information for the connection, the first part of the process is to create a Properties object from a configuration
file and set the values of particular properties in it. In its simplest form, the code to do this is:

java.util.Properties prop = new java.util.Properties();
prop.put("connection security level", "10");
prop.put("SSL configuration name",configName);
prop.put("key recovery password",keyPassword);

where

• The connection security level of 10 specifies that the client is attempting use SSL/TLS to protect the connection.

• configName is a variable whose value holds the name of Java client configuration. If the configuration file has only
default values and these are being used for a single configuration, do not include this line; see the following section,
“Specifying a Configuration without a Name”, for details.

• keyPassword is the password required to extract the client’s private key from the keystore.

Once the Properties object exists and has been populated, the final step is to pass it to the connection from the Caché Java
client to the Caché server. This is done in the call to the DriverManager.getConnection method. The form of this call is:

Connection conn = DriverManager.getConnection(CacheServerAddress, prop);

Caché Security Administration Guide 181

Configuring Java Clients to Use SSL/TLS with Caché

where CacheServerAddress is a string that specifies the address of the Caché server and prop is the properties object being
passed to that string.

If this call succeeds, the SSL/TLS-protected connection has been established. Typically, application code containing calls
such as those described in this section includes various checks for success and protection against any errors. For more
details about using the Caché Java binding, see Using Java with Caché.

13.5.3.2 Using the CacheDataSource Object

With the CacheDataSource object, the procedure is to create the object, call its methods to set the relevant values, and
establish the connection. The methods are:

• setConnectionSecurityLevel — This method takes a single argument: a connection security level of 10, which specifies
that the client is attempting use SSL/TLS to protect the connection.

• setSSLConfigurationName — This method takes a single argument: a variable whose value holds the name of Java
client configuration. If the configuration file has only default values and these are being used for a single configuration,
do not include this line; see the following section, “Specifying a Configuration without a Name”, for details.

• setKeyRecoveryPassword — This method takes a single argument: the password required to extract the client’s private
key from the keystore.

In its simplest form, the code to do this is:

try{
 CacheDataSource ds = new CacheDataSource();

 ds.setURL("jdbc:Cache://127.0.0.1:1972/Samples");
 ds.setConnectionSecurityLevel(10);
 ds.setSSLConfigurationName(configName);
 ds.setKeyRecoveryPassword(keyPassword);

 Connection dbconnection = ds.getConnection();
}

For a complete list of the methods for getting and setting properties, see the “CacheDataSource” section of the “Caché
JDBC Compliance” chapter of Using Caché with JDBC. The JavaDoc for com.intersys.jdbc.CacheDataSource is under
<install-dir>/dev/java/doc/index.html

13.5.3.3 Specifying a Configuration without a Name

If a configuration file contains only one configuration definition, that single configuration can use unversioned properties.
However, it cannot have an associated name property.

When working with a DriverManager object, the Properties object uses only the default values from the configuration file.
The code for creating this object differs from the typical case in that there is no call to specify a value for the “SSL config-
uration name” key:

java.util.Properties prop = new java.util.Properties();
prop.put("connection security level", "10");
prop.put("key recovery password",keyPassword);

When working with a CacheDataSource object, if you want to specify an unnamed configuration, simply do not call
setSSLConfigurationName.

13.6 Configuring .NET Clients to Use SSL/TLS with Caché
This section describes how to configure a .NET client application to use SSL/TLS when it communicates with Caché. This
communication occurs through the superserver, so a related required step is setting up the superserver to use SSL/TLS; the

182 Caché Security Administration Guide

Using SSL/TLS with Caché

process of creating or editing a configuration generally is described in the section “Creating or Editing an SSL/TLS Con-
figuration” and that of setting up a superserver to use SSL/TLS is described specifically in the section “Configuring the
Caché Superserver to Use SSL/TLS.”

The process for establishing a .NET connection that uses SSL/TLS is:

1. Ensure that you have installed any relevant CA certificates for verifying the server certificate. The location for these
is the current user’s certificate store (Certificates – Current User\Trusted Root Certification Authorities).

2. Establish a connection to a server, based on the format of the connection string as described in the “Creating a Con-
nection” section of the “Connecting to the Caché Database” chapter of Using the Caché Managed Provider for .NET.
In addition to the name-value pairs for the server, port, and namespace, include the SSL keyword and specify its value
as true. For example, a connection that uses SSL/TLS protection might have a connection string of the form:

CacheConnect.ConnectionString =
 "Server=localhost; Port=1972; Namespace=SAMPLES; SSL=true;"
 + "Password=SYS; User ID=_SYSTEM;";

The true value of the SSL keyword specifies that SSL/TLS secures the client-server connection (by authenticating
the Caché server to the .NET client and, optionally, authenticating the client to the server). Once the secure connection
is established, the Caché server uses the User ID and Password keywords to authenticate the identity of the user con-
necting through the .NET client. (Note that the connection string does not specify anything related to mutual authenti-
cation; it merely specifies a server, which in turn may request or require client authentication.)

13.7 Connecting from a Windows Client Using a Settings
File
Topics in this section include:

• Overview of the Process

• About the Settings File

– The Syntax of the Settings File

– Connection Properties

– Configuration Properties

• A Sample Settings File

• How It Works

13.7.1 Overview of the Process

If you are on Windows and are using Studio, ODBC, or the Terminal as an SSL/TLS client, you can use a settings file to
configure connections and configurations. This mechanism is available even if there is no instance of Caché on the host.

To use a settings file:

1. Get the certificate authority (CA) certificate for the server. Store it on disk and note the location — you will use it
later.

2. Create a file containing connection definitions and configuration definitions, as described in the “About the Settings
File” section.

Caché Security Administration Guide 183

Connecting from a Windows Client Using a Settings File

3. Name the file SSLDefs.ini and place it in the InterSystems\Cache directory in the directory for 32-bit common program
files. Typically, this is the C:\Program Files (x86)\Common Files\InterSystems\Cache\ directory; if you need to locate
the directory, check the value of the Windows environment variable CommonProgramFiles(x86) on 64-bit Windows
or CommonProgramFiles on 32-bit Windows.

By creating the file and placing it in this location, it will automatically be used when you connect to a host and a port that
match one of the connections listed in the file.

Note: This feature is only for connections that use the cconnect.dll or cconnect64.dll executable (which are for 32-bit
and 64-bit machines, respectively). Connections that use other mechanisms (such as for ADO) do not use the
settings file.

13.7.2 About the Settings File

A settings file holds specifications for both connections to SSL/TLS servers and the SSL/TLS configurations that those
connections use. For each Windows host that is an SSL/TLS client, a single file holds all its connections and configurations.
The necessary information to create a file is:

• The Syntax of the Settings File

• Connection Properties

• Configuration Properties

13.7.2.1 The Syntax of the Settings File

The settings file contains one ore more connection definitions and one or more configuration definitions:

• Each definition begins with an identifier for the connection or configuration. This appears in brackets on its own line,
such as:

[MyConfiguration]

The identifier can include spaces and punctuation, such as:

[MyOtherConfiguration, which connects outside of my local network]

• Each definition ends either with the next bracketed identifier or the end of the file.

• Each definition includes multiple key-value pairs. All of these use the syntax:

key=value

• The group of key-value pairs specify the properties of a connection definition or configuration definition.

• The value in each key-value pair appears unquoted.

13.7.2.2 Connection Definitions

Each settings file contains one or more connection definitions, each of which specifies the properties an SSL/TLS connection
and matches that connection to an SSL/TLS configuration. The first line of a connection definition is its identifier, which
appears in brackets. After the identifier, there are multiple lines specifying information about the SSL/TLS server and the
connection to it:

184 Caché Security Administration Guide

Using SSL/TLS with Caché

Address

Required. The address of the SSL/TLS server. This can be an IP address, an unqualified host name in the local
domain, or a fully-qualified hostname. (Note: The client only uses the specified configuration if the values of both
Address and either Port or TelnetPort match the server to which the client application is connecting.)

Port

Required. The port number on which the SSL/TLS server accepts connections. (Note: The client only uses the
specified configuration if the values of both Address and either Port or TelnetPort match the server to which the
client application is connecting.)

TelnetPort

The port number on the SSL/TLS server that accepts SSL/TLS-protected connections for InterSystems Telnet. If
you do not specify this value, connections using InterSystems Telnet do not support SSL/TLS. (Note: The client
only uses the specified configuration if the values of both Address and either Port or TelnetPort match the server
to which the client application is connecting.)

SSLConfig

Required. The SSL/TLS configuration that the client uses when connecting to the server specified in this definition.
Each configuration is defined in its own section.

13.7.2.3 Configuration Definitions

Each settings file contains one or more configuration definitions, each of which specifies the properties of an SSL/TLS
configuration; for more information on SSL/TLS configurations, see “About Configurations.” The first line of a configu-
ration definition is its identifier, which appears in brackets; if the configuration identifier appears as the value of a connection
definition’s SSLConfig property, the connection uses the configuration to specify its behavior. After the identifier, there
are multiple lines specifying the value of each of the configuration’s properties:

Protocols

Required. The SSL/TLS protocol(s) that the configuration supports. The available protocols are:

• SSLv3 — 2

• TLSv1 — 4

• TLSv1.1 — 8

• TLSv1.2 — 16

where each protocol has a numeric value. To specify support for multiple protocols, use the sum of their values.
Hence, to specify the use of TLSv1.1 and TLSv1.2, use:

Protocols=24

This property is equivalent to the Protocols field in the SSL/TLS configuration page in the Management Portal.

VerifyPeer

Required. Whether or not the client requires the verification of the server to which it is connecting:

• 0 — Does not require (and does not perform) peer verification; the connection is established under all circum-
stances.

• 2 — Requires peer verification; the connection is established only if verification succeeds. This is the recom-
mended value; if you choose this value, you must specify a value for the CAFile property.

Caché Security Administration Guide 185

Connecting from a Windows Client Using a Settings File

This property is equivalent to the Server certificate verification field in the SSL/TLS configuration page in the
Management Portal.

VerifyHost

Whether or not the client checks if the Common Name or subjectAlternativeName fields of the server’s certificate
match the host name or IP address as specified in the connection definition:

• 0 — Does not check.

• 1 — Checks.

This property does not have an equivalent in the Management Portal. However, it is the same type of check as the
SSLCheckServerIdentity property of the %Net.HttpRequest class.

CipherList

Required. The set of ciphersuites that the client supports for encryption and hashing. This property uses the syntax
described on the ciphers(1) man page at openssl.org.

InterSystems strongly suggests using a value of ALL:!aNULL:!eNULL:!EXP:!SSLv2. For more information
about ciphersuites syntax in Caché and the default value, see the “Enabled Ciphersuites Syntax” section.

This property is equivalent to the Enabled ciphersuites field in the SSL/TLS configuration page in the Management
Portal.

CertFile

The absolute path and name of the file that contains the client’s trusted certificate authority (CA) file; if the client
does not have a CA, do not specify a value for this property. If specified, this is an X.509 certificate(s) in PEM
format and can include a certificate chain. For information on how this value is used, see the section “Establishing
the Required Certificate Chain.” (Note that certificates from the Windows Certificate Export Wizard must be in
base-64 encoded X.509 format, not the default of DER encoded binary X.509.)

This property is equivalent to the File containing this client’s certificate field in the SSL/TLS configuration page
in the Management Portal.

KeyFile

The absolute path and name of the configuration’s private key file; if the client does not have a private key, do
not specify a value for this property.

This property is equivalent to the File containing associated private key field in the SSL/TLS configuration page
in the Management Portal.

Password

The password for decrypting the configuration’s private key. If you are using a certificate with a password, this
property is required; if you are not using a certificate for the client or if the private key does not have a password,
do not specify a value for this property. (If the private key is password-protected and you do not provide a value
here, Caché cannot decrypt and use the private key.)

This property is equivalent to the Private key password field in the SSL/TLS configuration page in the Management
Portal.

KeyType

If the configuration has a private key and certificate, the format in which the configuration’s private key is stored:

• DSA — 1

186 Caché Security Administration Guide

Using SSL/TLS with Caché

http://www.openssl.org/docs/apps/ciphers.html

• RSA — 2

This property is equivalent to the Private key type field in the SSL/TLS configuration page in the Management
Portal.

CAfile

Required. The absolute path and name of the file that contains the server’s trusted certificate authority (CA) file.
This is an X.509 certificate(s) in PEM format. Note that:

• If you have specified a VerifyPeer value of 2, you must provide this value.

• This is the certificate for CA of the server to which you are connecting, not the certificate for your CA.

This property is equivalent to the File containing trusted Certificate Authority certificate(s) field in the SSL/TLS
configuration page in the Management Portal.

13.7.3 A Sample Settings File

The following sample file defines three connections and two configurations:

[MyServer1 SSL/TLS to an instance without SSL/TLS-protected InterSystems Telnet]
Address=127.0.0.1
Port=57777
SSLConfig=SSLConfig

[MyServer2 SSL/TLS to an instance with SSL/TLS-protected InterSystems Telnet]
Address=myserver2
Port=57778
TelnetPort=23
SSLConfig=SSLConfig

[MyServer3 SSL/TLS to an instance with SSL/TLS-protected InterSystems Telnet]
Address=myserver3.myexample.com
Port=57779
SSLConfig=SSLNoVerify

[SSLConfig]
Protocols=24
KeyType=2
VerifyPeer=2
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
Password=
CertFile=c:\InterSystems\certificates\nopwclicert.pem
KeyFile=c:\InterSystems\certificates\nopwclikey.pem
CAfile=c:\InterSystems\certificates\cacert.pem

[SSLNoVerify]
Protocols=16
KeyType=2
VerifyPeer=0
CipherList=ALL:!aNULL:!eNULL:!EXP:!SSLv2
Password=
CertFile=c:\InterSystems\certificates\nopwclicert.pem
KeyFile=c:\InterSystems\certificates\nopwclikey.pem
CAfile=c:\InterSystems\certificates\cacert.pem

13.7.4 How It Works

Important: This section describes how InterSystems products use a settings file to establish an SSL/TLS connection.
By describing the mechanisms in use, it includes alternate means of creating an SSL/TLS connection.
InterSystems recommends that you use the standard approach described above, rather than the alternatives
mentioned here.

Caché uses the settings file as follows:

Caché Security Administration Guide 187

Connecting from a Windows Client Using a Settings File

1. When you attempt to establish an SSL/TLS connection, the InterSystems TCP/IP client connection library locates the
settings file containing connection definitions and configurations. This file is cconnect.dll on 32-bit machines and
cconnect64.dll on 64-bit machines. To do this:

a. It checks the Windows registry for any SSL/TLS connection definitions.

b. If there are no connection definitions in the registry, the library attempts to locate any SSL/TLS configurations
that are stored in a settings file.

c. If the ISC_SSLconfigurations environment variable exists, the library uses the value of that variable as the full
path and file name of the settings file.

Note: If you need to define the value of the ISC_SSLconfigurations environment variable, you may need
administrator permissions.

d. If the ISC_SSLconfigurations environment variable does not exist, the library uses the SSLdefs.ini file in the
InterSystems\Cache directory under the 32-bit common program files directory identified by the Windows envi-
ronment variables CommonProgramFiles(x86) on 64-bit Windows or CommonProgramFiles on 32-bit Windows.

2. Once it has located the settings file, the library locates the relevant connection definition for the connection you are
attempting to establish.

To do this, it searches the sections of the file for one that contains Address and Port properties that match those of the
connection you are attempting to establish. When it locates such a section, it uses the value of the SSLConfig property
there to locate the matching SSL/TLS configuration section.

3. In the specified SSL/TLS configuration section, the library uses the values of the configuration properties to specify
the type of connection to initiate with the server.

13.8 Configuring Caché to Use SSL/TLS with Mirroring
This section covers the following topics:

• About Mirroring and SSL/TLS

• Creating and Editing an SSL/TLS Configuration for a Mirror

For general information about Caché support for mirroring, see the “Mirroring” chapter of the Caché High Availability
Guide.

13.8.1 About Mirroring and SSL/TLS

To provide security within a mirror, you can configure its nodes to use SSL/TLS. This provides for both authentication of
one node to another, and for encrypted communication between nodes. As sensitive data passes between the failover
members (and to an async member), it is recommended to encrypt the communication to prevent data theft or alteration
over the network. Additionally, since a failover member has the ability to request an ISCAgent to take action on another
Caché system (such as to request journal file information or force Caché down), it is important to protect such communication
between the failover members of a mirror (and their corresponding ISCAgent processes).

Note: If the failover members use database (or journal) encryption, then SSL/TLS is required for communications
between them and with any async members. (Specifically, Caché checks if either member has an encryption key
activated; if so, the instance requires that the user enable SSL/TLS with mirroring.) For more details on database
encryption and journal file encryption, see the chapter “Managed Key Encryption.”

188 Caché Security Administration Guide

Using SSL/TLS with Caché

To both participate in mirroring (either as a failover member or as an async member) and use SSL/TLS, an instance must
have two Caché SSL/TLS configurations – one of type server and the other of type client; each of these must have an X.509
SSL/TLS certificate issued by a trusted Certificate Authority. The certificates should contain a unique identifier in the
Common Name (CN) component of the certificate, such as the fully qualified domain name (FQDN) of the instance plus
the member’s Caché node name; because the CN is a field in a certificate’s distinguished name (DN), establishing a unique
CN ensures that the certificate’s DN uniquely identifies the member. To create an instance’s mirroring configurations,
follow the procedure in the next section.

When SSL/TLS is enabled, the following actions occur:

1. Server authentication: When the client connects to the server, it requires the server to authenticate itself. This authen-
tication verifies that the DN for the server’s certificate matches the DN for a system configured in the client’s mirror
configuration. If there is no match, the client drops the connection.

2. Client authentication: When the server accepts a connection from a client, it requires the client to authenticate itself.
This authentication also verifies that the DN for the client’s matches the DN for a system configured in the server’s
mirror configuration. Again, if there is no match, the server drops the connection.

3. Encryption: The SSL/TLS protocol automatically uses the server’s certificate to establish an encrypted channel between
the client and the server, so that any data passing through this channel is encrypted and thereby secured.

InterSystems strongly recommends using SSL/TLS with a mirror.

Note on Configuring an Async Member with SSL/TLS
If a mirror uses SSL/TLS, then in addition to enabling SSL/TLS for the mirror and creating the configurations for each
member (described in the following section), there are special steps that must be taken when configuring the second failover
member or an async member; for more information, see the “Authorize the Second Failover Member or Async (SSL/TLS
Only)” section of the “Mirroring” chapter of the Caché High Availability Guide. Specifically, for each failover member,
on the Mirror Monitor page, you need to enter the DN (distinguished name) in the ID listed as DN in member’s X.509 credentials

field; you can copy the value of the DN from X.509 Distinguished Name field of the Join as Async page (System Adminis-

tration > Configuration > Mirror Settings > Join as Async) for the async member. (Caché populates the X.509 Distinguished

Name field based on the information in the async member’s certificate.)

Note on Disabling SSL/TLS for a Mirror
To disable SSL/TLS for an existing mirror, disable it on the primary member.

Important: Use of SSL/TLS with mirroring is highly recommended. Disabling SSL/TLS for a mirror is strongly dis-
couraged.

13.8.2 Creating and Editing an SSL/TLS Configuration for a Mirror

To use SSL/TLS with a mirror, each member (failover or async) uses a pair of SSL/TLS configurations that are called
%MirrorClient and %MirrorServer; the Portal allows you to create and edit these configurations.

Note: These configurations must already exist on each member when SSL/TLS is enabled for the mirror.

13.8.2.1 Creating an SSL/TLS Configuration for a Mirror Member

To create the configurations, the procedure is:

1. Enable mirroring for that instance of Caché if it is not already enabled. To do this, use the Edit Service page for the
%Service_Mirror service; on this page, select the Service Enabled check box. You can reach this page either of
two paths:

• On the Mirror Settings page (System Administration > Configuration > Mirror Settings), select Enable Mirror Service.

Caché Security Administration Guide 189

Configuring Caché to Use SSL/TLS with Mirroring

• On the Services page (System Administration > Security > Services), select %Service_Mirror.

2. Go to the Create SSL/TLS Configurations for Mirror page. You can do this either on the SSL/TLS Configurations page
(System Administration > Security > SSL/TLS Configurations) by clicking Create Configurations for Mirror or on the
Create Mirror page (System Administration > Configuration > Mirror Settings > Create Mirror) by clicking Set up SSL/TLS.

3. On the Create SSL/TLS Configurations for Mirror page (System Administration > Security > SSL/TLS Configurations >
Create SSL/TLS Configurations for Mirror), complete the fields on the form. The fields on this page are analogous to
those on the New SSL/TLS Configuration page (as described in the section “Creating or Editing an SSL/TLS Configu-
ration”). Since this page creates both server and client configurations that mirroring automatically enables (%MirrorClient
and %MirrorServer), there are no Configuration Name, Description, or Enabled fields; also, for the private-key password,
this page allows you to enter or replace one (Enter new password), specify that none is to be used (Clear password),
or leave an existing one as it is (Leave as is).

Since both configurations need the same X.509 credentials, completing this form saves both configurations simultane-
ously. Fields on this page are:

• File containing trusted Certificate Authority X.509 certificate(s)

Note: This file must include the certificate(s) that can be used to verify the X.509 certificates belonging to
other mirror members. If the file includes multiple certificates, they must be in the correct order, as
described in Establishing the Required Certificate Chain, with the current instance’s certificate first.

• File containing this configuration's X.509 certificate

Note: – The certificate’s distinguished name (DN) must appear in the certificate’s subject field.

– If the certificate to be used includes either Key Usage or Extended Key Usage extensions, see the
following section, “Special Considerations for Certificates for Mirror Members.”

• File containing associated private key

• Private key type

• Password

If you select Leave as is, the page displays two additional fields, for entering and confirming a new password for
the private key associated with the certificate.

• Protocols

• Enabled ciphersuites

Once you complete the form, click Save.

For general information about configuring mirror members, see the “Creating a Mirror” section of the “Mirroring”
chapter of the Caché High Availability Guide.

13.8.2.2 Editing SSL/TLS Configurations for a Mirror Member

If you have already created a member’s %MirrorClient and %MirrorServer configurations, you can edit them on the Edit

SSL/TLS Configurations for Mirror page (System Administration > Security > SSL/TLS Configurations; click Edit Configurations

for Mirror). This page displays the same fields as the Create SSL/TLS Configurations for Mirror page, as described in the
previous section.

190 Caché Security Administration Guide

Using SSL/TLS with Caché

13.8.2.3 Special Considerations for Certificates for Mirror Members

When using SSL/TLS with mirroring, the %MirrorClient and %MirrorServer configurations must use the same certificate
and private key. Hence, the certificate in use by both configurations must be usable as both a server and a client certificate.

There are certain certificate extensions that are specific to SSL/TLS clients or servers. Because the certificate in use with
mirroring must be able to serve both uses (as both a client and a server), if any of these extensions appear in a certificate,
then the extensions for client and server must both be present. For example, this is true for the Key Usage and Extended
Key Usage extensions. If the Key Usage extension is present, then it must specify both of the following:

• The Digital Signature key usage (for clients)

• The Key Encipherment key usage (for servers)

Similarly, if the Extended Key Usage extension is present, then it must specify both:

• The Client Authentication key usage

• The Server Authentication key usage

If both extensions are present, then each must specify both values. Of course, it is also valid to have neither extension
present.

If a certificate only specifies one value (either client or server), the SSL/TLS connection for mirroring fails with an error
such as:

error:14094413:SSL routines:SSL3_READ_BYTES:sslv3 alert unsupported certificate

The way to eliminate this error depends on how you obtained your certificates:

• If you are using self-signed certificates, create new certificates (such as with the OpenSSL library) that adhere to these
conditions.

• If you are using a commercial certificate authority tool (such as Microsoft Certificate Services), create new certificates
that adhere to these conditions and use the tool to sign your certificate signing requests (CSRs).

• If you are purchasing certificates from a commercial certificate authority (such as VeriSign), include a request along
with your CSRs that they adhere to these conditions.

13.9 Configuring Caché to Use SSL/TLS with TCP Devices
This section describes how to use SSL/TLS with a Caché TCP connection. The process is:

1. Creating an SSL/TLS configuration that specifies the characteristics you want.

2. Opening a TCP connection or open a socket for accepting such connections.

3. Securing the connection using SSL/TLS. This can occur either as part of opening the connection/socket or afterwards.

How you invoke the Caché SSL/TLS functionality depends on whether you are using Caché as a client or server and whether
you are creating an initially-secured TCP connection or adding SSL/TLS to an existing connection.

This section addresses the following topics:

• Configuring a Client to Use SSL/TLS with a TCP Connection

• Configuring a Server to Use SSL/TLS with a TCP Socket

Caché Security Administration Guide 191

Configuring Caché to Use SSL/TLS with TCP Devices

13.9.1 Configuring a Client to Use SSL/TLS with a TCP Connection

To establish a secure connection from a client, the choices are:

• Opening an SSL/TLS-secured TCP Connection from a Client

• Adding SSL/TLS to an Existing TCP Connection

13.9.1.1 Opening an SSL/TLS-secured TCP Connection from a Client

In this scenario, Caché is part of the client and the TCP connection uses SSL/TLS from its inception. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before Caché was last started, it is
activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Open a TCP connection using SSL/TLS.

If Caché is a client, then it connects to the server via the client application. The connection uses the specified configuration
to determine its SSL-related behavior.

Opening a TCP Connection Using SSL/TLS
This involves opening a named connection that uses SSL/TLS and communicates with a particular machine and port
number. The procedure is:

1. Specify the device that you are connecting to:

 Set MyConn = "|TCP|1000"

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see the section
“OPEN Command for TCP Devices” in the “TCP Client/Server Communication” chapter of the Caché I/O Device
Guide.

2. Open the connection, specifying the use of SSL/TLS with either the /SSL or /TLS parameter.

 OPEN MyConn:(SvrID:1000:/SSL="MyCfg")

where

• MyConn is the device previously specified

• SvrID can be a string that is a resolvable DNS name or an IP address

• MyCfg is a saved (and activated) SSL/TLS configuration

This call opens a TCP connection to the loopback processor (that is, the local machine) on port 1000 using SSL. It
uses SSL/TLS according to the characteristics specified by the MyCfg configuration.

Optionally, the call can include a password for the private key file:

 OPEN MyConn:(SvrID:1000:/SSL="MyCfg|MyPrivateKeyFilePassword")

Here, all the arguments are as above and MyPrivateKeyFilePassword is the actual password.

Important: The ability to include a password when opening a TCP connection using SSL/TLS is for real-time
interactive use only. You should never store a private key password persistently without protecting
it. If you need to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs

class.

For more information on opening a TCP device, see “OPEN and USE Command Keywords for TCP Devices” in the
“TCP Client/Server Communication” chapter of the Caché I/O Device Guide.

192 Caché Security Administration Guide

Using SSL/TLS with Caché

Once the connection is established, you can then use it in the same manner as any other TCP connection.

13.9.1.2 Adding SSL/TLS to an Existing TCP Connection

This scenario assumes that the TCP connection has already been established. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before Caché was last started, it is
activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Secure the existing TCP connection using SSL/TLS.

Securing an Existing TCP Connection Using SSL/TLS
This involves adding SSL/TLS to an already-existing connection to a particular machine and port number. The procedure
is:

1. Determine the name of the device to which there is a connection. For example, this might have been established using
the following code:

 SET MyConn="|TCP|1000"
 OPEN MyConn:("localhost":1000)

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see the section
“OPEN Command for TCP Devices” in the “TCP Client/Server Communication” chapter of the Caché I/O Device
Guide.

2. Specify the use of SSL/TLS as follows with either the /SSL or /TLS parameter:

 USE MyConn:(::/TLS="MyCfg")

where

• MyConn is the device previously specified

• MyCfg is an SSL/TLS configuration

Optionally, the call can include a password for the private key file:

 USE MyConn:(::/TLS="MyCfg|MyPrivateKeyFilePassword")

Here, all the arguments are as above and MyPrivateKeyFilePassword is the actual password.

Important: The ability to include a password when securing an existing TCP connection using SSL/TLS is for
real-time interactive use only. You should never store a private key password persistently without
protecting it. If you need to store such a password, use the PrivateKeyPassword property of the
Security.SSLConfigs class.

For more information on opening a TCP device, see “OPEN and USE Command Keywords for TCP Devices” in the
“TCP Client/Server Communication” chapter of the Caché I/O Device Guide.

Having added SSL/TLS security to the connection, you can continue to use it in the same manner as before.

13.9.2 Configuring a Server to Use SSL/TLS with a TCP Socket

To enable a socket to require a secure connection from a client, you can either:

• Open a TCP socket specifying that this connection requires SSL or TLS.

• Establish the requirement for the use of SSL or TLS on an already-existing socket.

Caché Security Administration Guide 193

Configuring Caché to Use SSL/TLS with TCP Devices

13.9.2.1 Establishing an SSL/TLS-secured Socket

In this scenario, Caché is the server and the TCP socket uses SSL/TLS from its inception. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before Caché was last started, it is
activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Open a TCP socket that requires the use of SSL/TLS.

This socket requires the use of SSL/TLS from clients connecting to it. When a client attempts to connect to the server, the
server attempts to negotiate a connection that uses SSL/TLS. If this succeeds, the connection is available for normal use
and communications are secured using the negotiated algorithm. If it fails, there is no connection available for the client.

Opening a TCP Socket Requiring SSL/TLS
To open a socket that requires SSL/TLS, the procedure is:

1. Specify the device that is accepting connections:

 SET MySocket = "|TCP|1000"

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see the section
“OPEN Command for TCP Devices” in the “TCP Client/Server Communication” chapter of the Caché I/O Device
Guide.

2. Open the connection, specifying the use of SSL/TLS with either the /SSL or /TLS parameter.

 OPEN MySocket:(:1000:/TLS="MyCfg")

Optionally, the call can include a password for the private key file:

 OPEN MySocket:(:1000:/TLS="MyCfg|MyPrivateKeyFilePassword")

This call opens a TCP socket on port 1000 using TLS. For more information on opening a TCP device, see “OPEN
and USE Command Keywords for TCP Devices” in the “TCP Client/Server Communication” chapter of the Caché
I/O Device Guide.

Important: The ability to include a password when opening a TCP connection using SSL/TLS is for real-time
interactive use only. You should never store a private key password persistently without protecting
it. If you need to store such a password, use the PrivateKeyPassword property of the Security.SSLConfigs

class.

13.9.2.2 Adding SSL/TLS to an Existing Socket

This scenario assumes that a connection to the TCP socket has already been established. The procedure is:

1. Make sure that the configuration you wish to use is available. If it was created before Caché was last started, it is
activated and ready for use; otherwise, you can create a new one or edit an existing one.

2. Use SSL/TLS to secure the existing TCP connection to the socket.

Securing an Existing TCP Connection to the Socket Using SSL/TLS
This involves adding SSL/TLS to an already-existing connection to a socket on a particular machine and port number. The
procedure is:

1. Determine the name of the device on which the socket is open. For example, this might have been established using
the following code:

 SET MySocket = "|TCP|1000"
 OPEN MySocket:(:1000)

194 Caché Security Administration Guide

Using SSL/TLS with Caché

The TCP string specifies that this is a TCP device. For more information on initiating a TCP connection, see the section
“OPEN Command for TCP Devices” in the “TCP Client/Server Communication” chapter of the Caché I/O Device
Guide.

2. Specify the use of SSL/TLS as follows with either the /SSL or /TLS parameter:

 USE MySocket:(::/SSL="MyCfg")

where

• MySocket is the device previously specified

• MyCfg is an SSL/TLS configuration

Optionally, the call can include a password for the private key file:

 USE MySocket:(::/SSL="MyCfg|MyPrivateKeyFilePassword")

For more information on opening a TCP device, see “OPEN and USE Command Keywords for TCP Devices” in the
“TCP Client/Server Communication” chapter of the Caché I/O Device Guide.

Important: The ability to include a password when securing an existing TCP connection using SSL/TLS is for
real-time interactive use only. You should never store a private key password persistently without
protecting it. If you need to store such a password, use the PrivateKeyPassword property of the
Security.SSLConfigs class.

Having added SSL/TLS security to the socket, you can continue the connection to it in the same manner as before.

13.10 Configuring the CSP Gateway to Connect to Caché
Using SSL/TLS
You can use SSL/TLS to set up a secure, encrypted channel between the CSP Gateway and the Caché server. To do this,
you need an SSL/TLS certificate and private key that represents the Gateway. The Gateway can then establish an encrypted
connection to the Caché server (which has its own certificate and private key), so that all information is transmitted through
the connection.

Note: For information on setting up a connection between the CSP Gateway and the Caché server that is protected by
Kerberos, see the “Setting Up a Kerberized Connection from the CSP Gateway to Caché” section of the
“Authentication” chapter.

The procedure is:

1. If there is not already a %SuperServer SSL/TLS configuration associated with the Caché server, create one as
described in the section “Creating or Editing an SSL/TLS Configuration.”

2. On the Portal’s System-wide Security Parameters page (System Administration > Security > System Security > System-

wide Security Parameters), for the Superserver SSL/TLS Support choice, select Enabled (not Required).

3. Go to the CSP Gateway’s Server Access page (System Administration > Configuration > CSP Gateway Management).

4. On that page, under Configuration, select Server Access.

5. Next, select Edit Server and click Submit. This displays the configuration page for the CSP Gateway.

Caché Security Administration Guide 195

Configuring the CSP Gateway to Connect to Caché Using SSL/TLS

6. On this page, configure the CSP Gateway to use SSL/TLS. Specifically, for the Connection Security Level field, select
SSL/TLS.

You must also specify values for the SSL/TLS Protocol, SSL/TLS Key Type, Require peer certificate verification, SSL/TLS

Certificate File, SSL/TLS Private Key File, SSL/TLS CA Certificate File, and SSL/TLS Private Key Password fields. For
more details on the fields on this page, see the “Configuring Server Access” section of the “CSP Gateway Operation
and Configuration” chapter of the CSP Gateway Configuration Guide.

13.11 Establishing the Required Certificate Chain
For a connection to be successfully established using a ciphersuite that uses certificates and keys, the client must be able
to verify the server’s certificate chain from the server’s own certificate to a self-signed certificate from a trusted certificate
authority (CA), including intermediate certificates (if any). If the server is authenticating the client user, then the server
must also be able to verify the client user’s certificate chain from the client user’s own certificate to a trusted CA’s self-
signed certificate, including intermediate certificates (if any).

Since authentication can be bidirectional, the requirements for certificate chains refer to the verifying entity (the side
requiring the authentication) and the verified entity (the side being authenticated), rather than the client and the server.

For authentication to be possible, the following conditions must be met:

• The verifying entity must have access to all the certificates that constitute the certificate chain from the verified entity’s
own certificate to a trusted CA’s self-signed root certificate. The certificates in the chain are obtained from the combi-
nation of the verified entity’s certificate file (the certificates are sent as part of the handshake protocol) and the verifying
entity’s trusted CA certificate file.

• The verifying entity must have the trusted CA’s self-signed root certificate in its CA certificate file.

• The verified entity’s own certificate must be the first entry in its certificate file.

• All intermediate CA certificates must be present.

• The certificates in the certificate chain may be divided between the verified entity’s certificate file and the verifying
entity’s trusted CA certificate file. However, each part must be a contiguous partial certificate chain, as described in
the following example.

Suppose there are:

• A verified entity (named “VE”) with a certificate signed by the certificate authority named “ICA1.”

• A certificate for “ICA1” signed by the certificate authority “ICA2,” and a certificate for “ICA2” signed by “RootCA”.

• A trusted CA (named “RootCA”) with a self-signed root certificate.

The following are valid distributions of certificates between the verified entity and the verifying entity:

Table 13–1:Valid Certificate Distribution Schemes

Certificates in the Verifying Entity’s Trusted CA
Certificate File

Certificates in the Verified Entity’s Certificate File

ICA1, ICA2, RootCAVE

ICA2, RootCAVE, ICA1

RootCAVE, ICA1, ICA2

196 Caché Security Administration Guide

Using SSL/TLS with Caché

Note that it is not valid to have VE and ICA2 in the verified entity’s certificate file and ICA1 and RootCert in the verifying
entity’s trusted CA certificate file

Caché Security Administration Guide 197

Establishing the Required Certificate Chain

14
The InterSystems Public Key
Infrastructure

This chapter covers the following topics:

• About the InterSystems Public Key Infrastructure (PKI)

• Certificate Authority Server Tasks

– Configuring a Caché Instance as a Certificate Authority Server

– Managing Pending Certificate Signing Requests

• Certificate Authority Client Tasks

– Configuring a Caché Instance as a Certificate Authority Client

– Submitting a Certificate Signing Request to a Certificate Authority Server

– Getting Certificate(s) from the Certificate Authority Server

14.1 About the InterSystems Public Key Infrastructure
(PKI)
A Public Key Infrastructure (PKI) provides a means of creating and managing private keys, public keys, and certificates.
These are used for cryptographic operations including encryption, decryption, and digital signing and signature verification.
Certificates provide a means of associating a public key with an identity. To do this, a PKI includes a trusted third party
known as a certificate authority (CA).

The InterSystems PKI implementation gives Caché the ability to serve as a Certificate Authority (CA). An instance of
Caché acting as a CA is known as a CA server; an instance of Caché using a CA’s services is known as a CA client. A
single instance of Caché can be both a CA server and a CA client. As a CA server, an instance can either generate and use
a self-signed CA Certificate, or it can use a CA Certificate issued by a commercial third party or product. As a CA client,
an instance is associated with a CA server; the CA client’s certificate is available for use with SSL/TLS, XML encryption,
and signature verification; there is also the option of configuring a CA client to serve as an intermediate CA. Communications
involving the PKI occur through web services.

Caché Security Administration Guide 199

When establishing itself as a CA server, an instance of Caché either creates a public/private key pair and then embeds the
public key in a self-signed X.509 certificate or it uses a private key and X.509 certificate signed by an outside CA. X.509
is an industry-standard certificate structure that associates a public key with both identifying information for an entity and
other related data; this identifying information is known as a subject Distinguished Name (DN), and consists of various
specific information regarding an entity’s organization, location, or both. You can use X.509 certificates to provide a high
level of public-key–based security if, and only if, appropriate security policies regarding the protection of private keys and
the issuance of certificates are enforced, including strict control of the CA server’s private key file, preferably stored on
removable media which can be physically secured when not in use.

To use the Caché PKI infrastructure from the Management Portal, all actions start from the Public Key Infrastructure page
(System Administration > Security > Public Key Infrastructure).

Important: The InterSystems PKI is for testing purposes only. Do not use it in a production setting.

For more background on PKI and CAs, see the appendix, “About Public Key Infrastructure (PKI).” For technical details
about the SSL/TLS calls underlying the InterSystems PKI, see the OpenSSL library. For technical details about X.509
certificates, see RFC 5280, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL)
Profile.”

14.1.1 Help for Management Portal PKI Tasks

The following are links to help for PKI tasks:

• Certificate Authority Client

– Submit Certificate Signing Request to Certificate Authority server

– Get Certificate(s) from Certificate Authority server

– Configure local Certificate Authority client

• Certificate Authority Server

– Process pending Certificate Signing Requests

– Configure local Certificate Authority server

14.2 Certificate Authority Server Tasks
A Caché instance can serve as a certificate authority (CA) server. This involves:

1. Configuring a Caché instance as a CA server. This involves providing information that is either related to the certificate
or that the CA server uses for processing certificate signing requests.

2. Managing pending certificate signing requests (CSRs). This is the ongoing work of a CA server.

Note: Because these tasks are for the CA server administrator, this section is addressed to those administrators. This
differs from the tasks in the CA client tasks, which are addressed to CA client administrators/technical contacts.

14.2.1 Configuring a Caché Instance as a Certificate Authority Server

Before any PKI operations are possible, you need to configure a Caché instance as a Certificate Authority (CA) server.
This involves either:

200 Caché Security Administration Guide

The InterSystems Public Key Infrastructure

http://openssl.org/
http://www.ietf.org/rfc/rfc5280.txt

• Configuring a CA Server with a New Private Key and Certificate

• Configuring a CA Server with an Existing Private Key and Certificate

It may also involve reinitializing a CA server.

14.2.1.1 Configuring a CA Server with a New Private Key and Certificate

If you are creating a new private key and certificate, the procedure is:

1. For the selected Caché instance, in the Management Portal, go to the Public Key Infrastructure page (System Adminis-

tration > Security > Public Key Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Configure Local Certificate Authority

server. This displays fields for (1) the file name root for the CA server’s certificate and private key and (2) the directory
that holds these files.

Important: If you specify a path and file name root that point to an existing certificate and private key, Caché
uses these for the CA server. Otherwise, it creates a new certificate and private key. (Also, if only one
of the files exists, Caché renames it by appending the .old suffix to it and creates new files.)

The fields are:

• File name root for Certificate Authority’s Certificate and Private Key files (without extension) — Required. Specifies
the part of the name of the private key and certificate files that is common to each. This can be for an existing pair
of files or for a new pair of files. Hence, if you select MyCA as the file name root, the private key is stored in the
MyCA.key file and the certificate is stored in the MyCA.cer file. Valid characters for this field are alphanumeric
characters, the hyphen, and the underscore. The root cannot be the string “cache”.

• Directory for Certificate Authority’s Certificate and Private Key files — Required. The path to a directory for storing
the CA’s certificate and private key files; if the directory does not exist, Caché attempts to create it. This directory
should always be on an external device (not a local hard drive or a network server), preferably on an encrypted
external device. As this is the directory that holds the CA’s private key, it is extremely important that this be a
completely secure location. If you provide a relative path here, the path is relative to <install-dir>/mgr/ for the Caché
instance.

3. Click Next to continue.

4. The fields that appear next depend on whether you are creating a new private key and certificate pair or using an
existing private key and certificate. When you are creating a new private key and certificate, Caché displays the following
fields:

• Password to Certificate Authority's Private Key file and Confirm Password — Required. The password to encrypt
and decrypt the CA’s private key file.

• Certificate Authority Subject Distinguished Name — The set of one or more name-value pairs that define the distin-
guished name (DN) that describes the bearer of the CA certificate. You must provide a value for at least one
attribute. The attributes are:

– Country — A two-letter code identifying the country, using the ISO country codes.

– State or Province — The name of the CA’s state or province. The convention is not to use this field for CA
certificates.

– Locality — The name of the CA’s municipality. The convention is not to use this field for CA certificates.

– Organization — Name of the organization that is administering the CA. By convention, this value is spelled
out in full, such as “InterSystems Corporation,” rather than simply “InterSystems” or “InterSystems Corp.”

Caché Security Administration Guide 201

Certificate Authority Server Tasks

http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

– Organizational Unit — Any other organizational information or special commentary on the CA. Examples of
this can include the CA’s department, a statement that the CA is for use only within an enterprise, and so on.

– Common Name — A descriptive name for the CA, such as “Documentation Test CA.”

• Validity period for Certificate Authority's Certificate (days) — Required. The validity period (lifespan) for the CA
certificate itself.

• Validity period for Certificates issued by Certificate Authority (days) — Required. The validity period (lifespan) for
certificates that the CA issues for its clients.

• Configure email — Information required for the email account for managing the CA and its tasks.

– SMTP server — The Simple Mail Transfer Protocol (SMTP) server that handles the CA mail in the form of
a fully qualified host name, such as “MyMachine.MyDomain.com”.

– SMTP username — A username that can be authenticated by the specified SMTP server. This field does not
require a fully qualified username.

– SMTP password — The password associated with the SMTP username.

– Confirm password — A confirmation of the password associated with the SMTP username.

– Certificate Authority server administrator's email address — The user who receives certificate signing requests
for the CA. This field requires a fully qualified username, such as “CAMgr@MyDomain.com”.

5. Complete these fields as required and click Save. Caché displays a message indicating success, such as:

Certificate Authority server successfully configured.
Created new files: C:\pki\FileNameRoot.cer .key, and .srl.
Certificate Authority Certificate SHA-1 fingerprint:
E3:FB:30:09:53:90:9A:31:30:D3:F0:07:8F:64:65:CD:11:0A:1A:A2
Confirmation email sent to: CAserver-admin@intersystems.com

This indicates that a private key, certificate, and their associated SRL (serial) file have been created. (Otherwise, Caché
displays an error message.)

Once the files have been created, it is strongly recommended that you store the private key on removable media that
can be physically secured.

WARNING! It is critical that you properly protect all private keys, and most important that you protect the private
key of a CA. The exposure of a private key can result in security breaches, data exposure, financial
losses, and legal vulnerability.

If it has succeeded, Caché has performed the following actions:

• Creating a key pair.

• Saving the private key to a file to a specified location with a specified file name root (see below).

• Creating a self-signed CA certificate containing the public key.

• Saving the certificate to a file to a specified location with a specified file name root (see below).

• Creating a counter of the number of certificates issued and storing it in an SRL (serial) file in the same directory
as the certificate and the private key. (Each time the CA issues a new certificate, Caché gives the certificate a
unique serial number based on this counter and then increments the value in the SRL file.)

Once you have created the CA private key and certificate, you can process certificate signing requests (CSRs). When a CA
client creates a CSR, you, as CA administrator, will receive email notification about this.

202 Caché Security Administration Guide

The InterSystems Public Key Infrastructure

14.2.1.2 Configuring a CA Server with an Existing Private Key and Certificate

If you are using an existing private key and certificate (such as from another Caché CA, or from an external CA, such as
a commercial CA), the procedure is:

1. Create or obtain a private key and certificate. The certificate must be in PEM format, or you must be able to convert
it to PEM format.

2. If they do not already have identical file name roots, rename them as filenameroot.cer for the certificate and
filenameroot.key for the private key, where filenameroot is the file name root you wish to use.

3. Store both files in the same directory, making sure that this directory is accessible to the Caché instance that you are
configuring as a CA server. This directory should always be on an external device (not a local hard drive or a network
server), preferably on an encrypted external device. As this is the directory that holds the CA’s private key, it is
extremely important that this be a completely secure location.

WARNING! It is critical that you properly protect all private keys, and most important that you protect the private
key of a CA. The exposure of a private key can result in security breaches, data exposure, financial
losses, and legal vulnerability.

4. For the selected Caché instance, in the Management Portal, go to the Public Key Infrastructure page (System Adminis-

tration > Security > Public Key Infrastructure).

5. On the Public Key Infrastructure page, under Certificate Authority Server, select Configure Local Certificate Authority

server. Complete the fields on this page as follows:

• File name root for Certificate Authority’s Certificate and Private Key files (without extension) — Required. The part
of the name of the private key and certificate files that is common to each. For this value, use the file name root
that the files have or that you selected in step 2 of this procedure.

• Directory for Certificate Authority’s Certificate and Private Key files — Required. The path to a directory that holds
the CA’s certificate and private key files. For this value, use the directory that you selected in step 3. If you provide
a relative path here, the path is relative to <install-dir>/mgr/ for the Caché instance.

6. Click Next to continue.

7. The fields that appear next depend on whether you are creating a new private key and certificate pair or using an
existing private key and certificate. When you are using an existing private key and certificate, Caché displays the
following fields:

• Validity period for Certificates issued by Certificate Authority (days) — Required. The validity period (lifespan) for
certificates that the CA issues for its clients.

• Configure email — Information required for the email account for managing the CA and its tasks.

– SMTP server — The Simple Mail Transfer Protocol (SMTP) server that handles the CA mail in the form of
a fully qualified host name, such as “MyMachine.MyDomain.com”.

– SMTP username — A username that can be authenticated by the specified SMTP server. This field does not
require a fully qualified username.

– SMTP password — The password associated with the SMTP username.

– Confirm password — A confirmation of the password associated with the SMTP username.

– Certificate Authority server administrator's email address — The user who receives certificate signing requests
for the CA. This field requires a fully qualified username, such as “CAMgr@MyDomain.com”.

Caché Security Administration Guide 203

Certificate Authority Server Tasks

Important: If the Management Portal displays more fields than these, then you have not properly directed it to
the private key and certificate that you wish to use. If you complete all the displayed fields, click Save,
and there is success, Caché will have created a new private key and certificate for the CA server.

8. Click Save. When you save the configuration information for the local CA server, Caché uses the existing certificate
and private key. (It will also create an SRL file, if one does not exist.) It will display a success message such as:

Certificate Authority server successfully configured.
Using existing files: C:\pki\FileNameRoot.cer and .key
Certificate Authority Certificate SHA-1 fingerprint:
E3:FB:30:09:53:90:9A:31:30:D3:F0:07:8F:64:65:CD:11:0A:1A:A2
Confirmation email sent to: CAserver-admin@intersystems.com

As with creating a new private key and certificate, at this point, the CA server is configured and is now ready to process
certificate signing requests (CSRs). Again, when a CA client creates a CSR, you, as CA administrator, will receive email
notification about this.

14.2.1.3 Reinitializing a CA Server

If you have already configured an instance as a CA server, then there is a Reinitialize button on the page for configuring a
CA. Selecting it has the following effects:

• It deletes all configuration information for the CA server.

• It discards all information for issued certificates.

• It discards all certificate signing requests pending with the CA.

Note: Reinitialization does not delete the files containing the private key or existing certificate for the CA, nor does it
delete the CA’s existing SRL file; in fact, these are still valid and can be used. Also, it does not render any already
signed certificates invalid.

When you click the button, there is a prompt to confirm that you want to reinitialize the CA. After reinitialization, you can
configure a new CA server.

14.2.2 Managing Pending Certificate Signing Requests

Once the Certificate Authority (CA) server has been configured, the principal task associated with the CA server is managing
certificate signing requests (CSRs) from potential CA clients. This can involve:

• Processing a Certificate Signing Request (CSR)

• Deleting a Certificate Signing Request (CSR)

If processing leads to approving the request, the CA server issues an X.509 certificate signed with the CA’s private key,
and sends email notification of the issued certificate’s serial number to the CA client’s technical contact. It is also possible
to delete (that is, reject) a request.

A critical step in this process is verification, in which the CA administrator uses communications that prevent impersonation
to verify the identity of the requester, the authority of the technical contact to hold a certificate with the requested DN, and
the purpose for which the certificate is being issued. (To do this, the CA server’s administrator uses the contact information
received from the potential CA client along with the CSR.)

14.2.2.1 Processing a Certificate Signing Request (CSR)

To process a request is to convert the CSR into a certificate. The procedure is:

204 Caché Security Administration Guide

The InterSystems Public Key Infrastructure

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Process pending Certificate Signing

Requests. This displays a table of CSRs that the CA has received and not processed or deleted; to the right of each
CSR there are Process and Delete links.

3. Mount the media containing the CA server certificate and private key files. (This is the media on which you stored
these files while configuring a Caché instance as a CA server.)

4. To process a CSR, click Process. This displays the contents of the CSR.

5. Prior to issuing the certificate, you need to specify the use of the certificate. The choices for the Certificate Usage radio
buttons specify which operations the certificate can perform:

• TLS/SSL, XML encryption and signature verification — For CA clients that are directly using various security
capabilities within Caché.

• Intermediate Certificate Authority server — For CA clients that will themselves be serving as CAs for other instances
of Caché.

6. Important: This step requires that you verify the identity of the technical contact for the potential CA client using
a means that prevents impersonation.

As the instructions on this page specify, you must contact the designated technical contact for the instance that has
submitted the CSR. According to the policies of your organization, contact this person by phone or in person and verify:

• This person’s identity

• This person’s authority to hold a certificate containing the Subject Distinguished Name shown above, signed by
the CA for which you are responsible

• That the SHA-1 fingerprint shown above matches the one reported to them when they submitted the certificate
signing request

7. Once you have specified the purpose of the certificate and verified the relevant information with the technical contact,
you can issue the certificate. To do this, click Issue Certificate. This causes the page to display the Password for Certificate

Authority's Private Key file field.

8. In the Password for Certificate Authority's Private Key file field, enter the password to decrypt the CA server’s private
key file. If you created the private key and certificate with Caché, this is the value you entered in the Password to

Certificate Authority's Private Key file field; if you created the private key and certificate using other tools, it is the
password, if any, that you provided to those tools for this purpose.

9. Click Finish to create the certificate. If successful, Caché displays a message such as

Certificate number 31 issued for Certificate Signing Request
"Santiago Development Group"

10. Remove the media holding the CA server’s certificate and private key, and store it in a secure location.

Caché has now created the certificate and notified the technical contact for the CA client by email that the certificate is
available for download. The CA client’s technical contact can now download the certificate to the client host.

14.2.2.2 Deleting a Certificate Signing Request (CSR)

To delete a request, the procedure is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

Caché Security Administration Guide 205

Certificate Authority Server Tasks

2. On the Public Key Infrastructure page, under Certificate Authority Server, select Process pending Certificate Signing

Requests. This displays a table of CSRs that the CA has received and not processed or deleted; to the right of each
CSR there are Process and Delete links.

3. To delete a CSR, click Delete. This displays a confirmation dialog.

4. In the confirmation dialog, click OK.

5. Complete these fields as required and click Save.

This deletes the CSR.

14.3 Certificate Authority Client Tasks
A certificate authority (CA) client has one-time setup tasks, which are:

1. Configuring the Caché instance as a CA client. This involves providing location about the CA server to the potential
CA client; it also includes providing contact information about the CA client’s technical contact.

2. Getting a copy of the CA certificate. This allows for verifying other certificates.

After setup tasks, the CA client tasks are:

1. Submitting a certificate signing request (CSR) to the CA server. From the user’s perspective, this involves specifying
a distinguished name (DN) and other information. (This may happen repeatedly, if the instance has reason to have
multiple distinct certificates.)

2. Getting copies of various certificates. In addition to the CA client’s own certificate, this includes any other certificates
that the CA server has issued.

After performing these tasks, the CA client can then perform the operations that require use of the PKI. These are tasks in
which it is known as an end entity, since it is at the end of a secured connection.

Note: Because these tasks are for the CA client administrators/technical contacts, this section is addressed to those
individuals. This differs from the tasks in the Certificate Authority Server Tasks, which are addressed to CA server
administrators.

14.3.1 Configuring a Caché Instance as a Certificate Authority Client

The procedure to configure a Caché instance as a certificate authority (CA) client involves providing location about the
CA server to the potential CA client; it also includes providing contact information about the CA client’s technical contact.
The steps are:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Configure Local Certificate Authority

Client. The fields on this page are:

• Certificate Authority server hostname — Required. The fully qualified name of the machine of the CA server.
(Specifically, this is a machine on which an instance of Caché is running, and this instance is serving as a CA
server. It must be configured as a CA server prior to configuring any instance as a CA client.)

• Certificate Authority WebServer port number — Required. The webserver port number for the instance of Caché
serving as the CA server.

206 Caché Security Administration Guide

The InterSystems Public Key Infrastructure

• Certificate Authority server path — Required. The path of the web service of the CA server. By default, this is
/isc/pki/PKI.CAServer.cls. (This value is used along with the server hostname and port number to contact the web
service for the CA.) Do not change the value of this field.

• Local technical contact — The person who provides verification information to the CA server on behalf of the CA
client. For this person, the following information is required:

– Name — Required. The name of the technical contact for the CA client.

– Phone number — The contact’s phone number. This is so that the CA administrator can contact the CA client’s
technical contact to perform verification prior it issuing the CA client’s certificate. The phone number is not
required, since Caché does not require a particular mechanism of verification; for example, it could happen
in person.

– Email address — The contact’s email address. This is so that the CA client’s technical contact can receive
email notification that the CA server has processed the client’s CSR and issued a certificate. The email address
is not required, since the server administrator can use some other means to contact the client’s technical contact
about the newly issued certificate.

3. Complete these fields as required and click Save.

Caché acknowledges success through a message such as “Certificate Authority client successfully configured.” At this
point, the next task is to download the CA server’s certificate.

14.3.2 Submitting a Certificate Signing Request to a Certificate Authority Server

Once an instance of Caché is configured as a certificate authority (CA) client, you can then submit a certificate signing
request (CSR) to the CA server. On the surface, this involves specifying a distinguished name (DN) and other information.
Under the covers, the CA client performs several actions:

1. Generating a public/private key pair.

2. Creating a Certificate Signing Request (CSR) containing the public key and a specified DN.

3. Submitting that to the CA server using a web service.

The PKI infrastructure automatically provides the CSR to the CA server, acknowledges the submission, and sends email
notification to the CA server’s administrator. The submission includes your contact information as the local technical
contact for the CA client. The CA administrator then processes the CSR by using communications that prevent impersonation
to verify the identity of the requester, the authority of the technical contact to hold a certificate with the requested DN, and
the purpose for which the certificate is being issued. If the request is approved, the completion of the process includes the
CA server creating a certificate.

To submit a CSR to a CA server, the procedure is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Submit Certificate Signing Request to

Certificate Authority Server. The fields on this page are:

• File name root for local Certificate and Private Key files (without extension) — Required. Specifies the part of the
name of the private key and certificate files that is common to each. Hence, if you select CAClient as the file
name root, the private key is stored in the CAClient.key file and the certificate is stored in the CAClient.cer file.
Valid characters for this field are alphanumeric characters, the hyphen, and the underscore. The root cannot be
the string “cache”.

Caché Security Administration Guide 207

Certificate Authority Client Tasks

• Password to Certificate Authority's Private Key file and Confirm Password — Optional. The password that for
encrypting and decrypting the CA client’s private key.

• Subject Distinguished Name — The set of one or more name-value pairs that define the distinguished name (DN)
that describes the bearer of the client certificate. You must provide a value for at least one attribute. The attributes
are:

– Country — A two-letter country code for the country, using the ISO country codes.

– State or Province — The name of the state or province, spelled out in full.

– Locality — The name of the municipality, spelled out in full.

– Organization — Name of the organization with which the certificate is associated. By convention, this value
is , spelled out in full, such as “InterSystems Corporation,” rather than simply “InterSystems” or “InterSys-
tems Corp.”

– Organizational Unit — Any other organizational information, such as a department.

– Common Name — A descriptive name for the client, such as “Documentation Test Client.”

3. Complete these fields as required and click Save. If successful, Caché then displays a message such as:

SHA-1 Fingerprint:
0C:DA:5F:06:04:C7:AE:64:61:9C:5C:29:35:49:88:0D:B6:E5:7D:98,
Certificate Signing Request "CAClient060412"
successfully submitted to the Certificate Authority at instance MyCA
on node CATESTCLIENT.CATESTDOMAIN.COM

If Caché has successfully created a CSR, it has performed the following actions:

• Creating a key pair.

• Saving the private key to a file in the manager’s directory with the specified file name root.

• Creating a CSR that includes the public key and saving it to a file in the manager’s directory with the specified
file name root.

• Submitting that CSR to the CA using the host name, port, and path specified as part of the CA client configuration
process.

(If the process does not succeed, Caché displays an error message.)

Once the files have been created, it is strongly recommended that you store this sensitive information on encrypted,
removable media that can be physically secured.

4. Make a copy of the SHA-1 fingerprint that Caché displays.

Important: Do not lose this information, as you will need to provide this later, as part of the verification process.

5. At this point, you have used Caché to create and submit the CSR. When the administrator of the CA contacts you,
provide the SHA-1 fingerprint that you copied in the last step. The administrator will then create certificate for you,
which you can obtain as described in “Get Certificate(s) from Certificate Authority Server.”

14.3.3 Getting Certificate(s) from Certificate Authority Server

Once a certificate authority (CA) client has been configured, it can then download any certificate associated with the CA
server. This includes:

• The CA server certificate.

208 Caché Security Administration Guide

The InterSystems Public Key Infrastructure

http://www.iso.org/iso/country_codes/iso_3166_code_lists/country_names_and_code_elements.htm

• Its own certificate. This is available if the CA client has submitted a certificate signing request (CSR) to the CA server
and the CA server has approved the request.

• Any other certificates that the CA server has created for any other CA clients.

The procedure to obtain certificates is:

1. In the Management Portal, go to the Public Key Infrastructure page (System Administration > Security > Public Key

Infrastructure).

2. On the Public Key Infrastructure page, under Certificate Authority Client, select Get Certificate(s) from Certificate

Authority server. This displays a list of available certificates to download, as well as a button that displays certificates
issued for the current instance (whether downloaded or not). Ordinarily, you need both the CA server certificate as
well as your own. There are several tasks you can perform from this page:

• To download the CA certificate, click Get Certificate Authority Certificate. A confirmation message such as

Certificate Authority Certificate (SHA-1 Fingerprint:
E2:FB:30:09:53:90:9A:31:30:C3:F0:07:8F:64:65:CD:11:0A:1A:A2)
saved in file "c:\intersystems\myinstnace\mgr\MyCA.cer"

• To download any certificate that the CA has issued — including any certificate for the CA client itself, you can
locate the certificate by its serial number, the name of the host of the CA client (the Hostname column), the name
of the instance of the CA client (the Instance column), or the root file name of the certificate (the Filename column).

• To view any certificates issued for the current instance, click Show Certificates for This Instance. This displays a
table of certificates from which you can download a certificate, listing only the Serial Number and Filename

columns.

3. When you click Get to download a certificate, Caché displays a confirmation message, such as

Certificate number 74 (SHA-1 Fingerprint:
45:E8:DE:0C:15:BF:A7:89:58:04:5E:68:2E:4D:BB:01:F5:90:94:97)
saved in file "c:\intersystems\myinstance\mgr\IstanbulAcctsPayable.cer"

While Caché initially downloads certificates to the manager’s directory, once they are on the client host, you can move
them anywhere.

Caché Security Administration Guide 209

Certificate Authority Client Tasks

15
Using Delegated Authentication

Caché supports the use of user-defined authentication mechanisms. This is known as delegated authentication. Delegated
authentication allows administrators to implement custom mechanisms to replace the authentication and role-management
activities that are part of Caché security.

This chapter covers the following topics:

• Overview of Delegated Authentication

• Creating Delegated (User-Defined) Authentication Code

• Setting Up Delegated Authentication

• After Delegated Authentication Succeeds

15.1 Overview of Delegated Authentication
To use delegated authentication, the steps are:

1. Create the user-defined authentication code in the ZAUTHENTICATE routine. This can include the use of two-factor
authentication. This routine can also perform basic setup for a user account, such as specifying roles and other user
properties.

If you are using HealthShare Health Connect, create a custom ZAUTHENTICATE routine as described in this guide.
Do not use the ZAUTHENTICATE routine that is part of the HSLIB namespace.

If you are using HealthShare Unified Care Record, you cannot create a custom version of ZAUTHENTICATE to
implement delegated authentication because Unified Care Record comes with its own version of the routine. Instead,
you must customize methods in the class HS.Local.ZAUTHENTICATE. For more information, see “Unified Care Record's
Authentication Mechanism” in the Unified Care Record Security Guide.

2. Enable delegated authentication for the Caché instance on the Authentication Options page.

3. Enable delegated authentication for the relevant services, applications, or both, as required.

4. Optionally enable two-factor authentication for the Caché instance and, if required, for web applications and client/server
applications.

For example, to use delegated authentication for an instance’s Management Portal, the steps are:

1. Create the user-defined authentication code in ZAUTHENTICATE.

2. Enable delegated authentication for the Caché instance as a whole.

Caché Security Administration Guide 211

3. Enable delegated authentication for the set of /csp/sys* applications.

15.1.1 How Delegated Authentication Works

When a user attempts to log in and Caché invokes delegated authentication, the sequence of events is:

1. When a service or application uses delegated authentication, a login attempt automatically results in a call to the
ZAUTHENTICATE routine. The authentication code in this routine can be any user-defined ObjectScript, class
methods, or $ZF callout code.

2. The next step depends on whether or not authentication succeeds and whether or not this is the first login using
ZAUTHENTICATE:

• If ZAUTHENTICATE succeeds and this is the first time that the user has been authenticated through this
mechanism, the user is added to the list of Caché users with a type of “Delegated user” . If ZAUTHENTICATE
sets roles or other characteristics, these become part of the user’s properties.

• If ZAUTHENTICATE succeeds and this is not the first login, ZAUTHENTICATE updates the user’s properties.

• If ZAUTHENTICATE fails, then the user receives an access denied error and is unable to access the system. To
determine why this has occurred:

a. Check the Reason for Failing to Login field in the User Profile.

b. For more detailed information, check the audit log for the relevant %System/%Login/LoginFailure event. If
auditing or the LoginFailure event are not enabled, you may need to enable both of these and then re-create
the circumstances of the login failure.

3. If two-factor authentication is enabled for the instance and the relevant services, then there is a check that the user’s
PhoneNumber and PhoneProvider properties have been set. If these properties are set, then two-factor authentication
proceeds; if they are not set, two-factor authentication cannot proceed and the user is not authenticated.

4. A delegated user is listed as such in the Type column of the list of users on the Users page (System Administration >
Security > Users). The user’s properties are displayed read-only in the Management Portal and are not editable from
within Caché (since all the information comes from outside Caché).

Note: A delegated user cannot also be a Caché password user.

15.2 Creating Delegated (User-Defined) Authentication
Code
This section describes various aspects of creating your own ZAUTHENTICATE routine:

• Authentication Code Fundamentals

• Signature

• Authentication Code

• Setting Values for Roles and Other User Characteristics

• Return Value and Error Messages

212 Caché Security Administration Guide

Using Delegated Authentication

15.2.1 Authentication Code Fundamentals

A system-supplied template of ZAUTHENTICATE is available in the SAMPLES namespace in the routine
ZAUTHENTICATE.mac for instances with Manager Utility Source Code installed. To install Manager Utility Source Code,
select that option as part of a Custom install on the Setup Type page of the installation wizard.

To create your own ZAUTHENTICATE.mac:

1. To use ZAUTHENTICATE.mac as a template, copy its contents and save them into a ZAUTHENTICATE.mac routine in
the %SYS namespace.

2. Review the comments in the system-supplied code for ZAUTHENTICATE. These provide important guidance about
how to implement a custom version of the routine.

3. Edit the routine by adding custom authentication code and any desired code to set user account characteristics.

CAUTION: Because Caché places no constraints on the authentication code in ZAUTHENTICATE, the application
programmer is responsible for ensuring that this code is sufficiently secure.

15.2.2 Signature

The signature of ZAUTHENTICATE is:

ZAUTHENTICATE(ServiceName, Namespace, Username, Password, Credentials,
 Properties) PUBLIC {

 // authentication code
 // optional code to specify user account properties and roles
}

where:

• ServiceName — A string representing the name of the service through which the user is connecting to Caché, such as
%Service_Console or %Service_CSP.

• Namespace — A string representing the namespace on the Caché server to which a connection is being established.
This is for use with the %Service_Bindings service, such as with Studio or ODBC.

• Username — A string representing the name of the account entered by the user that is to be validated by the routine’s
code.

• Password — A string representing the password entered by the user that is to be validated.

• Credentials — Passed by reference. Not implemented in this version of Caché.

• Properties — Passed by reference. An array of returned values that defines characteristics of the account named by
Username.

When Caché calls ZAUTHENTICATE, it has values for these arguments and supplies them to the routine.

15.2.3 Authentication Code

The content of authentication code is application specific. If authentication succeeds, the routine should return the $$$OK
macro; otherwise, it should return an error code. See the section “Return Value and Error Messages” for more information
on return values.

CAUTION: Because Caché does not and cannot place any constraints on the authentication code in ZAUTHENTICATE,
the application programmer is responsible for ensuring that this code is sufficiently secure.

Caché Security Administration Guide 213

Creating Delegated (User-Defined) Authentication Code

15.2.3.1 The GetCredentials Entry Point

ZAUTHENTICATE includes an GetCredentials entry point. This entry point is called whenever delegated authentication
is enabled for a service, and is called before the user is prompted for a username and password. Instead of getting a username
and password from the user, code in the function (created by the application developer) specifies the username and password.
The username and password returned are then authenticated in the normal manner as if the user entered them. A possible
use of this mechanism is to provide a username and password within the entry point and then, within authentication code,
to $roles for the process.

The username and password returned from this entry point can be obtained by any mechanism that the application developer
chooses. They can come from a global, an external DLL or LDAP call, or simply set within the routine. The application
developer could even provide code to prompt for the username and password, such as in a terminal connection or with a
custom CSP login page.

If the entry point returns an error status, then the error is logged in the audit log, and the user is denied access to the system;
the one exception to this is if the error status $SYSTEM.Status.Error($$$GetCredentialsFailed) is returned,
in which the normal username/password prompting proceeds.

In the following example of a GetCredentials entry point, the code performs different actions for different services:

• For %Service_Console, it does not prompt the user for any information and sets the process’s username and password
to _SYSTEM and SYS, respectively.

• For %Service_Bindings, it forces the user to provide a username and password.

• For web applications, it checks if the application in use is the /csp/samples application; if it is that application, it
sets the username and password to AdminUser and Test. For all other web applications, it denies access.

• For any other service, it denies access.

Finally, the Error entry point performs clean-up as necessary.

The code is:

GetCredentials(ServiceName,Namespace,Username,Password,Credentials) Public {

 // For console sessions, authenticate as _SYSTEM.
 If ServiceName="%Service_Console" {
 Set Username="_SYSTEM"
 Set Password="SYS"
 Quit $SYSTEM.Status.OK()
 }

 // For the CSP samples application, authenticate as AdminUser.
 If $isobject($get(%request)) {
 If %request.Application="/csp/samples/" {
 Set Username="AdminUser"
 Set Password="Test"
 Quit $System.Status.OK()
 }
 }

 // For bindings connections, use regular prompting.
 If ServiceName="%Service_Bindings" {
 Quit $SYSTEM.Status.Error($$$GetCredentialsFailed)
 }

 // For all other connections, deny access.
 Quit $SYSTEM.Status.Error($$$AccessDenied)
}

For more details, see the comments for this entry point in ZAUTHENTICATE.mac.

15.2.3.2 The SendTwoFactorToken Entry Point

ZAUTHENTICATE includes an SendTwoFactorToken entry point. This entry point is for use with two-factor authenti-
cation. If it is defined and the Caché instance has two-factor authentication enabled, then you can override the default system

214 Caché Security Administration Guide

Using Delegated Authentication

setting for the format of the message and token that the instance sends to the user’s mobile phone. This allows for messages
that can vary by application even on the same Caché instance.

For more details and an example of how to use this entry point, see this entry point in the sample ZAUTHENTICATE.mac.

15.2.4 Setting Values for Roles and Other User Characteristics

If initial authentication succeeds, ZAUTHENTICATE can establish the roles and other characteristics for the authenticated
user. For subsequent logins, ZAUTHENTICATE can update these elements of the user record.

For this to happen, code in ZAUTHENTICATE sets the values of the Properties array. (Properties is passed by reference
to ZAUTHENTICATE.) Typically, the source for the values being set is a repository of user information that is available
to ZAUTHENTICATE.

15.2.4.1 User Properties

The elements in the Properties array are:

• Properties("Comment") — Any text

• Properties("FullName") — The first and last name of the user

• Properties("NameSpace") — The default namespace for a Terminal login

• Properties("Roles") — The comma-separated list of roles that the user holds in Caché

• Properties("Routine") — The routine that is executed for a Terminal login

• Properties("Password") — The user’s password

• Properties("Username") — The user’s username

• Properties("PhoneNumber") — The user’s mobile phone number, for use with two-factor authentication

• Properties("PhoneProvider") — The user’s mobile phone’s service provider, for use with two-factor authentication

Each of these elements is described in more detail in one of the following sections.

Note: The value of each element in the properties array determines the value of its associated property for the user being
authenticated. It is not possible to use only a subset of the properties or to manipulate their values after authenti-
cation.

Comment
If ZAUTHENTICATE sets the value of Properties("Comment"), then that string becomes the value of the user account’s
Comment property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Comment for the user account is a null string and the relevant
field in the Management Portal then holds no content.

FullName
If ZAUTHENTICATE sets the value of Properties("FullName"), then that string becomes the value of the user account’s
Full name property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Full name for the user account is a null string and the relevant
field in the Management Portal then holds no content.

NameSpace
If ZAUTHENTICATE sets the value of Properties("Namespace"), then that string becomes the value of the user account’s
Startup Namespace property in Caché. (This property is described in the section “Properties of Users,” in the “Users”
chapter.) If no value is passed back to the calling routine, then the value of Startup Namespace for the user account is a
null string and the relevant field in the Management Portal then holds no content.

Caché Security Administration Guide 215

Creating Delegated (User-Defined) Authentication Code

Once connected to Caché, the value of Startup Namespace (hence, that of Properties("Namespace")) determines the initial
namespace for any user authenticated for local access (such as for Console, Terminal, or Telnet). If Startup Namespace
has no value (since Properties("Namespace") has no value), then the initial namespace for any user authenticated for local
access is determined as follows:

1. If the USER namespace exists, that is the initial namespace.

2. If the USER namespace does not exist, the initial namespace is the %SYS namespace.

Note: If the user does not have the appropriate privileges for the initial namespace, access is denied.

Password
If ZAUTHENTICATE sets the value of Properties("Password"), then that string becomes the value of the user account’s
Password property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Password for the user account is a null string and the relevant
field in the Management Portal then holds no content.

Roles
If ZAUTHENTICATE sets the value of Properties("Roles"), then that string specifies the Roles to which a user is assigned;
this value is a string containing a comma-delimited list of roles. If no value is passed back to the calling routine, then the
value of Roles for the user account is a null string and the relevant field in the Management Portal then holds no content.
Information about a user’s roles is available on the Roles tab of a user’s Edit User page.

If any roles returned in Properties("Roles") are not defined, then the user is not assigned to the role.

Hence, the logged-in user is assigned to roles as follows:

• If a role is listed in Properties("Roles") and is defined by the Caché instance, then the user is assigned to the role.

• If a role is listed in Properties("Roles") and is not defined by the Caché instance, then the user is not assigned to the
role.

• A user is always assigned to those roles associated with the _PUBLIC user. A user also has access to all public resources.
For information on the _PUBLIC user, see the section “The _PUBLIC Account” in the “Users” chapter; for information
on public resources, see the section “Services and Their Resources” in the “Resources” chapter.

Routine
If ZAUTHENTICATE sets the value of Properties("Routine"), then that string becomes the value of the user account’s
Startup Tag^Routine property in Caché. (This property is described in the section “Properties of Users,” in the “Users”
chapter.) If no value is passed back to the calling routine, then the value of Startup Tag^Routine for the user account is a
null string and the relevant field in the Management Portal then holds no content.

If Properties("Routine") has a value, then this value specifies the routine to execute automatically following login on a
terminal-type service (such as for Console, Terminal, or Telnet). If Properties("Routine") has no value, then login starts
the Terminal session in programmer mode.

Username
If the username property is returned by this function, then that username is written to the Caché database. This gives the
user a chance to normalize what was entered by the user at the username prompt. Note that the normalized username must
only differ by case. If the Username property is not passed back to the calling routine, then the username entered by the
user at the username prompt will be used as the username written to the Caché security databases (that is, it is not normalized).

If ZAUTHENTICATE sets the value of Properties("Username"), then that string becomes the value of the user account’s
Name property in Caché. (This property is described in the section “Properties of Users”, in the “Users” chapter.) This
provides the application programmer with an opportunity to normalize content provided by the end-user at the login prompt.

216 Caché Security Administration Guide

Using Delegated Authentication

If there is no explicit call that passes the value of Properties("Username") back to the calling routine, then there is no nor-
malization and the value entered by the end-user at the prompt serves as the value of the user account’s Name property
without any modification.

PhoneNumber and PhoneProvider
These are properties associated with two-factor authentication.

If ZAUTHENTICATE sets the value of Properties("PhoneNumber") and Properties("PhoneProvider"), then these then
these are written to the Caché database for the user as the user’s mobile phone number and mobile phone service provider.
If these are not passed back to the calling routine, then the phone number and service provider written to the Cache security
database are a null string. Hence, to use two-factor authentication with delegated authentication, you must supply both of
these.

15.2.4.2 The User Information Repository

ZAUTHENTICATE can refer to any kind of repository of user information, such as a global or an external file. It is up
to the code in the routine to set any external properties in the Properties array so that the authenticated user can be created
or updated with this information. For example, while a repository can include information such as roles and namespaces,
ZAUTHENTICATE code must make that information available to Caché.

If information in the repository changes, this information is only propagated back into the Caché user information if there
is code in ZAUTHENTICATE to perform this action. Also, if there is such code, changes to users’ roles must occur in
the repository; if you change a user’s roles during a session, the change does not become effective until the next login, at
which point the user’s roles are re-set by ZAUTHENTICATE.

15.2.5 Return Value and Error Messages

The routine returns one of the following values:

• Success — $$$OK. This indicates that username/password combination was successfully authenticated

• Failure — $SYSTEM.Status.Error($$$ERRORMESSAGE). This indicates that authentication failed.

ZAUTHENTICATE can return system-defined or application-specific error messages. All these messages use the Error
method of the %SYSTEM.Status class. This method is invoked as $SYSTEM.Status.Error and takes one or two arguments,
depending on the error condition.

The available system-defined error messages are:

• $SYSTEM.Status.Error($$$AccessDenied) — Error message of “Access Denied”

• $SYSTEM.Status.Error($$$InvalidUsernameOrPassword) — Error message of “Invalid Username or Password”

• $SYSTEM.Status.Error($$$UserNotAuthorizedOnSystem,Username) — Error message of “User Username is
not authorized”

• $SYSTEM.Status.Error($$$UserAccountIsDisabled,Username) — Error message of “User Username account is
disabled”

• $SYSTEM.Status.Error($$$UserInvalidUsernameOrPassword,Username) — Error message of “User Username
invalid name or password”

• $SYSTEM.Status.Error($$$UserLoginTimeout) — Error message of “Login timeout”

• $SYSTEM.Status.Error($$$UserCTRLC) — Error message of “Login aborted”

• $SYSTEM.Status.Error($$$UserDoesNotExist,Username) — Error message of “User Username does not exist”

• $SYSTEM.Status.Error($$$UserInvalid,Username) — Error message of “Username Username is invalid”

• $SYSTEM.Status.Error($$$PasswordChangeRequired) — Error message of “Password change required”

Caché Security Administration Guide 217

Creating Delegated (User-Defined) Authentication Code

• $SYSTEM.Status.Error($$$UserAccountIsExpired,Username) — Error message of “User Username account has
expired”

• $SYSTEM.Status.Error($$$UserAccountIsInactive,Username) — Error message of “User Username account is
inactive”

• $SYSTEM.Status.Error($$$UserInvalidPassword) — Error message of “Invalid password”

• $SYSTEM.Status.Error($$$ServiceDisabled,ServiceName) — Error message of “Logins for Service Servicename
are disabled”

• $SYSTEM.Status.Error($$$ServiceLoginsDisabled) — Error message of “Logins are disabled”

• $SYSTEM.Status.Error($$$ServiceNotAuthorized,ServiceName) — Error message of “User not authorized for
service”

To generate a custom message, use the $SYSTEM.Status.Error() method, passing it the $$$GeneralError macro and
specifying any custom text as the second argument. For example:

$SYSTEM.Status.Error($$$GeneralError,"Any text here")

Note that when an error message is returned to the caller, it is logged in the audit database (if LoginFailure event auditing
is turned on). However, the only error message the user sees is $SYSTEM.Status.Error($$$AccessDenied). However, the
user also sees the message for the $$$PasswordChangeRequired error. Return this error if you want the user to change
from the current to a new password.

15.3 Setting Up Delegated Authentication
Once you have created a ZAUTHENTICATE routine to perform authentication (and, optionally, authorization tasks), the
next step is to enable it for the instance’s relevant services or applications. This procedure is:

1. Enable delegated authentication for entire instance. On the Authentication/CSP Session Options page (System Admin-

istration > Security > System Security > Authentication/CSP Session Options), select Allow Delegated authentication

and click Save.

With delegated authentication enabled for the instance, a Delegated check box appears on the Edit Service page for
relevant services and the Edit Web Application page for those applications.

2. Enable delegated authenticated for services and applications, as appropriate.

The following services support delegated authentication:

• %Service_Bindings

• %Service_CSP

• %Service_CacheDirect

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Login

• %Service_Terminal

• %Service_Telnet

218 Caché Security Administration Guide

Using Delegated Authentication

These fall into several categories of access modes:

• Local access —

%Service_CallIn, %Service_ComPort, %Service_Console, %Service_Login, %Service_Terminal,
%Service_Telnet

To use delegated authentication with local connections, enable it for the service.

• Client/Server access —

%Service_Bindings, %Service_CacheDirect,

To use delegated authentication with client/server connections, enable it for the service.

• CSP access —

%Service_CSP

To use delegated authentication with web-based connections (through CSP or Zen), enable it for the web application.
You may also enable it for the CSP gateway by enabling the service %Service_CSP

15.4 After Delegated Authentication Succeeds
Once the user has authenticated, two important topics are:

• The State of the System

• Changing Passwords

15.4.1 The State of the System

Any user who is initially authenticated using delegated authentication is listed in the table of users on the Users page
(System Administration > Security > Users) as having a type of “Delegated user” . If a system administrator has explicitly
created a user through the Management Portal (or using any other native Caché facility), that user has a type of “Caché
password user”. If a user attempts to log in using delegated authentication and is successfully authenticated, Caché determines
that this user already exists as a Caché user — not a Delegated user — and so login fails.

15.4.2 Changing Passwords

The ZAUTHENTICATE routine also includes an entry point, ChangePassword, to include code to change a user’s
password. The signature of this entry point is:

ChangePassword(Username,NewPassword,OldPassword,Status) Public {}

where

• Username is a string specifying the user whose password is being changed.

• NewPassword is a string specifying the new value of the user’s password.

• OldPassword is a string specifying the old value of the user’s password.

• Status (passed by reference) receives a Caché status value indicating either that the password change has been successful
or specifying the error that caused the routine to fail.

Caché Security Administration Guide 219

After Delegated Authentication Succeeds

16
Using LDAP

Caché provides support for authentication and authorization using LDAP, the Lightweight Directory Access Protocol.
LDAP systems have a central repository of user information, from which Caché retrieves information. For example, on
Windows, a domain controller using Active Directory is an LDAP server. This means that an instance of Caché running
on this type of Windows domain can use LDAP for its authentication; if an instance is using LDAP authentication, it then
also has the option of using LDAP authorization.

This chapter covers the following topics:

• Overview of Using LDAP with Caché

• Configuring Caché to Use an LDAP Server

• Setting Up LDAP-Based Authentication

• After Authentication — The State of the System

• Configuring the LDAP Server to Use Registered LDAP Properties

• Using LDAP Authorization with OS-Based Authentication

A Note on Securing Outbound LDAP Connections
This chapter describes using LDAP for authentication and authorization when connecting to Caché. If you are establishing
an outbound connection from Caché to an LDAP server and need to secure the connection, Caché includes support for TLS
for these purposes. This is described in the class documentation for %SYS.LDAP, in the content for the Init method.

16.1 Overview of Using LDAP with Caché
The procedure for configuring a Caché service or application to use an existing LDAP server for authentication (and optional
authorization) is as follows:

1. Configure the LDAP server to use the registered LDAP properties.

2. On the LDAP Options page, configure Caché to use the LDAP server. This includes specifying the names of LDAP
user properties to be used for setting the values of properties of Caché users.

3. Set up Caché to use LDAP. This involves enabling LDAP for the entire instance of Caché and then enabling it for the
relevant services or applications.

Caché Security Administration Guide 221

Note: This chapter primarily discusses the use of LDAP for both authentication and authorization. For information on
using OS-based authentication in conjunction with LDAP authorization, see the Using LDAP Authorization with
OS-Based Authentication section.

When a user attempts to authenticate to an instance of Caché that uses LDAP authentication, the process is:

1. The user is prompted for a user name and password. This user, who is trying to authenticate, is known as the “target
user.”

2. Caché establishes a connection to the LDAP server using the values specified for the LDAP username to use for
searches and LDAP username password. This user, who has privileges to search the LDAP database so that Caché can
retrieve information, is known as the “search user.”

3. Once the connection is established, the next step is to look up the user in the LDAP database using the LDAP Unique
search attribute.

4. If Caché locates the target user in the LDAP database, it retrieves the attributes associated with the user, such as the
user’s initial roles and namespace.

5. Caché then attempts to authenticate the user to the LDAP database, using the user name and password provided in step
1.

6. If authentication succeeds, the user can then interact with Caché based on the privileges associated with the user’s
roles and any publicly available resources. The user’s properties are displayed read-only in the Management Portal
and are not editable from within Caché (since all the information is coming from outside Caché).

Notes on Using LDAP with Caché
Note the following points when using LDAP with Caché:

• If you have more complex authentication and authorization requirements, it is also possible to use delegated authenti-
cation to authenticate using the LDAP server. This requires that you use calls to the %SYS.LDAP class as part of the
custom authentication code in the ZAUTHENTICATE routine. For sample code that performs these actions, see the
LDAP.mac routine in the SAMPLES namespace. For more details about delegated authentication and the
ZAUTHENTICATE routine, see the “Delegated Authentication” chapter.

• Caché supports LDAP version 3 protocols. Earlier LDAP protocols are not supported.

• If you using the Caché LDAP APIs with certificates on UNIX® and need detailed debugging information, you may
wish to use the ldapsearch program that is part of the OpenLDAP package. Once you have corrected any problems
with certificates, the Caché LDAP APIs should also be corrected. The ldapsearch program may also be useful for
debugging other LDAP connection problems.

• If you need to authenticate to LDAP or use Caché authentication after collecting credentials through another mechanism,
call $SYSTEM.Security.Login with those credentials to authenticate the user.

16.1.1 Using LDAP Authorization

In addition to performing authentication with LDAP, Caché supports LDAP authorization. To perform LDAP authorization
with Caché, InterSystems recommends the use of LDAP groups.

LDAP groups are a way to assign privileges to users using an LDAP or Active Directory server. The names of groups are
specified by the schema on the local LDAP server; typically, the local LDAP administrator defines these names (though
Caché uses the predefined name structure described below). Each group has a distinguished name (DN) that uniquely
identifies it. You can then assign each user to an LDAP group, and that group then determines the user’s access to Caché
roles, routines, and namespaces. (Note that when defining these groups on your LDAP server, they should be created as
security groups, and not distribution groups.)

222 Caché Security Administration Guide

Using LDAP

Caché´ supports three predefined structures for group names. Each of these uses a prefix for the group, where the prefixes
are intersystems-Role-, intersystems-Namespace-, and intersystems-Routine-, so conforming group
names are of the form intersystems-Role-role-name, intersystems-Namespace-namespace-name, and
intersystems-Routine-routine-name, and these names specify groups for initial roles, an initial namespace, and an
initial routine, respectively. To use this feature, the names must follow this structure. (Names are not case-sensitive.)

Note: A user can only belong to one routine group and one namespace group.

For example, a user might have groups defined such as:

CN=intersystems-Role-Admin,OU=Groups,OU=Brasilia,DC=mysite,DC=com
CN=intersystems-Role-%Operator,OU=Groups,OU=Brasilia,DC=mysite,DC=com
CN=intersystems-Namespace-USER,OU=Groups,OU=Brasilia,DC=mysite,DC=com
CN=intersystems-Routine-INTEGRIT,OU=Groups,OU=Brasilia,DC=mysite,DC=com

In this case, after logging in, the user would get the roles Admin and %Operator, with a default namespace of USER,
and a default routine of INTEGRIT.

If the user does not belong to any group with a name in this form, then Caché sets the value of that attribute for the user to
""; hence, if the user is not a member of a group that defines intersystems-Routine- as the initial portion of its name,
then Caché sets the startup routine for that user to "" (and Caché places the user in programmer mode). If a user is assigned
to a group that specifies a role for the user, but that role is not defined on the instance where they are logging in, then they
do not have that role on that instance.

For example, suppose that a user belongs to the following groups:

intersystems-Role-Admin
intersystems-Role-Application1
intersystems-Role-Application2

If the role Application2 is not defined on the system they are logging into, Caché only assigns the Admin and
Application1 roles.

Note: While InterSystems recommends the use of LDAP groups rather than the use of user-defined attributes for man-
aging role, routine, and namespace definitions, Caché does support the use of user-defined attributes.

16.1.1.1 Setting Up a Role Required for Login

If you are using LDAP authentication or OS-based LDAP authorization — especially if your organization has multiple
instances of Caché, then InterSystems strongly recommends that each instance have a role that is required for connecting
to it:

1. For each instance, create the role that is required for login. Do this according to the instructions in the “Creating Roles”
section of the “Roles” chapter.

2. For each instance, enter the newly created role in the Role required to connect to this system field on the System

Security Settings page (System Administration > Security > System Security > System-wide Security Parameters).

3. Add an LDAP group with a name of form intersystems-Role-rolename that includes the name of the newly
created role.

This mechanism prevents users from accessing instances where they are insufficiently privileged. Otherwise, a user who
holds various roles on one instance may then have those same roles on an instance where this is not intended.

Important: If the Role required to connect to this system field is left blank, a user with sufficient general privileges
can connect and gain access to a system that uses OS-based LDAP authorization, provided that they had
enough roles assigned to them to log in.

Caché Security Administration Guide 223

Overview of Using LDAP with Caché

For example, suppose there are two systems, TEST and PRODUCTION. To secure each of these productions, create a role
on TEST called TESTACCESS and a role on PRODUCTION called PRODUCTIONACCESS. On TEST, set the value of the
Role required to connect to this system field to TESTACCESS; on PRODUCTION, set it to PRODUCTIONACCESS. Then, if
a user is only allowed to access the TEST system, assign that user the TESTACCESS role only and do not assign the
PRODUCTIONACCESS role to the user. For users who can access either system, assign them both PRODUCTIONACCESS
and TESTACCESS roles.

16.1.1.2 Using Nested Groups

On Active Directory, LDAP groups include support for what are known as nested groups. A nested group is a group that
is a member of a second group, which means that all the users who are members of the nested group are also members of
the second group. For example, suppose that there are two LDAP groups defined, known as ABC and DEF. You can make
the ABC group a member of the DEF group. This means that if a user is a member of the ABC group, then they are also a
member of the DEF group without explicitly assigning the user to that group.

Note: Depending on the structure and size of the local LDAP database, using nested groups can slow down users’ login
time. Hence, when configuring Caché to use an LDAP server, if you select Search nested Groups for Roles/Rou-

tine/Namespace, this can have an effect on performance: selecting this returns nested groups and has slower logins,
while not selecting it does not return nested groups and is faster.

16.2 Configuring Caché to Use an LDAP Server
This section describes the following topics:

• Specifying Configuration Information for LDAP in Caché

• Specifying a Certificate File on Windows

• Searching the LDAP Database

16.2.1 Specifying Configuration Information for LDAP in Caché

To use LDAP authentication with Caché, the first step is to configure Caché for its interactions with the LDAP server. This
includes information required to:

• Connect to and query the LDAP server

• Retrieve the required information about the user being authenticated

All this information is specified on the Management Portal LDAP Options page (System Administration > Security > System

Security > LDAP Options).

When this page is first displayed, only a single field is visible, the Allow LDAP authentication field. Checking this field
displays all the fields for configuration information for connecting the Caché instance to the LDAP server (false by default).
There are a standard set of fields and there can also be customized fields. When connecting to an LDAP server, Caché
refers to various fields for its information; the end-user can do the same. The fields are:

• LDAP server is a Windows Active Directory server — Windows only. Specifies whether or not the LDAP server is a
Windows Active Directory server (true by default).

• LDAP domain name — Windows only. Specifies the name of the domain where the LDAP server is located. This field
is only editable for a Windows Active Directory server. This field is populated with a value based on the IP address
of the DNS name of the current LDAP server.

224 Caché Security Administration Guide

Using LDAP

• LDAP host names — Specifies the name(s) of the host(s) on which the LDAP server is running. The complexity of
each host name can range from an unqualified host name to fully-qualified host name with a port number; the required
form of the host name(s) depends on the particular configuration. This field is populated with a value based on the IP
address of the DNS name of the current LDAP server.

To specify multiple host names, separate the names by spaces. If the LDAP server is configured to use a particular
port, you can specify it by appending “:portname” to the host name; typical usage is not to specify a port and to let
the LDAP functions use the default port, such as:

ldapserver.example.com
ldapserver.example.com ldapbackup.example.com

• LDAP search information — varies by operating system:

– LDAP username to use for searches — Windows only. The user name provided to the LDAP server to establish
an initial connection and which is used to perform LDAP searches and lookups. This user is also known as the
“search user.”

The search user must have permission to read the entire LDAP database. It is important to ensure that the search
user has uninterrupted access to the LDAP database; for example, to establish this on Windows, set its User cannot
change password and Password never expires attributes and set the value of its Account expires attribute to Never.

For more information on searching the LDAP database, see the section “Searching the LDAP Database.”

– LDAP DN to use for searches — UNIX® only. The Distinguished Name (DN) of the user provided to the LDAP
server to establish an initial connection and which is used to perform LDAP searches and lookups. This user is
also known as the “search user.”

The search user must have permission to read the entire LDAP database. It is also important to ensure that the
search user has uninterrupted access to the LDAP database. For example, the user’s operating-system account
should be set so that:

• The user cannot change the account’s password

• The password never expires

• The account never expires

For example, if the search user is “ ldapsearchuser” , the Distinguished Name might be as follows:

uid=ldapsearchuser,ou=People,dc=example,dc=com

For more information on searching the LDAP database, see the section “Searching the LDAP Database.”

• LDAP username password — Specifies the password associated with account used for the initial connection.

• LDAP Base DN to use for searches — Specifies the point in the directory tree from which searches begin. This typically
consists of domain components, such as DC=intersystems,DC=com.

• LDAP Unique search attribute — Specifies a unique identifying element of each record, which therefore makes it
appropriate for searches. For more information on searching the LDAP database, see the section “Searching the LDAP
Database.”

• Use TLS/SSL encryption for LDAP sessions — Specifies if TLS/SSL encryption protect data being passed between the
Caché server and the LDAP server (false by default).

• TLS/SSL certificate file — UNIX® only. Specifies the location of the file containing any TLS/SSL certificates (in PEM
format) being used to authenticate the server certificate, if needed. For Windows, see “Specifying a Certificate File
on Windows.”

Caché Security Administration Guide 225

Configuring Caché to Use an LDAP Server

• Use LDAP Groups for Roles/Routine/Namespace — Specifies if the user’s roles, routine, and namespace come from
the user’s group memberships (true by default); if not, then they come from the attribute fields of the user’s LDAP
record. Selecting the use of groups enables and disables other fields (see each subsequent field for details).

Note: InterSystems recommends the use of LDAP groups for authorization, rather than LDAP attributes (including
InterSystems registered LDAP properties). If you have existing code or are otherwise required to use registered
properties, see the “Configuring the LDAP Server to Use Registered LDAP Properties” section for details.

• Search nested Groups for Roles/Routine/Namespace (only active if LDAP groups are selected and only relevant for
Active Directory) — Specifies if search returns all a user’s nested groups. See the “Using Nested Groups” section for
more information on nested groups.

• User attribute to retrieve comment attribute — Specifies the attribute whose value is the source for the Comment property
for a user. This property is described in the section Properties of Users, in the “Users” chapter.

• User attribute to retrieve full name from — Specifies the attribute whose value is the source for the Full name property
for a user. This property is described in the section Properties of Users, in the “Users” chapter.

• User attribute to retrieve default namespace (not active if LDAP groups are selected) — Specifies the attribute whose
value is the source for the Startup namespace property for a user. This property of a Caché user is described in the
section Properties of Users, in the “Users” chapter; this LDAP property is described in the section “Registered LDAP
Properties.”

• User attribute to retrieve default routine (not active if LDAP groups are selected) — Specifies the attribute whose value
is the source for the Tag^Routine property for a user. This property of a Caché user is described in the section Properties
of Users, in the “Users” chapter; this LDAP property is described in the section “Registered LDAP Properties.”

• User attribute to retrieve roles (not active if LDAP groups are selected) — Specifies the attribute whose value determines
the roles to which a user is assigned. When creating this attribute, it must be specified as an LDAP multivalued attribute.
For information about a Caché user’s roles, see the Roles tab of a user’s Edit User page; this LDAP property is described
in the section “Registered LDAP Properties.”

• LDAP attributes to retrieve for each user — Specifies any attributes whose values are the source for any application-
specific variables. Application code can then use the Get method of the Security.Users class to return this information.

16.2.2 Specifying a Certificate File on Windows

On Windows, to specify the location of a file containing any TLS/SSL certificates (in PEM format) being used to authenticate
the server certificate to establish a secure LDAP connection, use Microsoft Certificate Services.

Note: Certificates must be installed in the Certificates (Local Computer)\Trusted Root Certification Authorities certificate
store.

16.2.3 Searching the LDAP Database

Once Caché has established a connection to the LDAP server as the search user, the next step is to retrieve information
about the target user. To do this, Caché checks the user name provided at login against values in the LDAP database for
the LDAP Unique search attribute. (The name of this attribute is often “sAMAcccountName” for a Windows LDAP server
and “uid” for a UNIX® LDAP server.)

When looking up a user with the LDAP Unique search attribute, the form of the user name depends on the operating system
of both the Caché instance and the LDAP server:

• When connecting from Windows to Windows, it can simply be login name of the user, such as “ testuser” .

226 Caché Security Administration Guide

Using LDAP

http://www.microsoft.com/technet/prodtechnol/windows2000serv/technologies/iis/maintain/featusability/c06iis.mspx

• For any other type of connection, it must include the full DN (distinguished name) of the user. When connecting from
UNIX® to a Windows LDAP server, this is case-sensitive. For example:

– When connecting from UNIX® to Windows, it might be CN=testuser,OU=Users,OU=Cambridge.

– When connecting from any operating system to UNIX®, it might be uid=testuser,ou=people.

Once Caché has located the user, it retrieves attribute information. It retrieves information about every named attribute in
the Caché LDAP configuration fields (described in “Specifying Configuration Information for LDAP in Caché”), and it
retrieves all values associated with each attribute. Note that Caché retrieves all values associated with all attributes specified
for the user in the Caché LDAP configuration fields; it is not possible to configure it to retrieve only a subset of these.

16.3 Setting Up LDAP-Based Authentication
Once Caché has been configured for use with LDAP, the next step is to enable it for the instance’s relevant services or
applications. This procedure is:

1. Enable LDAP authentication for entire instance:

a. From the Management Portal home page, go to the Authentication/CSP Session Options page (System Administration

> Security > System Security > Authentication/CSP Session Options), select Allow LDAP authentication.

b. On the Authentication Options page, you also have the option of selecting Allow LDAP cache credentials authenti-

cation. If this is selected and Caché is unable to connect to the LDAP server, then Caché uses the copy of the
LDAP credentials that it last cached to authenticate the user. This can be useful if there is a failure in the connection
to the LDAP server or if the LDAP server becomes unavailable.

Note: If a user password has changed on the LDAP server after the last login and Caché uses the LDAP creden-
tials cache for authentication, authentication can only occur with the old password.

c. Click Save to apply the changes.

With LDAP authentication enabled for the instance, an LDAP check box appears on the Edit Service page for relevant
services and the Edit Web Application page for those applications.

2. Enable LDAP authentication for services and applications, as appropriate.

The following services support LDAP authentication:

• %Service_Bindings

• %Service_CSP

• %Service_CacheDirect

• %Service_CallIn

• %Service_ComPort

• %Service_Console

• %Service_Login

• %Service_Terminal

• %Service_Telnet

These fall into several categories of access modes:

Caché Security Administration Guide 227

Setting Up LDAP-Based Authentication

• Local access —

%Service_CallIn, %Service_ComPort, %Service_Console, %Service_Login, %Service_Terminal,
%Service_Telnet

To use LDAP authentication with local connections, enable it for the service.

• Client/Server access —

%Service_Bindings, %Service_CacheDirect,

To use LDAP authentication with client/server connections, enable it for the service.

• Web access —

%Service_CSP

To use LDAP authentication with web connections (through CSP or Zen), enable it for the web application. Enabling
it for the service also allows the CSP Gateway itself to authenticate using LDAP authentication.

16.4 After Authentication — The State of the System
Any user who is initially authenticated using LDAP authentication is listed in the table of users on the Users page (System

Administration > Security > Users) as having a Type of “LDAP user” . If a system administrator has explicitly created a
user through the Management Portal (or using any other native Caché facility), that user has a type of “Caché password
user” . If a user attempts to log in using LDAP authentication and is successfully authenticated, Caché determines that this
user already exists as a Caché user — not an LDAP user — and so login fails.

If you wish to have any LDAP attributes of the current user stored on the Caché server, specify these in the LDAP attributes
to retrieve for each user field of the LDAP Options page (System Administration > Security > System Security > LDAP

Options). Your application can then use the Get method of the Security.Users class to return this information.

16.5 Configuring the LDAP Server to Use Registered LDAP
Properties
Important: InterSystems recommends using LDAP groups for LDAP authorization.

InterSystems has registered three field names that are available for use with an LDAP schema to store authorization infor-
mation. Each has its own dedicated purpose:

• intersystems-Namespace — The name of the user’s default namespace (LDAP OID 1.2.840.113556.1.8000.2448.2.1).

• intersystems-Routine — The name of the user’s default routine (LDAP OID 1.2.840.113556.1.8000.2448.2.2).

• intersystems-Roles — The name of the user’s login roles (LDAP OID 1.2.840.113556.1.8000.2448.2.3).

To use these attributes, the procedure on the LDAP server is:

1. Enable the attributes for use. To do this, modify the value of objectClass field in the LDAP schema by appending the
intersystemsAccount value to its list of values. (intersystemsAccount has an LDAP OID of
1.2.840.113556.1.8000.2448.1.1.)

2. Add the fields (as few or as many as required) to the schema.

228 Caché Security Administration Guide

Using LDAP

3. Populate their values for the entries in the LDAP database.

Note: It is not required to use the registered LDAP schema names. In fact, you may already use existing attributes from
your LDAP schema.

For example, with a UNIX® LDAP server, to define the schema for using LDAP authentication with Caché, use the content
that appears the following definitions:

Attribute Type Definitions

attributetype (1.2.840.113556.1.8000.2448.2.1 NAME 'intersystems-Namespace'
 DESC 'InterSystems Namespace'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.5 SINGLE-VALUE)

attributetype (1.2.840.113556.1.8000.2448.2.2 NAME 'intersystems-Routine'
 DESC 'InterSystems Routine'
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15{128} SINGLE-VALUE)

attributetype (1.2.840.113556.1.8000.2448.2.3 NAME 'intersystems-Roles'
 DESC 'InterSystems Roles'
 EQUALITY caseIgnoreMatch
 SYNTAX 1.3.6.1.4.1.1466.115.121.1.15)

Object Class Definitions

objectclass (1.2.840.113556.1.8000.2448.1.1 NAME 'intersystemsAccount' SUP top AUXILIARY
 DESC 'Abstraction of an account with InterSystems attributes'
 MAY (intersystems-Routine $ intersystems-Namespace $ intersystems-Roles))

This content goes to two locations:

• Place it in the intersystems.schema file in the /etc/openldap/schema/ directory.

• Include it, along with any other content, in the /etc/openldap/slapd.conf file.

16.6 Using LDAP Authorization with OS-Based
Authentication
Caché allows you to configure your system to support operating-system–based authentication, and then to perform autho-
rization via LDAP. This is known as Operating System LDAP authorization. It allows a user authenticate to Caché using
credentials from the operating system login and to have the appropriate roles in Caché by having them automatically
retrieved from an LDAP server. Operating system LDAP authorization is available in the Terminal on UNIX®, Linux, and
MacOS, and in the Caché Console on Windows.

Caché Security Administration Guide 229

Using LDAP Authorization with OS-Based Authentication

17
Using Delegated Authorization

Caché supports the use of user-defined authorization code. This is known as delegated authorization. Topics in this chapter
include:

• Overview of Delegated Authorization

• Creating Delegated (User-Defined) Authorization Code

• Configuring an Instance to Use Delegated Authorization

• After Authorization — The State of the System

17.1 Overview of Delegated Authorization
Delegated authorization allows administrators to implement custom mechanisms to replace the role-assignment activities
that are part of Caché security. For example, user-defined authorization code might look up a user’s roles in an external
database and provide that information to Caché.

To use delegated authorization, there are the following steps:

1. Creating Delegated (User-defined) Authorization Code in the ZAUTHORIZE routine.

2. Configuring an Instance to Use Delegated Authorization for the Caché instance.

Note: Delegated authorization is only supported with Kerberos and Operating-System–based authentication.

Interactions between Delegated Authentication and Delegated Authorization
Delegated authorization through ZAUTHORIZE.mac is not supported for use with delegated authentication. The routine
for delegated authentication (ZAUTHENTICATE, which is described in the chapter “Using Delegated Authentication”)
provides support for authorization. When using ZAUTHENTICATE, you have the option to segregate authentication and
authorization code.

17.2 Creating Delegated (User-defined) Authorization
Code
Topics associated with creating delegated authorization code include:

Caché Security Administration Guide 231

• Working from the ZAUTHORIZE.mac Template

• ZAUTHORIZE Signature

• Authorization Code with ZAUTHORIZE

• ZAUTHORIZE Return Value and Error Messages

17.2.1 Working from the ZAUTHORIZE.mac Template

A system-supplied copy of the ZAUTHORIZE routine is available in the SAMPLES namespace in the routine
ZAUTHORIZE.mac for instances with the manager utility source code installed. To install the manager utility source code,
select an installation type of Development, Server, or a Custom installation that includes the Caché Database Engine.

To create your own ZAUTHORIZE.mac:

1. To use ZAUTHORIZE.mac as a template, copy its contents and save them into a ZAUTHORIZE.mac routine in the %SYS

namespace.

2. Review the comments in the system-supplied code for ZAUTHORIZE. These provide important guidance about how
to implement a custom version of the routine.

3. Edit the routine by adding custom authorization code and any desired code to set user account characteristics.

CAUTION: Because Caché places no constraints on the authorization code in ZAUTHORIZE, the application pro-
grammer is responsible for ensuring that this code is sufficiently secure.

Upgrading Delegated Authorization Code
Before upgrading to a new version of Caché, check ZAUTHORIZE.mac to determine if your current authorization code
needs any changes to support new functionality.

17.2.2 ZAUTHORIZE Signature

When configured for delegated authorization, the system automatically calls ZAUTHORIZE after authentication occurs.
Caché supplies values for the parameters defined in the ZAUTHORIZE signature as necessary. The signature of
ZAUTHORIZE is:

ZAUTHORIZE(ServiceName, Namespace, Username, Password,
 Credentials, Properties) PUBLIC {

 // authorization code
 // optional code to specify user account properties and roles
}

where:

• ServiceName — A string specifying the name of the service through which the user is connecting to Caché, such as
%Service_Console or %Service_CSP.

• Namespace — A string specifying the namespace on the Caché server to which a connection is being established. This
is for use only with %Service_Bindings, such as connections for Studio or ODBC; for any other service, the value
should be "" (the empty quoted string).

• Username — A string specifying the user whose privileges are being determined.

• Password — A string specifying the password associated with account in use. This is for use only with the Kerberos
K5API authentication mechanism; for any other mechanism, the value should be "" (the empty quoted string).

• Credentials — Passed by reference. Not implemented in this version of Caché.

232 Caché Security Administration Guide

Using Delegated Authorization

• Properties — Passed by reference. An array of returned values that specifies characteristics of the account named by
Username. For more information, see “ZAUTHORIZE and User Properties.”

17.2.3 Authorization Code with ZAUTHORIZE

The purpose of ZAUTHORIZE is to establish or update the roles and other characteristics for the authenticated user. The
content of authorization code is application-specific. It can include any user-written ObjectScript code, class method, or
$ZF callout.

ZAUTHORIZE specifies role information by setting the values of the Properties array, which is passed by reference to
ZAUTHORIZE. Typically, the source for the values being set is a repository of user information that is available to
ZAUTHORIZE.

CAUTION: Because Caché does not and cannot place any constraints on the authorization code in ZAUTHORIZE,
the application programmer is responsible for ensuring that this code is sufficiently secure.

17.2.3.1 ZAUTHORIZE and User Properties

Elements of the Properties array specify values of attributes associated with the user specified by the Username parameter.
Typically, code within ZAUTHORIZE sets values for these elements. The elements in the Properties array are:

• Properties("Comment") — Any text.

• Properties("FullName") — The first and last name of the user.

• Properties("NameSpace") — The default namespace for a Terminal login.

• Properties("Roles") — The comma-separated list of roles that the user holds in Caché.

• Properties("Routine") — The routine that is executed for a Terminal login. A value of "" specifies that the Terminal
run in programmer mode.

• Properties("Password") — The user’s password.

• Properties("Username") — The user’s username.

Each of these elements is described in more detail in one of the following sections.

Note: It is not possible to manipulate the value of any member of the Properties array after authorization.

Comment
If ZAUTHORIZE returns a value for Properties("Comment"), then that string becomes the value of the user account’s
Comment property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Comment for the user account is a null string and the relevant
field in the Management Portal holds no content.

FullName
If ZAUTHORIZE returns a value for Properties("FullName"), then that string becomes the value of the user account’s
Full name property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Full name for the user account is a null string and the relevant
field in the Management Portal holds no content.

NameSpace
If ZAUTHORIZE sets the value of Properties("Namespace"), then that string becomes the value of the user account’s
Startup Namespace property in Caché. (This property is described in the section “Properties of Users,” in the “Users”

Caché Security Administration Guide 233

Creating Delegated (User-defined) Authorization Code

chapter.) If no value is passed back to the calling routine, then the value of Startup Namespace for the user account is a
null string and the relevant field in the Management Portal holds no content.

Once connected to Caché, the value of Startup Namespace — as specified by the value of Properties("Namespace") —
determines the initial namespace for any user authenticated for local access (such as for Console, Terminal, or Telnet). If
Startup Namespace has no value, then the initial namespace for any user authenticated for local access is determined as
follows:

1. If the USER namespace exists, that is the initial namespace.

2. If the USER namespace does not exist, the initial namespace is the %SYS namespace.

Note: If the user does not have the appropriate privileges for the initial namespace, access is denied.

Password
If ZAUTHORIZE sets the value of Properties("Password"), then that string becomes the value of the user account’s
Password property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.) If
no value is passed back to the calling routine, then the value of Password for the user account is a null string and the relevant
field in the Management Portal then holds no content.

If ZAUTHORIZE returns a password, this allows the user to log into the system via Password authentication if it is enabled.
This is a possible mechanism to help migrate from delegated authentication to Password authentication, though with the
usual cautions associated with the use of multiple authentication mechanisms; see “Cascading Authentication” in the
Authentication chapter for more details.

Roles
If ZAUTHORIZE sets the value of Properties("Roles"), then that string specifies the Roles to which a user is assigned;
this value is a string containing a comma-delimited list of roles. If no value is passed back to the calling routine, then there
are no roles associated with the user account and the Management Portal indicates this. Information about a user’s roles is
available on the Roles tab of a user’s Edit User page and a user’s profile.

If any roles returned in Properties("Roles") are not defined, then the user is not assigned to the role.

Hence, the logged-in user is assigned to roles as follows:

• If a role is listed in Properties("Roles") and is defined by the Caché instance, then the user is assigned to the role.

• If a role is listed in Properties("Roles") and is not defined by the Caché instance, then the user is not assigned to the
role.

• A user is always assigned to those roles associated with the _PUBLIC user. A user also has access to all public resources.
For information on the _PUBLIC user, see the section “The _PUBLIC Account” in the “Users” chapter; for information
on public resources, see the section “Services and Their Resources” in the “Resources” chapter.

Routine
If ZAUTHORIZE sets the value of Properties("Routine"), then that string becomes the value of the user account’s Startup
Tag^Routine property in Caché. (This property is described in the section “Properties of Users,” in the “Users” chapter.)
If no value is passed back to the calling routine, then the value of Startup Tag^Routine for the user account is a null string
and the relevant field in the Management Portal then holds no content.

If Properties("Routine") has a value, then this value specifies the routine to execute automatically following login on a
terminal-type service (such as Console, Terminal, or Telnet). If Properties("Routine") has no value or a value of "", then
login starts the Terminal session in programmer mode, subject to whether they have the privilege to access programmer
mode or not.

234 Caché Security Administration Guide

Using Delegated Authorization

Username
If ZAUTHORIZE sets the value of Properties("Username"), then that string becomes the value of the user account’s
Name property in Caché. (This property is described in the section “Properties of Users”, in the “Users” chapter.) This
provides the application programmer with an opportunity to normalize content provided by the end-user at the login prompt
(while ensuring that the normalized username only differ by case).

If there is no explicit call that passes the value of Properties("Username") back to the calling routine, then there is no nor-
malization and the value entered by the end-user at the prompt serves as the value of the user account’s Name property
without any modification.

17.2.3.2 The User Information Repository

ZAUTHORIZE can refer to any kind of repository of user information, such as a global or an external file. It is up to the
code in the routine to set any external properties in the Properties array so that the authenticated user can be created or
updated with this information. For example, while a repository can include information such as roles and namespaces,
ZAUTHORIZE code must make that information available to Caché.

If information in the repository changes, this information is only propagated back into the Caché user information if there
is code in ZAUTHORIZE to perform this action. Also, if there is such code, changes to users’ roles must occur in the
repository; if you change a user’s roles during a session, the change does not become effective until the next login, at which
point the user’s roles are reset by ZAUTHORIZE.

17.2.4 ZAUTHORIZE Return Value and Error Messages

The routine returns one of the following values:

• Success — $SYSTEM.Status.OK(). This indicates that ZAUTHORIZE has successfully executed. Depending on
the code in the routine, this can indicate successful authentication of the user associated with Username and Password,
successful authorization of the user associated Username, or both.

• Failure — $SYSTEM.Status.Error($$$ERRORMESSAGE). This indicates that authorization failed. When
ZAUTHORIZE returns an error message, it appears in the audit log if the LoginFailure event auditing is enabled; the
end-user only sees the $SYSTEM.Status.Error($$$AccessDenied) error message.

ZAUTHORIZE can return system-defined or application-specific error messages. All these messages use the Error method
of the %SYSTEM.Status class. This method is invoked as $SYSTEM.Status.Error and takes one or two arguments,
depending on the error condition.

The available system-defined error messages are:

• $SYSTEM.Status.Error($$$AccessDenied) — Error message of “Access Denied”

• $SYSTEM.Status.Error($$$InvalidUsernameOrPassword) — Error message of “Invalid Username or Password”

• $SYSTEM.Status.Error($$$UserNotAuthorizedOnSystem,Username) — Error message of “User username is
not authorized”

• $SYSTEM.Status.Error($$$UserAccountIsDisabled,Username) — Error message of “User username account is
disabled”

• $SYSTEM.Status.Error($$$UserInvalidUsernameOrPassword,Username) — Error message of “User username
invalid name or password”

• $SYSTEM.Status.Error($$$UserLoginTimeout) — Error message of “Login timeout”

• $SYSTEM.Status.Error($$$UserCTRLC) — Error message of “Login aborted”

• $SYSTEM.Status.Error($$$UserDoesNotExist,Username) — Error message of “User username does not exist”

Caché Security Administration Guide 235

Creating Delegated (User-defined) Authorization Code

• $SYSTEM.Status.Error($$$UserInvalid,Username) — Error message of “Username username is invalid”

• $SYSTEM.Status.Error($$$PasswordChangeRequired) — Error message of “Password change required”

• $SYSTEM.Status.Error($$$UserAccountIsExpired,Username) — Error message of “User username account has
expired”

• $SYSTEM.Status.Error($$$UserAccountIsInactive,Username) — Error message of “User username account is
inactive”

• $SYSTEM.Status.Error($$$UserInvalidPassword) — Error message of “Invalid password”

• $SYSTEM.Status.Error($$$ServiceDisabled,ServiceName) — Error message of “Logins for Service username
are disabled”

• $SYSTEM.Status.Error($$$ServiceLoginsDisabled) — Error message of “Logins are disabled”

• $SYSTEM.Status.Error($$$ServiceNotAuthorized,ServiceName) — Error message of “User not authorized for
service”

To use these error codes, uncomment the #Include %occErrors statement that appears in ZAUTHORIZE.mac.

To generate a custom message, use the $SYSTEM.Status.Error() method, passing it the $$$GeneralError macro and
specifying any custom text as the second argument. For example:

$SYSTEM.Status.Error($$$GeneralError,"Any text here")

Note that when an error message is returned to the caller, it is logged in the audit database (if LoginFailure event auditing
is turned on). However, the only error message the user sees is $SYSTEM.Status.Error($$$AccessDenied). However, the
user also sees the message for the $$$PasswordChangeRequired error. Return this error if you want the user to change
from the current to a new password.

17.3 Configuring an Instance to Use Delegated
Authorization
Once you have created a customized ZAUTHORIZE routine, the next step is to enable it for the instance’s relevant services
or applications. This procedure is:

1. Run the ^SECURITY routine from the %SYS namespace in a Terminal or Console window.

2. In ^SECURITY, choose System parameter setup; under that, choose Edit authentication options; and under that,
choose either Allow Kerberos authentication or Allow Operating System authentication. (Delegated authorization is only
supported for these two authentication mechanisms.).

3. If you have selected Allow Operating System authentication, choose Allow Delegated Authorization for O/S authentication.
If you have selected Allow Kerberos authentication, choose Allow Delegated Authorization for Kerberos authentication.

Selecting either of these choices causes Caché to invoke the ZAUTHORIZE.mac routine, if one exists, in the %SYS
namespace.

Important: Caché only calls ZAUTHORIZE after user authentication.

236 Caché Security Administration Guide

Using Delegated Authorization

17.3.1 Delegated Authorization and User Types

When a user first logs in to Caché with an authentication mechanism that uses delegated authorization, the system creates
a user account either of Type OS (for Operating System) or Kerberos. (Note that this value does not appear in the Type
column of the table of users on the Users page (System Administration > Security > Users).) At the time of account creation
and, for subsequent logins, the ZAUTHORIZE routine specifies the roles for the user.

Any attempt to log in without using delegated authorization will result in a login failure. This is because only delegated
authorization specifies the user Type as OS or Kerberos. When using these authentication mechanisms without delegated
authorization, the user is authenticated as being of Type "Caché Password User"; the login fails because a user can only
have one type and a user of one type cannot log in using mechanisms associated with another type. (Delegated authentication
and LDAP authentication also both fail for the same reason.)

For general information about user types, see the section “About User Types” in the “Users” chapter.

17.4 After Authorization — The State of the System
If the user is successfully authorized, the Cache security database is updated in one of the following ways:

1. If this is the first time the user has logged in, a user record is created in the security database for the entered username,
using properties returned by ZAUTHORIZE.

2. If the user has logged in before, the user record is updated in the security database, using properties returned by this
function.

Whether for a first-time user or not, the process that logs in has the value of the $ROLES system variable set to the value
of Properties("Roles"). For a terminal login, the namespace is set to the value of Properties("NameSpace") and the startup
routine is set to the value of Properties("Routine").

Caché Security Administration Guide 237

After Authorization — The State of the System

A
Tightening Security for a Caché Instance

To provide increased security for a Caché instance, you can configure it to more tightly constrain user access. This can
prevent unauthorized users from using Caché tools or from gaining access to sensitive resources. This appendix describes
various actions that reduce the attack surface of a Caché instance or otherwise increase its security.

There are multiple actions for tightening an instance’s security. They are presented here roughly in the sequence in which
they should be performed:

• Enabling auditing

• Changing the authentication mechanism for an application

• Limiting the number of public resources

• Restricting access to services. This involves:

– Limiting the number of enabled services

– Limiting the number of public services

– Restricting access to services by IP address or machine name

• Restricting public privileges

• Limiting the number of privileged users

• Disabling the _SYSTEM user

• Restricting access for UnknownUser

• Configuring third-party software

The Caché Security Advisor also provides an automated analysis of the instance and recommendations for actions to increase
the security of an instance.

Important: A Caché instance has many interdependent elements. Because of this, it is recommended that you only do
what is specified for a change, and not more or less. For example, simply removing UnknownUser from
the %All role — without doing anything else — will cause problems for a minimal-security installation.

A.1 Enabling Auditing
The primary elements of security are often described as the “Three A’s”: authentication, authorization, and auditing.
Auditing, including the auditing provided with Caché, provides two functions:

Caché Security Administration Guide 239

• It provides data about what has occurred if there is a security event.

• The knowledge of its existence can be a deterrent for an attacker, given that the attack will be tracked and there will
be evidence of any malicious actions.

To enable auditing for key events for a Caché instance, the procedure is:

1. From the Management Portal home page, select System Administration > Security > Auditing > Enable Auditing. If the
choice is not available, auditing is already enabled.

2. From the Management Portal home page, go to Configure System Events page (System Administration > Security >
Auditing > Configure System Events).

3. On the Configure System Events page, enable the following events if they are not already enabled by clicking Change

Status in the event’s row:

• %System/%DirectMode/DirectMode — Provides information on console/terminal use. For sites that extensively
use command-line utilities, can create large amounts of data. Recommended if increased data is not an issue.

• %System/%Login/Login — Provides information on logins. For large sites, can create large amounts of data.
Recommended if increased data is not an issue.

• %System/%Login/LoginFailure — Provides feedback on possible attempted unauthorized logins. Recommended.

• %System/%Security/Protect — Provides data on attempts to read, write, or use protected data. Recommended.

A.2 Changing the Authentication Mechanism for an
Application
A key element of restricting access to Caché is configuring the instance to use a stricter authentication mechanism for its
applications. This section describes how to perform this procedure, using the Management Portal as an example application
and with the change from unauthenticated access (as in a minimal-security installation) to requiring a password as an
example of moving to a stricter authentication mechanism.

Important: Performing the following procedure may affect aspects of the instance being modified beyond access to
the Portal. The specifics depend on (1) the instance’s configuration and (2) whether you are performing
just this procedure or all the procedures in this appendix. Specifically:

• Making %Service_CSP:Use not public means that all users of web applications will need to be granted
%Service_CSP:Use by some other means.

• Removing UnknownUser from the %All role can have many effects.

To provide properly functioning authentication for an application, there must be consistent authentication mechanisms for
both the application and any service that it uses. For a web application, the CSP Gateway must also be configured to match
the CSP service. Hence, to provide authentication for the Management Portal, there are three layers that all need to work
together:

• The %Service_CSP service

• The CSP Gateway

• The Management Portal application

240 Caché Security Administration Guide

Tightening Security for a Caché Instance

If these layers do not have matching authentication mechanisms, this usually results in a denial of access — for example,
there may be a “This page cannot be displayed” error instead of a login page or access to the Management Portal.

Important: If (1) a web application uses a more powerful authentication mechanism than the CSP Gateway and
%Service_CSP and (2) authentication succeeds, then the system’s security is only that of the less powerful
mechanism.

For an instance with a minimal-security installation, the CSP Gateway, %Service_CSP, and the Management Portal
application are all set up for unauthenticated access. To provide password-level authentication for the Portal, various Caché
elements must be configured as follows:

• The CSP service must require password authentication.

• The CSP Gateway must provide a username and password for that authentication.

• The user representing the Gateway must have sufficient privilege to use the CSP service.

• The Management Portal must require password authentication.

• All the Portal’s users must have sufficient privilege to use the Portal.

Important: Complete the following set of procedures during a single session in the Portal. Otherwise, you may lock
yourself out of the Portal and have to perform the remaining procedures through the ^SECURITY routine.

An overview of the procedure to make these changes is:

1. Optionally, turn on auditing to track the changes to the instance. This is described in the Enabling Auditing section of
this appendix.

2. Give the %Service_CSP:Use privilege to the CSPSystem user.

3. Change the password of the CSPSystem user.

4. Configure the CSP Gateway to provide a username and password for authentication.

5. Configure %Service_CSP to require password authentication.

6. Remove the public status of the %Service_CSP:Use privilege.

7. Configure the Management Portal application to require password authentication only.

8. Specifying the appropriate privilege level for the instance’s users.

9. Optionally, make the documentation or samples available.

10. Begin enforcement of the new policies.

Once this process is complete, then a user’s next attempt to connect to the Portal will result in a login prompt.

CAUTION: A Caché instance has many interdependent elements. Because of this, it is recommended that you only do
what is specified for a change, and not more or less. Otherwise, you may lock yourself out of Caché or
could even render the instance temporarily inoperative.

A.2.1 Giving the %Service_CSP:Use Privilege to the CSPSystem User

The Caché installation process creates a CSPSystem user, which represents the CSP Gateway in its interactions with the
%Service_CSP service. Since the service is going to have restricted access, this user needs to hold the %Service_CSP:Use
privilege for the authentication process.

Caché Security Administration Guide 241

Changing the Authentication Mechanism for an Application

Note: There is a service called %Service_CSP and a resource called %Service_CSP. The resource regulates access
to the service. Therefore, to gain access to the service, a user must have Use permission for the resource — that
is, the %Service_CSP:Use privilege.

To associate the %Service_CSP:Use privilege with the CSPSystem user, the procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click Create New Role. This displays the Edit Role page, where the Name field is editable.

3. Enter a name for the role to include the %Service_CSP:Use privilege (such as “GatewayRole”).

4. Click Save. Caché has now created the role.

5. In the Privileges section on the General tab of the Edit Role page, click Add, which displays a list of available resources
for the role.

6. From this list, click %Service_CSP and then click Save. The newly created role now includes the %Service_CSP:Use
privilege.

7. Select the Members tab of the Edit Role page.

8. On this tab, you can assign the CSPSystem user to the newly created role. Click CSPSystem from the users in the
Available list and move it to the Selected by clicking the right arrow.

9. Click Assign to assign CSPSystem to the role. (In other words, CSPSystem is now a member of the role.) This means
that CSPSystem holds the %Service_CSP:Use privilege.

Note: The system creates the CSPSystem user to represent the CSP Gateway. If you prefer, a different user can perform
this function. This procedure refers only to the CSPSystem user; if you use a different user, replace CSPSystem
with that username where relevant.

A.2.2 Changing the Password of the CSPSystem User

Because a minimal-security installation gives the CSPSystem user a password of “SYS”, it is important to change this to
a new password — one that an attacker would not know or be able to guess. The procedure is:

1. In the Management Portal, go to the Users page (System Administration > Security > Users).

2. On the Users page, in the row for the CSPSystem user, select the name CSP Gateway User. This displays the Edit User

page.

3. Enter the new password for CSPSystem in the Password field. Since no user has to remember this password, you can
make it as long and complex as you wish.

4. Reenter the new password in the Confirm Password field and click Save. If the Portal does not display an error message
or dialog, then the password change has succeeded.

If you wish, you can also confirm that CSPSystem is assigned to the role created for authentication in the previous procedure.
To do this, click on the Roles tab. The table with the column heading CSPSystem is Assigned to the Following Roles should
list the newly-created role.

A.2.3 Configuring the CSP Gateway to Provide a Username and Password

Because you are going to configure %Service_CSP to require password authentication, the CSP Gateway needs to provide
a username-password pair. Having set up a user with the appropriate level of privilege, you have established a username-
password pair that the Gateway can provide. The next step is to configure the Gateway to provide this username-password
pair when the Caché server challenges it for them. The procedure is:

242 Caché Security Administration Guide

Tightening Security for a Caché Instance

1. In the Management Portal, go to the Caché Server Pages - Web Gateway Management page (System Administration >
Configuration > CSP Gateway Management).

2. On the Caché Server Pages - Web Gateway Management page, select Server Access from the list on the left side. This
displays the Server Access frame.

3. In the Server Access frame, the LOCAL server should be highlighted. Click Submit to edit it, which displays a page
with Server Access and Error Pages parameters.

4. On this page, there is a Connection Security section.

5. Ensure that the Connection Security Level drop-down has “Password” displayed.

6. In the User Name field, enter CSPSystem.

7. In the Password and Password (Confirm) field, enter the password that you selected in the previous section.

8. Click Save Configuration near the bottom of the page.

9. To return to the Management Portal, click Back to Management Portal from the bottom of the list in the left pane.

A.2.4 Configuring %Service_CSP to Require Password Authentication

Now that the Gateway is configured to provide a username and password and you have given the CSPSystem user the
necessary level of privilege, the next step is to configure the service that manages CSP (%Service_CSP) so that it requires
password authentication. The procedure is:

1. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

2. On the Services page, click %Service_CSP. This displays the Edit Service page for %Service_CSP.

3. On the Edit Service page, under Allowed Authentication Methods, make sure that Unauthenticated access is disabled
and that Password access is enabled (also known as “Caché login”). Click Save.

A.2.5 Removing the Public Status of the %Service_CSP:Use Privilege

With %Service_CSP requiring password authentication and the Gateway able to authenticate with an appropriately
authorized user, the next step is to exclude %Service_CSP:Use from public availability. The procedure is:

1. From the Management Portal home page, go to the Resources page (System Administration > Security > Resources).

2. On the Resources page, in the row for %Service_CSP, click Edit. This displays the Edit Resource page for
%Service_CSP.

3. In the Public Permission section, clear the Use box. Click Save.

Important: Once %Service_CSP:Use is not a public privilege, only those users who have been explicitly granted
it will be able to use CSP. You may need to assemble a list of these users and grant them this privilege
through other means.

A.2.6 Configuring the Management Portal to Accept Password Authentication
Only

Once the connection between the Gateway and the Caché server has a new authentication mechanism, the next task is to
configure the Management Portal application to use a matching mechanism. In this example, this mechanism is Caché
login. The procedure for changing the Portal’s authentication mechanism is:

Caché Security Administration Guide 243

Changing the Authentication Mechanism for an Application

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. On the Web Applications page, the /csp/sys application represents the Management Portal home page. Select the name
/csp/sys in this row to edit the application. This displays the Edit Web Application page for the /csp/sys application.

3. Under Allowed Authentication Methods, disable Unauthenticated access and enable Password access. Click Save.

4. Also disable Unauthenticated access and enable Password access for all the applications that compose the other pages
and choices of the Portal. These applications are:

• /csp/sys/bi

• /csp/sys/exp

• /csp/sys/mgr

• /csp/sys/op

• /csp/sys/sec

This configures the Portal to require password authentication (also known as “Caché login”) and not to allow unauthenticated
access, and so that all its parts behave consistently. The next step is to ensure that all relevant users have appropriate access
to the Portal.

A.2.7 Specifying the Appropriate Privilege Level for the Instance’s Users

When the Portal is configured to accept unauthenticated connections, any user can connect as the UnknownUser. Because
a minimal-security installation makes UnknownUser a member of the %All role, there is no danger of being locked out of
the Portal. Now that the Portal requires password authentication, its legitimate users need to be members of the %Operator
role, the %Manager role, or the %All role.

In a minimal-security installation, SuperUser, Admin, _SYSTEM, and UnknownUser all have this level of privilege; further,
these all have passwords of “SYS”.

To properly secure users, the procedure is:

1. Either disable UnknownUser or remove UnknownUser from the %All role.

• To disable UnknownUser, the procedure is:

a. On the Users page (System Administration > Security > Users), click UnknownUser under the Name column.
This displays the Edit User page for UnknownUser.

b. Clear the User Enabled field and click Save.

• To remove UnknownUser from the %All role:

a. On the Users page (System Administration > Security > Users), click UnknownUser under the Name column.
This displays the Edit User page for UnknownUser.

b. Go to the Roles tab on the Edit User page.

c. In the UnknownUser is Assigned to the Following Roles table, on the %All row, click Remove, then click
Save.

Important: Limiting access through UnknownUser can have widespread effects, particularly if an instance’s users
are not sufficiently privileged.

244 Caché Security Administration Guide

Tightening Security for a Caché Instance

2. Ensure that any other potentially unauthorized users are not members of %All, %Developer, %Manager, %Operator,
%SQL, or any user-defined role that grants privileges. This involves a process analogous to removing UnknownUser
from the %All role.

(A user-defined role that grants privileges might have Use permission on any of the %Admin... resources,
%Development, or any of the %Service or %System resources, or Write permission on %DB_CACHELIB or
%DB_CACHESYS.)

3. Ensure that any user who should have access to the Portal is assigned to %All, %Developer, %Manager, %Operator,
%SQL, or any user-defined role that grants Portal access. The procedure, for each of these users, is:

a. On the Users page (System Administration > Security > Users), click the name of the user under the Name column.
This displays the Edit User page for that user.

b. Go to the Roles tab on the Edit User page.

c. Move the desired role(s) from the Available to the Selected list by selecting the role, clicking the right arrow button,
and then clicking Assign to assign the user to the role(s).

4. Change the passwords for SuperUser and Admin users from the default. To do this:

a. On the Users page (System Administration > Security > Users), click the name of the user under the Name column.
This displays the Edit User page for that user.

b. Select Enter new password.

c. Enter the new password in the Password field.

d. Confirm it in the Password (confirm) field and click Save.

Important: Make sure that you know the password for at least one user who administers the Portal. Otherwise, you
may lock yourself out of the Portal and have to log in using emergency access so that you can reset one or
more passwords using the ^SECURITY routine.

A.2.8 Making the Documentation or Samples Available

Once you finish configuring the service, the CSP Gateway, and the Portal application, you may wish to ensure that the
documentation or sample programs are available. The procedure is:

1. From the Management Portal home page, go to the Web Applications page (System Administration > Security > Appli-

cations > Web Applications).

2. To make the sample applications available:

a. On the Web Applications page, the /csp/samples application represents the Caché sample applications. Select
/csp/samples in this row to edit the application. This displays the Edit Web Application page for the /csp/samples
application.

b. Under Allowed Authentication Methods, disable Unauthenticated access and enable Password access. Click Save.

3. To make the documentation available:

a. On the Web Applications page, the /csp/docbook application represents the Caché DocBook documentation
application. Select the name /csp/docbook to edit the application. This displays the Edit Web Application page for
the /csp/docbook application.

b. Under Allowed Authentication Methods, disable Unauthenticated access and enable Password access. Click Save.

c. Return to the Web Applications page.

Caché Security Administration Guide 245

Changing the Authentication Mechanism for an Application

d. On the Web Applications page, the /csp/documatic application represents the Caché Documentation class reference
application. Select /csp/documatic in this row to edit the application. This displays the Edit Web Application page
for the /csp/documatic application.

e. Under Allowed Authentication Methods, disable Unauthenticated access and enable Password access. Click Save.

Note: Because the documentation is compose of two individual applications — /csp/docbook and /csp/documatic
— that are separate from each other and from the Portal, each has a separate password prompt.

If you do not perform this procedure, the service requires a password prompt but the application attempts to use unauthen-
ticated access. This prevents all users — including those assigned to %All — from reaching the documentation or samples.

A.2.9 Beginning Enforcement of New Policies

At this point, the Caché instance is fully configured to operate properly. However, all existing connections are still using
unauthenticated access. To begin enforcement of the new policies, the following events must occur:

• The CSP Gateway must establish an authenticated connection.

• All users must also establish authenticated connections.

A.2.9.1 Establishing an Authenticated CSP Gateway Connection

To force the CSP Gateway to establish an authenticated connection, the procedure is:

1. From the Management Portal home page, select System Administration > Configuration > CSP Gateway Management.
This displays the Caché Server Pages - Web Gateway Management page.

2. On the Caché Server Pages - Web Gateway Management page, select Close Connections from the list on the left side.
This displays the Close Connections frame.

3. Click Close Connection(s). This displays a message indicating that all connections between the Gateway and Caché
server have been closed.

The next time that a user requests a page, the Gateway will reestablish a connection to the Caché server. This connection
will use the selected authentication mechanism.

A.2.9.2 Establishing Authenticated User Connections

At this point, all connections to the Management Portal are still using unauthenticated access. If there is no pressing need
to require authenticated access, then there is nothing else to do. Users will gradually end their connections to the Portal and
will have to authenticate when they reconnect. (Connections may be ended due to machine reboots, stopping and restarting
browsers, clearing browser caches, Portal logouts, etc.)

If there is a need to force connections to use authenticated access, you can stop and restart Caché. For example, on Windows,
if you have Caché available through the default Start menu page:

1. From the Windows Start menu, select Programs > Caché, then the Caché instance to restart.

2. On the submenu for the instance of Caché, choose Stop Caché.

3. On the dialog that appears, select Restart and click OK.

Note: If you are using a production instance of Caché, you may want to choose a low-traffic time for the restart, since
users will temporarily not have access to either Caché as a whole or the Portal.

246 Caché Security Administration Guide

Tightening Security for a Caché Instance

A.3 Limiting the Number of Public Resources
Any resource can be specified as a public resource. This means that any user has the ability to read, write, or use the resource,
depending on its public settings. The following should always be public:

Table I–1: Required Public Resources and Their Permissions

PermissionResource

R%DB_CACHE

R%DB_CACHELIB

RW%DB_CACHETEMP

Note: You may also want to make the Read permission on the %DB_DOCBOOK database public, so that all users have
access to the documentation.

To tighten the security of an instance, limit the number of public resources. To do this, the procedure is:

1. Ensure that all users who genuinely require access to these resources have been given privileges for them.

Important: If you do not provide privileges for %Service_CSP:Use to the appropriate users, then this procedure
can result in a widespread lockout from the Management Portal and other CSP applications.

2. From the Management Portal home page, go to the Resources page (System Administration > Security > Resources).

3. On the Resources page, each resource for which there is one or more public permissions has those permissions listed
in the Public Permissions column of the table of resources. Select the resource by clicking Edit. This displays the
resource’s Edit Resource page.

4. On the Edit Resource page, clear any checked Public Permission fields and click Save. The resource is no longer public.

Perform this procedure for all public resources.

A.4 Restricting Access to Services
There are various pathways by which users can interact with Caché. Services regulate access to these pathways. To limit
access to Caché services, the available choices are:

• Limiting the number of enabled services to only those required for the applications in use

• Limiting the number of public services to only those required for the applications in use

• Restricting access to services by IP address or machine name

A.4.1 Limiting the Number of Enabled Services

To limit the number of enabled services, the procedure is:

1. Determine the required services for the Caché instance. Typically, these are:

• Whatever service is required for each form of user access

Caché Security Administration Guide 247

Limiting the Number of Public Resources

• Whatever services are required for any automated access

• Either %Service_Console (on Windows) or %Service_Terminal (on UNIX®), for local programmer-mode
access

2. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

3. On the Services page, for each service that is not required, select the service by clicking on its name. This displays the
service’s Edit Service page.

4. On the Edit Service page, clear the Service Enabled field and click Save. The service is now disabled.

Once you have disabled all unnecessary services, the only pathways to Caché are the required services.

A.4.2 Limiting the Number of Public Services

Each service is associated with a resource. In most cases, the resource has the same name as the service, such as
%Service_CSP; the exception to this is the %Service_Bindings service, which is associated with the
%Service_Object and %Service_SQL resources. Services are public because of the settings for the resources associated
with them. Because of this, the procedure for making a service non-public is the same as for making any other resource
non-public. This is described in the section, “Limiting the Number of Public Resources.”

A.4.3 Restricting Access to Services by IP Address or Machine Name

For certain services, you have the option of restricting access to the service according to IP address or machine name. This
is known as the ability to limit “allowed incoming connections.” The services that support this feature are:

• %Service_Bindings

• %Service_CSP

• %Service_CacheDirect

• %Service_ECP

• %Service_Monitor

• %Service_Shadow

• %Service_Weblink

By default, a service accepts connections from all machines. If a service has no associated addresses or machine names,
then it accepts connections from any machine. If one or more addresses or machine names are specified from which a service
accepts connections, then the service only accepts connections from these machines.

This feature is not available for %Service_CallIn, %Service_ComPort, %Service_Console,
%Service_DataCheck, %Service_Login, %Service_MSMActivate, %Service_Mirror, %Service_Telnet,
and %Service_Terminal.

To restrict access to a service by IP address, the procedure is:

1. Determine the IP addresses of those machines with legitimate access to the service.

2. From the Management Portal home page, go to the Services page (System Administration > Security > Services).

3. On the Services page, for each service for which you are restricting access by IP address, select the service by clicking
on its name. This displays the service’s Edit Service page.

4. On the Edit Service page, in the Allowed Incoming Connections section, click Add New.

5. In the displayed dialog, enter an IP address for an allowed incoming connection. Click OK.

248 Caché Security Administration Guide

Tightening Security for a Caché Instance

6. Click Add and enter other addresses as needed.

Perform this procedure for each service that is restricting the IP addresses from which it accepts connections.

A.5 Restricting Public Privileges
Whenever any user logs in, that user receives all the privileges associated with the _PUBLIC user. With a minimal-security
installation, the _PUBLIC user is not assigned to any roles, but holds a number of SQL privileges. These have been granted
by the _SYSTEM user, which is created by the Caché installation in accordance with the SQL standard as the SQL root
user. This means that they must be revoked by the _SYSTEM user.

To revoke SQL privileges from the _PUBLIC user, the procedure is:

1. Log into the Management Portal as the _SYSTEM user:

a. Enable the _SYSTEM user if that user is not already enabled. (After completing this procedure, you may wish to
disable the _SYSTEM user according to the instructions in the section “Limiting the Number of Privileged Users.”)

b. For a minimal-security installation, change the authentication method for the Management Portal so that it requires
logins. This is described in the section “Changing Authentication Methods for the Management Portal.”

c. Log in as _SYSTEM. In a minimal-security installation, the default password for this user is “SYS”; in normal
and locked-down installations, the default password is whatever was selected during the installation process.

2. From the Management Portal home page, go to the Execute SQL Query page (System Explorer > SQL > Execute SQL

Query) for the SAMPLES namespace. (On the Execute SQL Query page, from the list of namespaces on the left, click
SAMPLES.)

3. Revoke all the _PUBLIC user’s privileges on tables in the SAMPLES database. In the page’s editing form, enter the
following SQL command:

REVOKE ALL PRIVILEGES ON * FROM _PUBLIC

and click Execute Query.

4. Revoke all the _PUBLIC user’s privileges to invoke stored procedures in the SAMPLES database. In the page’s editing
form, enter the following SQL command:

REVOKE EXECUTE ON * FROM _PUBLIC

and click Execute Query.

5. To prevent general use of the InterSystems documentation, you can revoke the _PUBLIC user’s privileges to search
the DocBook database. To do this:

a. On the Execute SQL Query page, click DOCBOOK from the list of namespaces.

b. Select the SQL Tables tab.

c. In the page’s editing form, enter by the following SQL command:

REVOKE ALL PRIVILEGES ON * FROM _PUBLIC

and click Execute Query.

Caché Security Administration Guide 249

Restricting Public Privileges

A.6 Limiting the Number of Privileged Users
Every instance of Caché must have at least one user who is assigned to the %All role. In fact, if there is only one user
assigned to this role, then Caché prevents the user from being removed from the role. However, over time, an instance can
end up having more users assigned to %All than are necessary. This can arise from assigned users leaving an organization
but their accounts not being disabled, from temporary assignments not being revoked, and so on.

Along with the %All role, the system-defined roles of %Manager, %Developer, %Operator, and %SQL can give users
undue privilege. There also may be user-defined roles that do this. Users assigned to such roles are sometimes known as
“privileged users.”

To limit the number of privileged users, determine which users are assigned to each privileged role and remove those who
are not needed. The procedure is:

1. From the Management Portal home page, go to the Roles page (System Administration > Security > Roles).

2. On the Roles page, click the name of the role. This displays the Edit Role page for that role.

3. On the Edit Role page, click the Members tab, which displays a list of the users and roles assigned to the role.

4. To remove any user from the specified role, click Remove on the row for the user or role to be removed. Click OK in
the confirmation dialog.

Perform this procedure for each privileged role, including %All and the others listed previously. It is also important to
disable the _SYSTEM user; the procedure for this is described in the next section, “Disabling the _SYSTEM User.”

Important: Certain seemingly non-privileged roles may have what could be called “privileges by proxy.” This occurs
when a seemingly non-privileged role is assigned to a privileged role. In this case, any user who is assigned
to role with privileges by proxy holds all the privileges associated with the privileged role.

Avoid creating privileges by proxy whenever possible. When not possible, have as few users as possible
assigned to the roles with privileges by proxy.

A.7 Disabling the _SYSTEM User
The Caché installation program creates the _SYSTEM user. This user is created in accordance with the SQL standard as
the SQL root user. In a minimal-security installation, the default password for this user is “SYS”; in normal and locked-
down installations, the default password is whatever was selected during the installation process. Because this user and the
password of “SYS” are both publicly specified by the SQL standard, and because of this user’s SQL privileges, disabling
_SYSTEM is important for tightening access to a Caché instance.

To do this, the procedure is:

1. From the Management Portal home page, go to the Users page (System Administration > Security > Users)).

2. On the Users page, click the name _SYSTEM to open the Edit User page for _SYSTEM.

3. On the Edit User page for _SYSTEM, clear the User Enabled field. Click Save.

Note: If you need to check root-level SQL privileges after disabling _SYSTEM, you will have to temporarily enable
the user to perform the required action.

250 Caché Security Administration Guide

Tightening Security for a Caché Instance

A.8 Restricting Access for UnknownUser
In instances that support unauthenticated access, connections that do not use authentication are established with the
UnknownUser account. In minimal-security installations, the default behavior is that:

• All connections use UnknownUser.

• UnknownUser is assigned to the %All role.

• UnknownUser holds all SQL privileges.

To restrict access for UnknownUser, disable unauthenticated access for all enabled services. (Other actions may not be
effective or may result in a lockout from the Management Portal.)

A.8.1 Potential Lockout Issue with the UnknownUser Account

If an instance has been installed with Minimal security, UnknownUser has the %All role; the instance also has unauthenticated
access available for all services and applications. If you simply change the user’s role (from %All to something else) and
still allow unauthenticated access, you may be unable to use basic features.

This is because, under these conditions, Caché establishes a connection to the selected tool without performing authentication.
When there is no authentication, the system automatically sets the user account to UnknownUser. The next step is to check
user privileges. If UnknownUser has insufficient privileges, access to the tool is limited or not available. For example,
under these circumstances, the Terminal displays an “Access Denied” message and then shuts down; the Portal displays
its main page, but no options can be selected.

To correct this condition:

1. Start Caché in emergency access mode.

2. Restore sufficient privileges to the UnknownUser account.

If you wish to prevent use of UnknownUser, you must upgrade the authentication mechanism for the Management Portal.

A.9 Configuring Third-Party Software
InterSystems products often run alongside and interact with non-InterSystems tools, including virus scanners. For important
information about the effects these interactions can have, see the appendix “Configuring Third-Party Software to Work in
Conjunction with InterSystems Products” in the Caché System Administration Guide.

Caché Security Administration Guide 251

Restricting Access for UnknownUser

B
Using the cvencrypt Utility

Caché allows you to use encrypted databases, as described in the chapter “Managed Key Encryption.” There are occasions
when you may need to perform encryption management operations on a database, such as:

• Converting an Unencrypted Database to Be Encrypted

• Converting an Encrypted Database to Be Unencrypted

• Converting an Encrypted Database to Use a New Key

• Using Command-line Options with cvencrypt

To perform these operations, Caché supplies cvencrypt, a standalone utility for use with 8-KB format databases. Its available
operations are described in the following sections.

Note: cvencrypt is not for use with journal files that belong to a running system.

B.1 Converting an Unencrypted Database to be Encrypted
This describes the procedure for making an unencrypted database encrypted.

1. Back up the data in the database to be encrypted.

The cvencrypt utility encrypts data in place. This means that it uses on-disk space for its operations (not copying the
database elsewhere and restoring it to its current disk location after successful completion). If the utility is interrupted
before completion, the database will be partly encrypted and partly unencrypted, rendering it unusable.

CAUTION: It is critical that you back up the database before encrypting it. Failure to do so can result in data being
lost.

2. Have an existing database-encryption key for your Caché instance.

3. If the database is mounted, dismount it. You can do this from the Management Portal Databases page (System Operation

> Databases).

4. In the directory containing the CACHE.DAT file for the database to encrypt, run the cvencrypt utility, providing a path
to it. For example, if your database is in the C:\MyDBs directory and is called test1 and Caché is installed in the
C:\InterSystems\MyCache directory, then you would run the utility as follows:

C:\MyDBs\test1>..\..\InterSystems\MyCache\bin\cvencrypt CACHE.DAT

Caché Security Administration Guide 253

The utility then provides an informational display message about itself, and then information on the database passed
to it.

5. The utility then prompts for what action you wish to take:

1) Encrypt
2) Quit

To encrypt the database, enter “1” and press Enter.

6. This displays a prompt to activate an already-existing encryption key:

Access database encryption key.
Keyfile:

At this prompt, enter the full path of the key for encrypting the database. For example, suppose that you have stored
the database-encryption keyfile, dek1, in the C:\InterSystems\MyCache\Mgr directory.

Keyfile: C:\InterSystems\MyCache\Mgr\dek1

7. The utility then prompts for the username and password of a keyfile administrator:

Username: dek-admin1
Password: <characters shielded during entry>

When it receives these, the utility then reminds you that it modifies data in place, so that you should be sure that your
data is adequately backed up before continuing:

This utility will modify your database in place.
Be sure that your data is adequately backed up before proceeding.
Continue? [Y/N]:

If you wish to continue, enter “Y”.

it encrypts the database, stating the key that it is using for encryption:

Using database encryption key (ID = 5DBC532D-4D1F-A3A4-30CDA34BB66B).

During encryption, the utility displays a progress indicator, as well as a reminder not to interrupt the process.

CAUTION: If you interrupt the process while it is incomplete, the database may be in a state in which some of its
data is encrypted and some of it is unencrypted. It is impossible for Caché to read such a database,
and all the data will be lost.

8. When finished, the utility announces this, such as:

Processed:
118400 blocks (done!)

B.2 Converting an Encrypted Database to be Unencrypted
This describes the procedure for making an encrypted database unencrypted.

1. Back up the database to be unencrypted.

254 Caché Security Administration Guide

Using the cvencrypt Utility

The cvencrypt utility unencrypts data in place. This means that it uses on-disk space for its operations (not copying
the database elsewhere and restoring it to its current disk location after successful completion). If the utility is interrupted
before completion, the database will be partly encrypted and partly unencrypted, rendering it unusable.

CAUTION: It is critical that you back up the database before decrypting it. Failure to do so can result in data being
lost.

2. If the database is mounted, dismount it. You can do this from the Management Portal Databases page (System Operation

> Databases).

3. In the directory containing the CACHE.DAT file for the database to decrypt, run the cvencrypt utility, providing a path
to it. For example, if your database is in the C:\MyDBs directory and is called test1 and Caché is installed in the
C:\InterSystems\MyCache directory, then you would run the utility as follows:

C:\MyDBs\test1>..\..\InterSystems\MyCache\bin\cvencrypt CACHE.DAT

The utility then provides an informational display message about itself, and then information on the database passed
to it.

4. If the database is encrypted, the utility displays information about this:

Database is encrypted
(Key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B).

It then prompts for an action:

1) Decrypt
2) Re-encrypt with a different key
3) Quit

5. To decrypt the database, enter “1” and press Enter. This displays a prompt to activate the database’s encryption key:

Access original database encryption key
(key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B)
Keyfile:

Enter the keyfile including its full path, such as C:\encdb\dek; relative pathnames are not valid.

6. The utility then prompts for the username and password of a keyfile administrator:

Username: dek-admin1
Password: <characters shielded during entry>

7. The utility next states that it is ready to perform the decryption:

Prepared to decrypt database
(key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B).

Before decrypting the data, the utility reminds you that it modifies data in place, so that you should be sure that your
data is adequately backed up before continuing:

This utility will modify your database in place.
Be sure that your data is adequately backed up before proceeding.
Continue? [Y/N]:

If you wish to continue, enter “Y”. Once you confirm your decision, the utility decrypts the database.

During decryption, the utility displays a progress indicator, as well as a reminder not to interrupt the process, such as:

Caché Security Administration Guide 255

Converting an Encrypted Database to be Unencrypted

Decrypting database
(key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B).
Do not interrupt this process!
Processed:
25000 blocks (16%)

CAUTION: If you interrupt the process while it is incomplete, the database may be in a state in which some of its
data is encrypted and some of it is unencrypted. It is impossible for Caché to read such a database,
and all the data will be lost.

8. When the process is complete, the progress indicator changes to a completion message:

Processed:
153600 blocks (done!)

B.3 Converting an Encrypted Database to Use a New Key
This describes the procedure for re-encrypting an encrypted database using a new key.

1. Back up the data in the database to be re-encrypted.

The cvencrypt utility re-encrypts data in place, that is, using the on-disk space for its operations (not copying the
database elsewhere and restoring it to its current disk location after successfully completing the decryption). If the
utility is interrupted before completion, the database will be partly encrypted with two different keys, rendering it
unusable.

CAUTION: It is critical that you back up the database before decrypting it. Failure to do so can result in data being
lost.

2. If the database is mounted, dismount it. You can do this from the Management Portal Databases page (System Operation

> Databases).

3. Make sure that the key with which the database is being re-encrypted already exists. You can create this key using the
Management Portal Database Encryption page (System Administration > Encryption > Database Encryption).

4. In the directory containing the CACHE.DAT file for the database to decrypt, run the cvencrypt utility, providing a path
to it. For example, if your database is in the C:\MyDBs directory and is called test1 and Caché is installed in the
C:\InterSystems\MyCache directory, then you would run the utility as follows:

C:\MyDBs\test1>..\..\InterSystems\MyCache\bin\cvencrypt CACHE.DAT

When it first starts, the utility displays an information message about itself and the database passed to it.

5. The utility displays information about the encryption in use for the database:

Database is encrypted
(Key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B).

It then prompts for an action:

1) Decrypt
2) Re-encrypt with a different key
3) Quit

6. To re-encrypt the database with a new database-encryption key, enter “2” and press Enter.

To begin the process of re-encrypting the database, you must have access to the key in which the database is currently
encrypted. The utility prompts for the absolute path for this keyfile, and, receiving that, the username of an administrator
and that administrator's password:

256 Caché Security Administration Guide

Using the cvencrypt Utility

Access original database encryption key.
(key ID = E1D00BC2-07F4-4495-9562-394B26A2B05B)
Keyfile: C:\encdb\dek1
Username: dek-admin1
Password: <characters shielded during entry>

7. Once this information has been successfully entered, the utility prompts for the absolute path of the keyfile for re-
encrypting the database. Receiving that, it prompts for the username of an administrator and that administrator's password:

Access new database encryption key.
Keyfile (full path): C:\encdb\dek2
Username: dek-admin2
Password: <characters shielded during entry>

When it receives information on this second key, the utility reminds you that it modifies data in place, so that you
should be sure that your data is adequately backed up before continuing.

If you wish to continue, enter “Y”.

Once you confirm that you want to perform this process, the utility encrypts the database. During encryption, the utility
displays a progress indicator, as well as a reminder not to interrupt the process, such as:

Do not interrupt this process!
Processed:
16000 blocks (10%)

CAUTION: If you interrupt the process while it is incomplete, the database may be in a state in which some of its
data is encrypted with one key and some of it is encrypted with another. It is impossible for Caché to
read such a database, and all the data will be lost.

8. When the process is complete, the progress indicator changes to a completion message:

Processed:
153600 blocks (done!)

B.4 Using Command-line Options with cvencrypt
You can invoke cvencrypt with various command-line options. These allow you to encrypt, decrypt, or re-encrypt one or
more databases or journal files with a single command. You must specify one of the following options: -dbfile,
-dbfilelist, -jrnfile, or -jrnfilelist.

Note: You can also specify the path of a journal or database file as the only argument to cvencrypt, which directs the
program to decrypt or encrypt the file in interactive mode. In this situation, cvencrypt determines whether it is
operating on a journal file or database file. It provides a confirmation prompt before modifying the file.

The behavior of the -inkeyfile and -outkeyfile options depends on whether an encrypted or unencrypted database
is being processed, and, if an encrypted database is present, if one or both of the options is present. For details, see the
description of each option.

The available command-line options are:

-dbfile argument

The database file to encrypt, decrypt, or re-encrypt. argument can be a simple file name, a file name containing a
relative path, or a file name containing an absolute path.

Caché Security Administration Guide 257

Using Command-line Options with cvencrypt

-dbfilelist argument

The name of a file containing a list of databases to process. argument can be a simple file name, a file name con-
taining a relative path, or a file name containing an absolute path. In the file containing the list, each entry is the
name of a database file, which can also be a simple file name, a file name containing a relative path, or a file name
containing an absolute path; place the name of each database file on its own line without any additional punctuation
or delimiting characters.

-inkeyfile argument

The input key file, which contains the database key for decrypting any encrypted input to cvencrypt. When pro-
cessing an unencrypted database, the -inkeyfile option has no effect. When processing an encrypted database,
cvencrypt uses the input key file to decrypt the database. If the input key file and the output key file are both
present, then, when processing an encrypted database, cvencrypt uses the input key file to decrypt the database
and the output key file to re-encrypt it; if input key file and output key file hold the same database encryption key,
cvencrypt does not run.

-inpass argument

The password to use (along with the -inuser username) to extract the database encryption key from the input
key file. If you do not use the -inpass option with cvencrypt, it prompts you for a password.

Important: If you use the -inpass option, then this password may be visible to operating system tools as
part of the data associated with the cvencrypt process. For example, on certain versions of UNIX®,
the ps command displays the value of the -inpass password. If you have any concerns about
exposing this information to those who should not have it, do not use the -inpass option; when
you invoke cvencrypt, you will be prompted for the password, which will then not appear as part
of the data associated with the process.

-jrnfile argument

The journal file to encrypt, decrypt, or re-encrypt. argument can be a simple file name, a file name containing a
relative path, or a file name containing an absolute path.

The output journal file preserves the endianness of the input file, which may differ from the native endianness.

-jrnfilelist argument

The name of a file containing a list of journal files to process. argument can be a simple file name, a file name
containing a relative path, or a file name containing an absolute path. In the file containing the list, each entry is
the name of a journal file, which can also be a simple file name, a file name containing a relative path, or a file
name containing an absolute path. Place the name of each journal file on its own line without any additional
punctuation or delimiting characters.

The output journal files preserve the endianness of the input files, which may differ from the native endianness.

-inuser argument

The administrator name to use (along with the -inpass password) to extract the database encryption key from
the input key file. If you do not use the -inuser option with cvencrypt, it prompts you for a username.

-outkeyfile argument

The output key file, which contains the database key for encrypting the output from cvencrypt. When processing
an unencrypted database, cvencrypt uses the output key file to encrypt it. When processing an encrypted database
where there is a value for the -outkeyfile option but no value provided for the -inkeyfile option, cvencrypt

258 Caché Security Administration Guide

Using the cvencrypt Utility

does nothing. When processing an encrypted database, if there are values for both the input and output key files,
then cvencrypt uses the input key file to decrypt the database and the output key file to re-encrypt it; if the input
and output key files hold the same database encryption key, cvencrypt does not run.

-outpass argument

The password to use (along with the -outuser administrator name) to extract the database encryption key from
the output key file. If you do not use the -outpass option with cvencrypt, it prompts you for a password.

Important: If you use the -outpass option, then this password may be visible to operating system tools as
part of the data associated with the cvencrypt process. For example, on UNIX®, the ps command
displays the value of the -outpass password. If you have any concerns about exposing this
information to those who should not have it, do not use the -outpass option; when you invoke
cvencrypt, you will be prompted for the password, which will then not appear as part of the data
associated with the process.

-outuser argument

The administrator name to use (along with the -outpass password) to extract the database encryption key from
the output key file. If you do not use the -outuser option with cvencrypt, it prompts you for a username.

Caché Security Administration Guide 259

Using Command-line Options with cvencrypt

C
Frequently Asked Questions about Caché
Security

Troubleshooting

When users attempt to use the Management Portal, they are either prompted to log in as they move among its
sections or unexpectedly lack privileges on certain pages or are not allowed to perform certain operations. Why
is this and how can I correct it?

The Management Portal consists of several separate web applications. The main page of the Portal is associated with the
/csp/sys application and other pages are associated with various /csp/sys/* applications (such as the security-related content,
which is associated with the /csp/sys/sec application). If the applications do not all have a common set of authentication
mechanism(s) in use, users going from one Portal page to another may encounter login prompts or sudden shifts in their
level of privilege.

For example, if the /csp/sys application is using password authentication exclusively, while other related Portal applications
are using unauthenticated access exclusively, then, as users move from one Portal page to another, they go from unauthen-
ticated access to requiring authentication. Another possible case is this: the /csp/sys application supports only password
authentication, the other applications support only unauthenticated access, and UnknownUser has no special privileges; in
this case, when users go from the Portal’s main page to its other pages, they may not have sufficient privileges to perform
any action.

To check and configure the authentication mechanism for a web application, select the application from the Web Applications

page in the Portal (System Administration > Security > Applications > Web Applications) and, for the displayed application,
make selections under Allowed Authentication Methods as appropriate (typically, so that /csp/sys and /csp/sys/* share a
common set of authentication mechanisms).

Upgrading
These questions address questions for users of Caché 5.0 and previous versions who are considering the security implications
of upgrading to Caché 5.1 or more recent versions.

• Must I use Caché security?

• What do I need to be aware of when upgrading to the Caché security in version 5.1 or later?

• What operational aspects of Caché security (5.1 or later) differ from previous versions of Caché?

Caché Security Administration Guide 261

Must I use Caché security?

Yes. Security in Caché is always enabled. However, you can configure an instance’s security to mimic the openness of an
older system and to support legacy systems without any visible effects.

What do I need to be aware of when upgrading to the Caché security in version 5.1 or later?

The following items require attention when upgrading:

• All users require new passwords assigned to them after an upgrade installation.

The password hash function used is more robust than those used in earlier versions of Caché. Since Caché only stored
(and stores) the hashed form of the password for comparison, there is no way to invert the hashed form (giving a
plaintext password) and replace it with the hashed value using the newer function. As a result, to take advantage of
this robustness, users need to enter new passwords.

• By default, developers do not have privileges on many of the Caché services they did under prior versions.

The default installation of Caché is configured with a relatively limited set of features accessible by default. The pre-
defined roles do not include privileges for legacy resources such as COM ports, which most customers do not need.
As necessary, administrators can alter the predefined roles or create new roles that provide a different set of privileges
to meet the needs of each site.

What operational aspects of Caché security (5.1 or later) differ from previous versions of Caché?

An instance of Caché 5.1 or later operates slightly differently from prior versions of Caché. Differences include:

• As of Caché 5.1, ObjectScript has two system variables, $USERNAME and $ROLES that help applications manage
their security needs. Both these variables can be used programmatically in routines, methods, and SQL statements.

• For CSP and Zen applications, security information is maintained as part of the CSP session. The values of $USERNAME
and $ROLES are preserved across page requests, even if different processes are used to execute those requests. More
specifically, when processing begins for a CSP page, $ROLES contains the user’s roles as well as roles defined for the
application.

The session does not contain roles that were dynamically added during processing of a previous page by setting the
value of $ROLES or invoking $SYSTEM.Security.AddRoles. This is true for both stateless sessions and those that
maintain state.

262 Caché Security Administration Guide

Frequently Asked Questions about Caché Security

D
Relevant Cryptographic Standards and
RFCs

The following are standards and RFCs (requests for comment) that define the cryptographic primitives and algorithms used
in Caché security:

• AES (Advanced Encryption Standard) encryption — FIPS (Federal Information Processing Standards) 197

• AES Key Wrap —

– NIST (National Institute of Standards and Technology) document “AES Key Wrap Specification”
(http://csrc.nist.gov/CryptoToolkit/kms/AES_key_wrap.pdf)

– IETF (Internet Engineering Task Force) RFC 3394

• Base64 encoding — RFC 3548

• Block padding — PKCS (Public-Key Cryptography Standards) #7 and RFC 2040

• CBC (Cipher Block Chaining) cipher mode — NIST 800-38A

• Deterministic random number generator —

– FIPS PUB 140-2, Annex C

– FIPS PUB 186-2, Change Notice 1, Appendix 3.1 and Appendix 3.3

• GSS (Generic Security Services) API —

– The Kerberos Version 5 GSS-API Mechanism — RFC 1964

– Generic Security Service Application Program Interface, Version 2, Update 1 — RFC 2743

– Generic Security Service API Version 2: C Bindings — RFC 2744

– Generic Security Service API Version 2: Java Bindings — RFC 2853

• Kerberos Network Authentication Service (V5) — RFC 1510

• Hash-based Message Authentication Code (HMAC) — FIPS 198 and RFC 2104

• Message Digest 5 (MD5) hash — RFC 1321

• Password-Based Key Derivation Function 2 (PBKDF2) — PKCS #5 v2.0 and RFC 2898

• Secure Hash Algorithm (SHA-1) — FIPS 180-2 and RFC 3174

Caché Security Administration Guide 263

http://csrc.nist.gov/CryptoToolkit/kms/AES_key_wrap.pdf

All these documents are available online:

• FIPS documents

• NIST documents

• PKCS documents

• RFCs (IETF)

264 Caché Security Administration Guide

Relevant Cryptographic Standards and RFCs

http://csrc.nist.gov/publications/fips/
http://csrc.nist.gov/publications/nistpubs/
http://www.rsasecurity.com/rsalabs/pkcs/
http://www.ietf.org/rfc.html

E
About PKI (Public Key Infrastructure)

This appendix covers the following topics:

• The Underlying Need

• About Public-Key Cryptography

• Authentication, Certificates, and Certificate Authorities

• How the CA Creates a Certificate

• Limitations on Certificates: Expiration and Revocation

• Recapping PKI Functionality

E.1 The Underlying Need
There are many situations involving computing that need security. One familiar example is how to protect information –
such as for a business transaction – that is traveling across a network that is not secure – such as the Internet. Another is
when there needs to be some kind of verifiable, legally binding digital signature.

One of the most common ways of providing security is through the use of public-key cryptography. Public-key cryptography
is a mathematical algorithm that enables the encryption and decryption of data. Everyone who is using public-key cryptog-
raphy holds two keys – one of which is public and one of which is private; the algorithm can use either key to perform an
operation, such as encryption, which then means that the other key can perform the complementary operation, in this case,
decryption. Using these keys and operations, public-key cryptography provides the means of providing security, such as
protecting data in transit or establishing the provenance of a document.

However, public-key cryptography alone does not provide sufficient confidence of the identity of the participants in activ-
ities, particularly if those participants do not know each other personally. To provide enough confidence to be able to use
public key cryptography in an unsecured setting, such as over the Internet, there needs to be a larger structure that also
provides trustworthy and verifiable identification information for entities involved. Such a structure is known as a Public
Key Infrastructure (PKI).

A PKI provides a means so that individuals or organizations – generally speaking, known as entities – without any direct
personal knowledge of or contact with each other can be confident of each other’s identities. This depends on each of the
entities trusting a third party who vouches for the identity of the other entity (also known as the other peer). This allows
the entities to perform meaningful and legally binding cryptographic operations; the operations include encryption,
decryption, and digital signing and signature verification.

You can use a PKI for multiple purposes:

Caché Security Administration Guide 265

• Protecting communications via SSL/TLS (Secure Sockets Layer or its successor Transport Layer Security)

• XML digital signatures, with or without communication

• Data encryption

• Digital signing

E.2 About Public-Key Cryptography
Public-key cryptography operates on data controlled by distinct entities, where entities can be people, applications, organi-
zations, and so on. Each entity has a private key, which is a closely held secret, and a public key, which is made widely
available. (Usually, the public key is encapsulated in a public key certificate, which holds both the public key itself and
identifying information about the key holder; see below for more information about certificates and certificate authorities.)

A public-key algorithm uses the two keys for the complementary operations, where either key can perform either operation.
(The most commonly used public-key algorithm is the RSA algorithm, developed by Ron Rivest, Adi Shamir, and Leonard
Adleman.) All functionality associated with public-key cryptography is based on this fundamental principle: data encrypted
with one key can only be decrypted with the other.

Hence, if you use your private key to encrypt content, only your public key can be used to decrypt it; conversely, if someone
else encrypts content with your public key, only your private key – and therefore, only you – will be able to decrypt it. This
means that public-key cryptography provides a means for secure and private communications between two entities. If I
send you a message that is signed with my private key and encrypted with your public key, this gives you content that you
can trust as being from me (since only I have access to my private key) and that only you can read (since only your private
key can decrypt it).

(Note that there is also a simpler case, in which only one entity has a key pair and certificate. This is an arrangement for
situations where only the identity of that peer needs to be verified.)

The uses of public-key cryptography include:

• Encryption of data with the public key, so that only the private key can decrypt it. This use enables the transfer of data
in secret. For example, the encrypted data may be some medical records, so that one peer can securely transfer such
records to the other peer, and can be confident that only the other peer is able to decrypt them.

• Encryption of data (or of a hash based on the data) with a known signer’s private key, so that anyone can decrypt the
data or the hash with the signer’s public key. This use establishes the provenance of the data. For example, the encrypted
data may be a legal document, so that the action of encrypting the data with a private key associated with a known
individual constitutes a legally binding digital signature on that document.

• Encryption of data with the private key when the identity of the signer is unknown, so that it is possible to establish
the identity of the signer. This use is based on the unique linkage of a private key to a public key, the use of a certificate
to bind a public key to an entity, and the ability to look up an entity based on a certificate. For example, using only a
message signed with a private key, it is possible to determine the provenance of that message (that is, its origin and,
most specifically, its signer).

E.3 Authentication, Certificates, and Certificate Authorities
For public-key cryptography to be useful among users who do not know each other and cannot easily perform out-of-band
authentication (verification of identity), there needs to be a way to determine what public key is associated with what user.
The mechanism to attain this end is the certificate, which is issued by a certificate authority (CA). A certificate is a document

266 Caché Security Administration Guide

About PKI (Public Key Infrastructure)

that is digitally signed by a trusted third party (the CA) and that ties the public key to a set of identifying information about
its owner, such as a name, organization, location, and so on.

Typically, a CA is an independent organization, such as VeriSign, or within an organization. For either external or internal
CAs, there can also be intermediate CAs; these serve as subordinate CAs to the uppermost or root CA. For example, an
entire organization may have a root CA, and divisions or offices may each have their own intermediate CAs.

Entities do not need to use the same CA – each (or, more likely, each one’s software) simply needs to trust the other’s CA.
This relationship of trusting a CA is usually established without any user intervention, such as by having a browser ship
with a set of pre-approved CA certificates. For example, in Firefox 14.0, you can see a list of trusted CAs in the Tools >
Options dialog, on the Advanced tab, by clicking the View Certificates button and the Authorities tab. If a user attempts
to connect to a site that uses SSL/TLS and that has a trusted CA, then the user’s browser is able to authenticate the site.

Sometimes, the entity receiving the connection may also want to authenticate the entity initiating the connection. This is
known as mutual authentication. Again, it does not typically require human intervention.

When two entities need to authenticate each other, they can do so using their certificates and the CA’s trusted relationship
to them. Hence, when Alice and Bob attempt to communicate via, say, SSL/TLS, the SSL/TLS handshake performs
authentication for each of them as follows:

• Alice ends up with Bob’s certificate. Alice can trust this certificate because Bob’s CA has signed it. Bob’s CA is either
a trusted CA or itself has a certificate that, going up a chain of certificates, is ultimately signed by a trusted CA.

• The same is true with Alice’s certificate and Bob.

As another example, suppose that a large company has its headquarters in Sao Paolo, as well as offices in Tokyo and
Istanbul. This company might have its root CA in Sao Paolo, with intermediate CAs in Tokyo and Istanbul. Suppose that
there are entities in Tokyo and Istanbul that need to authenticate each other. When the one in Tokyo receives the other’s
certificate, it sees that the certificate is signed by the Istanbul CA, which, in turn, has a certificate signed by the root CA
in Sao Paolo. Likewise for the entity in Istanbul verifying the certificate signed by the Tokyo CA.

E.4 How the CA Creates a Certificate
When an entity obtains a certificate from a CA, a number of events have occurred – frequently without being visible to the
user.

First, an algorithm creates the key pair. It then obtains necessary information to describe the entity using the key pair, which
has to do with the entity’s location, organization, and so on. Taken all together, this identifying information comprises a
distinguished name (DN). The entity provides the public key and DN information to the CA in the form of a certificate
signing request (CSR); it does not provide the private key because, again, this is a closely held secret.

The CA receives the CSR and then processes it according to its procedures (which vary by CA and by the degree of
authenticity to which the certificate attests). Ultimately, the CA signs a document that binds the public key to the DN
information, thereby creating a certificate (specifically, a certificate that conforms to X.509 standard).

E.5 Limitations on Certificates: Expiration and Revocation
A certificate has an expiration date. This requires the owner of the certificate to renew it regularly. And even CA certificates
have expiration dates, which is one reason why you may occasionally see messages asking if you are willing to accept a
non-valid certificate for a site – it may be because the site’s owner has let its certificate lapse.

Caché Security Administration Guide 267

How the CA Creates a Certificate

http://www.ietf.org/rfc/rfc2459.txt

If a certificate has been compromised, CAs also have a means declaring it non-valid, using what are called certificate
revocation lists (CRLs). A CRL is a document that a CA publishes and that specifies all certificates for which it revokes
its certification. A CRL is analogous to a list of people from whom a store will not accept a personal check; in fact, the
analogy holds well, since the default case both for the CA and the store is that certificate or the check is valid, and the CRL
or the list specifies the certificates or checks that are not acceptable.

E.6 Recapping PKI Functionality
The different activities of the CA and its clients are made possible because these are part of a public-key infrastructure (a
PKI). To review:

• A PKI is an implementation of a system to create and manage private keys and certificates containing public keys.
Certificates provide a means of associating a public key with an entity, so that there can be assurance of the identity
of entities; to do this, a PKI includes a trusted third party known as a certificate authority (CA).

• A PKI associates an ID and other important information with a public key. Since a public key implies the existence of
an associated private key, the ID associated with the public key is thereby also associated with the private key.

• Taken all together, a PKI provides the functionality so that entities in an unsecured environment can have sufficient
confidence to use public-key cryptography in meaningful and legally binding ways.

268 Caché Security Administration Guide

About PKI (Public Key Infrastructure)

F
Using Character-based Security
Management Routines

The preferred and recommended way to manage a Caché installation is the Management Portal. The portal provides a
convenient, browser-based interface for controlling the system. However, to cover those instances when the system cannot
be managed this way, Caché also has several character-based routines that collectively provide many of the same functions
on the Terminal.

The utilities described in this appendix are:

• ^SECURITY — addresses the setup and maintenance of the data essential to the proper functioning of Caché security.

• ^EncryptionKey — supports operations for encryption key management, database encryption, and data element
encryption.

• ^DATABASE — is used to manage databases; it also allows you to set values related to Caché security.

• ^%AUDIT — allows the reporting of data from the logs, and the manipulation of entries in the audit logs as well as
the logs themselves.

Each of the routines is described in its own section along with its top-level functionality. In most cases, the initial menu
choice will lead to further requests for information until the routine has sufficient information to accomplish its task. To
use any routine from the Terminal, the user must be in the %SYS namespace and have at least the %Manager role. The
routine, for example ^SECURITY, is invoked as expected with the command:

 DO ^SECURITY

When the routine runs, it presents you with a list of options. Select an option by entering its number after the “Option?”
prompt.

CAUTION: As previously noted, the preferred way to manage a Caché system is via the Management Portal. Admin-
istrators who elect to use the routines described in this documents are assumed to have a detailed operating
knowledge of how Caché works and what parameter values are appropriate for the options they choose.

General notes about prompts
The following are characteristics of prompts when using the character-based facilities:

• Each option has a numeric prefix. Select an option by typing its number. The option-number pattern is used throughout
the routines.

• All option lists have an item to exit this level of menu and return to the previous level. You may also reply to the
“Option?” prompt with Enter. This is interpreted as if you had chosen the “Exit” option, that is, you are finished with

Caché Security Administration Guide 269

that section and you are presented with the next “upper” level of options. An Enter reply to the top-level of options
exits the ^SECURITY routine.

• Many of the prompts for information have a default value which is selected by typing the Enter key. When there is a
default value available, it is shown after the prompt message and followed by the characters “=>” as in

Unsuccessful login attempts before locking user? 5 =>

where the default value is 5 for the number of times a user may try to login and fail before the system locks their
username.

• Prompts whose defaults are “Yes” or “No” also accept any matching partial response such as “yE” or “n”. The
match is done ignoring the case of the response.

• In options whose intent is to alter the characteristics of existing user, roles, services, and so on, the existing value of
the item is displayed as the default. Typing Enter preserves that value and moves on to the next prompt.

• Some prompts ask for a pattern to use when matching items such as user names. The default pattern is usually “*”
that matches all items. In such patterns the asterisk matches any sequence of characters, much like it does in DOS. A
pattern may also consist of a comma-separated list of items each of which is treated as its own pattern. An item is
treated as being selected if it matches any pattern in the list.

CAUTION: There is nothing to prevent multiple instances of the same routine from being executed at the same time
by different system administrators (or even the same administrator). If this happens, it is the responsibility
of the administrators to coordinate their activity to avoid conflicts and achieve their objectives with regard
to the coherence of the affected data.

F.1 ^SECURITY
This routine addresses the setup and maintenance of the data essential to the proper functioning of Caché security. The
initial menu includes:

1. User setup

Users represent actual people or other entities who are permitted access to the system. This is the section for define
the characteristics of users for the instance.

Note: User definitions for Caché 2014.1 and later versions are not compatible with user definitions for 2013.1 and
previous versions, due to the introduction of the AccountNeverExpires and PasswordNeverExpires fields. If
you attempt to import newer definitions into an older version, Caché skips them.

2. Role setup

Caché users are given permission to perform an action by their assignment to one or more roles. This section is where
the characteristics of roles are defined.

3. Service setup

Services control the ability to connect to Caché using various connection technologies. They are predefined by Inter-
Systems. The parameters governing their use are set through this option.

4. Resource setup

Resources represent assets, such as databases or applications, whose use is to be managed. A resource may represent
a single asset such as a database, or it may protect multiple (usually related) assets such as a suite of applications.

5. Application setup

270 Caché Security Administration Guide

Using Character-based Security Management Routines

Application definitions serve as proxies for the actual application code. Permissions on the definition are interpreted
by the security system as granting the same permission on the application associated with the definition.

6. Auditing setup

Auditing is the means by which Caché keeps a record of security-related events. This section deals with the definition
and management of events whose occurrence is to be noted in the audit log.

7. Domain setup

Domains permit a community of users to be partitioned into several groups. This option allows an administrator to set
up Caché security to accept users from multiple domains. The domains defined via this option exist only within the
Caché system for the purpose of recognizing valid users. When multiple domains have been defined, usernames should
include the domains they will be attempting access from, for example, president@whitehouse.gov. If a user’s name is
given without the domain identification, Caché uses the default domain (if any) set up in the system parameters section.

8. SSL configuration setup

SSL/TLS provides authentication and other functionality. This section provides configuration tools if the instance uses
Caché support for the SSL/TLS protocol; this includes the use of SSL/TLS with mirroring, such as for creating and
editing SSL/TLS configurations for use with mirroring.

9. Mobile phone service provider setup

With two-factor authentication, authenticating users receive a one-time security code on their mobile phone that they
then enter at a prompt. This section provides the tools for configuring the mobile phone service providers in use for
the Caché instance.

10. OpenAM Identity Services setup

OpenAM identify services allow Caché to support single-sign on (SSO); by using this feature, users that have already
successfully authenticated do not have to re-authenticate. This section deals with managing OpenAM identity services
for the Caché instance.

11. Encryption key setup

Caché uses keys to encrypt databases or user-specified data elements. This section provides tools for working with
keys for both database and managed encryption.

12. System parameter setup

The system parameters are a collection of security-related values that apply system-wide. This section includes the
ability to export and import all an instance’s security settings, including those for SQL privileges.

Note: Considerations related to importing settings:

• If you are importing security settings from a source instance configured with multiple domains to a target
instance not configured to allow multiple domains and the source instance’s default domain differs from
that of the target instance, then the import does not update the target’s default domain — you must
explicitly set this value. To do this, use the Default security domain drop-down on the System-wide

Security Parameters page (System Administration > Security > System Security > System-wide Security

Parameters).

• When importing all security settings, the import/export file includes web application settings; each web
application has a Path setting. Before importing settings onto a new drive, VM, or hardware, for each
web application, ensure that the value of the Path setting is accurate for that environment. If the web
applications associated with the Management Portal do not have correct Path values, the Management
Portal will not display correctly.

To locate the Path setting for each web application in the import/export file (SecurityExport.xml), look
in the ApplicationsExport section; in each Applications section, identify the application by the value of
the Name setting; then update the value of the Path setting as appropriate.

Caché Security Administration Guide 271

^SECURITY

13. X509 User setup

X.509 is the standard for certificates that a public key infrastructure (PKI) uses. Caché uses X.509 certificates for its
PKI, and each user associated with an X.509 certificate is known as an X.509 user. This section provides tools for
working with X.509 users, such as creating them, editing them, deleting them, and so on.

14. Exit

F.2 ^EncryptionKey
The ̂ EncryptionKey routine is for use with managed key encryption; it supports operations for encryption key management
(technology for creation and management of encryption keys and key files), database encryption, and data element
encryption.

1. Create new encryption key and key file

Allows you to create a new database-encryption key, which it stores in a key file.

2. Manage existing encryption key file

Allows you to list administrators associated with a key file, add an administrator to a key file, remove an administrator
from a key file, and convert a version 1.0 key file to a version 2.0 key file.

3. Database encryption

Allows you to activate a database encryption key, display the unique identifier for the currently activated database
encryption key (if there is one), deactivate the activated database encryption key, and configure Caché startup options
related to database encryption.

4. Data element encryption for applications

Allows you to activate a data element encryption key, list the unique identifier for any currently activated data element
encryption keys (if there are any), and deactivate the activated data element encryption key.

F.3 ^DATABASE
The ^DATABASE routine is used to manage databases; it also allows you to set values related to Caché security.

1. Create a database

Allows you to create a new database.

2. Edit a database

Allows you to change the characteristics of an existing database, for example, by adding additional volumes.

3. List databases

Displays the characteristics of one or more databases.

4. Delete a database

Allows you to delete a Caché database. This action is irreversible.

5. Mount a database

272 Caché Security Administration Guide

Using Character-based Security Management Routines

Makes a database ready for use by Caché. Databases must be mounted to Caché in order to be usable. Databases can
be set to be automatically mounted at startup.

Note: You can use the Mount a database option to mount any CACHE.DAT file accessible to the instance by speci-
fying the directory containing it. However, if you do this with a database that was deleted from, or was never
added to, the Management Portal database configuration (see Configuring Databases in the “Configuring
Caché” chapter of the Caché System Administration Guide), the database is not added to the Management
Portal configuration and is therefore unavailable for portal database operations and for some routines, for
example ^Integrity (see Checking Database Integrity Using the ^Integrity Utility in the “Introduction to
Data Integrity” chapter of the Caché Data Integrity Guide).

6. Dismount a database

Permits you to quiesce a database and remove it from use by Caché.

7. Compact globals in a database

Reorganizes the data inside CACHE.DAT. Note that this option does not reduce the size of the database file; to reduce
the size of the database, see option 13.

8. Show free space for a database

Displays the available space for a database. This is calculated as the difference between its current contents and its
current declared size.

9. Show details for a database

Displays detailed information on a specified database including location, size, status, and other controlling parameters.

10. Recreate a database

Creates a new, empty database with the parameters of the original database. The new database is the same size as the
original database.

11. Manage database encryption

Removes all the logical data from a database while preserving the properties of the database for reuse.

12. Return unused space for a database

Frees either a specified amount of or all available extra space associated with a database, reducing it from its current
size to its smallest possible size.

13. Compact freespace in a database

Specifies the desired amount of freespace (unused space) that is in a database after the end of the database's data. You
can also eliminate this freespace using the Return unused space for a database option (#12).

14. Defragment globals in a database

Defragments a database, which organizes its data more efficiently. Defragmentation may leave freespace in a database
(see options #12 and #13).

F.4 ^%AUDIT
This routine allows the reporting of data from the logs, and the manipulation of entries in the audit logs as well as the logs
themselves.

1. Audit reports

Caché Security Administration Guide 273

^%AUDIT

Permits you to specify selection criteria (date ranges, events, affected users, and so on) and display characteristics,
then extracts the data from the audit log and formats it for presentation.

2. Manage audit logs

Allows the extraction of log entries to another namespace, the export and import of audit log data to and from external
files, and maintenance activities against the audit log itself.

3. Exit

274 Caché Security Administration Guide

Using Character-based Security Management Routines

	Table of Contents
	About This Book
	1 About Caché Security
	1.1 Authentication: Establishing Identity
	1.1.1 About Kerberos
	1.1.2 About Operating-System–Based Authentication
	1.1.3 About LDAP Authentication
	1.1.4 About Caché Login
	1.1.5 About Delegated Authentication

	1.2 Authorization: Controlling User Access
	1.2.1 Authorization Basics
	1.2.2 Resources and What They Protect
	1.2.3 For More Information on Authorization

	1.3 Auditing: Knowing What Happened
	1.4 Managed Key Encryption: Protecting Data on Disk
	1.5 Managing Security with the Management Portal
	1.6 Notes on Technology, Policy, and Action
	1.7 A Note on Certification

	2 Authentication
	2.1 Authentication Basics
	2.2 About the Different Authentication Mechanisms
	2.2.1 Kerberos Authentication
	2.2.2 Operating-System–Based Authentication
	2.2.3 Caché Authentication
	2.2.4 LDAP Authentication
	2.2.5 Delegated Authentication
	2.2.6 Unauthenticated Access

	2.3 About the Different Access Modes
	2.3.1 About Local Access
	2.3.2 About Client/Server Access
	2.3.3 About Web Access

	2.4 Configuring for Kerberos Authentication
	2.4.1 About Kerberos and the Access Modes
	2.4.2 Specifying Connection Security Levels
	2.4.3 Setting Up a Client
	2.4.4 Obtaining User Credentials
	2.4.5 Setting Up a Secure Channel for a Web Connection

	2.5 Configuring for Operating-System–Based Authentication
	2.5.1 A Note on %Service_Console
	2.5.2 A Note on %Service_Callin

	2.6 Configuring for Authentication with Caché Login
	2.6.1 Web
	2.6.2 ODBC
	2.6.3 Telnet and Caché Direct

	2.7 Configuring Two-Factor Authentication
	2.7.1 Overview of Setting Up Two-Factor Authentication
	2.7.2 Configuring Two-Factor Authentication for the Server
	2.7.3 Enabling or Disabling Two-Factor Authentication for a Service
	2.7.4 Configuring Web Applications for Two-Factor Authentication
	2.7.5 Configuring an End-User for Two-Factor Authentication
	2.7.6 Configuring Bindings Clients for Two-Factor Authentication

	2.8 Other Topics
	2.8.1 System Variables and Authentication
	2.8.2 Using Multiple Authentication Mechanisms
	2.8.3 Cascading Authentication
	2.8.4 Establishing Connections with the UnknownUser Account
	2.8.5 Programmatic Logins
	2.8.6 The JOB Command and Establishing a New User Identity

	3 Assets and Resources
	3.1 About Resources
	3.2 System Resources
	3.2.1 Administrative Resources
	3.2.2 The %Development Resource
	3.2.3 The %System_Callout Resource
	3.2.4 The %Secure_Break Resource

	3.3 Database Resources
	3.3.1 Database Resource Privileges
	3.3.2 Shared Database Resources
	3.3.3 Default Database Resource
	3.3.4 Unknown or Non-Valid Resource Names
	3.3.5 Namespaces
	3.3.6 Databases that Ship with Caché

	3.4 Application Resources
	3.5 Creating or Editing a Resource
	3.5.1 Resource Naming Conventions

	3.6 Using Custom Resources with the Management Portal
	3.6.1 Defining and Applying a Custom Resource to a Page
	3.6.2 Removing a Custom Resource from a Page

	4 Privileges and Permissions
	4.1 How Privileges Work
	4.2 Public Permissions
	4.3 Checking Privileges
	4.4 When Changes in Privileges Take Effect

	5 Roles
	5.1 About Roles
	5.2 Roles, Users, Members, and Assignments
	5.2.1 An Example of Multiple Role Assignment

	5.3 Creating Roles
	5.3.1 Naming Conventions

	5.4 Managing Roles
	5.4.1 Viewing Existing Roles
	5.4.2 Deleting a Role
	5.4.3 Giving New Privileges to a Role
	5.4.4 Modifying Privileges for a Role
	5.4.5 Removing Privileges from a Role
	5.4.6 Assigning Users or Roles to the Current Role
	5.4.7 Removing Users or Roles from the Current Role
	5.4.8 Assigning the Current Role to Another Role
	5.4.9 Removing the Current Role from Another Role
	5.4.10 Modifying a Role’s SQL-Related Options

	5.5 Predefined Roles
	5.5.1 %All
	5.5.2 Default Database Resource Roles

	5.6 Login Roles and Added Roles
	5.6.1 A Note on Added Roles and Access in the Management Portal

	5.7 Programmatically Managing Roles

	6 Users
	6.1 Properties of Users
	6.1.1 About User Types

	6.2 Creating and Editing Users
	6.2.1 Creating a New User
	6.2.2 Editing an Existing User

	6.3 Viewing and Managing Existing Users
	6.3.1 Deleting a User
	6.3.2 Viewing a User Profile

	6.4 Predefined User Accounts
	6.4.1 Default Predefined Account Behavior
	6.4.2 Notes on Various Accounts

	6.5 Validating User Accounts

	7 Services
	7.1 Available Services
	7.1.1 Notes on Individual Services

	7.2 Service Properties
	7.3 Services and Authentication
	7.4 Services and Their Resources

	8 Applications
	8.1 Applications, Their Properties, and Their Privileges
	8.1.1 Applications and Their Properties
	8.1.2 Associating Applications with Resources
	8.1.3 Applications and Privilege Escalation
	8.1.4 Checking for Privileges Programmatically

	8.2 Application Types
	8.2.1 Web Applications
	8.2.2 Privileged Routine Applications
	8.2.3 Client Applications

	8.3 Creating and Editing Applications
	8.3.1 Creating and Editing an Application: The General Tab
	8.3.2 Editing an Application: The Application Roles Tab
	8.3.3 Editing an Application: The Matching Roles Tab
	8.3.4 Editing an Application: The Routines/Classes Tab

	8.4 System Applications

	9 Auditing
	9.1 Basic Auditing Concepts
	9.1.1 Enabling or Disabling Auditing

	9.2 About Audit Events
	9.2.1 Elements of an Audit Event
	9.2.2 About System Audit Events
	9.2.3 Enabling and Disabling System Events
	9.2.4 About User Events

	9.3 Managing Auditing and the Audit Database
	9.3.1 Viewing the Audit Database
	9.3.2 Copying, Exporting, and Purging the Audit Database
	9.3.3 Encrypting the Audit Database
	9.3.4 General Management Functions

	9.4 Other Auditing Issues
	9.4.1 Freezing Caché If There Can Be No Audit Log Writes
	9.4.2 About Counters

	10 Managed Key Encryption
	10.1 Managing Keys and Key Files
	10.1.1 Creating a Key File
	10.1.2 Adding a Key to a Key File
	10.1.3 Deleting a Key from a Key File
	10.1.4 Adding an Administrator to a Key File
	10.1.5 Deleting an Administrator from a Key File
	10.1.6 Activating a Database Encryption Key
	10.1.7 Deactivating a Database Encryption Key
	10.1.8 Specifying the Default Database Encryption Key or Journal Encryption Key for an Instance
	10.1.9 Activating a Data Element Encryption Key
	10.1.10 Deactivating a Data Element Encryption Key
	10.1.11 Testing for a Valid Administrator Username-Password Pair
	10.1.12 Managing Keys and Key Files with Multiple-Instance Technologies

	10.2 Recommended Policies for Managing Keys and Key Files
	10.2.1 Protection from Accidental Loss of Access to Encrypted Data
	10.2.2 Protection from Unauthorized Access to Encrypted Data

	10.3 Using Encrypted Databases
	10.3.1 Creating an Encrypted Database
	10.3.2 Establishing Access to an Encrypted Database
	10.3.3 Closing the Connection to an Encrypted Database
	10.3.4 Moving an Encrypted Database Between Instances
	10.3.5 Configuring Caché Database Encryption Startup Settings
	10.3.6 About Encrypting the Databases that Ship with Caché

	10.4 Using Data Element Encryption
	10.4.1 Programmatically Managing Keys
	10.4.2 Data Element Encryption Calls
	10.4.3 Support for Re-Keying Data in Real Time

	10.5 Emergency Situations
	10.5.1 If the File Containing an Activated Key is Damaged or Missing
	10.5.2 If the Database-Encryption Key File Is Required at Startup and Is Not Present

	10.6 Other Information
	10.6.1 Key File Encryption Information
	10.6.2 Encryption and Database-Related Caché Facilities

	11 SQL Security
	11.1 SQL Privileges and System Privileges
	11.2 The SQL Service
	11.2.1 CREATE USER
	11.2.2 Effect of Changes
	11.2.3 Required Privileges for Working with Tables

	12 System Management and Security
	12.1 System Security Settings Page
	12.2 System-Wide Security Parameters
	12.2.1 Protecting Sensitive Data in Memory Images

	12.3 Authentication Options
	12.4 The Secure Debug Shell
	12.4.1 Enabling Use of the Secure Shell
	12.4.2 Restricted Commands and Functions

	12.5 Password Strength and Password Policies
	12.5.1 Suggested Administrator Password Strength

	12.6 Protecting Caché Configuration Information
	12.7 Managing Caché Security Domains
	12.7.1 Single and Multiple Domains
	12.7.2 The Default Security Domain
	12.7.3 Listing, Editing, and Creating Domains

	12.8 Security Advisor
	12.8.1 Auditing
	12.8.2 Services
	12.8.3 Roles
	12.8.4 Users
	12.8.5 CSP, Privileged Routine, and Client Applications

	12.9 Effect of Changes
	12.10 Emergency Access
	12.10.1 Invoking Emergency Access Mode
	12.10.2 Emergency Access Mode Behavior

	13 Using SSL/TLS with Caché
	13.1 About SSL/TLS
	13.2 About Configurations
	13.2.1 Creating or Editing an SSL/TLS Configuration
	13.2.2 Deleting a Configuration
	13.2.3 Reserved Configuration Names

	13.3 Configuring the Caché Superserver to Use SSL/TLS
	13.4 Configuring the Caché Telnet Service to Use SSL/TLS
	13.4.1 Configuring the Caché Telnet Server for SSL/TLS
	13.4.2 Configuring Telnet Clients for SSL/TLS

	13.5 Configuring Java Clients to Use SSL/TLS with Caché
	13.5.1 Determining the Need for a Keystore and a Truststore
	13.5.2 Creating a Client Configuration
	13.5.3 Specifying the Use of the Client Configuration

	13.6 Configuring .NET Clients to Use SSL/TLS with Caché
	13.7 Connecting from a Windows Client Using a Settings File
	13.7.1 Overview of the Process
	13.7.2 About the Settings File
	13.7.3 A Sample Settings File
	13.7.4 How It Works

	13.8 Configuring Caché to Use SSL/TLS with Mirroring
	13.8.1 About Mirroring and SSL/TLS
	13.8.2 Creating and Editing an SSL/TLS Configuration for a Mirror

	13.9 Configuring Caché to Use SSL/TLS with TCP Devices
	13.9.1 Configuring a Client to Use SSL/TLS with a TCP Connection
	13.9.2 Configuring a Server to Use SSL/TLS with a TCP Socket

	13.10 Configuring the CSP Gateway to Connect to Caché Using SSL/TLS
	13.11 Establishing the Required Certificate Chain

	14 The InterSystems Public Key Infrastructure
	14.1 About the InterSystems Public Key Infrastructure (PKI)
	14.1.1 Help for Management Portal PKI Tasks

	14.2 Certificate Authority Server Tasks
	14.2.1 Configuring a Caché Instance as a Certificate Authority Server
	14.2.2 Managing Pending Certificate Signing Requests

	14.3 Certificate Authority Client Tasks
	14.3.1 Configuring a Caché Instance as a Certificate Authority Client
	14.3.2 Submitting a Certificate Signing Request to a Certificate Authority Server
	14.3.3 Getting Certificate(s) from Certificate Authority Server

	15 Using Delegated Authentication
	15.1 Overview of Delegated Authentication
	15.1.1 How Delegated Authentication Works

	15.2 Creating Delegated (User-Defined) Authentication Code
	15.2.1 Authentication Code Fundamentals
	15.2.2 Signature
	15.2.3 Authentication Code
	15.2.4 Setting Values for Roles and Other User Characteristics
	15.2.5 Return Value and Error Messages

	15.3 Setting Up Delegated Authentication
	15.4 After Delegated Authentication Succeeds
	15.4.1 The State of the System
	15.4.2 Changing Passwords

	16 Using LDAP
	16.1 Overview of Using LDAP with Caché
	16.1.1 Using LDAP Authorization

	16.2 Configuring Caché to Use an LDAP Server
	16.2.1 Specifying Configuration Information for LDAP in Caché
	16.2.2 Specifying a Certificate File on Windows
	16.2.3 Searching the LDAP Database

	16.3 Setting Up LDAP-Based Authentication
	16.4 After Authentication — The State of the System
	16.5 Configuring the LDAP Server to Use Registered LDAP Properties
	16.6 Using LDAP Authorization with OS-Based Authentication

	17 Using Delegated Authorization
	17.1 Overview of Delegated Authorization
	17.2 Creating Delegated (User-defined) Authorization Code
	17.2.1 Working from the ZAUTHORIZE.mac Template
	17.2.2 ZAUTHORIZE Signature
	17.2.3 Authorization Code with ZAUTHORIZE
	17.2.4 ZAUTHORIZE Return Value and Error Messages

	17.3 Configuring an Instance to Use Delegated Authorization
	17.3.1 Delegated Authorization and User Types

	17.4 After Authorization — The State of the System

	Appendix A: Tightening Security for a Caché Instance
	A.1 Enabling Auditing
	A.2 Changing the Authentication Mechanism for an Application
	A.2.1 Giving the %Service_CSP:Use Privilege to the CSPSystem User
	A.2.2 Changing the Password of the CSPSystem User
	A.2.3 Configuring the CSP Gateway to Provide a Username and Password
	A.2.4 Configuring %Service_CSP to Require Password Authentication
	A.2.5 Removing the Public Status of the %Service_CSP:Use Privilege
	A.2.6 Configuring the Management Portal to Accept Password Authentication Only
	A.2.7 Specifying the Appropriate Privilege Level for the Instance’s Users
	A.2.8 Making the Documentation or Samples Available
	A.2.9 Beginning Enforcement of New Policies

	A.3 Limiting the Number of Public Resources
	A.4 Restricting Access to Services
	A.4.1 Limiting the Number of Enabled Services
	A.4.2 Limiting the Number of Public Services
	A.4.3 Restricting Access to Services by IP Address or Machine Name

	A.5 Restricting Public Privileges
	A.6 Limiting the Number of Privileged Users
	A.7 Disabling the _SYSTEM User
	A.8 Restricting Access for UnknownUser
	A.8.1 Potential Lockout Issue with the UnknownUser Account

	A.9 Configuring Third-Party Software

	Appendix B: Using the cvencrypt Utility
	B.1 Converting an Unencrypted Database to be Encrypted
	B.2 Converting an Encrypted Database to be Unencrypted
	B.3 Converting an Encrypted Database to Use a New Key
	B.4 Using Command-line Options with cvencrypt

	Appendix C: Frequently Asked Questions about Caché Security
	Appendix D: Relevant Cryptographic Standards and RFCs
	Appendix E: About PKI (Public Key Infrastructure)
	E.1 The Underlying Need
	E.2 About Public-Key Cryptography
	E.3 Authentication, Certificates, and Certificate Authorities
	E.4 How the CA Creates a Certificate
	E.5 Limitations on Certificates: Expiration and Revocation
	E.6 Recapping PKI Functionality

	Appendix F: Using Character-based Security Management Routines
	F.1 ^SECURITY
	F.2 ^EncryptionKey
	F.3 ^DATABASE
	F.4 ^%AUDIT

	Index

