
Caché MultiValue Query
Language (CMQL) Reference

Version 2017.2
2020-06-26

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Caché MultiValue Query Language (CMQL) Reference
Caché   Version 2017.2    2020-06-26   
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

About This Book .................................................................................................................................... 1

CMQL Commands, Keywords, and Query Logging .......................................................................... 3
CMQL Commands ........................................................................................................................... 4
CMQL Keywords ............................................................................................................................. 5
CMQL Query Logging ..................................................................................................................... 6

CMQL Clauses ....................................................................................................................................... 9
AVERAGE clause .......................................................................................................................... 10
AVG clause ..................................................................................................................................... 11
BETWEEN clause .......................................................................................................................... 13
BREAK.ON clause ......................................................................................................................... 14
BREAK.SUP clause ....................................................................................................................... 16
BY clause ....................................................................................................................................... 18
CALC clause .................................................................................................................................. 21
COL.HDG clause ........................................................................................................................... 22
COL.SPACES clause ...................................................................................................................... 23
CONV clause .................................................................................................................................. 24
CONVERSION clause ................................................................................................................... 25
DISPLAY.LIKE clause ................................................................................................................... 26
DISPLAY.NAME clause ................................................................................................................ 27
ENUM clause ................................................................................................................................. 28
EVAL clause ................................................................................................................................... 30
FIRST clause .................................................................................................................................. 32
FMT clause ..................................................................................................................................... 33
FOOTER clause .............................................................................................................................. 34
FOOTING clause ............................................................................................................................ 35
FROM clause .................................................................................................................................. 37
HEADER clause ............................................................................................................................. 38
HEADING clause ........................................................................................................................... 39
IF clause ......................................................................................................................................... 41
LPTR clause ................................................................................................................................... 42
MAX clause .................................................................................................................................... 43
MIN clause ..................................................................................................................................... 45
PCT clause ...................................................................................................................................... 47
PERCENT clause ........................................................................................................................... 48
PREFETCH clause ......................................................................................................................... 49
REQUIRE.SELECT clause ............................................................................................................ 50
SAMPLE clause ............................................................................................................................. 51
SAMPLED clause .......................................................................................................................... 52
SAMPLING clause ........................................................................................................................ 53
SAVING clause .............................................................................................................................. 54
SELECT.ONLY clause ................................................................................................................... 55
TOTAL clause ................................................................................................................................ 56
WHEN clause ................................................................................................................................. 58
WHERE clause ............................................................................................................................... 60
WITH clause .................................................................................................................................. 61

Caché MultiValue Query Language (CMQL) Reference                                                                                                        iii





About This Book

This book provides reference material for CMQL (Caché MultiValue Query Language). CMQL is the Caché MultiValue
implementation of an SQL-like query language for MultiValue data.

This book contains the following sections:

• A list of CMQL commands

• A list of CMQL keywords

• How to perform CMQL query logging

• CMQL query clauses

There is also a detailed Table of Contents.

Other related topics in the Caché documentation set are:

• Using the MultiValue Features of Caché

• Operational Differences between MultiValue and Caché

• Caché MultiValue Commands Reference

• The Caché MultiValue Spooler

For general information, see Using InterSystems Documentation.

Caché MultiValue Query Language (CMQL) Reference                                                                                                         1





CMQL Commands, Keywords, and Query
Logging

Caché MultiValue Query Language (CMQL) Reference                                                                                                         3



CMQL Commands
A list of commands that support CMQL clauses.

Description
The following commands support CMQL query clauses:

• BSELECT

• COUNT

• LIST

• LIST.ITEM

• LIST.LABEL

• REFORMAT

• SELECT

• SORT

• SORT.ITEM

• SORT.LABEL

• SREFORMAT

• SSELECT

• STAT

• SUM

The following commands perform CMQL queries on the VOC file. They support the WHEN conditional clause. They do
not support the WITH clause (or IF or WHERE conditional clauses):

• LISTF

• LISTPA

• LISTPH

• LISTS

For further details on these commands, refer to the Caché MultiValue Commands Reference.

4                                                                                                         Caché MultiValue Query Language (CMQL) Reference

CMQL Commands, Keywords, and Query Logging



CMQL Keywords
A list of keywords used in CMQL clauses.

Non-Functional CMQL Keywords
The following CMQL keywords may be included in a query for readability, but are ignored by CMQL and perform no
function:

A, AN, ANY, ARE, FILE, FOR, IN, INVISIBLE, ITEMS, OF, PRINT, THAN, THE.

The Attribute 2 value for these keywords is TA.

CMQL Clause Keywords
The following are CMQL clause keywords:

AVERAGE, AVG, BETWEEN, BREAK.ON, BREAK-ON, BREAK.SUP, BY, BY-DSND, BY-EXP, BY-EXP-DSND,
BY.DSND, BY.EXP, BY.EXP.DSND, CALC, COL.HDG, COL.SPACES, COL.SPCS, CONV, CONVERSION, DIS-
PLAY.LIKE, DISPLAYLIKE, DISPLAY.NAME, ENUM, EVAL, FIRST, FMT, FOOTER, FOOTING, FROM, HEADER,
HEADING, IF, LPTR, MAX, MIN, PCT, PERCENT, PREFETCH, REQUIRE.SELECT, SAMPLE, SAMPLED, SAM-
PLING, SAVING, SELECT.ONLY, TOTAL, WHEN, WHERE, WITH.

CMQL Subclause Keywords
The following are CMQL subclause keywords:

• Used with the EVAL clause: AS.

• Used with the SAVING clause: NO.NULLS, UNIQUE.

• Used in the TOTAL clause (and other numeric calculation clauses): GRAND-TOTAL, GRAND.TOTAL.

• Used in the WHEN clause: ASD, ASSOCIATED.

• Used in the WITH clause (and its synonyms) and described in the WITH clause:

Equality operators: #, AFTER, BEFORE, EQ, EQUAL, GE, GREATER, GT, LE, LESS, LT, NE, NOT.

Other keywords: AND, EACH, EVERY, ID.ONLY, IS.NULL, IS.NOT.NULL, LIKE, MATCHES, MATCHING,
NO, NOT.MATCHING, ONLY, OR, SAID, SPOKEN, UNLIKE, WITHOUT.

MultiValue Verb Keywords
The following are MultiValue command keywords: ALL, DATA, DICT, DIR, OFF, ON, TEMPL, TO, USING.

The following are display formatting keywords. They are described with the CMQL commands that support them:

COL-HDR-SUPP, COL.HDR.SUPP, COL.SUP, COL-SUPP, COUNT.SUP, DBL.SPC, DBL-SPC, DET.SUP, DET-SUPP,
HDR.SUP, HDR-SUPP, ID-SUP, ID.SUP, ID-SUPP, NI.SUP, NI-SUPP, NO.PAGE, NOPAGE, SUPP, VERT, VERTI-
CALLY.

Caché MultiValue Query Language (CMQL) Reference                                                                                                         5

CMQL Keywords



CMQL Query Logging
Creating a log of CMQL queries.

Description
You can create a log of executed CMQL queries. CMQL logging is intended as a diagnostic aid for use when porting
MultiValue queries. It should not be used as part of a production application.

The CMQL query log is created by writing subscript entries to the Caché global ̂ CMQLlog. This log is activated by setting
^CMQLlog = 1 and deactivated by setting ^CMQLlog = 0. Note that global names are case-sensitive.

The operations that are listed in the CMQL log are invocations of CMQL commands, regardless of whether the command
completes successfully.

Activating CMQL Logging from Caché MultiValue

To activate CMQL logging from the Caché MultiValue Shell, use the COS, #, or [ commands, which permit you to issue
an ObjectScript command from within MultiValue:

USER: COS SET ^CMQLlog=1

For further details on these commands, refer to the Caché MultiValue Commands Reference.

Setting ^CMQLlog=1 activates the logging of queries for the current account (namespace). All CMQL queries are logged,
including queries that fail to execute due to an error. This logging remains in effect for all users of the current account
(namespace) until ^CMQLlog is explicitly reset to 0 or the global is KILLed. CMQL logging persists across Caché restart.

Setting ̂ CMQLlog=0 deactivates the logging of queries for the current account (namespace). This means that queries issued
when ^CMQLlog is set to zero are not logged in ^CMQLlog. Setting ^CMQLlog=0 does not delete the existing contents
of ^CMQLlog. Queries that have been logged in ^CMQLlog remain listed in the log until you issue a KILL ^CMQLlog
command. Setting ^CMQLlog=0 also does not suspend CMQL routine numbering. Caché MultiValue assigns a sequential
integer routine number to every CMQL query issued, whether or not that CMQL query is logged. Issuing a KILL ^CMQLlog
does not reset this CMQL routine number counter.

Viewing the CMQL Log

You can use the ObjectScript ZWRITE command to view the CMQL query log. The following example displays
^CMQLlog from within the MultiValue Shell:

USER: COS ZWRITE ^CMQLlog
^CMQLlog=1
^CMQLlog(66,1)="LIST VOC WITH @ID LIKE Q..."
^CMQLlog(66,2)=""
^CMQLlog(66,3)="405ý3ýýþ"
^CMQLlog(66,4)=3432
^CMQLlog(67,1)="SELECT VOC TO 4"
^CMQLlog(67,2)=""
^CMQLlog(67,3)="404ý480ý4ýþ"
^CMQLlog(67,4)=5996

The first line returned shows the activation status of ̂ CMQLlog. In this case, CMQL logging is active for the USER account.

Each query in the CMQL log is represented by four lines. The first ^CMQLlog subscript is the CMQL routine number
counter (in this case, routines 66 and 67). The second ^CMQLlog subscript is the log line number (1 through 4) for that
query.

• Log line 1: Contains the text of the query as a quoted string. Note that double quotation marks within the query string
are duplicated (""item"") to indicate a literal quotation mark rather than the end of the query string.

6                                                                                                         Caché MultiValue Query Language (CMQL) Reference

CMQL Commands, Keywords, and Query Logging



• Log line 2: If executing the query directly, contains an empty string. If executing the query using the MVBasic EXECUTE
command, contains the execute stack entry, a string such as $lb("+1^MVBASIC6108.mvi +2"), where 6108 is
the pid number.

• Log line 3: Contains execution information about the query, specified as a dynamic array. Items are separated by value
marks (@VM):

– The first item is the error or completion message number. On error, returns the error code number. On success,
returns one of the following: 401=LISTPA, LISTPH, LISTS successful, 403=SORT.ITEM successful, 404=SELECT,
SSELECT, BSELECT successful, 405=LIST, LISTF, LIST.ITEM, SORT successful; 407=COUNT successful;
438=SUM successful; empty string=LIST.LABEL, SORT.LABEL, STAT successful.

– The second item is the number of records selected by the query upon success. If an error occurred, the second item
may contain error information.

– The third item is the select list selected to.

If a query returns multiple messages, the information for each message is presented in the log line 3 dynamic array,
with messages separated by field marks (@FM), with the success message items listed first. One example of this is a
LIST.ITEM command that specifies some records in the file and some records that are not in the file. Each item not
in the file returns its own field. This is shown in the following example:

^CMQLlog(9,1)="LIST.ITEM VOC 'A' 'FRED' 'BASIC'"
^CMQLlog(9,2)=""
^CMQLlog(9,3)="405ý2ýýþ780ýFREDýýþ"
^CMQLlog(9,4)=6108

• Log line 4: Contains the process ID (pid) of the process executing the query.

Caché MultiValue Query Language (CMQL) Reference                                                                                                         7

CMQL Query Logging





CMQL Clauses

Caché MultiValue Query Language (CMQL) Reference                                                                                                         9



AVERAGE clause
Synonym for AVG.

Description
The AVERAGE clause is a synonym for the AVG clause.

10                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



AVG clause
Returns the average value of a field.

AVG field [NO.NULLS] [GRAND.TOTAL "label"]

AVERAGE field [NO.NULLS] [GRAND.TOTAL "label"]

Description
The AVG and AVERAGE keywords are synonyms.

The AVG clause calculates the average value for a numeric field. If a WITH clause (or some other conditional clause) is
specified, AVG returns the average of the values of that field that pass the condition test.

By default, fields containing nonnumeric values or NULL are counted in determining the average value. NULL and nonnu-
meric fields are treated as having the numeric value of 0. The optional NO.NULLS keyword removes items without a value
(NULL) from the count of items used to calculate the average.

AVG calculates an average to nine decimal places. Leading and trailing zeros are suppressed.

Multiple CMQL clauses may be specified in any order. The order of application of CMQL clauses is always the same. The
WITH clause (or other condition test clause) is applied first. The SAMPLED clause (if present) is applied next, then the
SAMPLE clause (if present), then the AVG clause.

GRAND.TOTAL Keyword

GRAND.TOTAL and GRAND-TOTAL are synonyms.

By default, in a horizontal display the summation line is not labeled; it is indicated by the “***” placeholder. You can use
the GRAND.TOTAL keyword to assign a label name to the summation line. GRAND.TOTAL has no effect on vertical
display format.

The following example shows the default labeling of an average:

LIST SALES WITH AMOUNT > "$100.00" AVG AMOUNT (D

It returns:

SALES..... AMOUNT.........

***                $504.34

24423 Items listed.

The following example uses GRAND.TOTAL to label the average:

LIST SALES WITH AMOUNT > "$100.00" AVG AMOUNT GRAND.TOTAL "AvgAmt" (D

It returns:

SALES..... AMOUNT.........

AvgAmt             $504.34

24423 Items listed.

Note that the total, maximum, minimum, and average values are all listed as columns in the same summation line. They
are listed in the order in which the clauses were specified. A single GRAND.TOTAL keyword specifies the label for the
entire summation line. GRAND.TOTAL does not have to directly follow the clause(s) that it affects. If you specify multiple
GRAND.TOTAL keywords, the last one specified is used.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       11

AVG clause



Examples

The following example returns both the total value and the average value of the field F5; in this case the VOC contains 478
records, most of which have no value for the F5 field:

SUM VOC F5 AVG F5

It returns 52 for the sum of F5, and .108786611 (52 / 478) for the average value of F5.

The following example returns both the total values and the average value of the field F5, when NULLs are not counted.
As can be seen from the COUNT command, the VOC contains 48 records in which F5 has a value that includes at least
one character.

COUNT VOC F5 WITH F5 LIKE "...0X"
SUM VOC F5 AVG F5 NO.NULLS

The SUM command returns 52 for the sum of F5, and 1.083333333 (52 / 48) for the average value of F5.

See Also
• MAX clause

• MIN clause

• TOTAL clause

12                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



BETWEEN clause
Returns items with a range of values.

[[WITH] field] BETWEEN "start" "end"

WHEN field BETWEEN "start" "end"

Description
The BETWEEN clause returns those values of field between start and end, inclusive of both start and end. This range is
specified as an ascending collation sequence. Neither start nor end have to be existing field values. Comparisons are case-
sensitive.

If start and end are the same value, that value (if present) is returned. If start is higher in the collation sequence than end,
no values are returned and a [401] “No items present” message is displayed.

BETWEEN cannot use "" (null) as a start or end value. If start or end is "" (null) no values are returned and a [401] “No
items present” message is displayed. This handling of null differs from other conditional operations such as AFTER, >,
and >= conditionals, which use "" (null) to indicate the beginning of the collation sequence, or = "" , which returns those
fields that have no value (null).

BETWEEN can be used in a WITH clause or a WHEN clause. If you omit the WITH keyword, the BETWEEN test
defaults to an implicit WITH @ID clause, as shown in the following examples.

The following example tests for a range of F4 values, returning the @ID of the selected records.

LIST VOC WITH F4 BETWEEN "A" "M"

The following example tests for a range of @ID values, returning the @ID and F4 values of the selected records:

LIST VOC F4 BETWEEN "A" "M"

Examples
The following example lists the values between “A” and “AM” (inclusive):

LIST VOC WITH @ID BETWEEN "A" "AM"

It returns A ABORT AFTER ALL ALL.MATCH.

The following example uses “ ” (blank) to approximate the beginning of the collation sequence:

LIST VOC WITH @ID BETWEEN " " "AM"

It returns # &COMO& &PH& &SAVEDLISTS& ; @CMQLOPTS A ABORT AFTER ALL ALL.MATCH.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       13

BETWEEN clause



BREAK.ON clause
Indicates changes of values with indicator string.

BREAK.ON field ["text'code'"]

Description
BREAK.ON and BREAK-ON are synonyms.

The BREAK.ON clause displays the values of field, and inserts a break indicator in the display at each point where the
field value changes. By default, this break indicator consists of a new line with *** indicating a change in field values. You
can supply a string as the break indicator.

You can specify multiple BREAK.ON clauses to insert breaks for multiple levels of sorting.

The BREAK.ON clause differs from the BREAK.SUP clause in two ways:

• BREAK.ON always displays the break field values. BREAK.SUP does not display the break field values unless you
specify this field as a display column.

• BREAK.ON indicates a field value change either with *** (the default) or a user-specified break string. BREAK.SUP
indicates a field value change with a blank line.

Multiple CMQL clauses may be specified in any order. The order of application of CMQL clauses is always the same. The
BREAK.ON clause is applied after the WITH clause, the SAMPLED clause (if present), and the SAMPLE clause (if
present).

The following example displays the a break indicator each time the F1 field value changes:

LIST VOC BREAK.ON F1 WHERE FILENAME >= "A"

It lists output such as the following:

VOC......... F1.............

A            K

             ***

ABORT        V

             ***

AFTER        K
ALL          K
ALL.MATCH    K
AN           K
AND          K
ANY          K
ARE          K
AS           K
ASC          K
ASD          K

             ***

ASSIGN       V

The optional "text'code'" parameter allows you to specify how BREAK.ON values are displayed. Like the HEADING
codes, the outer quotes specify a literal and the inner nested quotes specify letter code characters. Both are optional.

• The "text" value, if specified, is substituted for the *** default value change marker.

• The 'B' letter code supplies the current field value to the HEADING clause.

14                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



• The 'D' letter code suppresses the value change marker when a break occurs after a unique field value. The value
change marker is displayed when there are more than one fields with the same value. If you also specify DET-SUPP,
the 'D' letter code is overridden and performs no operation.

• The 'L' letter code suppresses a blank line before the value change marker.

• The 'P' letter code specifies that each change in the field value should force a page break. 'N' is a synonym for 'P'.

• The 'S' letter code suppresses the value change marker. Changes in value are separated by a blank line.

• The 'V' letter code supplies the current field value as the value change marker string.

The following example shows the use of the "text'code'" parameters:

LIST VOC BY F1 BREAK.ON F1 "New Value'PB'" HEADING "F1='B'"

In this case, the VOC is sorted by F1 values. The literal New Value replaces *** as the F1 field value change indicator.
Each time the F1 field value changes, the 'P' letter code issues a page break. The 'B' letter code supplies the current F1
field value to the page header.

You can use a FMT clause to format the break on field display column. The integer specifies the width of the display column.
The letters L or R specify left justification or right justification. If neither is specified, the default is left justification.

The following example shows the use of the FMT clause:

LIST VOC WITH F4 BY F4 BREAK.ON F4 "Next Value'P'" FMT "5R" 

In this case, those records with F4 field values are sorted and displayed, with a break each time the F4 value changes. The
FMT clause specifies a width of 5 characters, right justified. This formatting affects both the display of the F4 values and
the display of the “Next Value” change marker.

BREAK.ON can be used with AVG, ENUM, PERCENT, or TOTAL to return a calculated value for each distinct field
value.

The following example uses BREAK.ON with the ENUM clause to return counts of the number of occurrences of each
distinct non-null value for F4, and the final count of all F4 values. The initial F4 count of 0 records indicated that there are
one or more records which have no value (null) for F4:

SORT VOC BY F4 BREAK.ON F4 ENUM F4 DET-SUPP

The following example is almost identical to the previous one. The WITH clause eliminates F4 count of 0 records displayed
by the previous example:

SORT VOC BY F4 WITH F4 BREAK.ON F4 ENUM F4 DET-SUPP

The following example uses two BREAK.ON clauses. The first inserts a break at each change in the F1 value, the second
inserts a break at each change in the F4 value within the same F1 values:

LIST VOC BY F1 BY F4 BREAK.ON F1 BREAK.ON F4

Emulation
UniData emulation BREAK.ON display differs in several details. At a New Value break, UniData provides as a break
indicator an asterisk underline, then displays the breaking value underneath. When providing a total, UniData displays a
“======” underline, then displays the total value underneath. UniData labels the total value with the word “TOTAL” by
default.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       15

BREAK.ON clause



BREAK.SUP clause
Indicates changes of values with line breaks.

BREAK.SUP field ["'code'"]

Description
The BREAK.SUP clause inserts a blank line break indicator in the display at each point where the field value changes.
Optionally, you can specify a code of "'B'" to provide the current field value to the header, or a code of "'P'" to issue
a page break at each point where the field value changes. "'N'" is a synonym for "'P'".

You can specify multiple BREAK.SUP clauses to insert breaks for multiple levels of sorting.

If the DET.SUP keyword is specified, CMQL detects breaks where the break field has BREAK.SUP, but only outputs a
break line for it if it is the lowest level break. If both the DBL.SPC and DET.SUP keywords are specified, the DBL.SPC
overrides the DET.SUP break line suppression.

The BREAK.SUP clause differs from the BREAK.ON clause in two ways:

• BREAK.SUP does not display the break field values unless you specify this field as a display column. BREAK.ON
always displays the break field values.

• BREAK.SUP indicates a field value change with a blank line. BREAK.ON indicates a field value change either with
*** (the default) or a user-specified break string.

Multiple CMQL clauses may be specified in any order. The order of application of CMQL clauses is always the same. The
BREAK.SUP clause is applied after the WITH clause, the SAMPLED clause (if present), and the SAMPLE clause (if
present).

The following example displays the a break indicator each time the F1 field value changes:

LIST VOC BREAK.SUP F1 WHERE FILENAME >= "A"

It lists output such as the following, where blank line breaks indicate changes in the F1 value:

VOC......... ...............

A

ABORT

AFTER
ALL
ALL.MATCH
AN
AND
ANY
ARE
AS
ASC
ASD

ASSIGN

If you wish to display the actual field values, you must specify the field, as shown in the following:

LIST VOC F1 BREAK.SUP F1 WHERE FILENAME >= "A"

The following example shows the use of the code parameter to supply the current F1 value to each page header and issue
a page break:

LIST VOC BY F1 BREAK.SUP F1 "'BP'" HEADING "Type='B'"

16                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



In this case, the VOC is sorted by F1 values. Each time the F1 field value changes, the 'P' letter code issues a page break.
The 'B' letter code supplies the current F1 field value to the page header. Note that the F1 values are not displayed; however,
the F1 value for the current page is shown in the page header.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       17

BREAK.SUP clause



BY clause
Sorts query output using a field value.

BY field
BY.DSND field
BY.EXP field
BY.EXP.DSND field

Description
The BY clause sorts the output returned by the query in ascending order by the values of the specified field. You can
specify multiple BY clauses for nested sorting operations. Sorts are performed in the order that the BY clauses are specified.
For example, BY F1 BY F3 sorts first by F1 values, then by F3 values within identical F1 values. NULL values always
sort to the beginning of the sort order.

BY sorts in ascending collation sequence order. BY.DSND sorts in descending collation sequence order. BY.DSND and
BY-DSND are synonyms.

BY sorts a single-value field. Use BY.EXP when sorting a multivalue dynamic array field. BY.EXP explodes each dynamic
array into its own data row for the purposes of this sort operation. BY.EXP sorts in ascending collation sequence order;
BY.EXP.DSND sorts in descending collation sequence order. BY.EXP and BY-EXP are synonyms. BY.EXP.DSND and
BY-EXP-DSND are synonyms.

When multiple CMQL clauses are specified the clauses may be specified in any order. The order of application of CMQL
clauses is as follows: the WITH clause is always applied first. Its results are supplied to the BY clause(s) (if present), which
supplies its results to the SAMPLED clause (if present), and its results are supplied to the SAMPLE clause (if present).

Single-valued and Multivalued Fields
A field is defined in its SM dictionary entry as either “S” (single-valued) or “M” (multivalued). It is also possible that a
field has no SM dictionary entry.

BY assumes that its field dictionary entry is a single-valued element. If field is a multivalued element, the BY clause is
logically incorrect. In this case, CMQL treats field as single valued for the purpose of sorting; all the multivalues will be
sorted as if they were a single string. This can sometimes be used as a 'trick' to sort by the first multivalue only. However,
if you are doing this it is suggested that you review your file layout.

BY.EXP assumes that its field dictionary entry is a multivalued element. If field is a single valued field, the BY.EXP clause
is logically incorrect. In this case, CMQL treats field as if it were a multivalued element.

Specifying the wrong BY or BY.EXP for the field may result in CMQL being unable to optimize the query using indexes.

When performing a sort on a child table, when a row is specified as single-valued, Caché MultiValue generates a reference
to the parent table for that column. This means that a single value (the first value) is returned for every row. When displaying
single values in an exploding list, single valued attributes should be designated with an “S” in the SM dictionary attribute
(field 5):

• A and S type dictionaries: all single valued attributes must be designated with an “S”. Otherwise a BY.EXP sort will
not recognize these attributes.

• D and I type dictionaries: all single valued attributes should be designated with an “S”. If not designated as either “S”
or ”M”, a BY.EXP sort assumes an “S” dictionary attribute value.

Examples
The following example searches the FILENAME field of the VOC for all values that begin with the letter J, and sorts them
by the values of the F1 field:

18                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



LIST VOC WITH FILENAME LIKE J... BY F1

It lists items in the following sequence: JOIN JOBS JED. (JOIN F1=K, JOBS F1=PA, JED F1=V).

The following examples sort the VOC by F1 and F3 values. The first example sorts by F1 and within that by F3 field values.
The second example sorts by F3 and within that by F1 field values:

LIST VOC WITH F1 > K BY F1 BY F3

It lists items in the following sequence (partial list): @CMQLOPTS JOBS LIST.JOB LISTME LISTU COL-HDR-SUPP
COL.HDR.SUPP LISTF LISTPA LISTPH LISTS ; ABORT ASSIGN AUTOLOGOUT BASIC ...

LIST VOC WITH F1 > K BY F3 BY F1

It lists items in the following sequence (partial list): @CMQLOPTS JOBS LIST.JOB LISTME LISTU COL-HDR-SUPP
COL.HDR.SUPP LISTF LISTPA LISTPH LISTS RELLEVEL ; ABORT ASSIGN AUTOLOGOUT BASIC ... Notice
that RELLEVEL has sorted differently than in the first example.

Multivalued Examples

The following example uses BY.EXP to sort the multivalued field AMOUNT in the SALES file:

LIST SALES AMOUNT BY.EXP AMOUNT WITH @ID < 5

It returns the following data. Note that each @ID item is exploded into as many rows as there are AMOUNT values for
that item. The number of items listed is the exploded number of rows (8), not the number of records (4).

SALES..... AMOUNT.........

1                  $170.03
4                  $196.13
2                  $361.95
1                  $707.59
4                  $788.58
3                  $807.70
1                  $848.47
3                  $968.34

8 Items listed.

The following example uses BY to sort the multivalued field AMOUNT in the SALES file:

LIST SALES AMOUNT BY AMOUNT WITH @ID < 5

The BY sort treats the multivalue string as a single value. This results in a sort by the first element in the multivalue; it
returns the following data. Because the multivalue data is not exploded, the number of items listed is the number of records
(4):

SALES..... AMOUNT.........

4                  $196.13
                   $788.58
2                  $361.95
3                  $807.70
                   $968.34
1                  $848.47
                   $170.03
                   $707.59

4 Items listed.

The following example first uses BY to sort the single-value @ID field, then uses BY.EXP to sort the multivalue AMOUNT
field:

LIST SALES AMOUNT BY @ID BY.EXP AMOUNT WITH @ID < 5

It returns the following data:

Caché MultiValue Query Language (CMQL) Reference                                                                                                       19

BY clause



SALES..... AMOUNT.........

1                  $170.03
1                  $707.59
1                  $848.47
2                  $361.95
3                  $807.70
3                  $968.34
4                  $196.13
4                  $788.58

8 Items listed.

Emulation
When exploding, UniVerse and UniData explode subvalues, but D3, Reality, and jBASE only explode values. Reality
provides a BY.EXP.SUB keyword to explode by subvalues which gives the same result as a simple BY.EXP on UniVerse.

20                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



CALC clause
Returns the calculated value for a field.

CALC field

Description
The CALC clause calculates the value for an I-type numeric field. CALC calculates to two decimal places. Leading and
trailing zeros are suppressed.

Multiple CMQL clauses may be specified in any order. The order of application of CMQL clauses is always the same. The
CALC clause is applied after the WITH clause, the SAMPLED clause (if present), and the SAMPLE clause (if present).

Examples

The following MultiValue Basic example creates an I-type field IPCT the value of which is calculated from the values of
the fields PRICE and DSCPRICE:

0001 EXECUTE 'CREATE-FILE MYTESTFILE 1 1' CAPTURING STUFF 
0005 OPEN 'DICT','MYTESTFILE' TO DICT.FP ELSE ABORT 
0006 OPEN 'MYTESTFILE' TO FP ELSE ABORT 
0007 WRITE '100':@AM:'50' ON FP,3 
0008 WRITE '197':@AM:'175' ON FP,2 
0009 WRITE '203':@AM:'180' ON FP,1 
0010 
0011 WRITE 'D':@AM:1:@AM:@AM:'PRICE':@AM:'10R' ON DICT.FP,'PRICE' 
0012 WRITE 'D':@AM:2:@AM:@AM:'DSCPRICE':@AM:'10R' ON DICT.FP,'DSCPRICE' 
0013 WRITE 'I':@AM:\(TOTAL(PRICE-DSCPRICE))*100/TOTAL(PRICE)\:@AM:'MR20':@AM:'IPCT':@AM:'10R' ON 
DICT.FP,'IPCT' 

LIST MYTESTFILE TOTAL PRICE TOTAL DSCPRICE CALC IPCT

Caché MultiValue Query Language (CMQL) Reference                                                                                                       21

CALC clause



COL.HDG clause
Synonym for DISPLAY.NAME.

Description
The COL.HDG clause is a synonym for the DISPLAY.NAME clause.

22                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



COL.SPACES clause
Changes the column display spacing.

COL.SPACES n

Description
The COL.SPACES and COL.SPCS keywords are synonyms.

The COL.SPACES clause enlarges (or shrinks) the spacing between display columns by n spaces. COL.SPACES adjusts
the width of all display columns equally. The n argument can be a positive or negative integer.

The default column widths are specified in the dictionary file listing FORMAT column, as displayed, for example, using
LIST DICT VOC.

COL.SPACES only affects column spacing in horizontal orientation. It has no effect on data displayed in vertical orientation.
Vertical orientation can either be caused by specifying too many items for horizontal display, or by specifying the VERT
keyword. When displaying multiple items, you can use COL.SPACES to shift display orientation from vertical to horizontal
(negative n) or horizontal to vertical (positive n).

Note that decreasing the spacing between columns may result in displayed data appearing truncated if the column width is
narrower than the number of characters in the data.

COL.SPACES uniformly changes the width of all of the display columns. Use FMT to change the width of a single display
column.

Examples

The following example increases the spacing between display columns by 5 spaces:

LIST VOC F1 F2 F3 COL.SPACES 5

The following example decreases the spacing between display columns by 2 spaces:

LIST VOC F1 F2 F3 F4 F5 COL.SPACES -2

In this example, this is enough to shift display orientation from vertical to horizontal.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       23

COL.SPACES clause



CONV clause
Converts the value for a field using conversion codes.

field CONV "code"

Description
The CONV and CONVERSION keywords are synonyms.

The CONV clause converts the value(s) for the preceding field based on the value of code. This code is character code,
specified as a quoted string, that specifies the type of conversion to perform. Conversion is from internal format to external
format.

The conversion code values are the same as those used in the MVBasic OCONV function, where they are described in
detail. For a complete list of conversion codes, refer to the Conversion Codes table in the MultiValue Basic Quick Reference.

Examples

The following example returns two columns: item names as stored in the VOC, and these item names converted to lowercase
letters:

LIST VOC @ID CONV "MCL"

The following MultiValue Basic example creates an I-type field IPCT the value of which is calculated from the values of
the fields PRICE and DSCPRICE:

0001 EXECUTE 'CREATE-FILE MYTESTFILE 1 1' CAPTURING STUFF 
0005 OPEN 'DICT','MYTESTFILE' TO DICT.FP ELSE ABORT 
0006 OPEN 'MYTESTFILE' TO FP ELSE ABORT 
0007 WRITE '100':@AM:'50' ON FP,3 
0008 WRITE '197':@AM:'175' ON FP,2 
0009 WRITE '203':@AM:'180' ON FP,1 
0010 
0011 WRITE 'D':@AM:1:@AM:@AM:'PRICE':@AM:'10R' ON DICT.FP,'PRICE' 
0012 WRITE 'D':@AM:2:@AM:@AM:'DSCPRICE':@AM:'10R' ON DICT.FP,'DSCPRICE' 
0013 WRITE 'I':@AM:\(TOTAL(PRICE-DSCPRICE))*100/TOTAL(PRICE)\:@AM:'MR20':@AM:'IPCT':@AM:'10R' ON 
DICT.FP,'IPCT' 

Using the above data, the following example converts the display of PRICE and DSCPRICE to dollar values with two
fractional digits:

LIST MYTESTFILE TOTAL PRICE CONV "MR2$" TOTAL DSCPRICE CONV "MR2$" CALC IPCT

24                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



CONVERSION clause
Synonym for CONV.

Description
The CONVERSION clause is a synonym for the CONV clause.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       25

CONVERSION clause



DISPLAY.LIKE clause
Displays DICT entry as column heading.

dict DISPLAY.LIKE dict

Description
The DISPLAY.LIKE and DISPLAYLIKE keywords are synonyms.

The DISPLAY.LIKE clause replaces the default column heading with a synonym defined as the corresponding DICT
element in the DICT file. The specified DICT elements are case-sensitive, and are not enclosed in quote characters.

DISPLAY.LIKE displays a defined DICT element as the column heading. DISPLAY.NAME displays a user-specified
name as the column heading.

Examples

The following example first shows how the F1 field is returned without DISPLAY.LIKE and then with a DISPLAY.LIKE
clause:

LIST VOC F1 WITH @ID LIKE Q...
LIST VOC F1 DISPLAY.LIKE TYPE WITH @ID LIKE Q...

VOC......... F1.............

Q            V
QSELECT      V
QUIT         V

3 Items listed.

VOC......... Typ

Q            V
QSELECT      V
QUIT         V

3 Items listed.

26                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



DISPLAY.NAME clause
Displays specified string as column heading.

dict DISPLAY.NAME name

Description
DISPLAY.NAME and COL.HDG are synonyms.

The DISPLAY.NAME clause replaces the default column heading with user-supplied name. This name may be supplied
with quote delimiters ("my text"), which permits the column heading to contain blank spaces or other special characters.
To include quote characters in a column heading, use the backslash character as the string delimiter (\Survey "yes"
results\). If no special characters are included, name delimiters are not required. Column headings are case-sensitive.

To specify a blank column heading, use "\" as the name value. This removes the default column heading without supplying
a replacement value.

DISPLAY.NAME displays a user-specified name as the column heading. DISPLAY.LIKE displays a defined DICT element
as the column heading.

The EVAL clause can specify a column heading name using the AS keyword. If you wish to display an EVAL column
with no column heading, you can use DISPLAY.NAME "\", instead of the AS keyword.

Examples

The following example first shows how the F1 field is returned without DISPLAY.NAME and then with a DISPLAY.NAME
clause:

LIST VOC F1 WITH @ID LIKE Q...
LIST VOC F1 DISPLAY.NAME "Type Code" WITH @ID LIKE Q...

returns:

VOC......... F1.............

Q            V
QSELECT      V
QUIT         V

3 Items listed.

VOC......... Type Code......

Q            V
QSELECT      V
QUIT         V

3 Items listed.

The following example shows DISPLAY.NAME used with the TOTAL clause to assign a name to a returned total (the
(D letter code suppresses display of all details except the total):

LIST VOC TOTAL F5 DISPLAY.NAME "Total F5" (D

returns:

VOC......... Total F5......

***          52

478 Items listed.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       27

DISPLAY.NAME clause



ENUM clause
Returns the number of occurrences of a field.

ENUM field [NO.NULLS]

Description
The ENUM clause counts the number of occurrences of a field. It counts every occurrence of the specified field, including
nulls (items that do not contain a value). You can use the NO.NULLS keyword to limit the ENUM count to non-null values.

The following example uses ENUM to count all of the occurrences of the F5 field, and TOTAL to return the total of these
values:

LIST VOC ENUM F5 TOTAL F5 DET-SUPP

returns:

VOC......... F5............. F5.............

***                      478 52

478 Items listed.

In this example, the DET-SUPP keyword suppresses the listing of individual items.

The following example uses the NO.NULLS keyword to limit the ENUM count to all non-null occurrences of the F5 field:

LIST VOC ENUM F5 NO.NULLS TOTAL F5 DET-SUPP

returns:

VOC......... F5............. F5.............

***                       48 52

478 Items listed.

To just return the count of occurrences of a field, you can use the COUNT command. To count all occurrences:

COUNT VOC F5

To count all non-null occurrences:

COUNT VOC F5 WITH F5

ENUM with BREAK.ON

You can use the BREAK.ON clause with ENUM to return subcounts for each distinct value, as well as an overall count.

The following example counts the number of occurrences of each distinct value for F4, and the final count of all F4 values.
These counts include a count of F4 fields with no value (null):

LIST VOC BY F4 BREAK.ON F4 ENUM F4 DET-SUPP

The following example counts the number of occurrences of each distinct non-null value for F4, and the final count of all
non-null F4 values:

LIST VOC BY F4 BREAK.ON F4 ENUM F4 NO.NULLS DET-SUPP

Note that this example displays a line for the F4 nulls, with an ENUM subcount of 0. This indicates that there are one or
more nulls, but they are not being added to the final count.

28                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



The following example also counts the number of occurrences of each distinct non-null value for F4, and the final count
of all non-null F4 values:

LIST VOC WITH F4 BY F4 BREAK.ON F4 ENUM F4 DET-SUPP

The WITH F4 conditional clause is applied before ENUM; it restricts the result set to non-null values. Therefore ENUM
does not indicate the presence (or absence) of nulls.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       29

ENUM clause



EVAL clause
Returns an evaluated expression value as an item.

EVAL "expression" [AS colname]

Description
The EVAL clause evaluates expression and returns the result as a separate item. An expression can be an expression
involving numeric and string literals, variables, MVBasic functions, or field values. An expression must be enclosed in
double quotes. If expression contains the name of a column, that column name is truncated to the first 50 characters.

An EVAL expression that contains a field returns the contents of the field’s itype attribute. Note that in Caché MultiValue
if the value of field is a number, it is treated as a literal number and not an attribute name. For example, the itype expression
"@DATE-1" evaluates 1 as a numeric literal, and thus returns yesterday's date.

You can specify a string literal as expression by enclosing it in single quotes, for example EVAL "'OK'". You can con-
catenate a string literal to an expression, for example EVAL "@DATE-1:' Yesterday'".

This evaluation of quoted numerics is consistent with most MultiValue implementation, with the exception of jBASE.
jBASE evaluates a quoted number as an itype attribute name, and attempts to return the attribute contents.

Postfix Operators

An EVAL expression can contain postfix operators, such as the substring extraction operator [n,m]. The following example
extracts a substring consisting of the first 3 characters of the specified @ID values:

LIST VOC "BASIC" "ASSOC" EVAL "@ID[1,3]"

It returns BAS and ASS.

You can specify multiple postfix operators. They are evaluated in the order specified. The following example uses two
postfix operators. The first ([1,3]) extracts a substring consisting of the first 3 characters of the specified @ID values; the
second ([2,99]) extracts a substring from that substring consisting of the second through 99th characters:

LIST VOC "BASIC" "ASSOC" EVAL "@ID[1,3][2,99]"

It returns AS and SS.

The number of sequential postfix operators is unlimited.

AS clause

The optional AS clause lets you assign a column name to the resulting column. This colname may be supplied with quote
delimiters ("my text"), which permits the column heading to contain blank spaces or other special characters. If no
special characters are included, colname delimiters are not required. Column headings are case-sensitive.

If you do not specify an AS clause, the expression is used as the column header. The AS clause cannot specify a blank
column heading. To display an EVAL column with no column heading, use DISPLAY.NAME "\", instead of the AS
keyword. To display a column heading that contains literal quote characters, use a DISPLAY.NAME clause such as the
following (DISPLAY.NAME \survey "yes" answers\), instead of the AS keyword.

Examples
The following example evaluates an arithmetic operation on a variable value. EVAL returns a date one week from the
current date. It uses the AS clause to assign a name to this calculated date column:

LIST VOC WITH @ID LIKE Q... EVAL "@DATE+7" AS "Next Week"

returns:

30                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



VOC......... Next Week.

Q            15513
QSELECT      15513
QUIT         15513

3 Items listed.

The following example uses EVAL to specify a dictionary entry by position (rather than name) using the @RECORD
variable. The following two statements are equivalent:

LIST VOC EVAL "@RECORD<4>" AS "Field4" WITH EVAL "@RECORD<4>"
LIST VOC F4 DISPLAY.NAME "Field4" WITH F4

Note the use of the AS keyword and the DISPLAY.NAME clause to assign a column heading to the specified field for each
statement.

The following example uses EVAL to return the length of each field’s @ID name, using the MVBasic SUBR function to
call the LENS (length) system function:

LIST VOC EVAL "SUBR('-LENS',@ID)" AS "NameLength"

Caché MultiValue Query Language (CMQL) Reference                                                                                                       31

EVAL clause



FIRST clause
Synonym for SAMPLE.

Description
The FIRST clause is a synonym for the SAMPLE clause.

32                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



FMT clause
Sets column width and justification.

field FMT "n[L | R | U]"

Description
The FMT clause allows you to format the column width and justification for an individual field display column. The integer
n specifies the width of the display column. The letters L or R specify left justification or right justification. These letter
codes are not case-sensitive. If neither letter is specified, the default is left justification.

If the field data is wider than the display column width, the display behavior depends on the justification setting and the
current emulation:

• L (left justification) causes data wider than the display column width to wrap in Caché MultiValue and all emulations.

• R (right justification) causes data wider than the display column width to wrap in Caché MultiValue and in the following
emulations: INFORMATION, PIOpen, Prime, UniData, and UniVerse. In all other emulations the data column auto-
matically expands leftward, potentially overwriting the data in the column(s) to its left.

The U letter code suppresses column width formatting, allowing the column to expand rightward without line wrapping.
The n value can be omitted, or it can be specified and is ignored.

FMT changes the width of a single display column. Use COL.SPACES to uniformly change the width of all of the display
columns.

Examples

The following example shows the use of the FMT clause:

LIST VOC WITH F4 F4 FMT "5R" 

In this case, the F4 column is displayed with a width of 5 characters, right justified.

The following example shows the use of the FMT clause with the BREAK-ON clause:

LIST VOC WITH F4 BY F4 BREAK-ON F4 "Next Value'P'" FMT "5R" 

In this case, those records with F4 field values are sorted and displayed, with a break each time the F4 value changes. The
FMT clause specifies a width of 5 characters, right justified. This formatting affects both the display of the F4 values and
the display of the “Next Value” change marker.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       33

FMT clause



FOOTER clause
Synonym for FOOTING.

Description
The FOOTER clause is a synonym for the FOOTING clause.

34                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



FOOTING clause
Inserts a footer on each page of displayed output.

FOOTING "text['code']"

Description
The FOOTING and FOOTER keywords are synonyms.

The FOOTING clause causes the specified footer to be displayed (or printed) at the bottom of each page of CMQL output,
with the exception of the final page. This footer can consist of any combination of literal text and code characters. Note
that footer literal text is in outer quotes and code characters are in nested quotes.

The available outer quotes are "text" or \text\. Inner (nested) quotes must be single quotes. Therefore, to display a
text and a page number footer you must specify a footer such as "This is page 'P' of my report" or \This
is page 'P' of my report\.

Footer Code Characters

The following footer code characters can be included in a specified footer:

The BREAK-ON field value. Refer to the BREAK-ON
clause for details.

‘B’

Center the footer. The default is left justified.‘C’

Date. Inserts the current system date in DD MMM
YYYY format. For example, 25 May 2010.

‘D’

Right justify the following text. The default is left
justified.

‘G’

Line break inserted in the footer at this point.‘L’

No page break prompts. Displays the header at the
top of each page, displays all of the pages without
waiting for user prompting for the next page.

‘N’

Page numbers incrementing from 1 with leading
indent. For example, "This is page'P' of my
report".

‘P’

Treat \, ], and ^ as literals, not code characters for
rest of header.

‘Q’

Page numbers incrementing from 1 with no indent.
For example, "This is page 'S' of my report".

‘S’

Time and date. Inserts the current system timestamp
in 12–hour format: hh:mm:ss DD MMM YYYY. For
example, 9:35:22am 25 May 2010. Note that the
time increments for each page.

‘T’

Page number. Same as ‘P’^

Caché MultiValue Query Language (CMQL) Reference                                                                                                       35

FOOTING clause



Time and date. Inserts the current system timestamp
in 12–hour format: hh:mm:ss DD MMM YYYY format.
For example, "Report printed \ for your
review". Same as ‘T’.

\

Line break. Same as ‘L’]

A literal double quote character. For example,
\Report is "mostly" accurate\

\“\

A literal single quote character, specified as two single
quote characters. For example, "Don''t review"

\'‘\ or “’‘”

You can specify more than one letter code within nested quotes. For example, "Report printed 'CTLC' For your
review" displays a two-line footer with both lines centered, and the with first line containing the current system timestamp.

For further details on using footer codes, refer to the MVBasic FOOTING command, which uses the same codes.

36                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



FROM clause
Uses the contents of a select list as query input.

FROM slist

Description
The FROM clause uses the items in the specified active select list as the input set for the query. You can further limit the
query results using the WITH clause and other query clauses. You can use the FROM clause with any of the various LIST
or SELECT commands; these are listed in the CMQL Commands list.

FROM specifies a numbered select list. You must explicitly specify FROM 0 to specify the default select list (Select List
0). However, if a numbered select list specified in the FROM clause is not active, FROM uses the default select list (Select
List 0). If neither the numbered select list specified in FROM nor the default select list is active, the FROM clause is
ignored.

Valid slist values are 0 through 10 (inclusive). Specifying a slist value outside of this range generates a [819] error.

Note that an active select list can only be used once.

FROM and REQUIRE.SELECT
The FROM clause and the REQUIRE.SELECT clause perform the same operation. They differ when there is no active
select list. If there is no active select list, the FROM clause is ignored and CMQL executes the other clauses of the query.
If there is no active select list, REQUIRE.SELECT causes the query to fail with a [7013] error message.

Examples
The following example uses SELECT to populate Select List 3, then uses LIST with a FROM clause to query using the
input set in Select List 3:

SELECT VOC WITH @ID > "T" TO 3
LIST VOC WITH F1="K" FROM 3

The SELECT stores 36 items in Select List 3. The LIST lists 19 of those items that pass the WITH clause restriction.

The following example uses SELECT to populate Select List 4 with all items that begin with the letter S, then uses another
SELECT with a FROM clause to populate Select List 5 with the subset of those items that only contain alphabetic characters.
It then uses LIST to list those items in uppercase and lowercase:

SELECT VOC WHERE @ID LIKE S... TO 4
SELECT VOC WHERE @ID LIKE "0A" FROM 4 TO 5
LIST VOC @ID CONV "MCL" FROM 5

See Also
• SELECT command

• REQUIRE.SELECT clause

Caché MultiValue Query Language (CMQL) Reference                                                                                                       37

FROM clause



HEADER clause
Synonym for HEADING.

Description
The HEADER clause is a synonym for the HEADING clause.

38                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



HEADING clause
Inserts a heading on each page of displayed output.

HEADING "text['code']"

Description
The HEADING and HEADER keywords are synonyms.

The HEADING clause causes the specified heading to be displayed (or printed) at the top of each page of CMQL output.
This heading can consist of any combination of literal text and code characters. Note that heading literal text is in outer
quotes and code characters are in nested quotes.

The available outer quotes are "text" or \text\. Inner (nested) quotes must be single quotes. Therefore, to display a
text and a page number heading you must specify a heading such as "This is page 'P' of my report" or \This
is page 'P' of my report\.

A heading specified in the HEADING clause replaces the default page heading provided with many commands. This
default page heading can be suppressed using the (H or (C letter code options or the HDR-SUPP or COL-HDR-SUPP
keyword options. These letter code and keyword options do not suppress a page heading specified using the HEADING
clause.

The HEADING clause ignores the setting of SP-CONDUCT bit 1024. HEADING always behaves as if bit 1024 is not
set.

Heading Code Characters

The following heading code characters can be included in a specified heading:

The BREAK-ON field value. Refer to the BREAK-ON
clause for details.

‘B’

Center the heading. The default is left justified.‘C’

Date. Inserts the current system date in DD MMM
YYYY format. For example, 25 May 2010.

‘D’

Right justify the following text. The default is left
justified.

‘G’

Line break inserted in the heading at this point.‘L’

No page break prompts. Displays the header at the
top of each page, displays all of the pages without
waiting for user prompting for the next page.

‘N’

Page numbers incrementing from 1 with leading
indent. For example, "This is page'P' of my
report".

‘P’

Treat \, ], and ^ as literals, not code characters for
rest of header.

‘Q’

Page numbers incrementing from 1 with no indent.
For example, "This is page 'S' of my report".

‘S’

Caché MultiValue Query Language (CMQL) Reference                                                                                                       39

HEADING clause



Time and date. Inserts the current system timestamp
in 12–hour format: hh:mm:ss DD MMM YYYY. For
example, 9:35:22am 25 May 2010. Note that the
time increments for each page.

‘T’

Page number. Same as ‘P’^

Time and date. Inserts the current system timestamp
in 12–hour format: hh:mm:ss DD MMM YYYY format.
For example, "Report printed \ for your
review". Same as ‘T’.

\

Line break. Same as ‘L’]

A literal double quote character. For example,
\Report is "mostly" accurate\

\“\

A literal single quote character, specified as two single
quote characters. For example, "Don''t review"

\'‘\ or “’‘”

You can specify more than one letter code within nested quotes. For example, "Report printed 'CTLC' For your
review" displays a two-line heading with both lines centered, and the with first line containing the current system timestamp.

For further details on using heading codes, refer to the MVBasic HEADING command, which uses the same codes.

40                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



IF clause
Synonym for WITH.

Description
The IF clause is a synonym for the WITH clause.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       41

IF clause



LPTR clause
Directs query output to a printer.

LPTR [n]

Description
The LPTR clause directs all output from a query statement to printer channel 0. The same operation can be performed
using the (P letter code option. LPTR n directs all output from a query statement to the printer channel specified in n. For
further information on printer channels, refer to the “Spooler Commands” chapter of The Caché MultiValue Spooler.

In Caché MultiValue (and all emulations except Reality, jBase, and UniData) issuing a CMQL statement with an LPTR
clause closes the spooler job when the CMQL program terminates. In UniData emulation, a CMQL statement gets its own
unique spooler job. This default behavior can be changed using SP-CONDUCT.

42                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



MAX clause
Returns the maximum value of the values of a field.

MAX field [GRAND.TOTAL "label"]

Description
The MAX clause returns the maximum numeric value for a field. If a WITH (or other conditional clause) is specified,
MAX returns the largest value of the values of that field that pass the condition test.

The following example lists all of the values of the AMOUNT field, then returns the largest of these values:

LIST SALES AMOUNT MAX AMOUNT

The following example lists all of the values of the @ID field that pass the condition test, then returns the largest of these
values:

LIST SALES MAX @ID WITH @ID > 24990

It lists a result set such as the following:

SALES..... SALES.....

24991      24991
24992      24992
24993      24993
24994      24994
24995      24995
24996      24996
24997      24997
24998      24998
24999      24999
25000      25000

***        25000 

10 Items listed.

The MAX value is listed after the detail listing, using the same format as a TOTAL value.

You can use the DET-SUPP keyword, or the (D letter code, to suppress listing individual values, as follows:

LIST SALES MAX @ID WITH @ID > 24990 DET-SUPP

Which returns:

SALES..... SALES.....

***        25000 

10 Items listed.

The following example lists the total, maximum, and minimum values:

LIST SALES TOTAL @ID MAX @ID MIN @ID WITH @ID > 24990

It lists a result set such as the following:

Caché MultiValue Query Language (CMQL) Reference                                                                                                       43

MAX clause



SALES..... SALES..... SALES..... SALES.....

24991      24991      24991      24991
24992      24992      24992      24992
24993      24993      24993      24993
24994      24994      24994      24994
24995      24995      24995      24995
24996      24996      24996      24996
24997      24997      24997      24997
24998      24998      24998      24998
24999      24999      24999      24999
25000      25000      25000      25000

***        249955     25000      24991

10 Items listed.

Note that the maximum, minimum, and total values are all listed in the same summation line in the order in which the
clauses were specified. You can clarify what these values are using the GRAND.TOTAL keyword.

GRAND.TOTAL Keyword

GRAND.TOTAL and GRAND-TOTAL are synonyms.

By default, in a horizontal display the summation line is not labeled; it is indicated by the “***” placeholder. You can use
the GRAND.TOTAL keyword to assign a label name to this placeholder. GRAND.TOTAL has no effect on vertical display
format.

The following example uses GRAND.TOTAL to label the summation line. Note that GRAND.TOTAL does not have to
directly follow the clause(s) that it affects.

LIST SALES TOTAL @ID MAX @ID MIN @ID WITH @ID > 24990 GRAND.TOTAL "Sum/Max/Min"

It returns:

SALES..... SALES..... SALES..... SALES.....

24991      24991      24991      24991
24992      24992      24992      24992
24993      24993      24993      24993
24994      24994      24994      24994
24995      24995      24995      24995
24996      24996      24996      24996
24997      24997      24997      24997
24998      24998      24998      24998
24999      24999      24999      24999
25000      25000      25000      25000

Sum/Max/Min 249955     25000      24991

10 Items listed.

See Also
• AVG clause

• MIN clause

• TOTAL clause

44                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



MIN clause
Returns the minimum value of the values of a field.

MIN field [GRAND.TOTAL "label"]

Description
The MIN clause returns the minimum numeric value for a field. If a WITH clause (or some other conditional clause) is
specified, MIN returns the smallest value of the values of that field that pass the condition test.

The following example lists all of the values of the AMOUNT field, then returns the smallest of these values:

LIST SALES AMOUNT MIN AMOUNT

The following example lists all of the values of the @ID field that pass the condition test, then returns the smallest of these
values:

LIST SALES MIN @ID WITH @ID > 24990

It lists a result set such as the following:

SALES..... SALES.....

24991      24991
24992      24992
24993      24993
24994      24994
24995      24995
24996      24996
24997      24997
24998      24998
24999      24999
25000      25000

***        24991

10 Items listed.

The MIN value is listed after the detail listing, using the same format as a TOTAL value.

You can use the DET-SUPP keyword, or the (D letter code, to suppress listing individual values, as follows:

LIST SALES MIN @ID WITH @ID > 24990 DET-SUPP

Which returns:

SALES..... SALES.....

***        24991

10 Items listed.

The following example lists the total, maximum, and minimum values:

LIST SALES TOTAL @ID MAX @ID MIN @ID WITH @ID > 24990

It lists a result set such as the following:

Caché MultiValue Query Language (CMQL) Reference                                                                                                       45

MIN clause



SALES..... SALES..... SALES..... SALES.....

24991      24991      24991      24991
24992      24992      24992      24992
24993      24993      24993      24993
24994      24994      24994      24994
24995      24995      24995      24995
24996      24996      24996      24996
24997      24997      24997      24997
24998      24998      24998      24998
24999      24999      24999      24999
25000      25000      25000      25000

***        249955     25000      24991

10 Items listed.

Note that the maximum, minimum, and total values are all listed in the same summation line in the order in which the
clauses were specified. You can clarify what these values are using the GRAND.TOTAL keyword.

GRAND.TOTAL Keyword

GRAND.TOTAL and GRAND-TOTAL are synonyms.

By default, in a horizontal display the summation line is not labeled; it is indicated by the “***” placeholder. You can use
the GRAND.TOTAL keyword to assign a label name to this placeholder. GRAND.TOTAL has no effect on vertical display
format.

The following example uses GRAND.TOTAL to label the summation line. Note that GRAND.TOTAL does not have to
directly follow the clause(s) that it affects.

LIST SALES TOTAL @ID MAX @ID MIN @ID WITH @ID > 24990 GRAND.TOTAL "Sum/Max/Min"

It returns:

SALES..... SALES..... SALES..... SALES.....

24991      24991      24991      24991
24992      24992      24992      24992
24993      24993      24993      24993
24994      24994      24994      24994
24995      24995      24995      24995
24996      24996      24996      24996
24997      24997      24997      24997
24998      24998      24998      24998
24999      24999      24999      24999
25000      25000      25000      25000

Sum/Max/Min 249955     25000      24991

10 Items listed.

See Also
• AVG clause

• MAX clause

• TOTAL clause

46                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



PCT clause
Returns the percent of the total numeric values of a field.

PCT field

Description
The PCT and PERCENT keywords are synonyms.

The PCT clause calculates the percentage of the overall total for a numeric field. Fields containing nonnumeric values or
NULL comprise 0 percent of the total.

Multiple CMQL clauses may be specified in any order. The order of application of CMQL clauses is always the same. The
PCT clause is applied after the WITH clause, the SAMPLED clause (if present), and the SAMPLE clause (if present).

The following example returns the percent of total for each distinct F5 value. Note that non-numeric values are returned
as 0%. The WITH clause eliminates records which have no value (null) for F5:

LIST VOC WITH F5 BY F5 BREAK.ON F5 PCT F5 DET-SUPP

Caché MultiValue Query Language (CMQL) Reference                                                                                                       47

PCT clause



PERCENT clause
Synonym for PCT.

Description
The PERCENT clause is a synonym for the PCT clause.

48                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



PREFETCH clause
Improves query performance.

PREFETCH

Description
The PREFETCH keyword can be used to improve performance of CMQL queries by using Caché prefetch demons to
read in data from disk prior to the data being used by the query.

PREFETCH is an optional keyword that can be specified anywhere within a CMQL query.

Performance gains vary with different queries. In some cases the gains may be negligible. Other cases may get a five-fold
improvement or more. Of course, if the data already exists in shared memory (used as a data cache) there is no disk I/O,
and therefore no prefetch performance improvement.

Note that in all performance tuning exercises there could be a penalty to pay. For example, if by using PREFETCH your
disks get heavier usage, this may have (or may not have) an adverse effect on concurrent interactive users.

To activate disk I/O prefetch, you must do the following:

• Add the PREFETCH keyword anywhere within your CMQL statement. For example:

SELECT ACCOUNTS WITH CUSTOMER LIKE ...COOPER... PREFETCH

• Start one or more prefetch demons. The following ObjectScript example starts three prefetch demons:

Start(njobs) 
    FOR i=1:1:njobs {JOB PreFetch}
    QUIT
PreFetch ; 
    DO $ZU(180,1)
    QUIT

From the Terminal prompt, issue:

%SYS>DO Start^ROUTINE(3) 

Where ROUTINE is the name of the ObjectScript routine. This command starts up three background jobs starting at
the PreFetch label. The call to $ZU(180,1) means the background job becomes a prefetch background demon.

Examples
This is an example of a simple CMQL statement run with and without PREFETCH. There is around 48 Mb of data on an
installation using 64 Mb of shared memory.

USER:TIME COUNT Bigfile
   627706 Items counted.
 [256] Execution time 126.915667 Seconds.  

USER:TIME COUNT Bigfile PREFETCH
   627706 Items counted.
 [256] Execution time 20.412388 Seconds.

Queries vary in their prefetch performance improvement.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       49

PREFETCH clause



REQUIRE.SELECT clause
Uses the contents of a select list as query input.

REQUIRE.SELECT [FROM slist]

Description
The REQUIRE.SELECT and SELECT.ONLY keywords are synonyms.

The REQUIRE.SELECT clause uses the items in an active select list as the input set for the query. You can further limit
the query results using the WITH clause and other query clauses. You can use the REQUIRE.SELECT clause with any
of the various LIST or SELECT commands; these are listed in the CMQL Commands list.

You can use the FROM keyword to specify a numbered select list. If you omit the FROM keyword, REQUIRE.SELECT
uses Select List 0. If the select list specified in the FROM subclause is not active, REQUIRE.SELECT uses the default
select list (Select List 0). If neither the select list specified in the (optional) FROM subclause nor the default select list is
active, REQUIRE.SELECT generates a [7013] error.

Valid slist values are 0 through 10 (inclusive). Specifying a slist value outside of this range generates a [819] error.

Note that an active select list can only be used once.

REQUIRE.SELECT and FROM
The FROM clause and the REQUIRE.SELECT clause perform the same operation. They differ when there is no active
select list. If there is no active select list, the FROM clause is ignored; CMQL executes the other clauses of the query. If
there is no active select list, REQUIRE.SELECT causes the query to fail with a [7013] error message.

Examples
The following query lists the items selected into the default select list (Select List 0):

SELECT VOC WITH @ID LIKE G...
LIST.ITEM VOC REQUIRE.SELECT

The following query lists the items selected into Select List 7 that meet the requirements of the WITH clause:

SELECT VOC WITH @ID LIKE G... TO 7
LIST.ITEM VOC REQUIRE.SELECT FROM 7 WITH F1="K"

See Also
• SELECT command

• FROM clause

50                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



SAMPLE clause
Limits number of items returned.

SAMPLE n

Arguments

An integer specifying the number of items to return.n

Description
The SAMPLE clause limits the number of items returned by the query to the first n items. It thus gives a sample of the
items that fulfill the query conditions. If n is 0 or a negative integer, all items are returned. If n is larger than the total
number of items, all items are returned.

When multiple CMQL clauses are specified the clauses may be specified in any order. The order of application of CMQL
clauses is as follows: the WITH clause is always applied first. Its results are supplied to the SAMPLED clause (if present),
and the results are supplied to the SAMPLE clause (if present).

Examples
The following example lists the first five items in the VOC:

LIST VOC SAMPLE 5

It lists #, &COMO&, &PH&, &SAVEDLISTS&, and ;.

The following example lists the first five items in the VOC that fulfill the SAMPLED clause:

LIST VOC SAMPLED 50 SAMPLE 5

It lists #, BY.EXP, CREATE.FILE, ENUMERATE, and IF.

The following example lists the first three items in the VOC that are specified in the fields list:

LIST VOC 'ASSOC' 'BY.EXP' 'DUMMY' 'ASC' 'ASD' SAMPLE 3

It lists the three fields in the order listed: ASSOC, BY.EXP, and ASC. The DUMMY field is not listed because it is not
found in the VOC.

See Also
• SAMPLED clause

Caché MultiValue Query Language (CMQL) Reference                                                                                                       51

SAMPLE clause



SAMPLED clause
Limits the items returned by sampling every nth item.

SAMPLED n

Arguments

An integer specifying the nth item count used for sampling.n

Description
The SAMPLED clause limits the number of items returned by the query to a sampled subset taken every nth item. It thus
gives a sample of the items that fulfill the query conditions. SAMPLED returns the first item, then the n+1 item, then the
(n*2)+1 item, and so forth. If n is 0 or a negative integer, all items are returned. If n is larger than the total number of items,
one item is returned: the first item.

When multiple CMQL clauses are specified the clauses may be specified in any order. The order of application of CMQL
clauses is as follows: the WITH clause is always applied first. Its results are supplied to the SAMPLED clause (if present),
and the results are supplied to the SAMPLE clause (if present).

Examples
The following example samples every 100th item in the VOC:

LIST VOC SAMPLED 100

The VOC in this example contains 479 items. This program lists # (item 1), CREATE.FILE (item 101), IF (item 201),
ORDER (item 301), and SP.RESUME (item 401).

The following example lists the first five items in the VOC that fulfill the SAMPLED clause:

LIST VOC SAMPLED 100 SAMPLE 3

This program lists # (item 1), CREATE.FILE (item 101), and IF (item 201).

The following example lists the every third item in the VOC that is specified in the fields list:

LIST VOC 'ASSOC' 'BY.EXP' 'DUMMY' 'ASC' 'ASD' 'ORDER' 'IF' 'SP.LOOK' 'SP.RESUME' SAMPLED 3

It lists three fields sampled in the order listed: ASSOC, ASD, and SP.LOOK. Note that the DUMMY field, which is not
found in the VOC, is not used for the sampling count.

See Also
• SAMPLE clause

52                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



SAMPLING clause
Synonym for SAMPLE.

Description
The SAMPLING clause is a synonym for the SAMPLE clause.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       53

SAMPLING clause



SAVING clause
Saves DICT entry values as @ID values.

SAVING [UNIQUE] dict [NO.NULLS] [dict2 [NO.NULLS]] [...]

Arguments

An existing DICT entry or multiple DICT entries separated by blank spaces.dict

Description
The SAVING clause saves the specified dict value as the @ID value. If you specify multiple dict arguments it saves each
one as an @ID value. The dict argument must be an existing DICT entry in the specified file.

If you specify the UNIQUE keyword, only the unique dict values are saved as the @ID values. The UNIQUE keyword
applies to all the dict arguments.

If you specify the NO.NULLS keyword, only the dict values that are not null are saved as the @ID values. The NO.NULLS
keyword follows a dict argument and applies to only the dict argument that immediately precedes it.

Examples
The following example saves the F2 dictionary entry values from the VOC as @ID values in select list #8:

SELECT VOC SAVING F2 TO 8
COUNT VOC FROM 8

The VOC in this example contains 478 items, all of which have an F2 value, so the SELECT saves 478 items to select list
#8. When the LIST command inputs these items from select list #8 and matches them with the VOC @ID values, it finds
matches for 327 of them (VOC @ID value = VOC F2 value), and lists the remaining 151 items as “not found”.

The following example saves the F1 and F2 dictionary entry values from the VOC as @ID values in select list #7:

SELECT VOC SAVING F1 F2 TO 7

It saves 956 items (478 x 2).

The following example saves the unique F2 dictionary entry values from the VOC as @ID values in select list #6:

SELECT VOC SAVING UNIQUE F2 TO 6

It saves 394 unique items.

The following example saves unique F1 and F2 dictionary entry values from the VOC as @ID values in select list #5:

SELECT VOC SAVING F1 F2 TO 5

It saves 402 items (F2 = 394 unique items + F1 = 8 unique items).

The following example saves unique and non-null F1 dictionary entry values and unique F2 dictionary entry values from
the VOC as @ID values in select list #4:

SELECT VOC SAVING UNIQUE F1 F2 NO.NULLS TO 4

It saves 401 items (F1 = 8 unique items + F2 = 393 unique non-null items).

54                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



SELECT.ONLY clause
Synonym for REQUIRE.SELECT.

SELECT.ONLY [FROM n]

Description
The SELECT.ONLY clause is a synonym for the REQUIRE.SELECT clause.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       55

SELECT.ONLY clause



TOTAL clause
Returns the total of the values of a field.

TOTAL field [GRAND.TOTAL "label"]

Description
The TOTAL clause calculates the total of the numeric values of a field. A nonnumeric field has the numeric value of 0. If
a WITH clause (or some other conditional clause) is specified, TOTAL returns the total of the values of that field that pass
the condition test.

The following example lists all of the values of the F5 field, then returns the total of these values:

LIST VOC WHERE F5 TOTAL F5

It returns 52 for the total of the F5 values. This example both lists field values and returns a total of these values.

To just return the total of value for a field, you can use the SUM command:

SUM VOC F5

You can use the BREAK.ON clause with TOTAL to return subtotals. The following example returns subtotals for each
distinct F5 value and a total for all F5 values. The WITH clause eliminates records which have no value (null) for F5:

LIST VOC WITH F5 NE "" BY F5 BREAK-ON F5 TOTAL F5

The following example uses the DET-SUPP keyword to suppress the details shown by the previous example. Only the
subtotals for each F5 value and the final F5 total are listed:

LIST VOC WITH F5 NE "" BY F5 BREAK-ON F5 TOTAL F5 DET-SUPP

GRAND.TOTAL Keyword

GRAND.TOTAL and GRAND-TOTAL are synonyms.

By default, in a horizontal display the summation line is not labeled; it is indicated by the “***” placeholder. You can use
the GRAND.TOTAL keyword to assign a label name to the summation line. GRAND.TOTAL has no effect on vertical
display format.

The following example shows the default labeling of a total:

LIST VOC WHERE F5 TOTAL F5 (D

It returns:

VOC......... F5.............

***          52

48 Items listed.

The following example uses GRAND.TOTAL to label the total:

LIST VOC WHERE F5 TOTAL F5 GRAND.TOTAL "Final Tally" (D

It returns:

56                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



VOC......... F5.............

Final Tally  52

48 Items listed.

Note that the total, maximum, minimum, and average values are all listed as columns in the same summation line. They
are listed in the order in which the clauses were specified. A single GRAND.TOTAL keyword specifies the label for the
entire summation line. GRAND.TOTAL does not have to directly follow the clause(s) that it affects. If you specify multiple
GRAND.TOTAL keywords, the last one specified is used.

See Also
• AVG clause

• MAX clause

• MIN clause

Caché MultiValue Query Language (CMQL) Reference                                                                                                       57

TOTAL clause



WHEN clause
Specifies a condition for query results.

Description
The WHEN clause is in most cases a synonym for the WITH clause. Refer to the WITH clause for details about condition
expressions.

The WHEN clause differs from the WITH clause in the following respects:

• WHEN has no complement (inverse) keyword. WITH has the complement keywords WITH NO and WITHOUT.

• WHEN can be used to specify a conditional expression for LISTF, LISTPA, LISTPH, and LISTS. WITH cannot
be used with these commands.

• WHEN requires single quote delimiters for test values. WITH supports single quote, double quote, and backslash
delimiters. WHEN requires delimiters for a LIKE clause (WHEN @ID LIKE 'A...'); these delimiters are optional
in a WITH clause (WITH @ID LIKE A...).

• Multiple WITH clauses must be associated with explicit OR or AND logical operators. WHEN clauses are specified
without explicit OR or AND logical operators; the default is implicit AND. When specifying multiple WHEN clauses,
or a WITH clause with one or more WHEN clauses, implicit AND logic is applied. You can associate two WHEN
clauses with an explicit OR, but not a WITH clause and a WHEN clause. An explicit OR between a WITH clause
and a WHEN clause is ignored; the two clauses are associated with an implicit AND. The following are valid syntac-
tical forms that return the same results:

WHEN <condition1> WHEN <condition2>
WHEN <condition1> AND WHEN <condition2>
WITH <condition1> WHEN <condition2>
WITH <condition1> AND WHEN <condition2>
WITH <condition1> OR WHEN <condition2> (avoid using this) 

• WHEN can be used with the ASSOCIATED keyword, associating multiple conditional clauses using exclusive OR
logic. A WHEN ASSOCIATED clause can have either of the following syntax:

WHEN ASSOCIATED (condition) OR WHEN condition

WHEN ASSOCIATED (condition OR condition)

Note that the parentheses are mandatory. These parentheses may enclose a single conditional expression or multiple
conditional expressions. ASD is a synonym for ASSOCIATED. The ASSOCIATED keyword cannot be use with the
WITH keyword.

WHEN ASSOCIATED
The WHEN ASSOCIATED clause permits a more sophisticated use of compound conditions, using XOR (exclusive OR)
logic. The CMQL default is inclusive OR logic.

The following example uses inclusive OR logic:

LIST VOC F1 F4 WITH (F1="V" AND F4 # "") OR WITH @ID > "W"

returns “25 Items listed.” and displays a list of 25 items:

VOC.........  F1............. F4.............

BSELECT       V               L
COUNT.VERB    V               L
LIST          V               DA
LIST.ITEM     V               I
LIST.LABEL    V               D

58                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



PRINT.CATALOG V
REFORMAT      V               DA
SELECT        V               L
SORT          V               DAS
SORT.ITEM     V               IS
SORT.LABEL    V               DS
SREFORMAT     V               DAS
SSELECT       V               LS
STAT          V               J
SUM.VERB      V               T
WHEN          K
WHERE         K
WHERE.VERB    V
WHO           V
WITH          K
WITHIN        K
WITHOUT       K
Z             V
ZH            V
[             V

25 Items listed.

This example creates a result set by including or excluding items that meet each conditional expression.

The following WHEN ASSOCIATED statement uses exclusive OR (XOR) logic.

LIST VOC F1 F4 WHEN ASD (F1="V" AND F4 # "") OR WHEN @ID > "W"

The result set is selected using exclusive OR logic, but the count of items listed uses inclusive OR logic. Therefore, it
returns “25 Items listed.” and displays a list of 20 items:

VOC.........  F1............. F4.............

BSELECT       V               L
COUNT.VERB    V               L
LIST          V               DA
LIST.ITEM     V               I
LIST.LABEL    V               D
PRINT.CATALOG V
REFORMAT      V               DA
SELECT        V               L
SORT          V               DAS
SORT.ITEM     V               IS
SORT.LABEL    V               DS
SREFORMAT     V               DAS
SSELECT       V               LS
STAT          V               J
SUM.VERB      V               T
WHERE.VERB    V
WHO           V
Z             V
ZH            V
[             V

25 Items listed.

This example creates a result set of all records with F1="V", then removes items that don’t meet the other conditional
expression criteria from this result set.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       59

WHEN clause



WHERE clause
Synonym for WITH.

Description
The WHERE clause is a synonym for the WITH clause.

60                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



WITH clause
Specifies a condition for query results.

WITH condition

Arguments

A boolean condition expression, or a series of condition expressions
associated with AND or OR logical operators.

condition

Description
The WITH clause limits the items returned by the query to the ones whose value passes the condition test.

A WITH clause condition test consists of a boolean comparison statement, such as field = value, where field is a
dictionary entry field, and value is a literal value. A variety of comparison operators can be used.

Multiple condition tests can be associated using the AND or OR logical operators: field1 = value1 AND field2
= value2. Further details are provided in the “Multiple Condition Tests”  section below.

When multiple CMQL clauses are specified the clauses may be specified in any order. The order of application of CMQL
clauses is as follows: the WITH clause is always applied first. Its results are supplied to the SAMPLED clause (if present),
and the results are supplied to the SAMPLE clause (if present).

Synonym and Complement Keywords

The WITH keyword has the following synonyms: IF, WHERE, and WHEN. (WHEN is not an exact synonym. It differs
from WITH in a few circumstances, and supports features not supported by WITH.)

The complement (inverse) of the WITH keyword is WITHOUT. The WITHOUT keyword has the following synonyms:
WITH NO, WITH NOT; IF NO, IF NOT; WHERE NO, WHERE NOT. (WHEN NO and WHEN NOT are not valid
keyword phrases.)

For example, the following are all equivalent statements:

LIST VOC F1 WITHOUT F1="K" AND WITHOUT F1="V"
LIST VOC F1 WITHOUT F1="K" AND WITH NO F1="V"
LIST VOC F1 WITHOUT F1="K" AND NO F1="V"
LIST VOC F1 WITH NO F1="K" AND NO F1="V"
LIST VOC F1 IF NO F1="K" AND NO F1="V"
LIST VOC F1 WHERE NO F1="K" AND NO F1="V"

Note that the complement keyword affects only the condition expression that immediately follows it. Subsequent conditions
default to WITH. Thus the following example returns all records where F1 is not K:

LIST VOC F1 WITHOUT F1="K" OR F1="V"

You can use parentheses to extend the scope of a complement keyword to multiple conditions. Thus the following example
returns all records where F1 is neither K nor V:

LIST VOC F1 WITHOUT (F1="K" OR F1="V")

Value Test
Specifying WITH field limits the items returned by the query to the records that have a value for the specified dictionary
entry field. This excludes null fields.

In the following example, the WITH clause limits the result set to those records that have value for field F4:

LIST VOC F4 WITH F4

Caché MultiValue Query Language (CMQL) Reference                                                                                                       61

WITH clause



It lists the following 15 items: BSELECT COUNT.VERB LIST LIST.ITEM LIST.LABEL PRINT.CATALOG REFORMAT
SELECT SORT SORT.ITEM SORT.LABEL SREFORMAT SSELECT STAT SUM.VERB. All of these items have an
F4 field value. Note that PRINT.CATALOG is listed, but [ is not, though both have an F4 field that apparently display no
value. The difference is that PRINT.CATALOG has an F4 field with a value of " " (one blank space) and thus has a value;
[ has an F4 field that is null and thus has no value.

Null Test
There are several ways to test whether an item is null (has no assigned value). You can use a value test, an equality operator
with null symbolized using "", or a keyword.

The following statements return non-null values and exclude nulls:

• WITH field

• WITH field IS.NOT.NULL

• WITH field # ""

The following statements return nulls and exclude non-null values:

• WITH NO field

• WITH field IS.NULL

• WITH field = ""

All values are greater than "", no values are less than "". The MultiValue equality operators can return null values. The
BETWEEN clause cannot return null values. Therefore, in the following example the first two statements are functionally
identical, but the second two statements are not:

LIST VOC WITH F4 >= "DA" AND <= "J"
LIST VOC WITH F4 BETWEEN "DA" "J"

LIST VOC WITH F4 >= "" AND <= "J"
LIST VOC WITH F4 BETWEEN "" "J"

Equality Operators
You can perform an equality comparison using any of the following operators:

62                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



Equal to.=

EQ

EQUAL

Not equal to.#

<>

NE

NOT

Less than.<

LT

LESS

BEFORE

Less than or equal to.<=

LE

Greater than.>

GT

GREATER

AFTER

Greater than or equal to.>=

GE

The following example limits the query result set to those records with a field F4 value of “L”:

LIST VOC WITH F4="L"

It lists the following 3 items: BSELECT COUNT.VERB SELECT.

The following three statements are functionally identical:

LIST VOC WITH @ID EQ "ASSOC"
LIST VOC WITH @ID = "ASSOC"
LIST VOC WITH @ID="ASSOC"

Spaces before and after symbolic operators are not required, but spaces are required for alphabetic code operators.

Values should be enclosed with quote characters to avoid ambiguity, but quotes are not required in all cases, as shown in
the following:

LIST VOC WITH F1 = "PH"
LIST VOC WITH F1 = PH

In Caché MultiValue, the equal sign is optional; a condition expression defaults to an equality test, as shown in the following
example:

LIST VOC WITH F1 "PH"

Caché MultiValue Query Language (CMQL) Reference                                                                                                       63

WITH clause



This equality test using double quotes is supported for Caché MultiValue and all emulations except INFORMATION,
PIOpen, Prime, UniData, and UniVerse. For further details on these emulations and the use of single quotes, refer to the
Emulation section below.

The less than and greater than operators select according to ascending collation sequence. The specified limiting value does
not need to exist in the file.

The following example searches the @ID dictionary entry field of the VOC for all values less than AM. The LIST command
lists those items that pass this condition test:

LIST VOC WITH @ID LT "AM"

It lists items such as: # &COMO& &PH& &SAVEDLISTS& ; @CMQLOPTS A ABORT AFTER ALL ALL.MATCH.

The following example searches the @ID dictionary entry field of the VOC for all values greater than W. The LIST command
lists those items that pass this condition test:

LIST VOC WITH @ID > "W"

It lists items such as: WHEN WHERE WHERE.VERB WHO WITH WITHIN WITHOUT Z ZH [.

LIKE Pattern Match Operator
The LIKE operator matches the value of a field to a pattern and returns a boolean value. A pattern may consist of either a
pattern match code string, or some combination of pattern match codes and literal substrings. Pattern match codes are used
to specify an expected pattern of character types to match with the field value, and/or a location in the field value to search
for a literal substring. The substring may be a single character or several characters. Note that string comparisons are case-
sensitive.

Synonym and Complement Keywords

The LIKE keyword operator selects values that match the pattern code. The MATCHES keyword operator, and the
MATCHING keyword operator are synonyms.

The UNLIKE keyword operator reverses the sense of the pattern string. Thus LIKE "3A" or MATCHES "3A" returns
three-letter words; UNLIKE "3A" returns all values except three-letter words. The NOT.MATCHING keyword operator
is a synonym.

Pattern Match Codes

The following are the available pattern match codes:

64                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



MeaningPattern Match Code

Trailing ellipsis — A literal substring (here the string
SS) followed by any number of characters of any type.
The ellipsis must appear at the end of a pattern match
string.

SS...

“’SS’...”

Leading ellipsis — Any number of characters of any
type followed by a literal substring (here the string
SS). The ellipsis must appear at the beginning of a
pattern match string.

...SS

“...’SS’”

A — A specified integer number (n) of alphabetic
characters.You can use “0A” to specify any number
of alphabetic characters. The nA pattern code may
appear anywhere in a pattern match string.

“nA”

N — A specified integer number (n) of numeric
characters.You can use “0N” to specify any number
of numeric characters. The nN pattern code may
appear anywhere in a pattern match string.

“nN”

X — A specified integer number (n) of characters of
any type.You can use “0X” to specify any number of
characters of any type. The nX pattern code may
appear anywhere in a pattern match string.

“nX”

Any of the following combinations of nested quote marks can be used: "patcode'literal'", 'patcode"literal"',
\patcode'literal'\, \patcode"literal"\. When specifying a literal with an ellipsis, quote marks are optional.

A pattern may consist of only pattern match codes, with no literals. For example, the pattern "2A" matches all two-letter
words.

Note: Caché MultiValue does not support the use of the “}” (right curly brace) character to delimit multiple match
patterns. Code from other MultiValue implementations (such as Pick and UniVerse) that uses this syntax must
be changed to replace the right curly brace with the OR logical operator.

Pattern Match Examples

The following example searches the @ID dictionary entry field of the VOC for all values that begin with the letter A. The
LIST command lists those items that pass this condition test:

LIST VOC WITH @ID LIKE A...

It lists items such as: A ABORT AFTER ALL ALL.MATCH AN AND ANY ARE AS ASC ASD ASSIGN ASSOC
ASSOC.WITH ASSOCIATED ASSOCIATION AT ATTACH.ACCOUNTS AUTOLOGOUT AVERAGE AVG. Note
that item A passes this test, with the ... representing no trailing characters.

The following example searches the @ID dictionary entry field of the VOC for all values that end with the letter A. The
LIST command lists those items that pass this condition test:

LIST VOC WITH @ID LIKE ...A

It lists items such as: A CLEARDATA DATA LISTPA. Note that item A passes this test, with the ... representing no
leading characters.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       65

WITH clause



The following example searches the @ID dictionary entry field of the VOC for all values that contain the substring SS,
including at the beginning and at the end of the @ID value. The LIST command lists those items that pass this condition
test:

LIST VOC WITH @ID LIKE ...SS...

It lists items such as: ASSIGN ASSOC ASSOC.WITH ASSOCIATED ASSOCIATION CROSS LESS MESSAGE
PAGE.MESSAGE SP-ASSIGN SP.ASSIGN SSELECT SUPPRESS UNASSIGN.

The following example matches two alphabetic characters, followed by the letter T:

LIST VOC WITH @ID LIKE "2A'T'"

It lists items such as: CRT FMT NOT PCT SET.

The following example matches two alphabetic characters, followed by the letter T, followed by two alphabetic characters:

LIST VOC WITH @ID LIKE "2A'T'2A"

It lists items such as: AFTER OUTER TOTAL.

The following example matches any value consisting of two alphabetic characters:

LIST VOC WITH @ID LIKE "2A"

It lists items such as: AN AS AT BY CS CT ED EQ GE GT IF IN IS LE LT MD ME NE NO OF ON OR SH TO ZH.

The following example matches two alphabetic characters, followed by a hyphen, followed by any number of characters
of any type:

LIST VOC WITH @ID LIKE "2A'-'..."

It lists items such as: BY-DSND BY-EXP BY-EXP-DSND ID-SUP ID-SUPP NI-SUPP SP-ASSIGN SP-COPIES SP-
CREATE SP-DELETE SP-DEVICE SP-EDIT SP-FORM SP-GLOBAL SP-KILL SP-OPTS SP-RESUME SP-START
SP-STOP SP-SUSPEND.

SAID and SPOKEN Pattern Match Operators
The SAID pattern match operator returns data values that sound like the specified value. The first character of the SAID
value must match exactly with the first letter of the data value. The other characters follow Soundex conventions. SAID
pattern matching is not case-sensitive.

The following example returns “BASIC”:

LIST VOC WITH @ID SAID BSIK

These two values match because both are Soundex B220. Note that neither BSC nor BASI return “BASIC” because both
of these are Soundex B200.

SAID ignores all non-alphabetic characters. For example:

LIST VOC F5 WITH F5 SAID CPN

Returns the F5 values CPUN, 2CPUN, and 2CPM.

You can specify SAID * to return all values that contain no alphabetic characters.

SPOKEN is a synonym for SAID.

For further details on Soundex analysis, refer to the MVBasic SOUNDEX function in the Caché MultiValue Basic Reference.

66                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



Alternative Syntax Omitting the WITH Keyword

Equality Tests without WITH

You can perform an equality condition test without the WITH keyword (or any of its synonyms). The results are the same,
but the processing is different, as shown in the following examples:

LIST VOC F1 WITH F1="PH"

returns the following:

VOC......... F1.............

COL-HDR-SUPP PH
COL.HDR.SUPP PH

2 Items listed.

LIST VOC F1="PH"

returns the following:

VOC......... F1.............

COL-HDR-SUPP PH
COL.HDR.SUPP PH

478 Items listed.

Note the difference in the count of items listed. This behavior is supported for Caché MultiValue and all emulations except
INFORMATION, PIOpen, Prime, UniData, and UniVerse.

Condition Tests on @ID without WITH

When performing an equality or LIKE condition test on the @ID dictionary entry, you can omit the WITH keyword. The
@ID entry is assumed. The following pairs of commands are equivalent:

LIST VOC WITH @ID > "W"
LIST VOC > "W"

LIST VOC WITH @ID LIKE ...A
LIST VOC LIKE ...A

LIST VOC WITH @ID LIKE "2A'-'..." AND @ID > "SP"
LIST VOC LIKE "2A'-'..." AND > "SP"

Note that in these cases, there is no difference in the count of items listed. This behavior is supported in all emulations.

You can use the FOR keyword to clarify such condition tests. FOR provides no additional functionality, but can be useful
in clarifying code, as shown in the following two examples:

LIST VOC F1 F4 LIKE ...A

In this example, the condition test is performed on the @ID dictionary entry, not on F4. Inserting a FOR keyword can help
to clarify this logic, as shown in the following functionally identical example:

LIST VOC F1 F4 FOR LIKE ...A

Information on specifying an @ID value using double quotes or single quotes in different emulations, refer to the Emulation
section below.

Multiple Condition Tests
A WITH clause can contain more than one condition test. These condition tests can be applied to the same field or to dif-
ferent fields. They can be associated with an explicit logical operator or with an implicit logical operator.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       67

WITH clause



By default, multiple condition tests are applied in left-to-right order.

In the following example the F4 field is being tested for both having a value greater than “F” and having a value ending
with the letter “S”:

LIST VOC F4 WITH F4>"F" AND WITH F4 LIKE ...S 

Explicit Logical Operators

The WITH clause supports the AND and OR explicit logical operators.

• The AND keyword is a synonym for the & symbol. The EVERY logical operator is also a synonym for AND, as
described below.

• The OR keyword specifies a logical inclusive OR. To specify a logical exclusive OR (an XOR) you must use the
WHEN clause with the ASSOCIATED keyword.

When using explicit logical operators, multiple WITH keywords are optional. WITH can be specified for each condition
test, or specified only for the first condition test. The following statements are equivalent:

LIST VOC F4 WITH F4>"F" AND WITH F4 LIKE ...S
LIST VOC F4 WITH F4>"F" AND F4 LIKE ...S 

The following examples shows multiple condition tests with explicit logic:

LIST VOC F1 WITH WITH F1="PH" OR F1="F"
LIST VOC F4 WITH F4>"F" AND F4 LIKE ...S 

The EVERY logical operator is a synonym for AND, with the following difference: EVERY can be specified before the
first condition test, as well as between condition tests. The following statements are equivalent:

LIST VOC F4 WITH F4>"F" AND WITH F4 LIKE ...S
LIST VOC F4 WITH F4>"F" EVERY F4 LIKE ...S
LIST VOC F4 WITH EVERY F4>"F" EVERY F4 LIKE ...S  

EACH is a synonym for EVERY.

Equality Tests and Implicit OR Logic

When performing multiple equality tests using explicit logic, you can omit repeating the equality operator for each test.
For example, the following statements are equivalent:

LIST VOC F1 WITH F1="F" OR F1="PH"
LIST VOC F1 WITH F1="F" OR "PH"

When performing multiple equality tests with OR logic, you can also omit the OR keyword. For example, the following
statements are equivalent:

LIST VOC F1 WITH F1="PA" OR "PH" OR "S"
LIST VOC F1 WITH F1="PA" "PH" "S"

Implicit OR logic is only supported for true equality tests (=, <=, >=), not for #, <, or > comparisons. This use of implicit
OR logic for equality tests is supported in all emulations.

Conditional Tests and Implicit AND Logic

For all multiple conditional tests, except equality tests, Caché MultiValue uses implicit AND logic. For example, the fol-
lowing statements are equivalent:

LIST VOC F1 WITH F1 > "J" AND F1 < "M"
LIST VOC F1 WITH F1 > "J" < "M"

The following example uses implicit AND logic for condition tests on the F1 and F2 fields:

68                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



LIST VOC F1 WITH F1="K" F2 LIKE "...L"

This kind of implicit logic is emulation-dependent. Caché MultiValue and some emulations support implicit AND logic,
other emulations apply implicit OR logic. These emulations are further described below.

ONLY Connective Keyword

The ONLY keyword specifies that the condition that follows it applies to the @ID field. The ID.ONLY keyword is a synonym
for ONLY.

The following example uses explicit AND logic to test two different fields. It tests for the existence of an F4 value, and for
a record ID having a value ending with the letter “L”:

LIST VOC F4 WITH F4 AND @ID LIKE ...L

The same results can be returned using the ONLY connective keyword, which both provides implicit AND logic and an
implicit field of @ID:

LIST VOC F4 WITH F4 ONLY LIKE ...L

Without the ONLY connective keyword, the above example would perform a single condition test, returning F4 values
that end with the letter “L”.

The ONLY keyword suppresses line wrapping of @ID values when the @ID is the only field displayed. Compare LIST
VOC WITH F2 AND @ID LIKE A... which wraps long @ID values, and LIST VOC WITH F2 ONLY LIKE A...
which does not wrap long @ID values.

The ONLY keyword always overrides the ID-SUPP keyword.

Order of Logical Condition Testing

In Caché MultiValue, logical conditions are tested in left-to-right order; OR and AND have equal precedence. Logical
conditions can be grouped using parentheses to establish a different order of evaluation.

The following example uses left-to-right order. First all items with F1="PH" are selected, then all items with F1="F" are
selected, and then the @ID value of these selected items is tested using a pattern match test:

LIST VOC F1 WITH F1="PH" OR F1="F" AND @ID LIKE "3A'-'0X"

This results in the following:

VOC......... F1.............

COL-HDR-SUPP PH
TCL-STACK    F

In the following example, all items with F1="PH" are selected, then all items with F1="F" and an @ID value tested using
a pattern match test are selected:

LIST VOC F1 WITH F1="PH" OR (F1="F" AND @ID LIKE "3A'-'0X")

This results in the following:

VOC......... F1.............

COL-HDR-SUPP PH
COL.HDR.SUPP PH
TCL-STACK    F

Emulation
This section describes differences in the parsing of conditional expressions in different MultiValue emulations.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       69

WITH clause



Omitting the WITH Keyword

In INFORMATION, PIOpen, Prime, UDPICK, UniData, and UniVerse emulations, the WITH or WHEN keyword is
mandatory for a conditional expression clause on a specified field. When the keyword is omitted, the conditional expression
always tests @ID, as shown in the following:

LIST VOC F1 = "A"

returns the @ID and F1 of the one item with @ID = “A”

LIST VOC F1 # "A"

returns the @ID and F1 for all items, except the one item with @ID = “A”.

In Caché and all other emulations the conditional expression tests the preceding field name, in this case F1.

Logical Precedence

In Caché MultiValue, logical conditions are tested in left-to-right order; OR and AND have equal precedence. In some
emulations, including PICK and Reality, AND has higher precedence than OR.

Implicit Logic

Caché MultiValue uses implicit AND logic when two (or more) conditions are specified without explicit AND or OR
keywords. Other emulations uses implicit OR logic in the same circumstances.

Implicit ORImplicit AND

D3

IN2

jBASE

MVBase

PICK

R83

POWER95

Reality

Ultimate

Cache

INFORMATION

PIOpen

Prime

UniData

UniVerse

Double Quotes and Single Quotes

Caché MultiValue and most emulations make a distinction between single quotes and double quotes in implied equality
tests.

The following single quote syntax is parsed in Caché MultiValue and all emulations to return items that have an F1 value
(F1 is not null) and that have a @ID value of ASSOC:

LIST VOC F1 WITH F1 'ASSOC'

Thus, all emulations return one item: ASSOC.

The following double quote syntax is parsed differently in Caché MultiValue and some emulations.

LIST VOC F1 WITH F1 "PH"

In Caché MultiValue and most emulations, this is parsed to return all items with F1="PH".

70                                                                                                       Caché MultiValue Query Language (CMQL) Reference

CMQL Clauses



In INFORMATION, PIOpen, Prime, UniData, and UniVerse emulations, this is parsed to return all items that have an F1
value (F1 is not null) and that have a @ID value of “PH”. Thus, these emulations treat double quotes the same as single
quotes in this type of syntax.

Pattern Match Wildcards

Some MultiValue emulations support both the LIKE clause pattern match operators and a set of pattern match wildcards
which are not used with the LIKE keyword. The following wildcards are supported by MultiValue emulations:

A single character wildcard.^

A multiple character wildcard. Can be zero characters,
one character, or multiple characters.

[

A multiple character wildcard. Can be zero characters,
one character, or multiple characters.

]

These wildcards are supported by D3, IN2, jBASE, MVBase, PICK, R83, POWER95, Reality, and Ultimate emulations.
Caché MultiValue does not support these ^, [, or ] pattern match wildcards.

In the emulations that support these wildcards, the following statement is parsed to match F5 values to the pattern of the
literal character 2 followed by any single character:

LIST VOC F5 WITH F5="2^"

This is functionally identical to:

LIST VOC F5 WITH F5 LIKE "'2'1X"

In the emulations that support these wildcards, the following example is parsed to match @ID values to the pattern of the
any number of characters, followed by the literal characters SU, followed by any single character, followed by the literal
character P, followed by any number of characters:

LIST VOC WITH @ID = [SU^P]

This is functionally identical to:

LIST VOC WITH @ID LIKE "0X'SU'1X'P'0X"

Both examples return: COL-HDR-SUPP COL-SUPP COL.HDR.SUPP DET-SUPP HDR-SUPP ID-SUPP NI-SUPP SP-
SUSPEND SP.SUSPEND SUPP SUPPRESS.

Caché MultiValue Query Language (CMQL) Reference                                                                                                       71

WITH clause




	Table of Contents
	About This Book
	CMQL Commands, Keywords, and Query Logging
	CMQL Commands
	CMQL Keywords
	CMQL Query Logging

	CMQL Clauses
	AVERAGE clause
	AVG clause
	BETWEEN clause
	BREAK.ON clause
	BREAK.SUP clause
	BY clause
	CALC clause
	COL.HDG clause
	COL.SPACES clause
	CONV clause
	CONVERSION clause
	DISPLAY.LIKE clause
	DISPLAY.NAME clause
	ENUM clause
	EVAL clause
	FIRST clause
	FMT clause
	FOOTER clause
	FOOTING clause
	FROM clause
	HEADER clause
	HEADING clause
	IF clause
	LPTR clause
	MAX clause
	MIN clause
	PCT clause
	PERCENT clause
	PREFETCH clause
	REQUIRE.SELECT clause
	SAMPLE clause
	SAMPLED clause
	SAMPLING clause
	SAVING clause
	SELECT.ONLY clause
	TOTAL clause
	WHEN clause
	WHERE clause
	WITH clause


