
Using Zen Components

Version 2017.2
2020-06-26

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Zen Components
Caché Version 2017.2 2020-06-26
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1
Zen Attribute Data Types .. 1
Zen Component Event Handlers .. 2

1 Zen Tables .. 3
1.1 <tablePane> .. 4
1.2 Data Sources ... 5

1.2.1 Specifying an SQL Query .. 5
1.2.2 Generating an SQL Query .. 6
1.2.3 Referencing a Class Query ... 8
1.2.4 Using a Callback Method ... 8
1.2.5 Changing the Data Source Programmatically .. 11

1.3 Query Parameters ... 12
1.4 Table Columns .. 13

1.4.1 colName ... 15
1.4.2 OnDrawCell ... 15

1.5 Table Style .. 16
1.6 Conditional Style for Rows or Cells ... 17
1.7 Snapshot Mode ... 18

1.7.1 Fetching Data From the Server .. 19
1.7.2 Navigating Snapshot Tables ... 20

1.8 Column Filters .. 20
1.9 Column Links ... 24
1.10 User Interactions .. 25

1.10.1 Navigation Buttons ... 25
1.10.2 Navigation Keys ... 26
1.10.3 Sorting Tables ... 26
1.10.4 Selecting Rows and Columns ... 27

1.11 Table Refresh .. 28
1.12 Table Touchups ... 29

1.12.1 Data Values ... 29
1.12.2 Header and Body Alignment .. 29

2 Zen and SVG ... 31
2.1 Fonts for SVG .. 31
2.2 SVG Component Layout .. 32

2.2.1 <svgFrame> ... 32
2.2.2 <svgGroup> ... 37
2.2.3 <svgSpacer> ... 37
2.2.4 <rect> ... 37

2.3 SVG Component Attributes .. 38
2.4 Meters ... 39

2.4.1 Providing Data for Meters .. 39
2.4.2 Meter Attributes ... 40
2.4.3 <fuelGauge> ... 41
2.4.4 <indicatorLamp> .. 42
2.4.5 <lightBar> .. 43
2.4.6 <slider> .. 44

Using Zen Components iii

2.4.7 <smiley> ... 45
2.4.8 <speedometer> ... 45
2.4.9 <trafficLight> ... 46

2.5 Charts ... 47
2.6 <radialNavigator> .. 47
2.7 <ownerDraw> ... 49

3 Zen Charts ... 51
3.1 Types of Chart .. 51

3.1.1 Bar Charts .. 52
3.1.2 Bubble Charts ... 53
3.1.3 Bullseye Charts .. 56
3.1.4 Combo Charts .. 56
3.1.5 Difference Charts ... 58
3.1.6 High/Low Charts .. 60
3.1.7 Line Charts ... 60
3.1.8 Percent Bar Charts ... 61
3.1.9 Pie Charts ... 62
3.1.10 Scatter Diagrams .. 65
3.1.11 Tree Map Charts ... 67

3.2 Providing Data for Zen Page Charts ... 67
3.2.1 Using a JavaScript Method .. 68
3.2.2 Using a Data Controller ... 71
3.2.3 Limiting the Data Set ... 72

3.3 Chart Layout, Style, and Behavior ... 73
3.3.1 Specifying Size and Position .. 74
3.3.2 Layout and Style .. 75
3.3.3 Plot Area ... 75
3.3.4 Markers .. 81
3.3.5 Legends .. 82
3.3.6 Titles ... 83
3.3.7 User Selections ... 84

3.4 Chart Axes .. 84

4 Zen Forms ... 89
4.1 Forms and Controls .. 90
4.2 User Interactions .. 91
4.3 Defining a Form ... 92
4.4 Providing Values for a Form ... 95
4.5 Detecting Modifications to the Form .. 95
4.6 Validating a Form ... 96
4.7 Errors and Invalid Values .. 97
4.8 Processing a Form Submit .. 97
4.9 User Login Forms ... 98
4.10 Dynamic Forms .. 99

5 Zen Controls .. 101
5.1 Control Attributes ... 101
5.2 Data Drag and Drop ... 104
5.3 Control Methods ... 105
5.4 Buttons ... 105

5.4.1 <button> ... 105

iv Using Zen Components

5.4.2 <image> ... 106
5.4.3 <submit> .. 108

5.5 Text ... 108
5.5.1 <label> ... 108
5.5.2 <text> ... 108
5.5.3 <textarea> ... 109
5.5.4 <password> .. 110

5.6 Selections ... 110
5.6.1 <checkbox> .. 110
5.6.2 <multiSelectSet> .. 111
5.6.3 <fileUpload> .. 113
5.6.4 <colorPicker> ... 114
5.6.5 <radioSet> .. 115
5.6.6 <radioButton> .. 117

5.7 Lists .. 117
5.7.1 <select> .. 118
5.7.2 <listBox> .. 121
5.7.3 <dataListBox> .. 122
5.7.4 <combobox> .. 125
5.7.5 <dataCombo> ... 127
5.7.6 <lookup> .. 133

5.8 Dates ... 136
5.8.1 <calendar> .. 137
5.8.2 <dateSelect> ... 139
5.8.3 <dateText> .. 141

5.9 Grid ... 144
5.9.1 <dynaGrid> .. 144
5.9.2 <dataGrid> ... 153

5.10 Hidden .. 164

6 Model View Controller ... 165
6.1 Model ... 166

6.1.1 %ZEN.DataModel.ObjectDataModel .. 167
6.1.2 %ZEN.DataModel.Adaptor ... 168

6.2 Controller ... 168
6.2.1 <dataController> .. 169
6.2.2 <dataController> Attributes ... 169
6.2.3 <dataController> Methods ... 171

6.3 View .. 172
6.3.1 Data View Attributes .. 172
6.3.2 The Controller Object .. 173
6.3.3 Multiple Data Views ... 173

6.4 Constructing a Model ... 174
6.4.1 Step 1: Type of Model .. 174
6.4.2 Step 2: Object Data Model ... 174

6.5 Binding a <form> to an Object Data Model .. 176
6.5.1 Step 1: Data Controller .. 176
6.5.2 Step 2: Data View ... 177
6.5.3 Step 3: Initial Results ... 177
6.5.4 Step 4: Saving the Form ... 177
6.5.5 Step 5: Performing Client-side Validation ... 178

Using Zen Components v

6.5.6 Step 6: Setting Values Programmatically ... 179
6.6 Adding Behavior to the <form> ... 179

6.6.1 Step 1: Opening a New Record .. 179
6.6.2 Step 2: Creating and Deleting Records .. 181

6.7 <dynaForm> with an Object Data Model .. 183
6.7.1 Step 1: <dynaForm> is Easy .. 183
6.7.2 Step 2: Converting to <dynaForm> .. 183
6.7.3 Step 3: Automatic Control Selection .. 185

6.8 <dynaForm> with an Adaptor Data Model .. 188
6.8.1 Step 1: Generating the Form .. 188
6.8.2 Step 2: Property Parameters ... 189
6.8.3 Step 3: Adding Behavior to the <dynaForm> .. 190
6.8.4 Step 4: Virtual Properties ... 192

6.9 Data Model Classes .. 194
6.9.1 Data Model Class Properties .. 194
6.9.2 Data Model Class Parameters .. 194
6.9.3 Data Model Property Parameters ... 195
6.9.4 Value Lists and Display Lists ... 196
6.9.5 Object Data Model Callback Methods ... 197
6.9.6 Virtual Properties .. 198
6.9.7 Controller Actions .. 199
6.9.8 Data Model Series .. 199
6.9.9 Custom Data Model Classes .. 201

7 Navigation Components ... 203
7.1 Links ... 205

7.1.1 <link> ... 205
7.1.2 <locatorBar> .. 206
7.1.3 <locatorLink> ... 209

7.2 Menus ... 209
7.2.1 <menuItem> ... 210
7.2.2 <menu>, <hmenu>, and <vmenu> ... 212
7.2.3 <menuSeparator> ... 212
7.2.4 <accordionMenu> .. 213

7.3 Navigator .. 214
7.3.1 Creating and Sizing a <navigator> ... 216
7.3.2 Adding Content to the Navigator ... 216
7.3.3 Changing the Display and Appearance of Items .. 218
7.3.4 Editing Values in Items ... 219
7.3.5 Creating a Multiple Choice Item .. 220
7.3.6 Displaying HTML .. 221

7.4 Toolbar .. 221
7.5 Tabs ... 222

7.5.1 <tabGroup> .. 222
7.5.2 <lookoutMenu> .. 225
7.5.3 <tab> .. 226

7.6 Trees ... 227
7.6.1 <expando> .. 227
7.6.2 <dynaTree> .. 230

7.7 Filters .. 238
7.7.1 <buttonView> ... 239

vi Using Zen Components

8 Popup Windows and Dialogs ... 243
8.1 Modal Groups ... 243

8.1.1 Static Modal Groups .. 244
8.1.2 Dynamic Modal Groups ... 246
8.1.3 Built-in Modal Groups ... 248
8.1.4 The show Method ... 251
8.1.5 <modalGroup> Attributes .. 251

8.2 Popup Windows .. 252
8.3 Dialogs ... 255

8.3.1 File Selection Dialog Window ... 256
8.3.2 Color Selection Dialog Window .. 256
8.3.3 Search Dialog Window ... 257
8.3.4 Creating a Dialog Window ... 257
8.3.5 Creating a Dialog Window Template ... 258

9 Other Zen Components .. 259
9.1 HTML Content ... 259
9.2 Framed Content .. 260

9.2.1 <iframe> Attributes .. 261
9.2.2 Images as Button Controls ... 261
9.2.3 Rendering Image Data Streams .. 261

9.3 Timer .. 262
9.4 Field Sets .. 263
9.5 Color Selector ... 264
9.6 Color Wheel ... 266
9.7 Repeating Group .. 267
9.8 Dynamic View .. 269

9.8.1 <dynaView> OnGetViewContents Callback Method .. 269
9.8.2 <dynaView> Attributes .. 271

9.9 Schedule Calendar .. 272
9.9.1 <schedulePane> OnGetScheduleInfo Callback Method .. 272
9.9.2 <schedulePane> Attributes ... 274

9.10 Finder Pane ... 277

Using Zen Components vii

List of Figures

Figure 3–1: Bar Chart .. 52
Figure 3–2: Radius Data Series ... 53
Figure 3–3: Color Data Series ... 54
Figure 3–4: Opacity Data Series .. 55
Figure 3–5: Bullseye Chart .. 56
Figure 3–6: Combo Chart Displaying Area, Bar and Line Charts .. 56
Figure 3–7: Combo Chart Displaying Four Area Charts ... 57
Figure 3–8: Combo Chart with Target Lines ... 57
Figure 3–9: Difference Chart ... 59
Figure 3–10: Area Chart .. 59
Figure 3–11: High/Low Chart ... 60
Figure 3–12: Line Chart .. 61
Figure 3–13: Percent Bar Chart ... 62
Figure 3–14: Pie Chart with One Data Series ... 62
Figure 3–15: How Zen Plots Pie Charts by Item ... 64
Figure 3–16: How Zen Plots Pie Charts by Series .. 64
Figure 3–17: Zen Pie Chart from Both Items and Series .. 65
Figure 3–18: XY or Scatter Chart ... 65
Figure 3–19: Tree Map Chart .. 67
Figure 3–20: Data Series Count and Size .. 73
Figure 3–21: Layout Attributes for Zen Charts ... 74
Figure 3–22: Pivoted Bar Chart ... 79
Figure 3–23: Stacked Bar Chart .. 80
Figure 3–24: Stacked Line Chart ... 80
Figure 3–25: Line Chart Displayed as Multiples .. 80
Figure 3–26: Time Based Line Chart .. 81
Figure 3–27: Line Chart with Two y Axes .. 85
Figure 3–28: Same data Plotted on One y-axis ... 85
Figure 4–1: Class Inheritance Among Form and Control Components .. 91
Figure 5–1: Data Model for the Dynamic Grid Control .. 146
Figure 5–2: Data Grid Layout ... 157
Figure 5–3: Ascending and Descending Sort Order .. 161
Figure 6–1: Model View Controller Architecture .. 166
Figure 6–2: Data Model Classes .. 167
Figure 6–3: Data Controller and Data View Classes ... 169
Figure 6–4: Data Model with Name-Value Pairs ... 200
Figure 6–5: Data Model with Data Series ... 200
Figure 7–1: Zen Navigation Components ... 204

viii Using Zen Components

List of Tables

Table 1–1: XML Entities for Use in sql Attribute Values .. 6
Table 1–2: QueryInfo Properties ... 10
Table 1–3: <condition> predicate Values .. 18
Table 2–1: SVG Component Attributes ... 38
Table 2–2: Meter Component Attributes ... 40
Table 3–1: Chart Layout and Style Attributes ... 75
Table 3–2: Chart Axis Attributes ... 86
Table 4–1: Form Component Attributes .. 92
Table 4–2: Form Submit Sequence .. 98
Table 5–1: Control Component Attributes ... 102
Table 5–2: List Box Component Attributes ... 122
Table 5–3: Combo Box Component Attributes ... 126
Table 5–4: XML Entities for Use in sqlLookup Attribute Values ... 130
Table 5–5: <dataCombo> Display Sequence .. 132
Table 6–1: <dynaForm> Controls Based on Data Types ... 187
Table 6–2: Data Model Class Parameters .. 195
Table 6–3: Data Model Property Parameters ... 195
Table 6–4: Object Data Model Callback Methods .. 197
Table 6–5: Custom Data Model Class Methods .. 201
Table 7–1: Menu Cell Attributes .. 211
Table 7–2: Tab Group Attributes ... 224
Table 8–1: Client Side Methods for Controlling Popup Windows .. 253

Using Zen Components ix

About This Book

This book describes how to use the built-in components that Zen provides for laying out tables, charts, forms, menus,
dialogs, and other items for web applications.

This book contains the following sections:

• “Zen Tables” explains how to display the results of a database query as an HTML table.

• “Zen and SVG” describes how to use Scalable Vector Graphics (SVG) to display data-driven charts and meters.

• “Zen Charts” explains how to place a chart on a Zen page.

• “Zen Forms” explains how to lay out a form that allows a user to edit data.

• “Zen Controls” describes the user controls that you can place on a form.

• “Model View Controller” explains how the MVC model can assist the flow of data to a Zen page.

• “Navigation Components” describes menu and link components that support user navigation.

• “Popup Windows and Dialogs” describes components that display their contents over the main application page.

• “Other Zen Components” describes built-in components that do not fit into the categories listed above.

There is also a detailed table of contents.

The following books provide related information:

• Using Zen provides the conceptual foundation for developing web applications using Zen.

• Using JSON in Caché describes how to use the %Object and %Array classes, which provide support for JSON, which
is a useful format to ship data between client and server.

• Developing Zen Applications explores programming issues and explains how to extend the Zen component library
with custom code and client-side components.

• Using Zen Reports explains how to generate reports in XHTML and PDF formats based on data stored in Caché.

For general information, see Using InterSystems Documentation.

Zen Attribute Data Types
Many attributes of Zen objects have one of the following underlying data types:

• %ZEN.Datatype.boolean which has the value "true" or "false" in XData Contents, 1 or 0 in server-side code, true or
false in client-side code.

• %ZEN.Datatype.caption. which makes it easy to localize text into other languages, as long as a language DOMAIN
parameter is defined in the Zen page class. The %ZEN.Datatype.caption data type also enables you to use $$$Text
macros when you assign values to the property from client-side or server-side code.

Using Zen Components 1

Zen Component Event Handlers
Many Zen components have attributes with names that begin with “on...”. These attributes identify event handlers for the
component. The value of the attribute is a client-side JavaScript expression that Zen invokes when the related event occurs.
This expression generally invokes a client-side JavaScript method defined in the page class. This method is the “handler”
for the event.

When providing a value for an event-handler attribute, use double quotes to enclose the value and single quotes (if needed)
within the JavaScript expression. For example:

<svgFrame ondragCanvas="alert('HEY');"/>

The JavaScript expression can contain Zen #()# runtime expressions.

2 Using Zen Components

About This Book

1
Zen Tables

A Zen table is data-driven. It takes the resultset returned by an SQL query and displays it as an HTML table. There are a
number of ways to generate the resultset for a Zen table. You can specify an SQL statement, reference a predefined SQL
query, or provide Zen with the inputs it needs to generate an SQL query for you.

Once you have the data, you can style the resulting table in any way you wish. The following figure shows a simple
example. This table uses “zebra” patterning for alternate rows. The user has entered data in the table header to filter the
results that the table displays. In this case, the user has selected only entries whose names begin with X, with Active status,
who are also Assistants.

This chapter explains how to work with Zen tables as follows:

• How to place a table on a Zen page

• How to identify the data source for a Zen table

• How to supply parameters for the table query, if needed

• How to specify column details, including filters and links

• General style properties that Zen tables can have

• How to define data-specific styling for rows and columns

• How snapshot mode supports multipage tables and simplifies refresh operations

• How a Zen table handles user interactions

• What happens during table refresh operations, and how to request them

Using Zen Components 3

1.1 <tablePane>
<tablePane> is the XML projection of the versatile %ZEN.Component.tablePane class. To place a table on a Zen page,
place a <tablePane> component inside the page class XData Contents block.

This chapter describes the various component and auxiliary classes that Zen supplies to support tables. The following list
summarizes the XML elements used to represent these classes in XData Contents. The most important of these is <tablePane>:

• “<tablePane>” — Draws an HTML table based on an SQL query. Each row in the resultset is displayed as a row in
the table. A <tablePane> may contain the following elements, as needed:

– “<parameter>” — Each <parameter> element provides one of the parameters required to construct the <tablePane>
query.

– “<column>” — Each <column> element specifies layout, style, and behavior details for a particular column in
the resulting table. <column> elements are optional when the table displays all columns in the resultset. <column>
elements are required when a <tablePane> needs to select which columns in the resultset to display.

– “<condition>” — Each <condition> element defines one data-specific detail that applies to rows and cells within
the table. For example, cells that contain a certain value might display a certain background color, such as red to
indicate an error condition. The specific cells that contain this value might be different each time the table refreshes.
Zen keeps track of these details for you and colors all cells appropriately.

• “<tableNavigator>” — Automatically provides a standard set of buttons for moving through the pages of a multipage
table.

• “<tableNavigatorBar>” — An alternative to <tableNavigator>, this element provides extra buttons to help users
navigate large, multipage tables.

<tablePane> has the following general-purpose attributes.

DescriptionAttribute

Specifies which columns from the %ResultSet to display, and in what order. Possible
values are:

• "query" — All columns referenced by the query appear, in order from left to right.

• "columns" — Only the columns explicitly defined as <column> entries within the
<tablePane> appear, in order from left to right.

When you omit dataSource from the <tablePane>, Zen uses the value "query" by
default, unless there are <column> entries defined, in which case Zen ignores any
dataSource value and uses "columns".

dataSource

If initialExecute is true, the <tablePane> executes the associated query when the
table first displays. Otherwise the <tablePane> executes the query only on demand.
The default is true.

initialExecute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

initialExecute

4 Using Zen Components

Zen Tables

DescriptionAttribute

Indicates whether updates to the <tablePane> component should unlock the CSP
session while retrieving data from the server. Setting this attribute to true makes it
easier to maintain a responsive UI while running slower queries on the server. In
general, you should use this feature when the server does not update the session
data. The default value is false.
unlockSession has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

unlockSession

<tablePane> offers many additional attributes that you can use to configure layout, style, and behavior. The following
topics describe them.

1.2 Data Sources
A <tablePane> element must indicate a data source for the table in one of the following ways:

• “Specifying an SQL Query”

• “Generating an SQL Query” by providing a simple description that Zen uses to generate an SQL statement

• “Referencing a Class Query” to obtain a result set

• “Using a Callback Method” to obtain a result set

• “Changing the Data Source Programmatically” for a table at runtime

The next several topics describe each option in detail.

Regardless of which option you use, all techniques support the maxRows attribute. It controls the size of the data returned.
The following table provides maxRows details.

DescriptionAttribute

The maximum number of rows to fetch. For ordinary tables this is the maximum
number of rows to display. For snapshot tables, maxRows is the maximum size of
the snapshot and pageSize is the number of rows to display per page. The default
value for maxRows is 100.

The <radioSet>, <select>, <dataListBox>, <dataCombo>, and <repeatingGroup>
components also support the maxRows attribute.

maxRows

1.2.1 Specifying an SQL Query

A <tablePane> can provide a complete SQL statement as the value of its sql attribute. For example:

<tablePane id="table"
 sql="SELECT ID,Name FROM MyApp.Employees
 WHERE Name %STARTSWITH ? ORDER BY Name"
 >
 <parameter value="Z"/>
</tablePane>

The following table provides sql details.

Using Zen Components 5

Data Sources

DescriptionAttribute

The value of this attribute is a complete SQL statement, which Zen executes at
runtime to provide the contents of the table.The <radioSet>, <select>, <dataListBox>,
<dataCombo>, and <repeatingGroup> components also support the sql attribute.

You may provide any input parameter values for the SQL query by placing <param-
eter> elements inside the <tablePane> container. For details, see the section “Query
Parameters.”

sql

The sql attribute is the XML projection of the %ZEN.Component.tablePane property sql. Therefore, the sql attribute value
must escape any XML special characters. For example, in place of the less-than symbol < you must substitute the XML
entity < as follows:

sql="select * from infonet_daten.abopos where lieferadresse=? and status<9"

The following table lists XML special characters that cause problems when they appear in sql strings, and the XML entities
to substitute for them.

Table 1–1: XML Entities for Use in sql Attribute Values

DescriptionXML
Entity

Character

Right angle bracket or “greater than” symbol.>>

Left angle bracket or “less than” symbol.<<

Ampersand.&&

Single quotation mark or apostrophe. A string enclosed in single quotes needs
the ' entity to represent the ' character.

''

Double quotation mark. A string enclosed in double quotes needs the " entity
to represent the " character.

""

Unlike most other %ZEN.Component.tablePane properties, you cannot set the sql property from the client at runtime. You
can set it only from XData Contents. This is because sql is an encrypted attribute. The sql attribute value is encrypted (using
the current session key) when it is sent to the client. If this value is returned to the server, it is automatically decrypted.

This prevents users from seeing the definition of an SQL statement if they view page source within their browser and prevents
client logic from constructing arbitrary queries. For security reasons, query activities should always be restricted to the
server.

1.2.2 Generating an SQL Query

The <tablePane> component supports attributes that allow you to automatically generate the query based on a simple
description. This approach is similar to using a callback method, as described in a later topic, except that Zen generates the
callback method for you, based on your description of the query. <dataListBox> and <dataCombo> also supports these
attributes.

DescriptionAttribute

An SQL GROUP BY clause such as "Year,State". The groupByClause value can
be a literal string, or it can contain a Zen #()# runtime expression.

groupByClause

6 Using Zen Components

Zen Tables

DescriptionAttribute

An SQL ORDER BY clause such as "Name,State". If not provided, then whenever
the user clicks on a column header, the next query contains the appropriate ORDER
BY clause based on the user’s choice. The orderByClause value can be a literal
string, or it can contain a Zen #()# runtime expression.

orderByClause

The name of the SQL table that provides the data for the table. This value is used
in the FROM clause for the generated query. The tableName value can be a literal
string, or it can contain a Zen #()# runtime expression.

tableName

An SQL WHERE clause such as "Name='Elvis'".

When a whereClause is provided in the <tablePane> definition in XData Contents,
this sets an initial value for the whereClause property of the tablePane object. If client-
side or server-side code later changes the value of this whereClause property, the
new value overrides the original value. This means you can initially set up a table to
show only certain values, but another line of code can change the whereClause value,
causing your users to see a different set of values when it refreshes.

For example, if any column filters are defined in this table, Zen dynamically creates
a WHERE clause for the <tablePane> based on the current filter values selected by
the user.

The whereClause value can be a literal string, or it can contain a Zen #()# runtime
expression.

whereClause

To have the <tablePane> generate an SQL query, you must do the following:

1. Provide a value for the tableName attribute.

2. Do not provide values for the sql, queryClass, queryName, or OnCreateResultSet. All of these attributes take precedence
over the behavior described in this topic.

After you satisfy the first two conditions, Zen assumes a "columns" value for dataSource.

3. Define the names of one or more columns by providing <column> elements inside the <tablePane>. You must define
at least one column or Zen generates a “Missing SELECT list” error.

4. You can add query parameters by providing <parameter> elements inside the <tablePane>.

5. You can add clauses for the generated query by providing the <tablePane> attributes groupByClause, orderByClause,
or whereClause, or by allowing defaults to prevail as described in the table above.

The following is a simple example:

<tablePane id="table"
 tableName="MyApp.Employee">
 <column colName="ID" hidden="true"/>
 <column colName="Name"/>
</tablePane>

This <tablePane> example generates an SQL statement similar to the following:

SELECT ID,Name FROM MyApp.Employee

Zen executes this query to provide the contents of the table. In the example, the ID column is marked as hidden. This means
that its value is fetched (it can be used for conditions or actions) but not displayed. For details about hidden and other
<column> attributes, see the section “Table Columns.”

Note: A generated SQL query can be useful for tables with column filters.

Using Zen Components 7

Data Sources

1.2.3 Referencing a Class Query

A <tablePane> can reference a pre-existing class query to obtain a %ResultSet object. The following components also
support this approach: <radioSet>, <select>, <dataListBox>, <dataCombo>, and <repeatingGroup>.

DescriptionAttribute

The name of the class containing the query.You must also provide a value for
queryName.

queryClass

The name of the class query that provides the %ResultSet for this <tablePane>.You
must also provide a value for queryClass.

queryName

You may provide any input parameter values for the query by placing <parameter> elements inside the <tablePane>. For
example:

<tablePane id="table"
 queryClass="MyApp.Employee"
 queryName="ListEmployees">
 <parameter value="Sales"/>
 <parameter value="NEW YORK"/>
</tablePane>

The value of the parameter in the <tablePane> is the value used to create the %ResultSet object. It overrides any default
value set in the class query in all cases.

1.2.4 Using a Callback Method

A <tablePane> can use a callback method to obtain a %ResultSet object. The following <tablePane> attributes support this
approach. <dataListBox>, <dataCombo>, and <altJSONSQLProvider> also support these attributes.

DescriptionAttribute

Name of a server-side callback method in the Zen page class. For more information,
see OnCreateResultSet.

OnCreateResultSet

Name of a server-side callback method in the Zen page class. For more information,
see OnExecuteResultSet.

OnExecuteResultSet

showQuery works only if an OnCreateResultSet callback is used to generate the
table, and only if this callback sets the queryText property of the QueryInfo object to
contain the text of the query. Of the various components that use callback methods
to generate SQL queries, only <tablePane> and <dataCombo> support the
showQuery attribute.

If showQuery is true, the Zen page displays the SQL query used to provide the
contents of the <tablePane> or <dataCombo> component. This is useful for trou-
bleshooting purposes, during application development.The default showQuery value
is false.

showQuery has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

The showQuery value can be a literal string, or it can contain a Zen #()# runtime
expression.

showQuery

8 Using Zen Components

Zen Tables

1.2.4.1 OnCreateResultSet

Name of a server-side callback method in the Zen page class. This method instantiates the %ResultSet object and set any
%ZEN.Auxiliary.QueryInfo “QueryInfo Properties” appropriately. Zen invokes this method whenever it draws the table,
automatically passing it the following parameters:

• %Status — an output parameter for method status

• %ZEN.Auxiliary.QueryInfo — the QueryInfo object for the <tablePane>

The callback must return a %ResultSet object. The following is a valid method signature. Also see the detailed example
following this table:

Method CreateRS(Output tSC As %Status,
 pInfo As %ZEN.Auxiliary.QueryInfo)
 As %ResultSet
{ }

To use the above method as the callback, the developer would set OnCreateResultSet="CreateRS" for the <tablePane>.

If defined, OnCreateResultSet takes precedence over any other techniques for providing data for a <tablePane>.

1.2.4.2 OnExecuteResultSet

Name of a server-side callback method in the Zen page class. This method executes the %ResultSet object returned by the
OnCreateResultSet callback. Zen automatically invokes the OnExecuteResultSet callback after the OnCreateResultSet
callback, passing it the following parameters:

• %ResultSet — the result set from OnCreateResultSet

• %Status — an output parameter for method status

• %ZEN.Auxiliary.QueryInfo — the QueryInfo object for the <tablePane>

Optionally, you can suppress invocation of the OnExecuteResultSet callback by setting the QueryInfo queryExecuted

property to true at the end of the OnCreateResultSet callback.

The OnExecuteResultSet callback must return a%ZEN.Datatype.boolean indicating whether or not the result set was executed.
The following is a valid signature for this callback:

Method ExecuteRS(myRS As %ResultSet,
 Output pSC As %Status,
 pInfo As %ZEN.Auxiliary.QueryInfo)
 As %Boolean
{ }

To use the above method as the callback, the developer would set OnExecuteResultSet="ExecuteRS" for the
<tablePane>.

1.2.4.3 Callback Example

The following is a detailed example of using a callback method to create a %ResultSet for a tablePane. The callback method
constructs a dynamic SQL statement in response to current values of tablePane properties sortOrder and sortColumn. The
tablePane automatically passes these values to the callback method as the corresponding properties of the input
%ZEN.Auxiliary.QueryInfo object.

Also note how the method places the SQL statement text in the queryText property of QueryInfo before exiting. If the
<tablePane> showQuery value is true, this table displays itself, plus the query that generated it.

Method CreateRS(Output tSC As %Status,
 pInfo As %ZEN.Auxiliary.QueryInfo) As %ResultSet
{
 Set tRS = ""
 Set tSC = $$$OK

Using Zen Components 9

Data Sources

 Set tSELECT = "ID,Name,Title"
 Set tFROM = "MyApp.Employee"
 Set tORDERBY = pInfo.sortColumn
 Set tSORTORDER = pInfo.sortOrder
 Set tWHERE = ""

 // Build WHERE clause based on filters
 If ($GET(pInfo.filters("Name"))'="") {
 Set tWHERE = tWHERE _ $SELECT(tWHERE="":"",1:" AND ") _
 "Name %STARTSWITH '" _ pInfo.filters("Name") _ "'"
 }
 If ($GET(pInfo.filters("Title"))'="") {
 Set tWHERE = tWHERE _ $SELECT(tWHERE="":"",1:" AND ") _
 "Title %STARTSWITH '" _ pInfo.filters("Title") _ "'"
 }

 Set sql = "SELECT " _ tSELECT _ " FROM " _ tFROM
 Set:tWHERE'="" sql = sql _ " WHERE " _tWHERE
 Set:tORDERBY'="" sql =
 sql _ " ORDER BY " _tORDERBY _ $SELECT(tSORTORDER="desc":" desc",1:"")

 Set tRS = ##class(%ResultSet).%New()
 Set tSC = tRS.Prepare(sql)
 Set pInfo.queryText = sql

 Quit tRS
}

1.2.4.4 QueryInfo Properties

The following table describes the properties on the %ZEN.Auxiliary.QueryInfo object that appears in the signature for both
callback methods.

Like tablePane, the dataCombo, dataListBox, and repeatingGroup components can also use callbacks to generate a component
from a %ResultSet. Some of the properties in the QueryInfo object apply only to tablePane queries. dataCombo, dataListBox,
and repeatingGroup ignore any table-only properties, including those for columns, filters, and sorting.

Only tablePane and dataCombo support the queryText property.

Table 1–2: QueryInfo Properties

DescriptionProperty

The colExpression values from each <column> in the <tablePane>. columnExpression

organizes these values as a multidimensional array subscripted by <column> colName.
columnExpression

The colName values from each <column> in the <tablePane>. columns organizes these
values as a multidimensional array subscripted by column number (1–based).

columns

The filterOp values from each <column> in the <tablePane>. filterOps organizes these
values as a multidimensional array subscripted by <column> colName.

filterOps

The filterValue values from each <column> in the <tablePane>. filters organizes these
values as a multidimensional array subscripted by <column> colName.

filters

The filterType values from each <column> in the <tablePane>. filterTypes organizes
these values as a multidimensional array subscripted by <column> colName.

filterTypes

The groupByClause value for the <tablePane>, if supplied.groupByClause

The orderByClause value for the <tablePane>, if supplied.orderByClause

Multidimensional array, subscripted by parameter number (1–based).This array contains
any input values provided by <parameter> elements within the <tablePane>.

parms

Set this property to true in the method identified by OnCreateResultSet, to indicate that
the newly created %ResultSet has already been executed and you do not want the
method identified by OnExecuteResultSet to be called. The default is false.

queryExecuted

10 Using Zen Components

Zen Tables

DescriptionProperty

The method identified by OnCreateResultSet can set this value to the actual query
text, to be displayed if the showQuery value is true.

queryText

If this value is set by the callback, upon return the rowCount property contains the
number of rows returned by the query. After the query is executed, rowCount could be
different from rows.

Note that rowCount is a string, and not numeric, as its value might be "" or "100+".
Any number of rows greater than 100 is represented as "100+".When testing rowCount

from JavaScript, if you want to convert to a numeric value use parseInt for base 10:

rowCount = parseInt(rowCount,10);

rowCount

The number of rows requested. For tables, this is the maxRows value.rows

The colName of the current sort column selected by the user.sortColumn

The table’s current sort order (usually determined by user clicks) such as "asc" or
"desc".

sortOrder

The <tablePane> tableName value.tableName

The whereClause value for the <tablePane>, if supplied.whereClause

1.2.5 Changing the Data Source Programmatically

You can change the data source for a <tablePane> at runtime in a variety of ways. The principle at work here is that the
data source is on the server, so if you want to change the data source for a table based on user actions on the client side,
you must work your way back to the server, as this topic shows.

In the following example, queryClass and queryName were used to define the data source, so we need to change them to
new values on the server side. This example uses a JavaScript method in step 2 and a ZenMethod in step 3. Using an
intervening JavaScript method as in step 2 is convenient if there are other actions you need to perform on the client side
while changing the data source. Alternatively, the onclick from step 1 could invoke the ZenMethod directly, bypassing step
2:

1. There is a component on the Zen page whose response to onclick (or to some other user action) is to invoke a client
side JavaScript method. For example:

<button caption="Display Form" onclick="zenPage.setUpContextForm()" />

2. The client side JavaScript method invokes a server side ZenMethod that manipulates data source properties of the
<tablePane>. For example:

 ClientMethod setUpContextForm() [Language = javascript]
{
 this.SetQueryClassAndName("LTD.DomainModel.ContextList","GetAll")
 ctrl = this.getComponentById('ctrlList')
 ctrl.setModelClass('LTD.DomainModel.ContextList',this.getCurrentListId())
 zenSetProp('ContextId', 'hidden', 0)
 zenSetProp('ContextType', 'hidden',0)
}

3. The server side ZenMethod gets the <tablePane> component and set its data source properties. For example:

Using Zen Components 11

Data Sources

Method SetQueryClassAndName(queryClass As %String,
 queryName as %String)
 As %Status [ZenMethod]
{
 Set obj=%page.%GetComponentById("listTable")
 Set obj.queryClass = queryClass
 Set obj.queryName = queryName
 Quit $$$OK
}

1.3 Query Parameters
When you are working with SQL queries to generate the data for a Zen table, you sometimes need to provide values for
query input parameters, defined as ? characters within the query. To do this, use <parameter> elements within the <tablePane>
element. <radioSet>, <select>, <dataListBox>, <dataCombo>, <repeatingGroup>, and <multiSelectSet> can also contain
<parameter> elements to support queries.

DescriptionAttribute

Specifies the parameter value:

<parameter value="Here is my value!"/>

The value supplied for a parameter can be a literal string, or it can contain a Zen
#()# runtime expression.

value

When you supply a query directly, as with a sql attribute, each <parameter> element substitutes for one ? in the query
syntax, in order from left to right, even if the values are the same. For example:

<tablePane id="table"
 sql="SELECT ID,Name FROM MyApp.Employees
 WHERE Name %STARTSWITH ? AND
 ((Salary < ?) OR (TotalCompensation < ?))
 ORDER BY Name"
 >
 <parameter value="Z"/>
 <parameter value="100000"/>
 <parameter value="100000"/>
</tablePane>

The “Data Sources” section in this chapter provides several other examples of how to use the <parameter> element,
including the following class query example. Here each <parameter> element substitutes for one argument in the class
query:

<tablePane id="table"
 queryClass="MyApp.Employee"
 queryName="ListEmployees">
 <parameter value="Sales"/>
 <parameter value="NEW YORK"/>
</tablePane>

When you work with %ZEN.Component.tablePane programmatically, If you are using one of the classes <radioSet>,
<select>, or <multiSelectSet>, which do not implement the setProperty, you must first set an id for the parameter:

<parameter value="Sales" id="param1"/>

The following example changes the value of the first parameter to Finance, re-executes the query on the server, and updates
the contents of the tablePane to display the new results:

12 Using Zen Components

Zen Tables

 ClientMethod changeParams() [Language = javascript]
 {
 // find the tablePane component
 var table = zenPage.getComponentById('table');
 var param1 = zenPage.getComponentById("p1");
 param1.value='Finance';
 table.executeQuery();
 }

1.4 Table Columns
The “Data Sources” section in this chapter explains that a <tablePane> draws an HTML table based on an SQL query.
The table displays each row in the query resultset as a table row. A <tablePane> may also contain one or more <column>
elements. <column> elements select which of the columns in the query resultset to display, and specify layout, style, and
behavior for each column.

<tablePane> has a showRowSelector attribute which is true by default. If showRowSelector is true, the table displays an
extra column at far left. This column appears empty when the table first displays. The purpose of this column is to indicate
which rows are selected when the user selects them. If you want to suppress this column in your <tablePane>, set
showRowSelector to false.

The “Generating an SQL Query” section includes the following example of how <column> elements can generate a table:

<tablePane id="table"
 tableName="MyApp.Employee">
 <column colName="ID" />
 <column colName="Name"/>
 <column colName="Title" style="color: blue;"/>
</tablePane>

The <column> element is the XML projection of the %ZEN.Auxiliary.column class. <column> supports the general-purpose
attributes described in the following table.

DescriptionAttribute

Text specifying the tooltip message for any cell within the column.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

cellTitle

If the table is automatically constructing an SQL query, this is the SQL expression
used to get the value of this column. For example:
colExpression="Customer->Name".
Does not support aliasing.When using colExpression, you must also specify colName.

colExpression

The name of the SQL data column that this column is associated with. For more
information, see colName.

colName

If true, disables sorting this column when the user clicks on the column header. If
false, enables sorting.The default is for column sorting to be enabled in each column
as long as the useSnapshot attribute for the containing <tablePane> is set to true.

disableSort

Text specifying the column header.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The header value can be a literal string, or it can contain a Zen #()# runtime
expression.

header

Using Zen Components 13

Table Columns

DescriptionAttribute

If true, this column is not be displayed. The default is false.

hidden has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

The hidden value can be a literal string, or it can contain a Zen #()# runtime
expression.

hidden

Name of a server-side callback method in the Zen page class. For more information
see OnDrawCell.

OnDrawCell

Allows you to pass some arbitrary value to the OnDrawCell callback.seed

CSS style value to be applied to the cells (HTML <td> elements) within this column.
For example: "color: red;"

The style value can be a literal string, or it can contain a Zen #()# runtime expression.

style

Text specifying the tooltip displayed when the user moves the mouse over the column
header.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

title

Usually, the HTML style value for Zen tables is "fixed".This means that each column
has a specific width value in the generated HTML page. Zen determines these values
as follows:

• You can specify a width value for any column.

• If you do not specify a width for some columns, Zen assigns a width that is pro-
portional to the size of the contents of that column (relative to other columns in
the table).

• If you do not supply a width value for any column in the table, Zen uses an HTML
style value of "auto" for the entire table.

The width value can be a literal string, or it can contain a Zen #()# runtime expression.

width

<column> also provides attributes that support dynamic filtering and linking for Zen table columns. Later topics describe
these special-purpose <column> attributes:

• “Column Filters”

• “Column Links”

Finally, if you wish column layout to respond dynamically to user selections, the <tablePane> provides attributes that
facilitate this for all columns in the table. See these sections:

• “Sorting Tables”

• “Selecting Rows and Columns”

When you work with %ZEN.Component.tablePane programmatically, you work with <column> elements as members of
the tablePane columns property, a list collection of %ZEN.Auxiliary.column objects. Each <column> in the <tablePane>
becomes a member of the columns collection in tablePane, associated with its ordinal position: 1, 2, 3, etc.

14 Using Zen Components

Zen Tables

1.4.1 colName

The colName attribute provides the name of the SQL data column that this column is associated with. If needed, the colName
value can contain SQL functions or use SQL aliasing, as in these examples:

<column colName="Salary-1000 As SalaryMinus1000"
 width="10" filterType="text"
 filterOp="BETWEEN" filterLabel=" Range (Min,Max):"
 />

Or:

<column colName="max(Salary) As SalaryMax"
 width="100" filterType="text"
 filterOp="BETWEEN" filterLabel=" Range (Min,Max):"
 />

The colName value can be a literal string, or it can contain a Zen #()# runtime expression.

If any colName values in the <tablePane> are duplicates, the second column displays as “(duplicate) colName” to indicate
that unless the second column is renamed, the <tablePane> may display unexpected behavior.

If no colName is specified for a column, the column is displayed without a data value. Typically this technique is used to
display a link action in a row.

1.4.2 OnDrawCell

The OnDrawCell attribute provides the name of a server-side callback method in the Zen page class. This method injects
HTML content into cells in the column using &html<> syntax or WRITE commands. Zen invokes this method whenever
it draws the column, automatically passing it the following parameters:

• A pointer to the <tablePane> object.

• A string that gives the name of the SQL data column that this <column> is associated with.

• The seed attribute value from the <column>.

The callback must return a %Status data type. The following is a valid method signature:

Method DrawYesNo(pTable As %ZEN.Component.tablePane,
 pName As %String,
 pSeed As %String) As %Status
{ }

To use the above method as the callback, the developer would set OnDrawCell="DrawYesNo" in the <column> statement:

<column colName="WorkDone" header="Complete?"
 OnDrawCell="DrawYesNo" />

The following OnDrawCell callback method interprets a Boolean value (1 or 0) to display the string Yes or No in the
<tablePane> column.

Method DrawYesNo(pTable As %ZEN.Component.tablePane,
 pName As %String,
 pSeed As %String) As %Status
{
 If %query(pName)
 {
 Write $$$Text("Yes")
 }
 Else
 {
 Write $$$Text("No")
 }
 Quit $$$OK
}

Using Zen Components 15

Table Columns

To retrieve the data value from the SQL column while inside your OnDrawCell callback method, use the %query function
as shown in the code example above. %query is a function that takes one argument, a string that identifies the name of the
SQL column. The signature of your OnDrawCell method provides this value automatically in the input parameter pName.
Thus, the expression %query(pName) in your method resolves to the value contained in the SQL column that corresponds
to this <tablePane> <column>.

The example tests to see if the expression %query(pName) is non-zero. If so, it places the word Yes in the <tablePane>
column; otherwise it places the word No in the <tablePane> column.

Using the %query function in an OnDrawCell callback method is not the same as using the %query special variable in
Zen runtime expressions. For information and examples using the %query special variable, with dot syntax, see the sections
“Zen Special Variables” and “Zen Runtime Expressions” in the book Developing Zen Applications.

1.5 Table Style
<tablePane> offers the following attributes to control the general style of the table.

DescriptionAttribute

Text specifying the caption to display for this table.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

caption

The HTML width to allow for extra columns, such as when multiple rows are selected
or row numbers are displayed in the tablePane.The default width for an extra column
is 30.

extraColumnWidth

If true, the header of the table stays in position when the body of the table scrolls.
The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

fixedHeaders

If fixedHeaders is true, bodyHeight provides an HTML length value that specifies the
height of the body section of the table. The default bodyHeight is "20.0em".

bodyHeight

If true, table cells disallow word wrapping. If false, they allow it. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

nowrap

If true, display a row number column on the left-side of the tablePane. The default
is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showRowNumbers

If true, the tooltip (HTML title attribute) displayed for cells within the table consists
of the current value of the cell. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showValueInTooltip

16 Using Zen Components

Zen Tables

DescriptionAttribute

If true, use zebra striping (alternating dark and light rows) to display the tablePane.
The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showZebra

1.6 Conditional Style for Rows or Cells
A <tablePane> may contain one or more <condition> elements. Each <condition> is a simple expression, based on the
values of a given row, that controls the style of the row or of an individual cell within the row. For example:

<tablePane id="table"
 sql="SELECT Name,Home_State FROM MyApp.Employee">
 <condition colName="Name"
 predicate="STARTSWITH"
 value="A"
 rowStyle="background: plum;"/>
</tablePane>

In the above example, every row in which the value of the Name column starts with “A” is displayed with a plum background.

Typically, the conditional style mechanism is used to highlight rows or cells containing special values (such as out-of-range
or error cases). Adding conditions does increase the amount of processing needed to display a table, so use them sparingly.

The <condition> element supports the following attributes:

DescriptionAttribute

CSS style to be applied to cells within the target column, for rows in which this con-
dition evaluates true. For example:

"color: red;"

cellStyle

Required. The name of the column that provides the data value to be evaluated by
the <condition>. colName can be a literal string, or it can contain a Zen #()# runtime
expression.

colName

The logical operator used to evaluate the condition. predicate may be one of the
following comparison operators: "", "GT", "EQ", "LT", "NEQ", "GTEQ", "LTEQ",
"EXTEQ", "STARTSWITH", or "CONTAINS".The default predicate is "EQ". For details
about each operator, see the “<condition> predicate Values” table, below.

predicate

CSS style to apply to rows in which this condition evaluates to true. For example:

"font-weight: bold;"

rowStyle

The name of the column that cellStyle applies to. If not specified, colName is used.

If the target column displays a link, as discussed in the section Column Links, the
targetCol must match the linkCaption attribute of the <column>.

targetCol can be a literal string, or it can contain a Zen #()# runtime expression.

targetCol

Using Zen Components 17

Conditional Style for Rows or Cells

DescriptionAttribute

The literal value to be compared against the value in the column identified in colName.
If enclosed within {} (for example, "{Title}") value is treated as the name of another
column, and the value in that column is used.

value can be a literal string, or it can contain a Zen #()# runtime expression.

value

When a table is displayed, all <condition> elements within the <tablePane> are evaluated individually for each row in the
table. If a <condition> evaluates true, then the rowStyle or cellStyle for the condition is applied to the row or cell, respectively.

The <condition> predicate attribute may have the following values.

Table 1–3: <condition> predicate Values

DescriptionPredicate

True if the value in the column identified by colName contains (as a substring) the value
specified by value.

CONTAINS

True if the value in the column identified by colName is equal to the value specified by value.EQ

True if the filename in the column identified by colName has the file extension specified by
value.

EXTEQ

True if the value in the column identified by colName is greater than the value specified by
value.

GT

True if the value in the column identified by colName is greater than or equal to the value
specified by value.

GTEQ

True if the value in the column identified by colName is less than the value specified by
value.

LT

True if the value in the column identified by colName is less than or equal to the value
specified by value.

LTEQ

True if the value in the column identified by colName is not equal to the value specified by
value.

NEQ

True if the value in the column identified by colName starts with the value specified by value.STARTSWITH

When you work with %ZEN.Component.tablePane programmatically, you work with <condition> elements as members of
the tablePane conditions property, a list collection of %ZEN.Auxiliary.condition objects. Each <condition> in the <tablePane>
becomes a member of the conditions collection in tablePane, associated with its ordinal position: 1, 2, 3, etc.

1.7 Snapshot Mode
A <tablePane> can operate in snapshot mode. In this mode, Zen runs the table query once and copies these results to a
temporary location on the server. Subsequent screen refresh operations display data from this temporary location, rather
than resubmitting the query. Zen automatically manages the creation and lifecycle of the temporary snapshot data. Snapshot
mode is particularly useful for working with multipage tables. Note that refreshRequired has no effect when you are using
snapshot mode.

18 Using Zen Components

Zen Tables

Important: There is a limit on the size of the data values that the temporary snapshot data structure can hold. For this
reason, no single data value in a column can contain more than n characters. In turn, this means that no
data value in the column can have its MAXLEN set to a value greater than n. Otherwise, a <SUBSCRIPT>
error is generated when the user tries to sort the column. The value of n depends on the character set being
used. n is the maximum length of a global subscript string in ObjectScript. This length depends on the
character set; for English the limit is 508 and for Japanese it is less than 200. For details, see the “Deter-
mining the Maximum Length of a Subscript” section of Using Caché Globals.

The <tablePane> element supports the following attributes for snapshot mode.

DescriptionAttribute

When true, this <tablePane> is in snapshot mode. This means that whenever data
is fetched, it is copied into a server-side temporary location. Paging and sorting
operations use this snapshot data and do not re-execute the query.

If you want the user to be able to sort table columns by clicking on column headers,
you must set useSnapshot to true. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types”.

useSnapshot

For snapshot tables, this attribute specifies that you wish to display the data as
multiple pages, and what the page size should be. 0, the default, means show all
data on first page. This can only be set to a non-zero value when the table is in
snapshot mode. Compare maxRows, which is the total number of rows to fetch in
the <tablePane> query.

pageSize

Any of the query mechanisms described in this chapter can be used with snapshot or direct (non-snapshot) mode. The fol-
lowing example specifies an SQL query to be used in snapshot mode:

<tablePane id="table"
 sql="SELECT Name,Home_State FROM MyApp.Employee"
 useSnapshot="true"
 pageSize="25"
/>

The following %ZEN.Component.tablePane properties are not available as XML attributes in the <tablePane> definition,
but they can be useful for working with snapshot tables once the page has been created.

DescriptionAttribute

A runtime flag that the client can set to true to force re-execution of the table query
when Zen would otherwise use the stored snapshot. The default is false.

clearSnapshot

For snapshot tables with multiple pages of data, this is the (1–based) index number
of the currently displayed page of data.

currPage

You can also programmatically adjust the values for useSnapshot and pageSize that were originally set by <tablePane> in
XData Contents.

1.7.1 Fetching Data From the Server

The %ZEN.Component.tablePane class offers a getRowData method for tables in snapshot mode only. getRowData fetches
the data values for a given row (0-based) from the server-side snapshot data. This data is packaged into a JavaScript object
whose properties correspond to the names of the columns in the snapshot table; type conversion is handled appropriately.
For non-snapshot tables or out-of-range row numbers, getRowData returns null.

Using Zen Components 19

Snapshot Mode

1.7.2 Navigating Snapshot Tables

Several different options permit users to navigate multipage tables. The <tableNavigator> and <tableNavigatorBar> com-
ponents provide a basic navigation interface. <tableNavigatorBar> is particularly useful for managing multipage tables.
For details, see the section “Navigation Buttons.”

If you wish to undertake additional programming, the %ZEN.Component.tablePane class provides a client-side JavaScript
API that an application can use to implement the desired paging interface. These methods work only when the tablePane

is in snapshot mode. They include:

DescriptionMethod

Calculates and returns the current number of pages within the table.getPageCount()

Returns the page number (1–based) of the current page displayed
by the table.

getProperty('currPage')

Returns the current page size.getProperty('pageSize')

Returns the total number of rows within the table.

Note that rowCount is a string, and not numeric, as its value might
be "" or "100+". Any number of rows greater than 100 is repre-
sented as "100+". When testing rowCount from JavaScript, if you
want to convert to a numeric value use parseInt for base 10:

rowCount = parseInt(rowCount,10);

getProperty('rowCount')

Changes the current page displayed by the table to pageno.setProperty('currPage',pageno)

Changes the current page size used by the table to rows.setProperty('pageSize',rows)

1.8 Column Filters
A Zen table can create a “filter” to place above the header for any column. A filter is a simple box with an input field where
a user can enter one or more search criteria. When the user submits these changes, the query associated with the <tablePane>
is re-executed using the new criteria. Zen updates the table and nothing else on the page changes.

Filtering works only if the <tablePane> is using an automatically generated SQL statement or an OnCreateResultSet callback,
and the callback generates the appropriate WHERE logic to implement the data filtering. When your table uses a generated
SQL query, your page class can gather what the user enters; format it appropriately into the %ZEN.Component.tablePane

properties groupByClause, orderByClause, and whereClause; then re-execute the table query.

Important: If you do not provide a colName value with the <column> element that specifies the filter, Zen does not
create the filter.

The <column> element offers the following attributes for filters.

20 Using Zen Components

Zen Tables

DescriptionAttribute

If filterType is "enum", filterEnum defines the set of enumerated values used by the
filter as a comma-separated list. For example:

"red,green,blue"

The enumerated values are displayed within a combo box. The names supplied in
the filterEnum list appear as selections in the combo box unless filterEnumDisplay
is defined.

filterEnum

If filterType is "enum", and if filterEnumDisplay provides a comma-separated list of
values, the combo box displays these values in place of the corresponding filterEnum
values.

The filterEnumDisplay attribute has its ZENLOCALIZE datatype parameter set to 1
(true). This makes it easy to localize its text into other languages, and permits use
of the $$$Text macros when you assign values to this property from client-side or
server-side code.

Any localized filterEnumDisplay string that was a comma-separated list in the original
language must remain a comma-separated list.

filterEnumDisplay

If specified, this is a label to display for the filter control. If there is a multipart filter
control (such as a filterType of "range"), then filterLabel is assumed to contain a
comma-separated list of labels.

filterLabel

If this column has a filter, filterOp is the name of the SQL operator that should be
used in conjunction with the filter. Supported values are: "", "%STARTSWITH", "=",
">=", "<=", "<>", ">", "<", "[", "BETWEEN", "IN", "%CONTAINS", and "UP[".

filterOp

If filterType is "query", filterQuery defines the SQL statement used to provide the
set of values for a drop-down list. If the query has more than one column, the first
column is used as the logical value (this is what is used in a search) and the second
column is used as a display value.

filterQuery

Text specifying the tooltip displayed when the user moves the mouse over the filter
control.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

filterTitle

Using Zen Components 21

Column Filters

DescriptionAttribute

Specifies that this column should display a search filter control and indicates what
type of filter control to display. Possible filterType values are:

• "text" - display a text box.

• "date" - display a date using a popup calendar control. If filterOp is "BETWEEN",
then 2 controls are displayed. The column can also specify a maxDate and
minDate.

• "datetime" - same as "date" except that a complete timestamp (date and time)
is used.

• "enum" - display a set of enumerated values in a combobox.The possible choices
are specified by filterEnum and filterEnumDisplay.

• "query" - display a set of values in a combobox. The contents of the combobox
are provided by executing the query specified by filterQuery.

• "custom" - display a custom filter using the server-side callback method specified
by OnDrawFilter.

filterType

Current value of the column filter for this column.Typically this acquires a value after
the user enters a value within a filter control, but you can set the filterValue to define
an initial value.

The meaning of filterValue depends on filterOp. When filterOp is:

• "IN", filterValue is treated as a comma-separated list of IN clause values.

• "%CONTAINS", filterValue is treated as a comma-separated list of %CONTAINS
clause values.

• "BETWEEN", filterValue is treated as a comma-separated list of two values used
for the BETWEEN clause of the query.

• "UP[", filterValue is converted to a case insensitive value.

• Anything else, filterValue is treated as a single value.

filterValue

Specifies the maximum date available in the calendar selector if filterType is “date”
or “datetime”.

maxDate

Specifies the minimum date available in the calendar selector if filterType is “date”
or “datetime”.

minDate

Name of a server-side callback method in the Zen page class. This method injects
HTML content into the filter for this column using &html<> syntax or WRITE com-
mands. Additional information follows this table.

OnDrawFilter

Zen invokes the OnDrawFilter method when it draws the column, but only if the value of filterType is "custom" at that
time. Zen automatically passes the method the following parameters:

• %ZEN.Component.tablePane — the <tablePane> object

• %String — the colName value from the <column>

• %ZEN.Auxiliary.column — the <column> object

The callback must return a %Status data type. The following is a valid method signature:

22 Using Zen Components

Zen Tables

Method DrawFil(pTable As %ZEN.Component.tablePane,
 pName As %String,
 pColinfo As %ZEN.Auxiliary.column)
 As %Status

{ }

To use the above method as the callback, the developer would set OnDrawFilter="DrawFil" for the <column>.

The following sample <tablePane> generates an SQL statement that displays the Name and Department of employees:

<tablePane id="table"
 useSnapshot="true"
 tableName="MyApp.Employee">
 <column colName="ID" hidden="true"/>
 <column colName="Name" filterType="text" />
 <column colName="Department"
 filterType="enum"
 filterEnum="Sales,Accounting,Marketing"
 filterOp="=" />
</tablePane>

This example uses the <column> filterType attribute to specify that the Name column should display a column filter (“text”
indicates that this filter displays a box in which the user may type text). If the user enters a value in the box (such as “A”)
and presses Enter, the table is updated to only show rows where the Name column starts with “A”. (If the <column> does
not specify a filterOp value, the default matching operation is %STARTSWITH.)

For the Department column the example displays a more sophisticated filter: a combo box showing 3 possible values. To
do this, it sets the <column> filterType to “enum” and sets filterEnum to a comma-separated list of possible values. It also
specifies that an exact match is required, by setting the filterOp value to "=".

A <tablePane> has filters active and enabled by default. You do not need to supply any <tablePane> attributes to enable
filtering. However, should you want to override the default settings, <tablePane> offers the following attributes that control
filtering for the table as a whole, not just for individual columns.

DescriptionAttribute

If true, this attribute causes the table query to be executed whenever a filter value
is changed. autoExecute is "true" by default. When false, a page must explicitly
cause the <tablePane> to run its query by calling its executeQuery method.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

autoExecute

If true, disable column filters (if any). When true, column filters are still displayed,
but they are inactive. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

filtersDisabled

Controls how to display the table header when column filters are used. Possible
values are:

• "filtersOnTop" — Display column filters above column headers. This is the
default.

• "headersOnTop" — Display column headers above column filters.

headerLayout

If true, display column filters (if any) above the column headers. If false, do not display
filters. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showFilters

Using Zen Components 23

Column Filters

1.9 Column Links
Columns within a Zen table can display links, such as a link that takes the user to another page to edit the details of the
object displayed within the current row. This link can either be displayed within a column that contains a data value (in
this case, the data value is displayed as a link), or as an extra column in the table that contains the link.

The <column> element offers the following attributes for links.

DescriptionAttribute

If specified, this column is displayed as a link using the value of the link property as
a URI. If you want to invoke a client-side JavaScript method in the link, start the URI
with javascript: as in:

link="javascript:zenPage.myMethod();"

For more about this convention, see the example following the table.

Alternatively, set link to # and use the onclick event to determine the action when
the user clicks on this column. Doing this causes the linkCaption text to be formatted
using whatever link styles are assigned by your CSS stylesheet:

<column onclick="return zenPage.test('#(%query.Name)#');"

linkCaption="Test" link="#"/>

link

If this column has an action defined (link or onclick) and does not display a data
value, the linkCaption specifies the text to use as the caption for the link. If you are
using a conditional style, as described in the section Conditional Style for Rows or
Cells, linkCaption must match the targetCol attribute of the <condition> element that
supplies the style.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

linkCaption

If specified and this column has a link defined, the linkConfirm text is displayed as
a confirmation message before the link is executed. If there is an onclick action
defined for this column, then linkConfirm is ignored.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

linkConfirm

The event handler that runs each time the user clicks the mouse on a cell in this
column. See “Zen Component Event Handlers.”

If the column does not have data associated with it then you must set the linkCaption
property so that the user has text to click. When you use onclick, set link to # as
described for link in this table.

onclick

The following is an example of using JavaScript code to further process the <column> link value before using it to go to
another page:

24 Using Zen Components

Zen Tables

<tablePane id="table"
 sql="SELECT TOP 100 ID,Item,Price FROM MyApp.Inventory ORDER BY Price">
 <column colName="ID" hidden="true"/>
 <column colName="Item"
 link="MyApp.ItemEdit.cls?ID=#(%query.ID)#"
 linkCaption="View information on this item."
 />
 <column link="javascript:zenPage.addToCart('#(%query.ID)#');"
 linkCaption="Add to cart"
 linkConfirm="Do you wish to add this item to your cart?"
 />
</tablePane>

This example does the following:

1. The <tablePane> sql value specifies that this table displays information about the top 100 items in the MyApp.Inventory
table ordered by price.

2. The <tablePane> needs the value of the “ID” column (as part of the links) but there is no need to display this value.
Therefore, the <column> hidden value is true.

3. The <tablePane> needs the “Item” column to contain a link to a page that displays information about a specific item.
Therefore, the <column> link value defines this link. The <column> linkCaption value defines a tooltip message that
is displayed when the user moves the mouse over this link.

4. The <tablePane> defines an extra column (with no data displayed in it) that contains an “Add to cart” link. This link
invokes a client-side addToCart method when the user clicks on it. The linkConfirm property specifies a confirmation
message displayed to the user before executing the link.

The two link values used within this <tablePane> example make use of the Zen expression syntax to include the value of
row-specific data within the link. See the section “Zen Runtime Expressions” in the “Zen Pages” chapter of Developing
Zen Applications. The following expression refers to the ID column within the current row of the table:

#(%query.ID)#

For the second of the two link examples to work, the client-side addToCart method must compose the URI and invoke
the new page. Using a client-side method is important when you need to encode special characters that may appear in the
text value returned by the query; for example:

ClientMethod addToCart(identifier) [Language = javascript]
{
 var page = "MyApp.AddToCart.cls?ID=" + encodeURIComponent(identifier);
 this.gotoPage(page);
 return;
}

1.10 User Interactions
Zen tables provide built-in mechanisms to support basic user interactions such as navigating pages, sorting columns, and
selecting rows in a table.

1.10.1 Navigation Buttons

The <tableNavigator> component automatically displays a set of buttons for moving through the pages of a <tablePane>.
The <tableNavigatorBar> has identical syntax, but displays extra buttons to help users navigate large, multipage tables.

To use either component, place it anywhere on the same page as a <tablePane> and set its tablePaneId attribute value to
match the id value from the <tablePane>. For example:

Using Zen Components 25

User Interactions

<pane id="tPane">
 <tablePane id="myTable"
 tableName="MyApp.Employee">
 <column colName="ID" hidden="true"/>
 <column colName="Name"/>
 </tablePane>
 <tableNavigatorBar tablePaneId="myTable" />
</pane>

If a <tableNavigator> or <tableNavigatorBar> is placed within a composite element, the corresponding <tablePane> must
be placed within the same composite element.

1.10.2 Navigation Keys

The <tablePane> can specify event handling for user key clicks as follows.

DescriptionProperty

Specifies the event handler for events generated when the user presses the keys
Up, Down, Page Up, Page Down, Home, End while focus is in the table. See “Zen Com-
ponent Event Handlers.”

The attribute useKeys must be true, so that the tablePane captures the user
keystrokes.

onkeypress

If true, this tablePane captures user keystrokes Up, Down, Page Up, Page Down, Home,
End, and uses them for simple table navigation. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

useKeys

1.10.3 Sorting Tables

The <tablePane> must use snapshot mode to allow users to sort table columns. If you want the user to be able to sort table
columns by clicking on their headers, you must set the <tablePane> useSnapshot attribute to true; by default, useSnapshot
is false. For details and important limitations, see the “Snapshot Mode” section.

When useSnapshot is true, you can selectively disable sorting for a column by setting the <column> disableSort attribute
to true. For more about column attributes like disableSort see the “Table Columns” section.

When snapshots are enabled, the user can sort the table according to a particular column simply by clicking on a column
header: First click, ascending order; second click, descending order; third click, unsorted; and so on. You can set an initial
value for sortOrder when you add the <tablePane> to the page, as described in the following table. However, sortOrder
usually takes its value based on user actions (clicking column headers in the table).

DescriptionProperty

When the user clicks on a column header, Zen sorts the table based on the values
in that column and the order specified by the sortOrder value. sortOrder toggles
between its possible values "asc" (sort in ascending order) and "desc" (sort in
descending order) each time the user clicks in that column header.

sortOrder does not affect the query itself (it does not interact with the query ORDER
BY setting). sortOrder simply controls the order in which the table displays the
resultset returned by the query.

The sortOrder value can be a literal string, or it can contain a Zen #()# runtime
expression.

sortOrder

26 Using Zen Components

Zen Tables

For columns that contain date data, clicking on the column header sorts the dates in correct chronological order only if the
display format for the dates is either the default format dictated by the current locale setting, or ODBC format. Other formats
are sorted in alphabetical order.

For more information on date formats, see the description of dformat in the “Parameters” section for the $ZDATETIME
($ZDT) function in the Caché ObjectScript Reference.

1.10.4 Selecting Rows and Columns

The user can select rows or columns within a Zen table by clicking on them. Zen indicates the current row visually and
notifies the application of the event by triggering the event handler provided by the <tablePane> onselectrow attribute.

%ZEN.Component.tablePane supports a number of properties for row and column selection. Many of these properties can
be set as <tablePane> attributes, but some of them can only take their values at runtime in response to user actions.

DescriptionProperty

The colName of the column most recently selected by the user.You may allow user
actions to provide a value for this property, or you can set it. The currColumn value
can be a literal string, or it can contain a Zen #()# runtime expression.

currColumn

If true, the user can select multiple rows within the table. Zen displays an extra
column, containing check boxes, to indicate which rows are selected. The default is
false. multiSelect and rowSelect can be true or false independently of each other.

multiSelect

The event handler for events generated when the user double-clicks on a row in this
table. See “Zen Component Event Handlers.”

ondblclick

Client-side JavaScript expression that runs whenever the user clicks on a column
header within this table. Zen stores the name of this column in the currColumn
property.

onheaderClick

If multiSelect is true, this is the client-side JavaScript expression that runs whenever
the user changes the set of multiply selected rows within this table.

onmultiselect

If rowSelect is true, this is the client-side JavaScript expression that runs whenever
the user selects a new row within this table. This happens only if showRowSelector
is true.

onselectrow

If true, the user can select a row within the table (one row at a time). The default is
true. multiSelect and rowSelect can be true or false independently of each other.

rowSelect

The (0–based) index number of the currently selected row. This value is relevant
only if the showRowSelector property is true. For snapshot tables, this is row number
within the current page.

selectedIndex

Using Zen Components 27

User Interactions

DescriptionProperty

Read-only.

When the <tablePane> has multiSelect set to true and a valueColumn defined, its
selectedRows string indicates which rows are currently selected in the table. The
string does this by providing a comma-separated list of the valueColumn values in
each selected row. Consecutive commas in the string indicate that the row in that
position is not selected.

The selectedRows string looks like the following example, in which 3 of the 14 rows
are selected:

",,,value,,,value,,,,,value,,"

If the <tablePane> has no valueColumn defined, but has multiSelect set to true, the
selectedRows string provides no information about selected rows, and looks like
this:

",,,,,,,,,,,,,"

selectedRows

If true, the table displays an extra column at far left. This column appears empty
when the table first displays. The purpose of this column is to indicate which rows
are selected when the user selects them. showRowSelector is true by default. If you
want to suppress this extra column in your table, set showRowSelector to false.

showRowSelector

This is the logical value used to determine which is the currently selected row. value
works with valueColumn. The value may be empty ("").

Do not access this value directly; use getProperty('value') instead.

value

A <tablePane> can have a logical value defined. Each time the table is refreshed,
in each row Zen tests this logical value against the actual value that appears in the
valueColumn in that row. Zen selects any row(s) that contain value in valueColumn.
This implies the following:

• You can preset the value of a <tablePane> and the row(s) that match are selected
when the table is first displayed.

• The current selection is preserved when you sort the rows in a table.

valueColumn

1.11 Table Refresh
When you refresh a table, only the table refreshes. It is not necessary for the entire Zen page to refresh itself in order to
refresh a table.

Typically, Zen refreshes the visible contents of the table automatically as needed. When you work with tables programmat-
ically, you can also explicitly refresh table contents. The techniques are as follows:

• Set the refreshRequired property of the %ZEN.Component.tablePane to true (1) from a server-side method. This forces
the tablePane to re-execute its query.

• Call the executeQuery method of the %ZEN.Component.tablePane. This causes the data query to be re-executed and
updates the visible contents of the table to reflect the current values of tablePane properties.

28 Using Zen Components

Zen Tables

Note that refreshRequired has no effect when you are using snapshot mode.

1.12 Table Touchups
Any time you set an attribute value for <tablePane> in XData Contents, the corresponding property in the tablePane object
automatically acquires this value. This might be just enough programming for your purposes. Nevetheless,
%ZEN.Component.tablePane offers many more opportunities for programmatic interaction on the client or server sides.

1.12.1 Data Values

If you wish to touch up the data values displayed in the table, you have these options:

• Touching up values set in XData Contents, just prior to display, by setting tablePane properties in the
%OnAfterCreatePage callback of the page class.

• Examining read-only properties of %ZEN.Component.tablePane such as lastUpdate and rowCount to determine the
current state of the table. Note that rowCount is a string, and not numeric, as its value might be "" or "100+". Any
number of rows greater than 100 is represented as "100+".

• Resetting values of certain tablePane properties and then refreshing the table.

1.12.2 Header and Body Alignment

When viewed in Internet Explorer with fixedHeaders set to true, <tablePane> headers and body columns may become
misaligned. For this reason, the %ZEN.Component.tablePane class offers a client-side JavaScript method called resizeHeaders
that checks for alignment issues in the rendered table and, if needed, reformats the header with padding to account for the
space taken up by a vertical scrollbar in the body of the table.

resizeHeaders calculates the size of the padding based on the actual size of the scrollbar on the rendered page, and auto-
matically accounts for the differences between Internet Explorer 6 and 7 as well as any of the minor variations in scrollbar
width that crop up under some of the Windows desktop themes. You do not need to use resizeHeaders unless you actually
observe problems in Internet Explorer when viewing <tablePane> components with fixedHeaders set to true. Then, if you
see this problem, you can fix it as follows:

1. Implement the client-side JavaScript method onresizeHandler in the Zen page class that displays the <tablePane>.
onresizeHandler must be implemented in the page class because the resize event is only supported for the current
zenPage object and does not propagate to any components on the page. For a list of similar client-side callback
methods. see the section “Client-Side Page Callback Methods” in the “Zen Pages” chapter of Developing Zen
Applications.

2. Ensure that you onresizeHandler implementation explicitly calls the resizeHeaders method of the tablePane object.

Using Zen Components 29

Table Touchups

2
Zen and SVG

Scalable Vector Graphics (SVG) is a language that allows you to describe two-dimensional vector graphics in XML format.
The SVG language specification is available on the web site www.w3.org/TR/SVG/.

Zen uses SVG to display high-performance, data-driven charts and meters. You can use the built-in SVG components to
define eye-catching corporate dashboards that update their statistics in real time. You can also define your own SVG
components. An SVG component is any component that inherits from %ZEN.SVGComponent.svgComponent. These com-
ponents render dynamic SVG images that change their appearance in response to data values.

Note: If you want to display a static SVG file on the Zen page, use <iframe>. If you want to use a static SVG file as the
image for a button control, use <image>. The conventions described in the following topics apply to dynamic
SVG components only.

This chapter describes how to place SVG components on the Zen page. Topics include:

• “SVG Component Layout”

• “SVG Component Attributes”

• “Meters”

• “Charts”

• “<radialNavigator>”

• “<ownerDraw>”

2.1 Fonts for SVG
If no font-family is specified, SVG graphics use whatever default font the SVG engine provides. If you wish, you can
specify the SVG default font for your system by setting the global ^%ZEN.DefaultSVGFontFamily to the name of a
font-family. This causes Zen to create a CSS font-family definition using that font name. Zen automatically applies this
font-family to all SVG text elements unless they explicitly provide a value for a CSS font-family.

For example, the MingLiU font is useful when working in Japanese with Internet Explorer on Microsoft Vista:

 Set ^%ZEN.DefaultSVGFontFamily="MingLiU"

Using Zen Components 31

http://www.w3.org/TR/SVG/

2.2 SVG Component Layout
The following components allow you to place SVG components on a Zen page:

• “<svgFrame>”

• “<svgGroup>”

• “<svgSpacer>”

2.2.1 <svgFrame>

<svgFrame> is a Zen component that creates a rectangular frame on the Zen page, into which you can place SVG components.
Only SVG components may appear inside this frame. Any dynamic SVG component, such as a meter or chart, requires an
<svgFrame> to contain it.

<svgFrame> inherits from %ZEN.Component.component. This gives <svgFrame> the usual component style attributes —
height, width, label, etc — as described in the “Zen Style” chapter of Using Zen. This convention also allows <svgFrame>
to be placed within a <page>, or contained within an <hgroup> or <vgroup>, just like any other Zen component. For details,
see the “Zen Layout” chapter of Using Zen.

The following figure shows a mix of Zen components and SVG components on a page. This is similar to the output provided
by the sample class ZENDemo.Dashboard in the SAMPLES namespace.

32 Using Zen Components

Zen and SVG

The following XData Contents block contains the components that produced the above figure. These are a mix of:

• Zen components (<hgroup>,<vgroup>,<html>, <spacer>, <button>, <svgFrame>)

• SVG components (<speedometer>, <fuelGauge>, <lightBar>, <lineChart>, <svgGroup>, <svgSpacer>)

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
<page cellStyle="background-color: plum;"
 xmlns="http://www.intersystems.com/zen">
 <hgroup>
 <spacer width="10"/>
 <vgroup valign="top">
 <spacer height="20"/>
 <hgroup>
 <html
 enclosingStyle="margin: 3px; font-size:1.2em; color: darkblue;">
 This is an example of a Zen Dashboard:
 </html>
 <spacer width="10" />
 <button caption="Update" onclick="zenPage.updateData();"/>
 </hgroup>
 <svgFrame id="svgFrame" width="600" height="430"
 frameStyle="border-style: inset;"
 backgroundStyle="fill: black;"
 layout="horizontal">
 <svgSpacer width="20" />
 <svgGroup layout="vertical">
 <svgSpacer height="20" />
 <lineChart id="chart" width="400" height="420"
 title="Summary of Service Requests"
 backgroundStyle="fill: black;"
 plotAreaStyle="fill: url(#glow-silver);"
 lineStyle="stroke: black;" chartFilled="true"
 seriesColors="url(#glow-blue)" seriesCount="1"
 seriesSize="12" markersVisible="true"
 marginRight="5" marginLeft="10"
 ongetData="return zenPage.getChartData(series);"
 ongetLabelX="return zenPage.getChartLabelX(value);">
 <yAxis id="yAxis" baseValue="0"
 minValue="-25" maxValue="75"
 majorUnits="25" minorUnits="5"
 title="Requests" minorGridLines="true"/>
 </lineChart>
 </svgGroup>
 <svgGroup layout="vertical">
 <svgSpacer height="20" />
 <speedometer id="speed3" label="Overdue!" animate="true"
 labelStyle="fill: yellow;"
 lowLampColor="url(#glow-green)"
 rangeUpper="100" width="125" height="125"/>
 <fuelGauge id="speed1" label="Important" animate="true"
 labelStyle="fill: yellow;"
 rangeUpper="100" width="125" height="125"/>
 <lightBar id="speed2" label="Urgent" animate="true"
 labelStyle="fill: yellow;"
 lowLampColor="url(#glow-green)"
 rangeUpper="100" width="100" height="125"/>
 </svgGroup>
 </svgFrame>
 </vgroup>
 </hgroup>
 </page>
}

An <svgFrame> element may contain as many nested <svgGroup> and <svgSpacer> elements as are required to achieve
the desired layout. An <svgFrame> may also contain <parameter> elements to support its svgPage attribute. For details,
see the svgPage description in the following table.

<svgFrame> has the following attributes:

Using Zen Components 33

SVG Component Layout

DescriptionAttribute

<svgFrame> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

SVG CSS style definition (Styles within SVG are CSS compliant, but there is a differ-
ent set of styles available.) Specifies the background style for the frame. This style
must include a fill value, or mouse events within this frame do not work correctly.
The default backgroundStyle is:

"fill: white;"

backgroundStyle

If true, this frame and its children are disabled. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

disabled

If true, the user can use the pointing device (mouse) to drag the canvas of this frame.
This updates the values of the offsetX and offsetY attributes and moves the shapes
on the canvas. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

dragCanvas

Edit mode for this frame. Possible values are:

• "none" — The user cannot edit the contents of this frame. This is the default.

• "select" — The user can click on an SVG component to select it.

• "drag" — The user can click on an SVG component, hold down the mouse button,
and drag the SVG component to a new position.

editMode

CSS style definition that applies to this frame. For example, to produce the recessed,
beveled border shown in the illustration above, you would use:

frameStyle="border-style: inset;"

frameStyle

If snapToGrid is true, gridX defines the HTML width of each cell in the sizing grid.
The default is 25.

gridX

If snapToGrid is true, gridY defines the HTML height of each cell in the sizing grid.
The default is 25.

gridY

34 Using Zen Components

Zen and SVG

DescriptionAttribute

Specifies how the SVG components within this frame should be laid out. Possible
values are:

• "none" or the empty value "" — no layout is provided. When this is the case,
components may be placed using specific coordinates x and y. See the x and y
attributes in the section “SVG Component Attributes.”

• "vertical" — components within this group are laid out vertically.

• "horizontal" — components within this group are laid out horizontally.

• "flow" — components within this group are placed in rows. Items are placed
horizontally until the width of the container is exceeded, and then components
are placed on the next row.

layout

Offset, along the x-axis, of the coordinates of this frame from its upper, left-hand
corner. The default is 0.

offsetX

Offset, along the y-axis, of the coordinates of this frame from its upper, left-hand
corner. The default is 0.

offsetY

The ondragCanvas event handler for the <svgFrame>. Zen invokes this handler
each time the user drags the background canvas using a pointing device. See “Zen
Component Event Handlers.” A boolean variable, done, is passed to this event
handler to indicate if the operation is complete.

ondragCanvas

Client-side JavaScript expression that runs whenever the user moves the mouse
wheel over the background rectangle of this frame. Currently only available in FireFox.

onmouseWheel

Client-side JavaScript expression that runs whenever this frame is in drag mode and
the user moves one or more selected items. Refer to the selectedItems property for
the list of items. A boolean variable, done, is passed to this event handler to indicate
if the operation is complete.

onmoveItem

Client-side JavaScript expression that runs whenever this frame is in drag mode and
the user resizes one or more selected items. Refer to the selectedItems property for
the list of items. A boolean variable, done, is passed to this event handler to indicate
if the operation is complete.

onresizeItem

Client-side JavaScript expression that runs whenever the user changes the number
of selected items in this frame (by selecting or unselecting an item). A variable, item,
is passed to this event handler and refers to the item most recently selected or
unselected.

onselectItem

Client-side JavaScript expression that runs whenever the user changes the zoom
level for this frame.

onzoom

If true, all mouse operations (sizing and dragging) are constrained to occur on the
grid defined by gridX and gridY. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

snapToGrid

Using Zen Components 35

SVG Component Layout

DescriptionAttribute

Controls the size of the SVG drawing canvas within the frame. If dragCanvas is true,
the svgAutoSize property is ignored. Otherwise, if svgAutoSize is true, Zen calculates
(and updates) the canvas size automatically based on the frame contents, with the
minimum canvas size being svgWidth by svgHeight. If svgAutoSize is false, the
canvas size is determined by the values of svgWidth and svgHeight.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

svgAutoSize

Controls the size of the SVG drawing canvas within the frame. svgHeight gives the
canvas height (using any valid SVG measurement units). If not specified, the default
svgHeight is 100% of the height of the <svgFrame>. If height is also not specified,
the default height (and svgHeight) is 100.

svgHeight

Identifies a specialized CSP page that serves SVG content, defining styles and colors
for SVG components in the frame. If provided, the svgPage value must be the name
of a class that extends %ZEN.SVGComponent.svgPage. Otherwise, the frame uses the
base class %ZEN.SVGComponent.svgPage by default.

When you provide a value for the svgPage attribute, you can also include <parameter>
elements within the <svgFrame>. Zen passes the value strings from these <param-
eter> elements to the svgPage class as URI parameters. For example:

<parameter value="I am a URI parameter!"/>

The value supplied for a <parameter> can be a literal string, or it can contain a Zen
#()# runtime expression.

Use the <parameter> attribute paramName to assign names to the parameters you
use with <svgFrame>. For example:

<parameter paramName="First" value="I am a URI!"/>

svgPage

Controls the size of the SVG drawing canvas within the frame. svgWidth gives the
canvas width (using any valid SVG measurement units). If not specified, the default
svgWidth is 100% of the width of the <svgFrame>. If width is also not specified, the
default width (and svgWidth) is 300.

svgWidth

Decimal value, at least 1.0 (the decimal portion of the number may be omitted).This
value indicates the zoom factor for the frame. 100 means no zoom; this is the default.
Values larger than 100 increase image size, while smaller values decrease it.

zoom

Comma-separated list of suggested zoom values. The default is:

"10,25,50,75,100,125,150,175,200,300,400,500"

zoomLevels

If true, this frame automatically zooms in and out in response to mouse wheel events.
The default is false. Currently only available in FireFox.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

zoomWithWheel

Important: It is not possible for <svgFrame> to contain any component that inherits from %ZEN.Component.component,
such as <iframe>, <html>, <spacer>, <hgroup>, <vgroup>, <button>, <link>, or any of the other Zen
components discussed in this book. <svgFrame> can contain SVG components only.

36 Using Zen Components

Zen and SVG

There are some cases where it is important to have programmatic access to the window object for the embedded SVG
frame. The %ZEN.SVGComponent.svgFrame class has a client-side property called svgWindow that points to the SVG
window object embedded within the <svgFrame> element

2.2.2 <svgGroup>

<svgGroup> is a special container designed to contain and lay out SVG components within <svgFrame>. <svgGroup> is
not a Zen component (%ZEN.Component.component), nor is it a Zen group component (%ZEN.Component.group). <svgGroup>
is an Zen SVG component (%ZEN.SVGComponent.svgComponent) with the ability to contain other Zen SVG components.

<svgGroup> has the following attributes:

DescriptionAttribute

<svgGroup> has the same general-purpose attributes as any SVG component. For
descriptions, see the section “SVG Component Attributes.”

SVG component
attributes

If true, this group and its children are disabled (hidden). The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

disabled

Specifies how the SVG components within this group should be laid out. Possible
values are "horizontal" and "vertical".

If layout is set to "none" or the empty value "", components may be placed using
specific coordinates x and y. See the x and y attributes in the section “SVG Compo-
nent Attributes.”

layout

2.2.3 <svgSpacer>

The <svgSpacer> element is useful within <svgGroup> containers. Use <spacer> with a width value to inject additional
space in a horizontal <svgGroup>, or height for additional space within a vertical <svgGroup>.

<svgSpacer> has the same general-purpose attributes as any SVG component. For descriptions, see the section “SVG
Component Attributes.”

2.2.4 <rect>

The Zen <rect> element draws a simple rectangle. This is not the same as the <rect> element defined by the SVG language
specification. Zen <rect> is a built-in Zen SVG component that you can place within an <svgFrame> or <svgGroup>.

The Zen <rect> element takes up space within an <svgFrame> or <svgGroup>, but in a different way than <svgSpacer>.
The conceptual difference between <svgSpacer> and <rect> is that <rect> may have visible style attributes, such as a fill
color.

DescriptionAttribute

<rect> has the same general-purpose attributes as any SVG component. For
descriptions, see the section “SVG Component Attributes.”

SVG component
attributes

Radius of curve for the corners (using any valid SVG measurement units).rx

SVG CSS style definition. (Styles within SVG are CSS compliant, but there is a
different set of styles available.)

style

Using Zen Components 37

SVG Component Layout

2.3 SVG Component Attributes
All SVG components have the following style attributes. These are entirely distinct from the attributes supported by ordinary
Zen components.

Table 2–1: SVG Component Attributes

DescriptionAttribute

If true, this component is boundless. That is, its enclosing SVG element is a simple
group <g> instead of the usual SVG element. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

boundless

Height of this component (using any valid SVG measurement units). The exact effect
of setting this value depends on the component. In the case of built-in SVG
components, the effect is usually straightforward. A height value larger than the height
of the containing <svgFrame> causes the SVG component to appear cropped by the
frame.

height

If true, this component is disabled (hidden). The default is false. Changing the hidden
state of an SVG component causes the layout of the SVG frame to be recalculated.
That is, if layout is not equal to “none” the other components move into the space that
was occupied by the hidden component.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

hidden

Name that can be used to select the SVG component so that its attributes can be
updated. For example, displays that use meters might periodically update the value
that the meter represents.

id

Specifies a name for the component.name

The onclick event handler for the SVG component. Zen invokes this handler each
time the user clicks the mouse on this shape. See “Zen Component Event Handlers.”

onclick

Used for placing a fixed controller over the rest of an SVG canvas. If the position of
an SVG component is "fixed" this shape does not scroll with its canvas, nor can it be
dragged with the mouse. If position is "relative" (the default) this shape scrolls, and
can be dragged.

position

By default, Zen preserves the aspect ratio (height relative to width) for any SVG
component when you change its size. If you set preserveAspectRatio to "none", Zen
does not preserve the aspect ratio and allows your height and width changes to
operate independently of each other.

preserveAspectRatio

Height of the view box for this component (using any valid SVG measurement units).
If a viewBoxHeight attribute is provided, its value is used as the height of the view
box. Otherwise, the height value for the component is used.

viewBoxHeight

Width of the view box for this component (using any valid SVG measurement units).
If a viewBoxWidth attribute is provided, its value is used as the width of the view box.
Otherwise, the width value for the component is used.

viewBoxWidth

38 Using Zen Components

Zen and SVG

DescriptionAttribute

Width of this component (using any valid SVG measurement units). The exact effect
of setting this value depends on the component. In the case of built-in SVG
components, the effect is usually straightforward. A width value larger than the width
of the containing <svgFrame> causes the SVG component to appear cropped by the
frame.

width

x position of this component (using any valid SVG measurement units). The actual
position of the component may depend on the layout of its enclosing <svgGroup>. If
the <svgGroup> has vertical or horizontal layout, this x coordinate is ignored. However,
if layout="" this x coordinate takes effect. x is a positive value relative to an origin
of (0,0) at the top left corner of the <svgGroup>.

x

y position of this component.y

2.4 Meters
A meter is an SVG component that displays a graphical representation of a single numeric value. Each meter is a class
derived from %ZEN.SVGComponent.meter that generates the SVG required to display itself.

Zen provides several built-in meters. To place one of them on the Zen page, provide the corresponding meter element within
an <svgFrame> or <svgGroup>:

• “<fuelGauge>”

• “<indicatorLamp>”

• “<lightBar>”

• “<slider>”

• “<smiley>”

• “<speedometer>”

• “<trafficLight>”

• To create your own style of meter, see the “Custom Components” chapter in Developing Zen Applications.

This topic describes how to supply a meter with a value, lists the attributes that all meters share in common, then describes
the unique attributes for each type of meter listed above.

2.4.1 Providing Data for Meters

Your code can dynamically update the value displayed by a meter in one of two ways:

• From a JavaScript method in the page class, set the meter’s value attribute using the meter class methods
getComponentById and setValue as follows:

this.getComponentById("myMeterID").setValue(myNewValue);

Where myMeterID matches the id attribute value for the meter, and myNewValue is a variable that contains a single,
numeric value.

• Associate the meter with a data controller, as described in the chapter “Model View Controller.” For example, if your
XData Contents block contains an <dataController> reference that looks like this:

Using Zen Components 39

Meters

<dataController id="source" modelClass="myPackage.MyModel" modelId="1"/>

And if the referenced modelClass myPackage.MyModel contains a property called Automobiles, then your XData
Contents block can also contain a meter definition that looks like this:

<trafficLight id="myLight" controllerId="source"
 height="150" width="75"
 dataBinding="Automobiles"
 label="Autos" labelStyle="fill: yellow;" />

This technique works when the meter’s controllerId value matches the <dataController> id value, and the meter’s
dataBinding value matches the name of a property defined in the <dataController> modelClass.

2.4.2 Meter Attributes

All meters have the following attributes, which define their style and behavior.

Table 2–2: Meter Component Attributes

DescriptionAttribute

Meters have the same general-purpose attributes as any SVG component. For descriptions,
see the section “SVG Component Attributes.”

SVG
component
attributes

Some of the built-in Zen meters provide animation. For example, if the meter uses a needle
to indicate a value, animation causes the needle to “swing” from the previous value to the
new value. If a meter supported animation, this attribute controls whether animation is on
(true) or off (false). The default is "true".

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

animate

Identifies the data controller that provides the data for this meter. The controllerId value
must match the id value provided for that <dataController> component. For details, see
the chapter “Model View Controller. ”

controllerId

If this meter is associated with a data controller, this attribute identifies the specific property
within the <dataController> modelClass that provides the value for this control. For details,
see the chapter “Model View Controller. ”

dataBinding

A text label for the meter.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

label

SVG CSS style definition. (Styles within SVG are CSS compliant, but there is a different
set of styles available.) When Zen lays out this meter, it applies this style to the label text.

labelStyle

The onnotifyView event handler for the meter. See “Zen Component Event Handlers.”
This attribute applies if the meter is associated with a data controller. Zen invokes this
handler each time the data controller connected to this meter raises an event. For details,
see the chapter “Model View Controller. ”

onnotifyView

Integer or decimal value that defines the low end of the range for this meter. The default
is 0.

rangeLower

40 Using Zen Components

Zen and SVG

DescriptionAttribute

Integer or decimal value that defines the high end of the range for this meter. The default
is 100.

rangeUpper

Integer or decimal factor used to scale the values provided to this meter. Zen scales the
incoming values before comparing them with rangeLower, rangeUpper, and so on. The
default is 1 (no scaling).

scaleFactor

Integer or decimal value that defines a threshold for meter behavior. The meter does
something when the meter value falls below this value. Typically, the thresholdLower value
is greater than rangeLower and serves as a warning that the meter value is approaching
rangeLower. The default is 0.

thresholdLower

Integer or decimal value that defines a threshold for meter behavior. The meter does
something when the meter value rises above this value. Typically, the thresholdUpper
value is less than rangeUpper and serves as a warning that the meter value is approaching
rangeUpper. The default is 90.

thresholdUpper

The current integer or decimal value of the meter (actually stored as a string). Although
you can set this value while placing the meter on the page, generally you do not do this.
Instead, you use getComponentById and setValue, or associate the meter with a
%ZEN.Auxiliary.dataController, as described in the paragraph prior to this table.

value

2.4.3 <fuelGauge>

The fuel gauge is a narrow, vertical gauge with a needle that moves from left to right to indicate a value within a specific
range. The gauge distributes marks or “ticks” proportionally across its range. The meter attributes rangeLower and
rangeUpper define the range, with the rangeLower value at left and the rangeUpper value at right.

The fuel gauge displays its current value in a text box at the center of the gauge.

You may specify warning lights to appear at the upper left or right of the gauge, above the ticks. These lights change color
as the needle approaches them. The light at right changes color when the meter value rises to or above thresholdUpper.
The light at left changes color when the meter value falls to or below thresholdLower. There is always a thresholdLower
warning light with a default setting of 0. You must specify a thresholdUpper value if you want a warning light to appear
at the top of the range as well.

<fuelGauge> has the following attributes:

DescriptionAttribute

<fuelGauge> has the same general-purpose attributes as any meter. For descriptions,
see the section “Meter Attributes.”

Meter attributes

Using Zen Components 41

Meters

DescriptionAttribute

String containing a CSS color value. This is the color that the <fuelGauge> displays
when its value exceeds thresholdUpper. The default is a predefined Zen color that
produces a “glowing” effect through shading:

url(#glow-red)

Several glow colors are defined in the class %ZEN.SVGComponent.svgPage.
“<svgFrame>” always references this class, or some subclass of it, through its
svgPage attribute, so these colors are always available to any SVG component in
the frame.

highLampColor

Text label for the face of the meter (similar to "Zen" in the illustration above).

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

logo

String containing a CSS color value. This is the color that the <fuelGauge> displays
when its value exceeds thresholdUpper. The default is a predefined Zen color:

url(#glow-red)

lowLampColor

2.4.4 <indicatorLamp>

The indicator lamp is a rectangular bar that changes its fill pattern depending on the meter value. Essentially there are three
possible states: above thresholdUpper, below thresholdLower, or between the two values.

If the meter has a label attribute, this text appears in the middle of the indicator lamp with the style defined by labelStyle.

<indicatorLamp> has the following attributes:

DescriptionAttribute

<indicatorLamp> has the same general-purpose attributes as any meter. For
descriptions, see the section “Meter Attributes.”

Meter attributes

SVG CSS style definition. Specifies the fill style for the <indicatorLamp> when its
value exceeds thresholdUpper. The highStyle must include a fill value, or mouse
events within the shape do not work correctly.The default highStyle uses a predefined
Zen color that produces a “glowing” effect through shading:

"fill: url(#glow-green);"

Several glow colors are defined in the class %ZEN.SVGComponent.svgPage.
“<svgFrame>” always references this class, or some subclass of it, through its
svgPage attribute, so these colors are always available to any SVG component in
the frame.

highStyle

42 Using Zen Components

Zen and SVG

DescriptionAttribute

SVG CSS style definition. Specifies the fill style for the <indicatorLamp> when its
value falls below thresholdLower. The lowStyle must include a fill value, or mouse
events within the shape do not work correctly.The default lowStyle uses a predefined
Zen color:

"fill: url(#glow-red);"

lowStyle

SVG CSS style definition. Specifies the fill style for the <indicatorLamp> when its
value is between thresholdLower and thresholdUpper.The normalStyle must include
a fill value, or mouse events within the shape do not work correctly. The default
normalStyle uses a predefined Zen color:

"fill: url(#glow-blue);"

normalStyle

2.4.5 <lightBar>

The light bar provides a stack of lamps arranged in a vertical bar. The light bar is similar to the traffic light, but its larger
number of lamps provide a sense of movement from one end of the scale to the other.

The light bar is intended to appear “off” when the value is low, and fully lit when the value is high. The color of the bar
shades from green (at the bottom of the scale) to yellow and red (at the top of the scale), implying that you should stop and
address a problem when the value is high.

Sometimes a low number indicates a condition that requires attention. If this is the case you can reverse the sense of a light
bar by inverting the values for rangeLower and rangeUpper. Then the fully lit lamp indicates low values, and the “off”
lamp indicates high values.

Warning lights appear at the top or bottom left of the light bar. The top light changes color when the meter value rises to
or above thresholdUpper. The bottom light changes color when the meter value falls to or below thresholdLower. You can
specify what color you want to use for these lights. You cannot change the colors for the light bar itself (green, yellow,
red).

Note: When you reverse rangeLower and rangeUpper, do not at the same time reverse thresholdUpper and
thresholdLower.

<lightBar> has the following attributes:

Using Zen Components 43

Meters

DescriptionAttribute

<lightBar> has the same general-purpose attributes as any meter. For descriptions,
see the section “Meter Attributes.”

Meter attributes

String containing a CSS color value. This is the color that the <lightBar> displays
when its value exceeds thresholdUpper. The default is a predefined Zen color that
produces a “glowing” effect through shading:

url(#glow-red)

Several glow colors are defined in the class %ZEN.SVGComponent.svgPage.
“<svgFrame>” always references this class, or some subclass of it, through its
svgPage attribute, so these colors are always available to any SVG component in
the frame.

highLampColor

String containing a CSS color value. This is the color that the <lightBar> displays
when its value falls below thresholdLower. The default is a predefined Zen color:
url(#glow-red)

lowLampColor

2.4.6 <slider>

The slider is a vertical meter with a needle indicating a value between the rangeLower value at the bottom and the rangeUpper
value at the top. The user can interact with the meter to edit its value, either by sliding the needle up and down with the
mouse, or by clicking on the arrows at the top and bottom of the slider to increment the value along the tick marks.

<slider> has the following attributes:

44 Using Zen Components

Zen and SVG

DescriptionAttribute

<slider> has the same general-purpose attributes as any meter. For descriptions,
see the section “Meter Attributes.”

Meter attributes

If true, the slider value is constrained (rounded) to the nearest tick mark displayed
within the slider. If false, the slider value is based on the exact position of the needle
relative to rangeLower and rangeUpper. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

constrained

Number of tick marks to display between the rangeLower and rangeUpper. The
minimum is 0. The default is 10.

tickMarks

2.4.7 <smiley>

The smiley is the familiar yellow circle with two eyes and a smile. The mouth line changes depending on the meter value.
The mouth forms a smile when the meter value is near rangeUpper. The mouth is a horizontal line at the midpoint between
rangeLower and rangeUpper. The mouth forms a frown when the meter value is near rangeLower. This is useful when a
large number indicates a positive condition, and a small number indicates a negative condition.

You can reverse the sense of a smiley by inverting the values for rangeLower and rangeUpper. Then the smile occurs at
low values, and the frown at high values.

<smiley> has the same general-purpose attributes as any meter. For descriptions, see the section “Meter Attributes.”
<smiley> ignores any threshold values.

2.4.8 <speedometer>

The speedometer is a circular gauge with a needle that moves from lower left, all the way around to lower right, to indicate
a value within a specific range. The gauge distributes marks or “ticks” proportionally across its range. The meter attributes
rangeLower and rangeUpper define the range, with the rangeLower value at left and the rangeUpper value at right.

By default, the speedometer displays its current value in a text box at the center of the gauge. However, you can specify
that this text box actually contains a different value that you control separately. Use the independentOdometer and
odometerValue attributes for this.

Using Zen Components 45

Meters

You may specify warning lights to appear at the lower left or lower right of the gauge. These lights change color as the
needle approaches them. The light at right changes color when the meter value rises to or above thresholdUpper. The light
at left changes color when the meter value falls to or below thresholdLower.

<speedometer> has the following attributes:

DescriptionAttribute

<speedometer> has the same general-purpose attributes as any meter. For
descriptions, see the section “Meter Attributes.”

Meter attributes

String containing a CSS color value.This is the color that the <speedometer> displays
when its value exceeds thresholdUpper. The default is a predefined Zen color that
produces a “glowing” effect through shading:

url(#glow-red)

Several glow colors are defined in the class %ZEN.SVGComponent.svgPage.
“<svgFrame>” always references this class, or some subclass of it, through its
svgPage attribute, so these colors are always available to any SVG component in
the frame.

highLampColor

If true, this meter can display an additional value independent of its needle value, in
a text box at the center of the gauge. If false, the value in the text box is the same
as the needle value. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

independentOdometer

Text label for the face of the meter (similar to "Zen" in the illustration above).

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

logo

String containing a CSS color value.This is the color that the <speedometer> displays
when its value falls below thresholdLower. The default is a predefined Zen color:
url(#glow-red)

lowLampColor

If independentOdometer is true, this is the value to display in the text box at the
center of the gauge.

odometerValue

2.4.9 <trafficLight>

The traffic light consists of three circular lamps in a vertical column. From top to bottom, the lamps are red, yellow, and
green.

46 Using Zen Components

Zen and SVG

When the meter value is at or below thresholdLower, the bottom lamp shows green. At values above thresholdLower but
below thresholdUpper, the center lamp shows yellow. At values at or above thresholdUpper, the top lamp shows red. This
is useful when a large number indicates a condition that requires attention.

Sometimes a low number indicates a condition that requires attention. If this is the case you can reverse the sense of a
traffic light by inverting the values for rangeLower and rangeUpper. Then the red lamp indicates low values, and the green
lamp indicates high values.

<trafficLight> has the same general-purpose attributes as any meter. For descriptions, see the section “Meter Attributes.”
<trafficLight> looks best when width is half of height. You cannot change the colors for the traffic light.

2.5 Charts
Charts are SVG components that represent a series of data points. Zen provides several built-in chart types, including line
charts, bar charts, and pie charts. As SVG components, charts have the SVG layout and style characteristics described in
this chapter. However, charts also have many unique attributes. For a complete explanation, see the chapter “Zen Charts.”

2.6 <radialNavigator>

The radial navigator is a specialized SVG component that displays the relationship between a set of data items as a dynamic,
radial diagram. There is a central circular hub surrounded by a set of evenly spaced nodes. As you click on a node at the
outer rim of the diagram, it becomes the hub node and the nodes to which it connects are shown circling it.

Using Zen Components 47

Charts

You define the nodes in the <radialNavigator> data set by providing <radialNode> elements inside the <radialNavigator>
element. For example:

<radialNavigator id="navigator" mainLabel="Navigator"
 height="500" width="500" >
 <radialNode caption="Node 1" style="fill: green;"/>
 <radialNode caption="Node 2"/>
 <radialNode caption="Node 3"/>
</radialNavigator>

DescriptionAttribute

<radialNavigator> has the same general-purpose attributes as any SVG component.
For descriptions, see the section “SVG Component Attributes.”

SVG component
attributes

SVG CSS style definition for the background panel. (Styles within SVG are CSS
compliant, but there is a different set of styles available.)

backgroundStyle

SVG CSS style definition. Specifies the style for the central hub. This style must
include a fill value, or mouse events within this shape do not work correctly.

hubStyle

Label text for the central hub.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

mainLabel

SVG CSS style definition. Specifies the style for the mainLabel text.mainLabelStyle

SVG CSS style definition. Specifies the style for the radial nodes. This style must
include a fill value, or mouse events within this shape do not work correctly.

nodeStyle

The onselectNode event handler for the <radialNavigator>. Zen invokes this handler
whenever the user clicks the mouse on a node shape. See “Zen Component Event
Handlers.”

onselectNode

When the onselectNode event is invoked, the selectedIndex contains the index
(0-based) of the currently selected node. If the user clicks on the central hub node,
selectedIndex is -1. When selectedIndex is –2, this means no node is selected.

selectedIndex

Title text for the radial navigator.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

SVG CSS style definition. Specifies the style for the title text.titleStyle

The <radialNode> element is the XML projection of the %ZEN.Auxiliary.radialNode class. <radialNode> has the following
attributes:

48 Using Zen Components

Zen and SVG

DescriptionAttribute

Text specifying the caption to display for this radial node.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

The onclick event handler for the <radialNode>. Zen invokes this handler whenever
the user clicks the mouse on the node shape. See “Zen Component Event Handlers.”

onclick

SVG CSS style definition for the node. The style must include a fill value, or mouse
events within the node shape do not work correctly.

style

Value associated with this node. The value may be a decimal or integer number, but
it is represented as a string.

value

When you work with %ZEN.SVGComponent.radialNavigator programmatically, you work with <radialNode> elements as
members of the radialNavigator nodes property, a list collection of %ZEN.Auxiliary.radialNode objects. Each <radialNode>
in the <radialNavigator> becomes a member of the nodes collection in radialNavigator, associated with its ordinal position:
1, 2, 3, etc.

2.7 <ownerDraw>
<ownerDraw> is an empty SVG component whose contents are filled dynamically by invoking a runtime callback method
that provides SVG content. <ownerDraw> has the following attributes:

DescriptionAttribute

<ownerDraw> has the same general-purpose attributes as any SVG component.
For descriptions, see the section “SVG Component Attributes.”

SVG component
attributes

The onrender event handler for the <ownerDraw>. See “Zen Component Event
Handlers.” This method provides the statements that render the SVG component
on the page.

onrender

The following is an example of an <ownerDraw> element:

<ownerDraw id="owner1"
 height="200" width="400"
 onrender="zenPage.doOwnerDraw(zenThis);"/>

In the above example, the JavaScript expression invokes the page class doOwnerDraw method with the <ownerDraw>
object as its argument. The expression represents the page with the built-in variable zenPage, and the <ownerDraw>
object with the built-in variable zenThis. Elsewhere in the page class, the doOwnerDraw method could look like this:

Using Zen Components 49

<ownerDraw>

ClientMethod doOwnerDraw(svg) [Language = javascript]
{
 // clear contents of ownerDraw component
 svg.unrender();

 // create a line; add it to the svg component
 for (var n = 0; n < 30; n++) {
 var line = svg.document.createElementNS(SVGNS,'line');
 line.setAttribute('x1',200);
 line.setAttribute('y1',100);
 line.setAttribute('x2',Math.random() * 400);
 line.setAttribute('y2',Math.random() * 200);
 line.setAttribute('style','stroke: blue; stroke-width: 2;');
 svg.svgGroup.appendChild(line);
 }
}

The SAMPLES namespace offers <ownerDraw> examples in the page classes ZENDemo.SVGBrowser and
ZENTest.SVGOwnerDrawTest.

You can also create custom SVG components. See the “Custom Components” chapter in Developing Zen Applications

50 Using Zen Components

Zen and SVG

3
Zen Charts

This chapter explains how to place a chart on a Zen page. Every chart is an SVG component as described in the chapter
“Zen and SVG” and is derived from the class %ZEN.SVGComponent.svgComponent. Charts follow the layout and style
conventions for SVG components, but add specific behaviors of their own.

Zen reports callback charts use the same syntax as Zen pages to display charts. Callback charts are defined in the package
%ZEN.Report.Display.COSChart, and all of the chart element names begin with the letter “c”, for example, <cbarChart>.
See “Using Callback Charts in Zen Reports” . Syntax described in sections “Types of Chart,” “Chart Layout, Style, and
Behavior” and “Chart Axes” applies equally well to charts in Zen pages and callback charts in Zen reports. XPath charts
is an older implementation of charting in Zen reports which uses syntax different from Zen pages. See “Using XPath Charts
in Zen Reports” .

Techniques for providing data for charts in Zen pages are different from both callback charts and XPath charts in Zen
reports. See “Providing Data for Zen Page Charts” in this book and “Providing Data for Zen Report Charts” in the book
Using Zen Reports.

The base chart class %ZEN.SVGComponent.chart defines the data, grid (axes and scales), styles, and legend used by charts.
You can think of charts as occupying a virtual coordinate space that measures 100 units by 100 units. Internally, charts are
plotted in terms of pixels, which allows you to specify size and positioning parameters in pixels as well as in terms of the
virtual coordinate space. See “Specifying Size and Position.” Within the total space occupied by the chart, there is a smaller
plot area where the chart plots the data. Margins define the space around the plot area. Generally you use these margins as
space in which to display the labels and legend for the chart.

This chapter begins by introducing the various types of chart, so that you can look at some visual examples and think about
the items you want to display on the Zen page, before reading the exact details of how to use a specific type of chart.
Chapter topics appear in this order:

• “Types of Chart”

• “Providing Data for Zen Page Charts”

• “Chart Layout, Style, and Behavior”

• “Chart Axes”

3.1 Types of Chart
This topic describes and illustrates the types of chart that you can place on the Zen page. Each description includes the
unique attributes that define that type of chart. For attributes that all charts share in common, see the sections “Providing
Data for Zen Page Charts” and “Chart Layout, Style, and Behavior.”

Using Zen Components 51

Zen offers the following built-in chart types:

• “Bar Charts”

• “Bubble Charts”

• “Bullseye Charts”

• “Combo Charts”

• “Difference Charts”

• “High/Low Charts”

• “Line Charts”

• “Percent Bar Charts”

• “Pie Charts”

• “Scatter Charts”

• “Tree Map Charts”

3.1.1 Bar Charts

A <barChart> displays one or more data series as a set of vertical or horizontal bars. The following figure shows a Zen bar
chart displaying data from three data series.

Figure 3–1: Bar Chart

<barChart> has the following attributes:

52 Using Zen Components

Zen Charts

DescriptionAttribute

<barChart> has the same general-purpose attributes as any chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style,
and Behavior.” The plotToEdge attribute is always false for <barChart>.

The <yAxis> baseValue attribute is used to plot the bottom of the bars. For details,
see the section “Chart Axes.”

Chart attributes

If true, the bars at each position along the category axis are stacked atop one another
(values are additive). See “chartStacked.”

chartStacked

The end time for a timeBased x-axis.endTime

If true, display the chart as a number of small charts, one per data series. See
“showMultiples”.

showMultiples

The start time for a timeBased x-axis.startTime

Specifies that the x-axis is a time line. See “ timeBased.”timeBased

3.1.2 Bubble Charts

A <bubbleChart> displays data as circles or “bubbles” positioned at x and y coordinates. It requires a minimum of two
data series. The first series supplies x values and the second supplies y values. When used to chart only two data series,
<bubbleChart> is effectively an <xyChart>. <bubbleChart> does not support chartPivot

If you supply a third series, the chart uses that data to draw the radius of each bubble. Values in the radius series are scaled
and multiplied by the value of the radius property.

The following figure shows a chart with x, y and radius data series. Note how the default partial transparency of the bubbles
lets you see the shapes even when they overlap. The property opacity controls this characteristic. Note also that in this
example, the value of showQuadrant is true, so the chart area is divided into quadrants.

Figure 3–2: Radius Data Series

You can supply up to two additional data series. The fourth series determines how colors are applied to the data bubbles,
and the fifth controls opacity of bubbles.

Using Zen Components 53

Types of Chart

Values in the fourth, or color data series can be any arbitrary data. The chart establishes color categories for each new value
encountered in the series, and assigns the colors to corresponding bubbles on the chart. The chart uses the colors that are
currently in effect, see seriesColors and seriesColorScheme.

The following code fragment shows the part of an ongetData handler that sets up a color data series.

/// Callback to provide data for bubble chart.
ClientMethod getBubbleChartData(series) [Language = javascript]
{
 var chart = zenPage.getComponentById('chart');
 var data = new Array(chart.seriesSize);

 // ...code omitted...

 if (series == 3) // color
 {
 for (var i = 0; i < chart.seriesSize; i++)
 {
 data[i] = (i%3)?"group 1":"group 2"
 }
 }
 return data;
}

The following figure shows the resulting chart, with colors applied to randomly generated data. Note that in this chart, the
value of showRegression is true, so the chart contains a computed linear regression line, and showQuadrant is false, so the
chart does not show quadrants. The property lineStyle provides a style specification for the regression line.

Figure 3–3: Color Data Series

Values in the fifth, or opacity data series can be any arbitrary data. Values in the opacity series are scaled and multiplied
by the value of the opacity property. Values are not normalized, so a large range in values can result in the smallest values
being driven to 0 and becoming invisible.

/// Callback to provide data for bubble chart.
ClientMethod getBubbleChartData(series) [Language = javascript]
{
 var chart = zenPage.getComponentById('chart');
 var data = new Array(chart.seriesSize);

 // ...code omitted...

 if (series == 4) // opacity
 {
 data[1] = 1;
 data[2] = 4;
 data[3] = 1;
 data[4] = 1;
 data[5] = 4;
 data[6] = 1;
 data[7] = 4;
 data[8] = 4;
 data[9] = 4;
 }
 return data;
}

54 Using Zen Components

Zen Charts

The following figure shows the resulting chart, with opacity applied to random generated data. Note also that the quadrants
have been modified by setting the property xCenterValue, and the properties upperRightStyle and lowerLeftStyle have been
used to modify the quadrant colors.

Figure 3–4: Opacity Data Series

<bubbleChart> has the following attributes:

DescriptionAttribute

<bubbleChart> has the same general-purpose attributes as any chart. For descrip-
tions, see the sections “Providing Data for Zen Page Charts” and “Chart Layout,
Style, and Behavior.”

Chart attributes

SVG CSS style definition applied to the regression line.lineStyle

CSS style value to be applied to the lower left quadrant background.lowerLeftStyle

Default opacity (from 0 to 1) for bubbles. If you have provided an opacity series, its
values are scaled and multiplied by this value. Values in the opacity series are not
normalized.

opacity

Default radius (in logical units) for bubbles. If you have provided a radius series, its
values are scaled and multiplied by this value.

radius

If true, then divide the plot area into quadrants, and apply color to the upper right
and lower left quadrants. The default value is true, and the default colors are red in
the upper right quadrant, and green in the lower left..

showQuadrant

If true, then draw a computed linear regression line.showRegression

The x-axis value to use when drawing background quadrants. The default value is
the center of the x-axis.

xCenterValue

The y-axis value to use when drawing background quadrants. The default value is
the center of the y-axis.

yCenterValue

CSS style value to be applied to the upper right quadrant background.upperRightStyle

Using Zen Components 55

Types of Chart

3.1.3 Bullseye Charts

A <bullseyeChart> displays data items as concentric circles.

Figure 3–5: Bullseye Chart

Bullseye charts are often used in situations where the largest circle shows the entire data set, the next circle shows data
items that meet some relevant set of criteria, and the next circle shows data items that meet additional criteria. For example,
if the largest circle shows the total number of patients in a study, the next circle might show patients with diabetes, and the
smallest diabetic patients undergoing a specific treatment.

3.1.4 Combo Charts

A <comboChart> displays multiple data series in a single chart, using area, bar and line charts. The following figure illustrates
all three chart types.

Figure 3–6: Combo Chart Displaying Area, Bar and Line Charts

You can use other chart elements to plot multiple data series using a single type of chart, but <comboChart> sometimes
offers advantages. For example, you can chart multiple filled line charts using <lineChart>, but <comboChart> may be a
better choice, because it renders area charts with partial transparency, so all of the chart areas are visible, even when they
overlap.

56 Using Zen Components

Zen Charts

Figure 3–7: Combo Chart Displaying Four Area Charts

You can also use the attribute seriesTypes to display one of the data series as target lines. The following figure shows a
chart where the fourth data series supplies target lines.

Figure 3–8: Combo Chart with Target Lines

<comboChart> supports the following attributes:

Using Zen Components 57

Types of Chart

DescriptionAttribute

<comboChart> has the same general-purpose attributes as any chart. For descrip-
tions, see the sections “Providing Data for Zen Page Charts” and “Chart Layout,
Style, and Behavior.”

Chart attributes

If true, pivot the chart (display categories vertically and values horizontally). See
“chartPivot. ”

chartPivot

The end time for a timeBased x-axis.endTime

SVG CSS style definition applied to lines in the chart.lineStyle

Comma-delimited list of types that indicates how the corresponding series in the
chart should be displayed. Possible types are: “line”, “area”, “bar”, and “target”. The
default type is bar.

If the type is “target”, the corresponding data series is used to put target lines on the
chart.

Area charts are rendered with partial transparency and placed behind all other chart
types. Line charts are rendered in front of bar charts.

seriesTypes

The start time for a timeBased x-axis.startTime

Specifies that the x-axis is a time line. See “ timeBased.”timeBased

3.1.5 Difference Charts

A <diffChart> is a specialized type of line chart that highlights the difference between two data series:

1. The first series provides a set of reference data values.

2. The second data series provides values that you want to compare to the reference data set.

The <diffChart> shades the area between the two series using the color of the second data series. To further distinguish
between the series, the chart draws a line representing the reference series across the shaded area of the chart. This line
uses the color of the first, or reference data series, and can take additional styling from the refLineStyle attribute. <diffChart>
does not support chartPivot.

The following figure shows a difference chart:

58 Using Zen Components

Zen Charts

Figure 3–9: Difference Chart

For comparison, the following figure shows the same data plotted as a filled line (area) chart:

Figure 3–10: Area Chart

<diffChart> has the following attributes:

DescriptionAttribute

<diffChart> has the same general-purpose attributes as any chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style,
and Behavior.”

Chart attributes

SVG CSS style definition for the reference line. By default, this line uses the color
assigned to the reference (first) data series, but typically it also assigns some pat-
terning using refLineStyle. The default is:

stroke-dasharray: 1,1;

The difference chart in the previous figure shows:

stroke-dasharray: 2,2; stroke-width: 1%;

refLineStyle

Using Zen Components 59

Types of Chart

3.1.6 High/Low Charts

Figure 3–11: High/Low Chart

A <hilowChart> can be used to show stock market high-low-close values, or to trace a measured value along with its high
and low ranges to indicate possible error margins. The chart displays a set of bars as established by three data series:

1. A series of high values sets the top (right) limit of each bar.

2. A series of low values sets the bottom (left) limit of each bar.

3. (Optional) The “closing” values. The chart places a marker on each bar at these values.

Each low value is assumed to be smaller than its corresponding high value. Each closing value is assumed to be between
its corresponding high and low values. The chart uses its first seriesColors value to plot all bars and marker. It ignores the
colors provided for the other series.

<hilowChart> has the following attributes:

DescriptionAttribute

<hilowChart> has the same general-purpose attributes as any Zen chart. For
descriptions, see the sections “Providing Data for Zen Page Charts” and “Chart
Layout, Style, and Behavior.” The plotToEdge attribute is always false for
<hilowChart>.

Chart attributes

If true, pivot the chart (display categories vertically and values horizontally). See
“chartPivot. ”

chartPivot

SVG CSS style definition. Specifies the style used for bars where the high value is
less than the low value.

invertedBarStyle

3.1.7 Line Charts

A <lineChart> displays one or more data series as a set of lines. The following figure shows a simple line chart.

60 Using Zen Components

Zen Charts

Figure 3–12: Line Chart

<lineChart> has the following attributes:

DescriptionAttribute

<lineChart> has the same general-purpose attributes as any chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style,
and Behavior.”

Chart attributes

If true, the area under each line is filled (as in an area chart). If false, it is not filled
(as in a line chart).

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

chartFilled

If true, pivot the chart (display categories vertically and values horizontally). See
“chartPivot. ”

chartPivot

If true, the bars at each position along the category axis are stacked atop one another
(values are additive). See “chartStacked.”

chartStacked

The end time for a timeBased x-axis.endTime

SVG CSS style definition applied to lines in the chart. A color specified in this attribute
takes precedence over colors specified in seriesColors.

lineStyle

If true, display the chart as a number of small charts, one per data series. See
“showMultiples.”

showMultiples

The start time for a timeBased x-axis.startTime

Specifies that the x-axis is a time line. See “ timeBased.”timeBased

3.1.8 Percent Bar Charts

A <percentbarChart> displays each data series as a bar in the chart. All the bars are the same height, and represent 100%
of the values in the series. Bands in the bar represent items in the series, and are sized proportional to that items contribution
to the total. This method of handling data series is similar to a <pieChart> when plotBy="both", except that the pie
chart also shows the relative contribution of each series. See “Pie Charts by Items.”

Using Zen Components 61

Types of Chart

You can use ongetLabelX to provide labels for the bars, and seriesNames to provide labels for the legend, matching names
to colors by order in the series.

Figure 3–13: Percent Bar Chart

<percentbarChart> has the following attributes:

DescriptionAttribute

<percentbarChart> has the same general-purpose attributes as any chart. For
descriptions, see the sections “Providing Data for Zen Page Charts” and “Chart
Layout, Style, and Behavior.”

Chart attributes

If true, pivot the chart (display categories vertically and values horizontally). See
“chartPivot. ”

chartPivot

3.1.9 Pie Charts

Pie charts can plot single or multiple data series, and can show the series, the items in the series, or both. <pieChart> does
not support axes or grids in the plot area, as do line charts or bar charts.

A <pieChart> that plots the items in a single data series displays a circle with radial slices representing items in the series.
The chart adjusts the size of each slice to be proportional to the contribution of that item to the total. Note that the end user
can rotate the pie chart with click and drag gestures in the browser.

Figure 3–14: Pie Chart with One Data Series

<pieChart> has the following attributes:

62 Using Zen Components

Zen Charts

DescriptionAttribute

<pieChart> has the same general-purpose attributes as any Zen chart. For
descriptions, see the sections “Providing Data for Zen Page Charts” and “Chart
Layout, Style, and Behavior.”

Chart attributes

Controls whether a hole is displayed in the center of the pie chart, and if so, how big
the hole is. The value of this property is a percentage of the chart's radius along the
x-axis. If the size of the chart changes, the size of the center hole maintains its pro-
portional size.

The value can range from 0 to 0.9. Values larger than 0.9 have no additional effect.
The default value is 0.

holeSize

Controls the apparent height of 3D pie charts. The value of this property is a
percentage of the chart's radius along the x-axis. If the size of the chart changes, its
depth maintains its proportional size. The value can range from 0 to 1. The default
value is 0.33.

pieHeight

Decimal value that specifies the scaling factor for the size of the pie within the chart.
The default scaling value is 1.0. A value larger than 1.0 makes the pie bigger relative
to the plot area; a value smaller than 1.0 makes the pie smaller.

pieScale

Specifies how the pie chart plots its data. Possible values are "items", "series", “both”,
or "auto". The default is "auto". See “plotBy.”

plotBy

If specified, rotate the pie chart by this amount (in degrees).rotateBy

If true, display the chart as a number of small charts, one per data series. See
“showMultiples.”

showMultiples

If true, percentage values (rounded to nearest integer) are displayed as part of the
label for each slice. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showPercentage

3.1.9.1 plotBy

The <pieChart> plotBy attribute controls how Zen generates a pie chart from the data provided. You may actually provide
multiple series to the <pieChart>. The chart processes all the data series to create one series, and then displays that series
as slices in the chart. plotBy options are as follows.

• "items" – plot a slice for every item in this chart's data.

• "series" – plot a slice for every data series in this chart's data.

• "both" – plot a slice for each item within each data series, which means that the chart contains seriesCount * seriesSize
slices.

• "auto" – automatically select the appropriate way to display data based on how many data series and items are present.

Pie Charts by Items
When the value of plotBy is "items", a <pieChart> plots one slice for every item within the data series. If you provide
multiple data series to an "items" pie chart, each slice of the pie represents the total of a particular item, summed across all
of the data series in the chart.

Using Zen Components 63

Types of Chart

The following conceptual figure shows how three data series, each containing six items, would generate an six-slice pie
chart. Each slice represents the sum of the values for that item provided by the three series.

Figure 3–15: How Zen Plots Pie Charts by Item

When the value of plotBy is "items", labels for the slices are treated as <yAxis> labels. This means you cannot specify them
directly using a chart attribute such as seriesNames. Labels are provided by a %ZEN.Auxiliary.dataController, if present, or
you can provide an onGetLabelY event handler to get the label values.

Pie Charts by Series
When the value of plotBy is "series", multiple series are in use. The <pieChart> plots one slice for every data series, so the
number of slices in the pie chart is seriesCount. Each slice represents the sum of all the items within one of the series. The
seriesNames attribute provides the labels for the slices, and for the legend.

The following conceptual figure shows how three data series, each containing six items, generate a three-slice pie chart.
Each slice represents the sum of the eight items in that series.

Figure 3–16: How Zen Plots Pie Charts by Series

64 Using Zen Components

Zen Charts

Pie Charts by Both Items and Series
When the value of plotBy is "both", multiple series are in use. The <pieChart> plots one slice for every item in every data
series, so there are seriesCount times seriesSize slices. The base color for each slice is the associated series color. Alternating
slices use dark and normal shades of this color. The chart legend displays series names; the seriesNames attribute provides
these labels. The slices display item names; the labels are provided by an onGetLabelY event handler, or a data controller.

The following pie chart example compares three series (Products, Services, and Training), each of which has data items in
four categories (America, Asia, Europe, and Africa). The chart has twelve slices.

Figure 3–17: Zen Pie Chart from Both Items and Series

3.1.10 Scatter Diagrams

Figure 3–18: XY or Scatter Chart

An <xyChart> plots two or more data series as (x,y) points. This type of chart is sometimes called a scatter diagram; it is
intended to show the raw data distribution for the series. The <xyChart> represents its data series as follows:

1. The first data series provides the x values

2. The second data series provides correlated y values

3. Any additional data series are plotted as y values correlated to the x values provided by the first series.

The result is that an <xyChart> always displays one less plot than its number of data series.

<xyChart> has no unique attributes. <xyChart> has the same general-purpose attributes as any Zen chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style, and Behavior.” An <xyChart> always
has markersVisible and plotToEdge set to true. Generally you need to manipulate some of the other chart attributes to produce
the desired results. For example:

Using Zen Components 65

Types of Chart

• The seriesCount value must always be one more than the number of plots you want to display. This leaves room for
the first, x-value series.

• The first data series is not plotted, so the <xyChart> applies series settings beginning with the second series, not the
first. For example:

– The seriesColors list applies to the second, third, and successive series.

– The seriesNames list applies to the second, third, and successive series.

– The markerShapes list applies to the second, third, and successive series.

• A scatter diagram does not appear “scattered” unless you hide the lines between the markers. To do this, set the plotStyle
for an <xyChart> as follows:

plotStyle="stroke:none;". This is a better approach than setting plotStyle="stroke-width: 0;",
because some SVG implementations render a very thin line, even when stroke-width is set to 0.

<xyChart> has the following attributes:

DescriptionAttribute

<xyChart> has the same general-purpose attributes as any chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style,
and Behavior.”

Chart attributes

If true, pivot the chart (display categories vertically and values horizontally). See
“chartPivot. ”

chartPivot

If false, the first data series is used to supply x values for the chart and all other data
series provide y values.

If true, then the chart displays multiple x series. In this case, the first data series
provides the first set of x values, the second data provides the first set of y values,
the third data series provides the second set of x values, and so on.

This property is optional, and the default value is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

independentXSeries

66 Using Zen Components

Zen Charts

3.1.11 Tree Map Charts

Figure 3–19:Tree Map Chart

A <treeMapChart> plots the items in a single data series and displays each item in the series as a rectangle and arranges
them in a larger rectangle. The chart adjusts the size of each smaller rectangle to be proportional to the contribution of that
item to the total. You can display more than one data series by setting the attribute showMultiples to true. Each of the
multiple charts displays a different data series.

DescriptionAttribute

<xyChart> has the same general-purpose attributes as any chart. For descriptions,
see the sections “Providing Data for Zen Page Charts” and “Chart Layout, Style,
and Behavior.”

Chart attributes

If true, display the chart as a number of small charts, one per data series. See
“showMultiples.”

showMultiples

3.2 Providing Data for Zen Page Charts
The data for a chart consists of one or more data series. Each data series that you use for a chart is a simple array of numeric
values. You can provide the data for a Zen page chart in one of two ways:

• “Using a JavaScript Method” in the page class, by setting the chart’s ongetData attribute.

• “Using a Data Controller” , by setting the chart’s controllerId attribute.

Regardless of which technique your chart uses to retrieve data, you can limit the data returned by either technique to the
desired number and size of series.

Zen reports callback charts and Zen pages use identical syntax to display charts. Callback charts are defined in the package
%ZEN.Report.Display.COSChart

When it comes to displaying charts, Zen pages and Zen reports use identical syntax. Syntax described in the previous section,
“Types of Chart,” and in the later sections “Chart Layout, Style, and Behavior” and “Chart Axes” applies equally well
to Zen pages and Zen reports. However, the techniques for providing data for charts in Zen reports are different from the
techniques for Zen pages. For details, see the section “Providing Data for a Zen Report Chart” in the book Using Zen
Reports.

Using Zen Components 67

Providing Data for Zen Page Charts

To provide data for charts on Zen pages, use the topics in this section.

3.2.1 Using a JavaScript Method

All charts support the ongetData attribute for generating chart data.

DescriptionAttribute

Client-side JavaScript expression that Zen invokes whenever:ongetData

• The chart is initially displayed

• The chart’s updateChart method is invoked

For example:

ongetData="return zenPage.getChartData(series);"

In Zen reports, ongetData is a server-side method written in Object Script or other
appropriate language.

The ongetData expression invokes a client-side JavaScript method defined in the page class. This method becomes the
ongetData event handler for the chart. The chart calls the ongetData event handler once for each of the data series specified
by seriesCount. The event handler accepts a single argument, series, which specifies the data series currently being processed.
The value of series is the 0-based ordinal number of the current data series; possible values range from 0 to seriesCount
- 1.

The event handler also needs to know how many values to supply for the data series. This value is provided by the seriesSize
attribute of the chart. In the example code that follows this explanation, this line gets the value of seriesSize from the chart:

var data = new Array(chart.seriesSize);

The method puts seriesSize - 1 items into an array and returns that array. It can use whatever approach is appropriate
to provide data for the chart. For instance, it may use a switch statement based on the value of the series input argument.

The following is a sample ongetData event handler that provides random values as a test. You can see this event handler
in the SAMPLES namespace in the template page class ZENTest.SVGChartTest. It provides the data for charts drawn by
page classes that extend the ZENTest.SVGChartTest template, such as SVGLineChartTest and SVGBarChartTest:

ClientMethod getChartData(series) [Language = javascript]
{
 var chart = zen('chart');
 var data = new Array(chart.seriesSize);
 var value = 50;

 for (var i = 0; i < chart.seriesSize; i++) {
 if (Math.random() > 0.9) {
 value += (Math.random() * 50) - 35;
 }
 else {
 value += (Math.random() * 20) - 9;
 }
 data[i] = value;
 }
 return data;
}

The previous example creates a chart with random data.

Normally, you want to create charts using real data from the server. In the typical case, your server-side method returns a
list. On the client side, this list is consumed by the chart component that displays the data. One way to make this work is
shown in the following example:

68 Using Zen Components

Zen Charts

1. When our example page is first displayed, its %OnAfterCreatePage method calls a server-side method PopulateData()
to place values into a page property called Population for later use by client-side code. In our example, this happens
only once, when %OnAfterCreatePage is called. Later user actions may change how this data is viewed, but in this
example, we only get data from the server once.

Method %OnAfterCreatePage() As %Status
{
 // Get the data while we're on the server
 Set sc = ..PopulateData()

 // Set the initial series size programmatically
 Set chart = %page.%GetComponentById("chartPop")
 Set chart.seriesSize = $Length(..States,",")
 Quit sc
}

2. The Population property is defined in our page class as follows:

Property Population As %ZEN.Datatype.list(DELIMITER = ",");

And our server-side method PopulateData() places values and comma delimiters into the Population list as follows.
Step 3 describes the Internals of the GetCountByState() class query referenced here:

Method PopulateData() As %Status
{
 Try {
 Set sc = $System.Status.OK()

 // Get a resultset containing population by state
 Set sc = ##class(SimpleZenChart.Person).GetCountByState(.rs)
 Quit:$System.Status.IsError(sc)

 // Populate the page properties with comma delimited values
 While (rs.%Next()) {
 Set ..Population = ..Population _ rs.%Get("PersonCount") _ ","
 Set ..States = ..States _ rs.%Get("HomeState") _ ","
 }

 // Remove trailing delimiter
 Set ..Population = $Extract(..Population,1,*-1)
 Set ..States = $Extract(..States,1,*-1)
 }
 Catch(ex) {
 Set sc = ex.AsStatus()
 }
 Quit sc
}

3. As seen in the above excerpt, PopulateData() invokes a class query defined in SimpleZenChart.Person to retrieve the
results that it uses in constructing the Population list. The GetCountByState() method looks like this:

ClassMethod GetCountByState(Output Results As %SQL.StatementResult) As %Status
{
 Try {
 Set sc = $System.Status.OK()

 // Make a new SQL statement
 // Use an array to create the query text (this is not required)
 // Pass in schema search list into statement constructor
 Set statement = ##class(%SQL.Statement).%New(,"SimpleZenChart")
 Set query = 4
 Set query(1) = "SELECT HomeState, COUNT(ID) As PersonCount"
 Set query(2) = "FROM Person"
 Set query(3) = "GROUP BY HomeState"
 Set query(4) = "ORDER BY HomeState"

 // Prepare query
 Set sc = statement.%Prepare(.query)
 Quit:$System.Status.IsError(sc)

 // Execute query
 Set Results = statement.%Execute()

 // Check %SQLCODE for an error
 If (Results.%SQLCODE < 0) {
 Set sc =
 $System.Status.Error($$$GeneralError,

Using Zen Components 69

Providing Data for Zen Page Charts

 "Error in %Execute. %SQLCODE = "
 Results.%SQLCODE" Error message = "_Results.%Message)
 Quit
 }
 }
 Catch (ex) {
 Set sc = ex.AsStatus()
 }
 Quit sc
}

4. Each time a chart on our example page is refreshed, including the first time the page is displayed, the chart consults
its ongetData expression to see which client-side method it should invoke to populate itself with data. In the following
excerpt, the chart is a <barChart> and the client-side method is called getData():

<barChart
 id="chartPop" width="100%" height="100%"
 selectedItemStyle="fill:rgb(255,0,255);" seriesCount="1"
 appearance="2D"
 title="Population By State"
 ongetData="return zenPage.getData(series);"
 ongetLabelX="return zenPage.getXLabels(value);"
 onelementClick="zenPage.onSelectElement(zenThis);">
 <xAxis title="States"/>
 </barChart>

5. Our sample client-side method getData() consults the Population property of the client-side page object to get the list
of values stored in that property. Because Population was defined as type %ZEN.Datatype.list in the page class, getData()
automatically understands Population as a JavaScript array; no conversion is necessary. getData() returns this array as
its return value.

ClientMethod getData(series) [Language = javascript]
{
 try {
 var data = zenPage.Population;
 return data;
 }
 catch (ex) {
 zenExceptionHandler(ex,arguments);
 }
}

6. The <barChart> updates its display using the values in the JavaScript array returned by getData().

7. This example offers other interesting features. For example, when you click on a bar in the bar chart, Zen fires the
client-side method identified by the <barChart> onelementClick attribute. In our example, this client-side method is
called onSelectElement(). It uses the JavaScript utility function zenSetProp() to find some of the other components
on the page then change their contents using data acquired from client-side methods, including getData().

ClientMethod onSelectElement(chart) [Language = javascript]
{
 try {
 var selected = chart.getProperty('selectedItem')

 // Set the population and count for the item
 zenSetProp('htmlState','content',this.getXLabels(selected));
 zenSetProp('htmlCount','content',(this.getData())[selected]);
 }
 catch (ex) {
 zenExceptionHandler(ex,arguments);
 }
}

8. In the excerpt above, the client-side method onSelectElement() uses the number of the currently selected bar in the
bar chart as an index into the array returned by getData(). getXLabels() also uses an index into a JavaScript array, but
in this case the array is the page property States, which contains a list of states whose population statistics are being
stored in the example. Because the States property was defined as type %ZEN.Datatype.list in the page class, getXLabels()
automatically understands States as a JavaScript array; no conversion is necessary.

70 Using Zen Components

Zen Charts

ClientMethod getXLabels(value) [Language = javascript]
{
 try {
 var data = zenPage.States
 return data[value];
 }
 catch (ex) {
 zenExceptionHandler(ex,arguments);
 }
}

9. A final item of note in this example is one that changes the series size for the chart without modifying or resending
any data. The client-side method changeSeriesSize() is invoked when the user selects one of the choices in a list box
on the same page with the bar chart. The list box is defined as follows:

<listBox id="lbSeriesSize"
 label="Select Series Size"
 value="5"
 onchange="zenPage.changeSeriesSize(zenThis);">
 <option text="10"/>
 <option text="20"/>
 <option text="30"/>
 <option text="40"/>
 <option text="50"/>
</listBox>

10. The client-side method changeSeriesSize() uses the text value from the selected <option> and uses it to reset the
seriesSize value for the <barChart> whose id is chartPop. This is our example <barChart> as shown in step 4. When
the seriesSize is reset, the chart redisplays.

ClientMethod changeSeriesSize(listbox) [Language = javascript]
{
 try {
 // Get selected index and compute value
 var selected = listbox.getProperty('selectedIndex');
 var value = listbox.getOptionText(selected);

 // Set the series size in the chart
 zenSetProp('chartPop','seriesSize',value);
 }
 catch (ex) {
 zenExceptionHandler(ex,arguments);
 }
}

3.2.2 Using a Data Controller

All charts support the following attributes, which associate the chart with a view on a data controller as described in the
chapter “Model View Controller. ”

DescriptionAttribute

Identifies the data controller that provides the data for this chart. The controllerId
value must match the id value provided for that <dataController>.

controllerId

The onnotifyView event handler for the <chart>. This attribute applies if the chart is
associated with a data controller. Zen invokes this handler each time the data con-
troller connected to this chart raises an event. See “Zen Component Event Handlers.”

onnotifyView

If your XData Contents block contains a <dataController> reference that looks like this:

<dataController id="source" modelClass="myPackage.MyModel" modelId="1"/>

Then your XData Contents block may also contain a chart definition that looks like this:

Using Zen Components 71

Providing Data for Zen Page Charts

<pieChart id="myChart" controllerId="source"
 height="300" width="300"
 title="Pie Chart" titleStyle="fill: black;"
 backgroundStyle="fill: #c5d6d6;"
 plotAreaStyle="fill: white;"
 labelStyle="fill: black;"
 legendVisible="true" legendX="83" legendY="8"
 legendHeight="" legendWidth="15" >
</pieChart>

The chart’s controllerId value must match the <dataController> id value. The chart takes its seriesSize from the number
of properties in the <dataController> modelClass.

3.2.3 Limiting the Data Set

The following attributes from the base class %ZEN.SVGComponent.chart tell the chart how many series to use, and how
many of the items in each data series to use, when constructing the chart. All types of chart support these attributes. If you
do not use a dataController to provide the data set, you must specify both seriesCount and seriesSize. If you use a
dataController, Zen determines the number of series and items from the data.

DescriptionAttribute

Positive integer specifying the number of series in the chart. If you do not use a
dataController and your data source provides a larger number of series than you
want to use, you can trim the number of displayed series by setting seriesCount to
a smaller number. The following figures illustrate the action of seriesCount.

seriesCount

Positive integer specifying the number of items within each data series to display on
this chart. If you do not use a dataController and your data source provides a larger
number of items in the series than you want to use, you can trim the number of
displayed items by setting seriesSize to a smaller number. The following figures
illustrate the action of seriesSize.

seriesSize

72 Using Zen Components

Zen Charts

Figure 3–20: Data Series Count and Size

3.3 Chart Layout, Style, and Behavior
The following diagram shows the major components of a Zen chart. The chart properties described in the following sections
control the positioning, style, and behavior of these components.

Chart properties include those from the SVG component class %ZEN.SVGComponent.svgComponent, such as width
andheight, and those from the base chart class %ZEN.SVGComponent.chart, such as marginTop and borderOffset.

Using Zen Components 73

Chart Layout, Style, and Behavior

Figure 3–21: Layout Attributes for Zen Charts

The base class %ZEN.SVGComponent.chart offers a large number of attributes that you can apply to a Zen chart to control
details such as:

• “Layout and style” — The relative size and characteristics of the background

• “Plot area” — The part of the chart that displays the data

• “Markers” — Shapes that highlight the exact data points on a continuous plot

• “Legends” — A key to the meaning of each plot on the chart

• “Titles” — Text that labels the chart, and the items on the chart

• “User Selections” — How the chart should respond to user actions, such as mouse clicks

• “Chart Axes” — Characteristics of the two axes that define most charts

3.3.1 Specifying Size and Position

Unless the specific description of a property states otherwise, you can give values for properties that specify sizes and
positions in one of the following ways:

• Do not specify a value, and let Zen calculate the value automatically.

• Use a value from 0 to 100 that is interpreted as a percentage of the current chart size.

• Specify a length value with units, such as "10px", to indicate that you want a margin of 10 pixels, independent of chart
size

74 Using Zen Components

Zen Charts

3.3.2 Layout and Style

The following attributes from the base class %ZEN.SVGComponent.chart determine the background style and the position
of the plot area within the chart.

Table 3–1: Chart Layout and Style Attributes

DescriptionAttribute

A chart has the same attributes as any SVG component. For descriptions, see the
“SVG Component Attributes” section in the chapter “Zen and SVG.”

SVG component
attributes

SVG CSS style definition. Specifies the style for the background panel. This is the
area outside the plot area but inside the chart component’s height and width.

backgroundStyle

SVG CSS style definition. Specifies the distance in pixels between the background
rectangle and the border. The default value is 8.

borderOffset

Specifies the radius in pixels used to round the corners of the chart's background
rectangle and border.

borderRadius

SVG CSS style definition. Specifies the style used for the border line which is inset
from outer edge of chart.

borderStyle

If true, display zoom in/out buttons (for certain chart types).The default value is false.
The property scrollButtonStyle controls the appearance of the buttons.

hasZoom

Margin to allow from the bottom edge of the background to the bottom edge of the
plot area. Axis labels or the chart legend usually appear in this space.You can provide
a value as specified in “Specifying Size and Position.”

marginBottom

See marginBottom in this table.marginLeft

See marginBottom in this table.marginRight

See marginBottom in this table.marginTop

3.3.3 Plot Area

The following attributes from the base class %ZEN.SVGComponent.chart determine display conventions for graphs within
the plot area and for the coordinate axes that border the plot area. Also see the section “Chart Axes.”

DescriptionAttribute

Controls the appearance of this chart. A value of "2D" provides standard two-
dimensional chart appearance. A value of "3D" gives the chart a three-dimensional
appearance so that the plot area appears to be recessed. Certain chart types, such
as bar charts, display items with a 3D look. For pie charts, setting this property to
"3D" displays a pie chart with a 3D appearance, but does not affect the plot area.
The default value is "2D" for some charts and “3D” for others.

appearance

Using Zen Components 75

Chart Layout, Style, and Behavior

DescriptionAttribute

Specifies how the chart handles text elements when it is resized. If true, the text
scales in proportion to the chart and all requested labels are rendered regardless of
legibility. If false, the size of the text elements is fixed with respect to the page and
some labels may be omitted to avoid visual overlap if there is not enough space on
the chart to render the all values.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

autoScaleText

An optional SVG CSS style definition applied to line drawn for x- and y-axes.axisLineStyle

An optional SVG CSS style definition applied to the title specified by the title property
of the axis.

axisTitleStyle

Decimal value. If defined, the chart displays a colored band on the plot area covering
the range lower than this value. bandLowerStyle defines the style of this band.

bandLower

SVG CSS style definition for the band defined by bandLower.bandLowerStyle

Decimal value. If defined, the chart displays a colored band on the plot area covering
the range higher than this value. bandUpperStyle defines the style of this band.

bandUpper

SVG CSS style definition for the band defined by bandUpper.bandUpperStyle

SVG CSS style definition for the base line.baseLineStyle

When a chart has multiple y axes, currYAxis specifies which yAxis to display on the
chart.The chart legend highlights all items that use the current axis. If the user clicks
on a legend item that is not highlighted, the chart makes the corresponding axis the
active one. See “Chart Axes”. Because reports are not interactive, currYAxis in a
Zen report simply determines the axis that is displayed

currYAxis

SVG CSS style definition. Default style applied to all grid line elements within the
plot area for this chart. If defined, gridStyle overrides any styles define in the CSS
style definition for the page, but gridStyle is in turn overridden by any styles defined
by a specific axis element in the chart.

gridStyle

SVG CSS style definition. Default style applied to all label elements for this chart. If
defined, labelStyle overrides any styles define in the CSS style definition for the
page, but labelStyle is in turn overridden by any styles defined by a specific axis
element in the chart.

labelStyle

If true, display axis labels for this chart (or slice labels for a pie chart). If false, hide
labels. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

labelsVisible

The maximum number of characters to display for an axis label. The default value
is 20.

maxLabelLen

76 Using Zen Components

Zen Charts

DescriptionAttribute

The ongetLabelX event handler for the <chart>. Zen invokes this handler to provide
the text for labels on the x-axis. See “Zen Component Event Handlers.” It must
accept an argument, value, that contains the 0-based ordinal number of the data
point whose text label is to be returned. It may consist of a switch statement based
on the value of the input argument. It must return a text string. For example:

ongetLabelX="return zenPage.getXLabels(value);"

ongetLabelX

Client-side JavaScript expression, as for ongetLabelX.

For pie charts, ongetLabelY is the attribute to use to set slice labels.

ongetLabelY

The ongetSeriesColor event handler. The chart calls this event handler to get the
color for a given data series. The event handler is passed an argument ,series, that
contains the 0-based ordinal number of the series. If the event handler does not
return a color for series, the chart uses whatever color is specified by seriesColors,
seriesColorScheme, or seriesColorsOverride.

ongetSeriesColor

Specifies an optional event handler. If an event handler is defined, it is called by the
chart just after it has finished displaying grid lines and data. The event handler is
passed an argument chart that is the current chart object. It is also passed a group,
which is the SVG group to which any new SVG content should be added.

onrenderData

Client-side JavaScript expression. If the chart provides an onrenderPlotArea value,
then the onrenderPlotArea expression is called by the chart just after it displays its
underlying plot area (and bands) but before it display grid lines and data.
Not supported by Zen reports.

onrenderPlotArea

SVG CSS style definition for the plot area panel for this chart.plotAreaStyle

SVG CSS style definition applied to the left and bottom edges of the plot area panel
for charts that have a 3D appearance.

plotEdgeStyle

Default SVG CSS style definition applied to the SVG elements that are used to plot
data for this chart. These elements include the line in a line chart, or the bar in a bar
chart.

plotStyle

Specifies how values should be plotted along a category axis:

• True— plot the first and last values on the edges of the plot area (as in a line
chart)

• False— plot values in the centers of each unit (as in a bar chart)

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

plotToEdge

An optional SVG CSS style definition applied to the zoom and scroll buttons. Use
the hasZoom property to make the zoom and scroll buttons visible.

scrollButtonStyle

Comma-separated list of CSS color values to use for data series. The chart applies
these colors to each data series in ordinal order (series 0 gets the first color, series
1 the second color, and so on). If you omit seriesColors, the chart uses the colors
defined by seriesColorScheme.

seriesColors

Using Zen Components 77

Chart Layout, Style, and Behavior

DescriptionAttribute

This is the name of a built-in color scheme used to plot data series for the chart.
Possible values are: “urban”, “tuscan”, “caribbean”, “rustbelt”, “bright”, “glow”, “gray”,
“pastel”, and “solid”.The default value is "tuscan".seriesColors overrides this property.

seriesColorScheme

Additional comma-delimited list of CSS color values used for data series. If supplied,
this is merged with the colors in the seriesColorScheme or seriesColors list.

seriesColorsOverride

Comma-separated list of names to use for data series.The chart applies these names
to each data series in ordinal order (series 0 gets the first name, series 1 the second
name, and so on). These names can appear as labels for the series in the legend
chart.

The seriesNames attribute has its ZENLOCALIZE datatype parameter set to 1 (true).
This makes it easy to localize its text into other languages, and permits use of the
$$$Text macros when you assign values to this property from client-side or server-
side code.

Any localized seriesNames string must remain a comma-separated list.

seriesNames

Comma-separated list of numbers. These numbers correspond to multiple y axes
defined by the chart. The chart uses the axis identified by the number to plot the
corresponding data series. The numbers are 0–based. By default, the every data
series uses y-axis 0. For example, if seriesYAxes="1,2,0", the chart plots the
first data series on second axis, the second data series on the third axis, and the
third data series on the first axis. Note that <xyChart>, <diffChart> and <bubbleChart>
do not support alternate yAxes.

See “Chart Axes”.

seriesYAxes

An optional SVG CSS style definition applied to grid stripes when stripes have been
enabled with the property stripesVisible.

stripeStyle

If true, draw stripes over value axis grid lines. The default value is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

stripesVisible

Adjusts the size of text used in the chart title and axis labels. Possible values are:
”small”, “medium”, and “large”. If the value is "medium", the chart uses the default
font sizes specified by the CSS. if "small" or "large" adjust the size of any text in the
chart that does not have an explicit style set by a property.

textSize

An optional SVG CSS style used to indicate unselected chart elements. Used when
there is a selected element.

unselectedItemStyle

An optional SVG CSS style definition applied to the box that contains the value labels.
Use the property valueLabelsVisible to make the labels visible.

valueBoxStyle

Specifies a format applied to the numeric values in value labels and tooltips. For a
description for this format string, see the section “Format String Field” in the book
“Defining DeepSee Models.” Use the property valueLabelsVisible to make the labels
visible.

valueLabelFormat

78 Using Zen Components

Zen Charts

DescriptionAttribute

An optional SVG CSS style definition applied to value labels. This only applies to
charts that display element values, such as bar charts. Use the property
valueLabelsVisible to make the labels visible.

valueLabelStyle

Specifies whether values should be displayed for elements within the chart. This
only applies to charts that display element values, such as bar charts.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

valueLabelsVisible

A number of attributes are supported by several chart types. These attributes are listed in the table of attributes for the rel-
evant charts, and described in more detail in the following sections.

3.3.3.1 chartPivot

If the attribute chartPivot is true, rotate the chart so that the x-axis is vertical and the y-axis horizontal. If false, display the
chart in typical fashion, with x-axis horizontal and the y-axis vertical.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

The following figure shows a pivoted bar chart.

Figure 3–22: Pivoted Bar Chart

3.3.3.2 chartStacked

The attribute chartStacked comes into play if there are multiple data series. If true, the data series are drawn stacked on top
of one another (values are additive). If false, the bars appear side by side (the values are independent).

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

If you set the property chartStacked to true, the result is a chart with values at each data point from all the data series in
the chart stacked into a single bar. The following figure illustrates a stacked bar chart:

Using Zen Components 79

Chart Layout, Style, and Behavior

Figure 3–23: Stacked Bar Chart

And the next figure shows the same data presented as a stacked line chart:

Figure 3–24: Stacked Line Chart

3.3.3.3 showMultiples

If the attribute showMultiples is true, charts that support small multiples display the data as a set of small charts, one for
each data series. The chart method hasMultiples lets you determine whether the chart supports multiples.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

The following figure shows a line chart with four data series and showMultiples="true".

Figure 3–25: Line Chart Displayed as Multiples

80 Using Zen Components

Zen Charts

3.3.3.4 timeBased

The attribute timeBased specifies that the x-axis is a time line. It is valid only for line and combo chart types. In order to
plot a time based chart, you must use the ongetLabelX callback method to provide time values in the format YYYY-MM-
DD or YYYY-MM-DD HH:MM:SS. These values are placed in their proper position on the x-axis timeline. Because the
logic that positions values on the timeline depends on the returned date values, you cannot set the property maxLabelLen
to a value less than ten.

The chart properties startTime and endTime set the start and end dates for the time line. If you do not supply values for
startTime and endTime, the chart uses the earliest and latest values returned by the ongetLabelX callback method.

The following figure illustrates the effect of a timeBased x-axis. The top chart uses a time based x-axis, while the lower
chart plots the same x values on a category axis.

Figure 3–26:Time Based Line Chart

3.3.4 Markers

Markers are shapes that are placed at each data point along the chart. If the chart has multiple series, each series in the chart
can use a different shape for its marker. Marker attributes apply only to types of chart that support markers (that is, line
charts). The base class %ZEN.SVGComponent.chart offers the following marker attributes.

DescriptionAttribute

Decimal value that specifies the scaling for markers. A value of 1.0 (or "") displays
markers with the default size. Use a larger value for larger markers, smaller for
smaller markers.

markerScale

Using Zen Components 81

Chart Layout, Style, and Behavior

DescriptionAttribute

Comma-separated list of shapes to use for each series. It can be convenient to use
a different shape for each series in the chart. This adds further distinction besides
the color of each plot in the chart. The list can contain any of the following keywords
in any order or combination:

• "circle" — a circle

• "down" — a triangle with point down

• "square" — a square

• "up" — a triangle with point up

The default value for markerShapes is "circle,up,down,square"

markerShapes

SVG CSS style definition. Style applied to all marker elements for this chart. The
default is to outline the shape in the same color as the series plot, and fill the shape
with white.

markerStyle

If true, and this chart supports markers, markers are displayed for the data points
within the chart. If false, no markers are displayed, even if they are defined. The
default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

markersVisible

3.3.5 Legends

The following attributes from the base class %ZEN.SVGComponent.chart determine the style of the chart legend and whether
or not it should display.

DescriptionAttribute

If this chart has a legend, this is the height of the legend box (within the chart
coordinate space).You can provide a value as specified in “Specifying Size and
Position.” The default height is based on the number of data series.

legendHeight

SVG CSS style definition for label text in the legend box.legendLabelStyle

An optional SVG CSS style applied to the rectangle that indicates the current legend
in the legend box. Used when the chart has more than one y-axis.

legendRectStyle

SVG CSS style definition for the background of the legend box.legendStyle

Title to display in the legend box.legendTitle

If true, display a legend for this chart. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

legendVisible

If this chart has a legend, this is the width of the legend box.You can provide a value
as specified in “Specifying Size and Position.” If no legendWidth is specified, the
chart assigns a default width of 15.

legendWidth

82 Using Zen Components

Zen Charts

DescriptionAttribute

If this chart has a legend, legendX provides the x-position of the top left corner of
the legend box within the chart coordinate space.You can provide a value as specified
in “Specifying Size and Position.” If you provide a value relative to the coordinate
space, the top left corner of the chart is (0,0) and the bottom right corner is (100,100).
The default position for the legend is in the top-right corner of the chart.

legendX

If this chart has a legend, legendY provides the y-position of the top left corner of
the legend box within the chart coordinate space. Provide values as for legendX.
The default position for the legend is in the top-right corner of the chart.

legendY

3.3.6 Titles

The following attributes from the base class %ZEN.SVGComponent.chart determine the style and contents of the chart title.

DescriptionAttribute

An optional SVG CSS style definition used for the title text in each of the small charts
created when a data series is displayed as multiple charts. Used when showMultiples
is enabled.

multipleTitleStyle

Subtitle text for the chart.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

subtitle

SVG CSS style definition. Specifies the style for the subtitle text.subtitleStyle

Title text for the chart. By default, it is centered at the top of the chart area.You can
use titleX, titleY, and titleAlign.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

Alignment for title and subtitle. Possible values are, “center”, “left”, and “right”. The
default value is “center”.

titleAlign

SVG CSS style definition. Specifies the style for the box that contains the title and
subtitle text.

titleBoxStyle

SVG CSS style definition. Specifies the style for the title text.titleStyle

If this chart has a title, this is the x-position of the title. This value is applied as
specified by titleAlign. For example, if titleAlign is “center”, titleX positions the center
of the title.You can provide a value as specified in “Specifying Size and Position.”
The default is “center”.

titleX

If this chart has a title, this is the y-position of the bottom line for the title text.
Descenders (for letters such as 'p' and 'q') fall below this line.You can provide a
value as specified in “Specifying Size and Position.” The default position is just
below the top of the chart, within the default marginTop.

titleY

Using Zen Components 83

Chart Layout, Style, and Behavior

http://localhost:57774/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25ZEN.SVGComponent.chart#showMultiples

3.3.7 User Selections

The following attributes control user interactions with the chart. Zen reports does not support any of the properties in this
section, because reports are not interactive.

DescriptionAttribute

The “onelementClick event handler” for the chart. Zen invokes this handler whenever
the user clicks on a chart element (such as a marker in a line chart, or bar in a bar
chart). See “Zen Component Event Handlers.”

It must accept an argument, chart, that represents this chart object. It then calls a
method on this object to determine the identity of the currently selected data point
(getSelectedItem) or data series (getSelectedSeries). Either method returns the
0–based ordinal number of the item that was selected, or -1 if nothing is currently
selected. For example:

onelementClick="zenPage.chartElementClick(chart);"

If no onelementClick expression is provided, Zen uses its own handler to provide
values for selectedItem and selectedSeries.

Not supported by Zen reports.

onelementClick

0–based ordinal number of the currently selected chart element (such as a marker
in a line chart, or bar in a bar chart). This value is -1 if nothing is currently selected.
Not supported by Zen reports.

selectedItem

SVG CSS style definition for the currently selected item in the chart.
Not supported by Zen reports.

selectedItemStyle

0–based ordinal number of the currently selected series in the chart, or -1 if no series
is currently selected.
Not supported by Zen reports.

selectedSeries

3.4 Chart Axes
Zen displays all charts except pie charts with x and y axes. Axes determine how chart data is displayed. You can use <xAxis>
or <yAxis> elements to specify the range of axis values (minValue to maxValue), or Zen can determine these values auto-
matically based on the range of data values.

• <xAxis> can be a category axis or a value axis, depending in the type of chart. A category axis names the data categories.
A value axis indicates the values of plotted data.

• <yAxis> is a value axis.

You can supply more than one y-axis to a chart, which enables you to plot data series with different ranges of values on
the same chart in a meaningful way. The following example plots six months of data on heating degree days (HDD), and
electricity use in kilowatt hours (kWh) for a residential building in the Boston MA area. A heating degree day is a measure
of the energy demand for heating buildings. In this example, data values for HDD range from 11 to 34, and data values for
kWh range from 841 to 1148. The following code fragment creates a line chart that plots these two data series using two
different axes, one for values from 10 to 40, the other for values from 700 to 1200:

84 Using Zen Components

Zen Charts

<lineChart id="chart"
 ongetData="return zenPage.getLineChartData(series);"
 onelementClick="zenPage.chartElementClick(chart);"
 ongetLabelX="return zenPage.getXLabels(value);"
 seriesNames="HDD,kWh"
 backgroundStyle="fill: #cccccc;"
 plotAreaStyle="fill: #eeeeee;"
 title="Line Chart: Two Y Axes"
 currYAxis="1"
 seriesCount="2"
 seriesSize="6"
 seriesColorScheme="solid"
 plotStyle="stroke-width: 1px;"
 labelsVisible="true"
 seriesYAxes="1,0"
 width="300"
 height="300">
 <xAxis id="xAxis" />
 <yAxis minorGridLines="true" minValue="700" maxValue="1200" labelUnits="100"
 minorUnits="10" majorUnits="50" majorGridLines="true" />
 <yAxis minorGridLines="true" minValue="10" maxValue="40" labelUnits="10" baseValue="0"/>
</lineChart>

The property seriesYAxes associates data series with axes. The property currYAxis specifies the axis that is active when
you first display the chart. See “Plot Area”. The following figure shows the resulting chart. The first image shows the
chart as it is initially displayed, with the HDD axis visible. The HDD item in the legend is highlighted to show that it is the
relevant data series for the axis currently in use. If you click on kWh in legend, the chart displays the appropriate y-axis.
All data series associated with an axis are all highlighted when that axis is active.

Figure 3–27: Line Chart with Two y Axes

Compare these charts with the following chart, which attempts to plot both HDD and kWh on a single axis.

Figure 3–28: Same data Plotted on One y-axis

Note that <xyChart>, <diffChart> and <bubbleChart> do not support alternate yAxes.

The following attributes from the class %ZEN.Auxiliary.axis are available as attributes of either <xAxis> or <yAxis> within
a chart definition. All of these attributes are optional; Zen provides reasonable defaults for each of them based on the data
supplied to the chart.

Using Zen Components 85

Chart Axes

Table 3–2: Chart Axis Attributes

DescriptionAttribute

Provides additional control over the display of labels for this axis. If the value is a null string
("") the axis shows a value or category label. If the value is "percent" the axis shows a
value label as a percentage. axisType also affects the format of the tooltip for values plotted
on this axis. If valueLabelFormat is also set, that format takes precedence for tooltips.

axisType

For charts with filled regions (bar charts), baseValue is a decimal value that specifies where
the base of the filled region should be plotted. If missing or blank (""), the base is the
bottom of the plot area.

baseValue

Specifies the side of the chart where the labels for this axis appear. Possible values for a
y-axis are "left" and "right", and for an x-axis are "top" and "bottom". The default value is
“left” for a y-axis and “bottom” for an x-axis.

labelPosition

SVG CSS style definition for the text labels along this axis.labelStyle

Decimal value that specifies the amount of space between labels along a value axis. Ignored
by category axes. If labelUnits is missing or blank (""), Zen automatically calculates a value
based on the data series.

labelUnits

If true, grid lines are displayed for each major unit on this axis. If false, major grid lines are
not displayed. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

majorGridLines

SVG CSS style definition for the major grid lines along this axis.majorGridStyle

Decimal value that specifies the amount of space between major grid lines along this axis.
If majorUnits is missing or blank (""), Zen automatically calculates a value based on the
data series.

majorUnits

Decimal value that specifies the maximum data value along this axis. If maxValue is missing
or blank (""), Zen automatically calculates a value based on the data series.

maxValue

Decimal value that specifies the minimum value along this axis. If minValue is missing or
blank (""), Zen automatically calculates a value based on the data series.

minValue

If true, grid lines are displayed for each minor unit on this axis. If false, minor grid lines are
not displayed. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

minorGridLines

SVG CSS style definition for the minor grid lines along this axis.minorGridStyle

Decimal value that specifies the amount of space between minor grid lines along this axis.
If minorUnits is missing or blank (""), Zen automatically calculates a value based on the
data series.

minorUnits

Title text for the axis.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

86 Using Zen Components

Zen Charts

When you work with %ZEN.SVGComponent.chart subclasses programmatically, you work with axes as the xAxis and yAxis

properties of the chart object. Each of these properties is a %ZEN.Auxiliary.axis object with properties corresponding to the
attributes listed above.

Using Zen Components 87

Chart Axes

4
Zen Forms

Forms permit the user to enter data. A Zen control is a component that displays application data and allows the user to edit
this data. A Zen form is a specialized group component designed to contain control components. Zen forms have the same
style and layout attributes as any Zen group. Also, because they are groups, forms may contain any other type of Zen
component.

Like all Zen components, a Zen form must be the child of a Zen page object. This means that if you want to provide a form
for a Zen application, you must create a Zen page class that includes a form component inside the <page> container. Two
components are available:

• “<form>” — A Zen group that contains a specific list of control components. These controls may or may not take
their values from a data controller, but their layout is entirely determined by the <form> definition in XData Contents.

• “<dynaForm>” — An extension of <form> that dynamically injects control components into a group (or groups) on
the Zen page. The list of controls may be determined by the properties of an associated data controller, or by a callback
method that generates a list of controls. Layout is automatic, determined by code internal to the <dynaForm>.

There is a Studio tutorial that uses Zen wizards to create a form-based user interface for a simple application. See the
chapter “Building a Simple Application with Studio” in the book Using Studio.

For information about data controllers, see the chapter “Model View Controller.”

Chapter topics incluide:

• “Forms and Controls”

• “User Interactions”

• “Defining a Form”

• “Providing Values for a Form”

• “Detecting Modifications to the Form”

• “Validating a Form”

• “Errors and Invalid Values”

• “User Login Forms”

• “Dynamic Forms”

Using Zen Components 89

4.1 Forms and Controls
The Zen library includes a number of controls for use in forms. Many of these controls are wrappers for the standard HTML
controls, while others offer additional functionality. The following figure displays a form that contains a number of controls,
including text fields and radio buttons. This is the sample form generated by the class ZENDemo.FormDemo in the SAMPLES
namespace.

The following figure lists the form and control components that Zen provides. Most of the classes shown in the figure are
controls. All of the classes shown in the diagram are in the package %ZEN.Component, for example %ZEN.Component.form

and %ZEN.Component.control. The diagram shows the inheritance relationships for these classes, and highlights the base
classes most frequently discussed in this book.

90 Using Zen Components

Zen Forms

Figure 4–1: Class Inheritance Among Form and Control Components

For details about individual controls, see the chapter “Zen Controls.”

4.2 User Interactions
The basic interaction between a Zen application user and a Zen form is as follows:

1. A user interacts with controls on the form

2. Zen may validate the data as it is entered

3. A user action indicates that it is time to submit the form

4. Zen may validate the data prior to attempting the submit

5. Zen interacts with the user to handle any errors it finds

6. When all is well, Zen submits data from the form

Using Zen Components 91

User Interactions

7. Any of the following might happen next:

• Data from the form may be written to the server

• The same Zen page may redisplay

• A different Zen page may display

• The same Zen page may display, but with components added or changed

4.3 Defining a Form
The Zen components “<form>” and “<dynaForm>” each support the following attributes for defining the characteristics
of a form.

Table 4–1: Form Component Attributes

DescriptionAttribute

A form has the same style and layout attributes as any Zen group. For descriptions, see
“Group Layout and Style Attributes” in the “Zen Layout” chapter of Using Zen.

Zen group
attributes

Specifies a HTML action for the form. Setting the action attribute overrides the default
behavior of Zen forms so that Zen does not execute its normal submit logic.

InterSystems recommends you do not use the action attribute except in special cases
where direct control of the HTML action attribute is required. This could be the case for
certain custom login forms.

action

Indicates whether controls in this form can have their values automatically completed
by default by the browser. Elements belonging to the form can override this setting by
setting an autocomplete attribute.

autocomplete

If true (the default), automatically invoke this form’s validate method whenever this form
is submitted.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

autoValidate

If this form is associated with a data controller, the controllerId attribute identifies the
controller that provides the data for this form. The controllerId value must match the id
value provided for that <dataController>. See the chapter “Model View Controller. ”

controllerId

Specifies a HTML enctype for the form, such as "multipart/form-data"enctype

Message text that the form validate method displays in an alert box when the contents
of this form are invalid. The default is:

This form contains invalid values. Please correct the following

field(s) and try again.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

invalidMessage

92 Using Zen Components

Zen Forms

DescriptionAttribute

String that identifies a specific instance of the data model object that is associated with
this form. This is the model ID. The format and possible values of the model ID are
determined by the developer of the data model class. For details, see “Data Model
Properties” in the chapter “Model View Controller. ”

If a <form> or <dynaForm> specifies a key, the OnLoadForm callback uses this model
ID to load initial values into the form. However, if this form is connected to a <dataCon-
troller>, the key value is ignored.

The key can be a literal string, or it can contain a Zen #()# runtime expression.

key

Specifies a HTML method for the form. Setting the method attribute overrides the default
behavior of Zen forms so that Zen does not execute its normal submit logic.

InterSystems recommends you do not use the method attribute except in special cases
where direct control of the HTML method attribute is required. This could be the case
for certain custom login forms.

method

URI of the page to display after this form is successfully submitted. This URI may be
overwritten by a specific <submit> button on the form.

nextPage

The onchange event handler for the form. Zen invokes this handler when the value of
a control on this form is changed by the user or when the modified flags are cleared by
a call to the form’s clearModified method. When fired for a control, the onchange
expression can use an argument called control to reference the modified control. See
“Zen Component Event Handlers.”

onchange

Client-side JavaScript expression that Zen invokes when the user performs an action
that triggers the default action for a form. Typically this is when the user presses the
Enter key within a control within the form.

ondefault

Client-side JavaScript expression that Zen invokes when this form’s validate method
determines that the contents of this form are invalid. This provides the application with
a chance to display a custom message.

oninvalid

Name of a server-side callback method in the Zen page class. Find further information
following this table.

OnLoadForm

The onnotifyView event handler for the form. Zen invokes this handler each time the
data controller connected to this form raises an event. See “Zen Component Event
Handlers.”This attribute applies if the form is associated with a data controller. See the
chapter “Model View Controller. ”

onnotifyView

Client-side JavaScript expression that Zen invokes when this form is about to be reset.
Generally this expression invokes a client-side JavaScript method.

onreset

Using Zen Components 93

Defining a Form

DescriptionAttribute

Name of a server-side callback method in the Zen page class. This method takes a set
of actions that is appropriate upon form submit. Use of OnSubmitForm is limited to
providing an alternative to the built-in mechanisms that a form provides for detecting
changes, validating values, and submitting the form. It should not be used to perform
other types of general-purpose processing.The next several sections describe the build-
in mechanisms provided by form submit.

Zen invokes this method when the user submits the form, automatically passing it an
input parameter of type %ZEN.Submit. If no OnSubmitForm value is specified for the
form, Zen invokes the page’s %OnSubmit method instead. To follow this sequence,
see the section “Processing a Form Submit. ”

The callback must return a %Status data type. The following is a valid signature for this
callback:

ClassMethod SubmitForm(pSubmit As %ZEN.Submit) As %Status

To use the above method as the callback, the developer would set
OnSubmitForm="SubmitForm" for the <form> or <dynaForm>.

OnSubmitForm

Client-side JavaScript expression that Zen invokes when this form is about to be
submitted. Generally this expression invokes a client-side JavaScript method with a
Boolean return value. Invoking this method gives Zen a chance to perform client-side
validation of values within the form. If the method returns false, the pending submit
operation does not occur. Note that unlike the HTML onsubmit event, the onsubmit
callback is always called whenever the form is submitted.

onsubmit

Client-side JavaScript expression that Zen invokes when this form’s validate method
is called. Generally this expression invokes a client-side JavaScript method that performs
validation.

onvalidate

Message text that the form validate method displays in an alert box when the user makes
an attempt to save a form bound to a read-only data model. The default
readOnlyMessage text is:

This data is read only.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

readOnlyMessage

The OnLoadForm method retrieves the values that appear on the form when it first displays. It can get values from the
object whose model ID is provided by the key attribute for the form, or it can assign literal values. The method must then
place these values into the input array, subscripted by the name attribute for the corresponding control on the form. It is
this name (and not the id) that associates a control with a value. Zen invokes this method when it first draws the form,
automatically passing it the following parameters:

• %String — the key value for the form

• An array of %String passed by reference

The callback must return a %Status data type. The following example shows a valid method signature and use of parameters:

94 Using Zen Components

Zen Forms

Method LoadForm(pKey As %String,
 ByRef pValues As %String) As %Status
{
 Set emp = ##class(ZENDemo.Data.Employee).%OpenId(pKey)
 If ($IsObject(emp)) {
 Set pValues("ID") = emp.%Id()
 Set pValues("Name") = emp.Name
 Set pValues("SSN") = emp.SSN
 }
 Quit $$$OK
}

To use the above method as the callback, the developer would set OnLoadForm="LoadForm" for the <form> or
<dynaForm>.

4.4 Providing Values for a Form
A form can initially display with blank fields, or you can provide data for some of the fields. Providing data for a field that
the user sees means setting the value property for the associated Zen control component, before you ask Zen to display the
form. There are several ways to do this:

• Set the value attribute while adding each control to XData Contents.

<text value="hello"/>

• Set the onLoadForm attribute while adding the form to XData Contents.

<form id="MyForm" OnLoadForm="LoadForm">

• Set value properties from the page’s %OnAfterCreatePage method.

Do ..%SetValueById("Doctor",$G(^formTest("Doctor")))

• On the client side, call the setValue method for each control.

Presumably, once the user begins editing the form, any initial values may change.

4.5 Detecting Modifications to the Form
A Zen form component tracks whether or not changes have occurred in any control on the form. %ZEN.Component.form

and %ZEN.Component.control each offers a client-side method called isModified that tests this programmatically.

A control’s isModified method returns true if the current logical value of the control (the value property) is different from
its original logical value (the originalValue property). With each successive submit operation, the originalValue for each
control acquires its previous value, so that this answer is always current with respect to the current state of the form.

When you call a form’s isModified method, it invokes isModified for each control on the form, and if any control returns
true, isModified returns true for the form.

Note: The <textarea> control returns an accurate isModified status when it contains fewer than 50 characters. When
the <textarea> value contains 50 characters or more, the control does not compute an isModified status.

Using Zen Components 95

Providing Values for a Form

4.6 Validating a Form
Each Zen form has a validate method whose purpose is to validate the values of controls on the form. If the form’s
autoValidate property is true, validate is called automatically each time the form is submitted. Otherwise, validate may be
called explicitly by the application. validate does the following:

1. Calls a form-specific onvalidate event handler, if defined. If this event returns false, Zen declares the form invalid and
no further testing occurs.

2. Resets the invalid property of all the form’s controls to false, then tests each control by calling the control’s
validationHandler method. This method, in turn, does the following:

• If the control’s readOnly or disabled properties are true, return true.

• If the control’s required property is true and the control does not have a value (its value is ""), return false.

• If the control defines an onvalidate event, execute it and returns its value. Otherwise, call the control’s isValid
method. isValid can be overridden by subclasses that wish to provide built-in validation (such as the dateText

control).

3. As the validate method tests each control, the form builds a local array of invalid controls.

4. After the validate method is finished testing the controls, it returns true if the form is valid.

5. If the form contains one or more controls with invalid values, it is invalid. validate performs one of the following
additional steps to handle this case:

• If the form defines an oninvalid event handler:

Execute the handler. This provides the form with a chance to handle the error conditions. The value returned by
the oninvalid event is then returned by the form’s validate method. The oninvalid handler has an argument named
invalidList that receives a JavaScript array containing the list of invalid controls. For example:

<form oninvalid="return zenPage.formInvalid(zenThis,invalidList);" />

Where the formInvalid method looks like this:

ClientMethod formInvalid(form,list) [Language = javascript]
{
 return false;
}

• When the form has no oninvalid event handler:

validate sets the invalid property to true for each invalid control (which changes their style to zenInvalid); gives
focus to the first invalid control; and displays an error message within an alert box. The message displayed in the
alert box is built from a combination of the form’s invalidMessage property along with the value returned from
each invalid control’s getInvalidReason method.

Note: It is standard practice not to invoke validation logic for null values.

96 Using Zen Components

Zen Forms

4.7 Errors and Invalid Values
Should an error occur while a form is being submitted, or should the form fail validation, Zen redisplays the page containing
the form. The user has the opportunity to re-enter any incorrect values and submit the page again. All of this is extremely
easy to set up when adding the <form> or <dynaForm> component to the Zen page.

The SAMPLES namespace class ZENTest.FormTest allows you to experience error handling with Zen forms as follows:

1. Start your browser.

2. Enter this URI:

http://localhost:57772/csp/samples/ZENTest.FormTest.cls

Where 57772 is the web server port number that you have assigned to Caché.

3. Ensure that the Name field is empty.

4. Clear the Status check box.

5. Click Submit.

6. The form’s validate method detects the invalid fields and highlights them with pink.

7. The following alert message displays in the browser.

To generate this message, the form has assembled the following snippets of text. Zen offers default values for these
items, so there is no need for you to do anything for the default message to appear. However, if you wish you can
customize them to any extent:

• The message begins with the form’s invalidMessage text.

• For each control that has its required attribute set to true, but contains no entry, the message lists the control’s
label followed by the control’s requiredMessage text.

• For each control that contains an invalid value, the message lists the control’s label followed by the control’s
invalidMessage text.

8. Click OK to dismiss the alert message box.

9. The invalid controls remain highlighted until the user edits them and resubmits the form.

4.8 Processing a Form Submit
The request to submit the contents of a form can be triggered in one of two ways:

• The user clicks a “<submit>” button placed within the form.

• The application calls the submit method of the form object in response to a user event:

%form.submit

Using Zen Components 97

Errors and Invalid Values

http://localhost:57772/csp/samples/ZENTest.FormTest.cls

When a form is submitted, the values of the controls in the form are sent to the server and the %OnSubmit callback method
of the page containing the form is called. Note that the %OnSubmit callback method is that of the page that contains the
form, not of the form itself or of any component on the form.

%OnSubmit receives an instance of a special %ZEN.Submit object that contains all the submitted values. Note that there
is no page object available during submit processing. Zen automatically handles the full details of the submit operation,
including invoking server callbacks and error processing. All forms are submitted using the HTTP POST submission
method.

Note that using the setting ENCODED=2 disables the <form> component, because ENCODED=2 removes all unencrypted
parameters from the url.

If you are interested in details of how Zen executes a submit operation, the following table lists the internal events in
sequence, organized by user viewpoint, browser-based execution, and server-side execution. Most of the communication
details are handled by the CSP technology underlying Zen. For background information, see the “Zen Client and Server”
chapter in Using Zen.

Table 4–2: Form Submit Sequence

On the ServerIn the BrowserUser Viewpoint

User clicks a button to
invoke form submit

1

Post control values to the server
via the HTTP POST mechanism

2

Deserialize data from the client3

Reconstruct DOM based on new control
values

4

Run the server-side code for the page5

Update server-side DOM6

Generate new HTML page7

Send new HTML page as response to
HTTP POST

8

Render the HTML received in
HTTP POST response

9

Update client-side DOM to reflect
changes made on the server

10

User sees new page11

4.9 User Login Forms
An application login page presents a special case of a Zen form. To create application login and logout pages, see the section
“Controlling Access to Applications” in the “Zen Security” chapter of Developing Zen Applications.

98 Using Zen Components

Zen Forms

4.10 Dynamic Forms
A <dynaForm> is a specialized type of form that dynamically injects control components into a group (or groups) on the
Zen page. Layout is determined automatically by code internal to the <dynaForm>. The list of controls may be determined
by the properties of an associated data controller, or by a callback method that generates a list of controls.

<dynaForm> has the following attributes:

DescriptionAttribute

A <dynaForm> has the same general-purpose attributes as any Zen form. For
descriptions, see the section “Defining a Form.” The general-purpose form attributes
include the controllerId and onnotifyView attributes needed to work with a data
controller.

Form component
attributes

If this form is associated with a data controller, the controllerId attribute identifies the
<dataController> component that provides the data for this form. The controllerId
value must match the id value for the <dataController>.

For full details about creating a <dynaForm> that uses a data controller, see the
chapter “Model View Controller. ”

controllerId

The id of a group in which to place the controls generated by this <dynaForm>. This
provides a way to control layout. Somewhere inside the <dynaForm>, you must
specify a group component (such as <vgroup> or <hgroup>) with an id that matches
the defaultGroupId. If no defaultGroupId is provided, controls are added directly to
the <dynaForm> without being contained in a group.

defaultGroupId

By default, Zen places any automatically inserted controls after (that is, below or to
the right of) any manually inserted controls on the <dynaForm>.

If you want automatically inserted controls to appear before (that is, above or to the
left of) any manually inserted controls, set the injectControls attribute to "before"
as in the following example. This code causes the controls provided by the data
controller to appear "before" the manually inserted Save button:

The possible values for injectControls are "before" and "after". The default is
"after".

injectControls

Name of a server-side callback method in the Zen page class.This method prepares
additional controls to inject onto the form when it is displayed. Zen invokes this
method when it first draws the form. See the discussion following this table.

OnGetPropertyInfo

The onnotifyView event handler for the form. This attribute applies if the form is
associated with a data controller. Zen invokes this handler each time the data con-
troller connected to this form raises an event. See “Zen Component Event Handlers.”
For full details about creating a <dynaForm> that uses a data controller, see the
chapter “Model View Controller. ”

onnotifyView

The callback method identified by the OnGetPropertyInfo attribute prepares additional controls to inject onto the form
when it is displayed. If this method is defined in the page class, Zen invokes it when it first draws the form, automatically
passing it the following parameters:

• %Integer — the next index number to apply to a control on the generated form. As the callback method injects additional
controls on the form, it must increment this index value, as shown in the example below.

Using Zen Components 99

Dynamic Forms

• As array of %String passed by reference.

• %String — the current data model ID, for cases where the contents of a dynamic form vary by instance of the data
model object. The method can get values from this object, or it can assign literal values.

To define additional controls, the method must place values into the input array, using two-part subscripts as follows:

1. The first subscript is the value of the name attribute that was assigned to the corresponding control on the form. It is
this name (and not the id) that identifies the control and associates it with a value. For example, the following array
position stores the 1–based index of the control’s ordinal position on the form:

pInfo(name)

2. The second subscript is the name of a property on the control object. %type is a control property whose value identifies
the type of the control. The names of other properties are listed in the “Zen Controls” chapter, either in the “Control
Attributes” section or in topics about specific controls. For example, the following array position stores the value for
the attr attribute of the name control:

pInfo(name,attr)

The callback must return a %Status data type. The following example shows a valid method signature and use of parameters
and array subscripts:

Method GetInfo(pIndex As %Integer,
 ByRef pInfo As %String,
 pModelId As %String) As %Status
{
 Set pInfo("Field1") = pIndex
 Set pInfo("Field1","%type") = "textarea"
 Set pInfo("Field2") = pIndex + 1
 Set pInfo("Field2","label") = "Field 2"
 Quit $$$OK
}

To use the above method as the callback, the developer would set OnGetPropertyInfo="GetInfo" for the <dynaForm>.

If the last control on the generated form comes from an embedded property with n fields, your callback must increment
past these generated controls by adding n to the index number at the beginning of the method, before assigning the index
to any controls. This convention is not necessary when the last generated control on the form comes from a simple data
type, such as %String, %Boolean, or %Numeric. The previous example shows the simple case, in which the method uses
and increments the index provided.

100 Using Zen Components

Zen Forms

5
Zen Controls

Zen controls are the user input elements that you place on a Zen form. All controls are Zen components, but Zen controls
also have unique characteristics derived from their parent class %ZEN.Component.control.

Most importantly, each control has a value associated with it. value is a property that contains the current logical value of
the control. Each control has the ability to display this value or keep it internally. Zen validates and submits all the control
values for a form together, as a unit, according to the rules described in the chapter “Zen Forms.”

This chapter:

• Describes characteristics shared by all Zen controls:

– “Control Attributes”

– “Data Drag and Drop”

– “Control Methods”

• Identifies variations in layout, style, and behavior for different categories of control:

– “Buttons” — <button>, <image>, <submit>

– “Text” — <label>, <text>, <textarea>, <password>

– “Selections” — <checkbox>, <multiSelectSet>, <fileUpload>, <colorPicker>, <radioButton>, <radioSet>

– “Lists” — <select>, <listBox>, <dataListBox>, <combobox>, <dataCombo>

– “Dates” — <calendar>, <dateSelect>, <dateText>

– “Grid”— <dynaGrid>, <dataGrid>

– “Hidden” — <hidden>

5.1 Control Attributes
All Zen controls have the following attributes in common.

Using Zen Components 101

Table 5–1: Control Component Attributes

DescriptionAttribute

A control has the same general-purpose attributes as any Zen component. For descrip-
tions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Of these attributes, name has special significance for a control.When the form is submit-
ted, your code must use this name (and not the id) to retrieve the value of the control. If
the control does not have a name, its value cannot be retrieved.

To avoid clashing with name values reserved by Caché Server Pages, do not use any
name for a Zen control that begins with the string Cache. Also avoid using punctuation
characters in name values, particularly the _ underscore character.

For more information that applies to all control components, see “Data Drag and Drop”
and “Control Methods” in this chapter.

Zen component
attributes

Indicates the client-side (JavaScript) data type to expect for this control’s value. By default,
a controls treats its value as a string with no client-side normalization. However, a control
can set a value for clientType to indicate that it has a non-string value on the client side.
Possible values are:

• "string" — The client-side value is a string.

• "boolean" — The client-side value is true or false.

• "integer" — The client-side value is either an integer or '' to indicate an invalid
integer.

• "float" — The client-side value is either a float or '' to indicate an invalid float.

clientType

Name of a CSS style class. When Zen lays out this control, it assigns this value to the
primary HTML element displayed for this control.

controlClass

String containing a CSS style definition. Zen applies this style to the primary HTML
element displayed for this control.

controlStyle

If this control is associated with a data controller, this attribute identifies the specific
property within the <dataController> modelClass that provides the value for this control.
See the chapter “Model View Controller. ”

dataBinding

If true, this control is disabled; its appearance is unchanged, but it does not respond to
user actions. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

disabled

Set to true when the value of this control is known to be invalid. Zen form validation logic
does this so that Zen can display this control in a way that indicates its value is invalid.
The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

invalid

102 Using Zen Components

Zen Controls

DescriptionAttribute

Message text to provide when invalid is true. The default is:

out-of-range or invalid value.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

invalidMessage

The next several attributes in this table (names beginning with “on...”) identify event
handlers for user actions relating to a control. Zen invokes the handler when the related
event occurs. See “Zen Component Event Handlers.”

—

Fired when the control loses focus.onblur

Fired when the value of the control changes. Note that controls fire this event indirectly;
the actual onchange event is sent to a built-in handler that notifies the form that owns
this control of the modification.

onchange

Fired when the mouse is clicked on the control.onclick

Fired when the mouse is double-clicked on the control.ondblclick

Fired when the control is given focus.onfocus

Fired when the user presses down on a key while this control has focus. There is a
corresponding onkeyup for when the user releases the key.

onkeydown

Fired after the user has pressed a key (that is, the user has pushed down and then
released the key) while this control has focus.

onkeypress

Fired when a key is released while this control has focus.onkeyup

Fired when a mouse button is released while within the area of the control.onmousedown

Fired when the mouse pointer leaves the area of the control.onmouseout

Fired when the mouse pointer enters the area of the control.onmouseover

Fired when a mouse button is pressed while within the area of the control.onmouseup

Fired when the form this control belongs to is submitted. This gives controls a chance to
supply or modify the value they submit.

onsubmit

Fired when this control’s value is validated by its parent form.onvalidate

(End of the list of attributes that identify event handlers.)—

Original value for this control before any user modification. It is used to detect which
controls have been modified. This is a special value in that it is automatically initialized
when a form is displayed.

On the client side, do not access this property directly; instead use the getProperty and
setProperty client-side methods. Note that setting the originalValue property on the
client (via setProperty) resets it to the current value of this control.

originalValue

Using Zen Components 103

Control Attributes

DescriptionAttribute

If true, this control is read-only. The user cannot change the value of this control, but the
control still appears on the form and still submits its value when the form that contains it
is submitted. Setting readOnly to true effectively disables the component; this is the
standard HTML behavior for select controls. The default readOnly value is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

readOnly

If true, this control is required. That is, a user must supply a value for this control or the
default form validation logic fails.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

required

Message text that the form validate method displays in an alert box when this control is
required and does not have a value. The default requiredMessage text is:

required.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

requiredMessage

Integer used to provide a value for the HTML tabIndex attribute. The browser uses this
attribute to control the tab order of controls within a form.

tabIndex

Default value displayed within this control.This is a special value in that it is automatically
initialized when a form is displayed. The value can be a literal string, or it can contain a
Zen #()# runtime expression.

On the client side, do not access this property directly; instead use the getValue and
setValue client-side methods.

value

5.2 Data Drag and Drop
All Zen controls support data drag and drop functionality as follows:

• Data drag and drop features work only if the containing <page> has its dragAndDrop attribute set to true.

• A data drag from a control occurs when the user clicks the mouse button down while the cursor is positioned on the
control, then moves the mouse away from the control while still holding down the button. Data drag captures the current
value of the control where the drag operation began. If the logical value and displayed value are different, this difference
is preserved when the data is captured. If a control has multiple values, such as a list that presents several items, then
the captured value is the value of the list item where the cursor was positioned when the user clicked the mouse button.
Data drag works only if the control where the drag began has its dragEnabled attribute set to true.

• A data drop onto a control occurs when the user releases the mouse button following a drag operation from another
control. Data drop replaces the logical value and displayed value of the control where the drop occurred with the values
that were being dragged. If a control has multiple values, such as a list that presents several items, the “drop” operation
drops the value onto the specific list item where the cursor was positioned when the user released the mouse button.
Data drop works only if the control where the drop ended has its dropEnabled attribute set to true.

For more information about how to configure data drag and drop for Zen controls, consult the following sections:

104 Using Zen Components

Zen Controls

• “Drag and Drop”in the “Zen Component Concepts” chapter of Using Zen introduces all types of drag and drop
operations. It explains how to enable and configure data drag and drop features for controls while placing them on a
Zen page. Briefly, you can enable the features by setting the dragEnabled and dropEnabled attributes to true. Having
done that, you have the option of configuring the exact ways in which these features work, by setting the onafterdrag,
onbeforedrag, ondrag, and ondrop attributes. Special configuration is not necessary, as each control has its own way
of handling drag and drop, but it is available if you prefer it.

• “Data Drag and Drop Methods” in the “Custom Components” chapter of Developing Zen Applications explains how
to write a custom control component that has unique drag and drop behavior. This ensures that, if you want special
drag and drop behavior for a control, the desired behavior is applied consistently each time a developer places the
control on a Zen page, without requiring the developer to configure the control by setting the onafterdrag, onbeforedrag,
ondrag, and ondrop attributes.

• “<listBox> Drag and Drop” in the “Lists” section of this chapter explains how the <listBox> control allows the user
to reorder entries in a list, or move an entry from one list to another, using drag and drop motions. This is in addition
to data drag and drop, which the <listBox> also supports.

• For the most part, data drag and drop applies only to control components, each of which has a logical value and a display
value. However, <dynaTree>, which is not a control, supports data drag because each of its nodes actually has a logical
value and a display value. For details, see “<dynaTree> Drag and Drop” in the chapter “Navigation Components.”

5.3 Control Methods
Each control has internal methods, which you can study in more detail by viewing the online class documentation for
%ZEN.Component.control and its subclasses.

The most important of these methods are those used to manipulate the value of the control. You can get and set the value

property using the client-side getProperty and setProperty methods. In fact, getProperty and setProperty are available
for you to work programmatically with any of the properties listed in the “Control Attributes” section, not just value.
Calling the setProperty method ensures that all actions relating to setting the property also occur, including rendering the
content within the control on the page.

Zen controls also define the convenient client-side methods getValue and setValue, which work only on the value property,
and so do not require you to specify which property you wish to change.

5.4 Buttons
Zen offers the following button-style controls:

• “<button>” — The user clicks a button that can trigger further actions

• “<image>” — The user clicks an image that can trigger further actions

• “<submit>” — The user clicks a button that submits a form

5.4.1 <button>

The <button> component is a simple wrapper for the HTML <input type="button"> element. A Zen <button> looks
like this:

Using Zen Components 105

Control Methods

<button> has the following attributes:

DescriptionAttribute

<button> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” Control attributes include onclick,
which determines what happens when a user clicks the button. If you want a user
click to cause the form to be submitted, use the <submit> control instead of <button>.

Control component
attributes

Text displayed on this button. The above example uses:

<button caption="Click Me"/>

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The caption value can be a literal string, or it can contain a Zen #()# runtime
expression.

caption

5.4.2 <image>

The <image> control displays a static image. <image> can be used simply to display an image, or it can serve as a button
if you specify an onclick event for it. The <image> component offers several different properties whose values can specify
the image to display:

• src can specify the URI of an image.

• streamId can specify the OID value for a binary stream object containing the image. You can work with the streamId

property programmatically, but you cannot specify it as an XML attribute. See details following the table.

• value (a control component attribute) is used when the image is bound to a property within a data controller that contains
binary stream data. In this case the value specifies an encrypted stream OID value for a binary stream object containing
the image.

Images that are binary stream objects are served via the CSP stream server. The OID value is encrypted (using the current
session key) when it is sent to the client. If this value is returned to the server, it is automatically decrypted. This makes it
possible to place sensitive data on the client for future processing on the server without letting a user view this data.

The <image> element has the following attributes:

DescriptionAttribute

<image> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” For the <image> element, value
plays a special role, as described in this section. Also, controlClass does not apply
to <image>, but controlStyle does apply.

Control component
attributes

A string of text to display in place of the image if it is unavailable. This becomes the
alt attribute value for the HTML element on the displayed page.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

alt

If provided, srcDisabled is the URI of an image to display when the disabled attribute
for this <image> is set to true.

srcDisabled

106 Using Zen Components

Zen Controls

DescriptionAttribute

If provided, srcMissing is the URI of an image to display when a value for this image
is missing. srcMissing is used when this image is bound to a property of a data
controller and there is no value for the bound property. There is a default for
srcMissing if you do not provide it. The default is a small blank space image:

"images/spacer.gif"

srcMissing

If provided, src is the URI of an image to display. If src is the relative pathname of a
file, it is understood to be relative to the Caché installation directory. Typically this
path identifies the images subdirectory for your Zen application, for example:

<image id="myFrame" src="/csp/myApp/images/myPic.png" />

src

If defined, this string provides a text value to associate with this image. text is used
as both the logical value and the display value when this image is the source of a
drag and drop operation.

To enable drag and drop features to work, the <page> that contains the <image>
must have its dragAndDrop attribute set to true. For details, see the “Data Drag and
Drop” section in this chapter.

text

The value attribute works differently for <image> than for other control components.
First of all, <image> does not submit its value when the user submits the form.
Secondly, the value plays an important role in serving the image.

value is used when the image is bound to a property within a data controller that
contains binary stream data. In this case, value specifies an encrypted stream OID
value for a binary stream object containing the image.

value

The %ZEN.SVGComponent.image class offers a streamId property. If it has a value, the streamId is the OID value for a
binary stream object containing the image.

There is no way to assign a streamId directly in the XData block, because you must first acquire an OID for the object you
are referencing. You can only assign a value to the streamId property by working with the image component programmatically,
in %OnAfterCreatePage.

To specify an image using a streamId, use this technique:

1. Provide the <image> element in XData, that is:

<image id="img"/>

2. In the %OnAfterCreatePage method for the Zen page class that displays the image, provide code that references the
<image> element and provides a value for its streamId, for example:

Set img = ..%GetComponentById("img")
Set stream=##class(%FileBinaryStream).%New()
Set filename=$system.CSP.GetFileName("/csp/samples/ClassLogo.jpg")
Do stream.LinkToFile(filename)
Set oid=stream.%Oid()
Set img.streamId = oid

Note: If both streamId and src values are provided for an image, streamId overrides src.

Using Zen Components 107

Buttons

5.4.3 <submit>

<submit> is a special type of button that submits a form. For details, see the section “Processing a Form Submit” in this
chapter.

<submit> has the following attributes:

DescriptionAttribute

<submit> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” You do not supply an onclick
attribute for a <submit> control, because the purpose of clicking an <submit> control
is to submit the form on which it appears.

Control component
attributes

Text displayed on this button.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types”.

caption

String giving the action code associated with this <submit> button. This value is
passed along to the server-side %OnSubmit method of the page that contains the
<submit>. If not provided, the default string is "submit".

action

URI of the page to display after this form is successfully submitted. If a <submit>
button defines a nextPage value, it overrides the nextPage value for the form that
contains the <submit>.

nextPage

5.5 Text
Zen offers the following text-style controls:

• “<label>” — Displays a text label

• “<text>” — The user inputs text

• “<textarea>” — The user inputs multiple lines of text

• “<password>” — The user inputs a text password

5.5.1 <label>

The <label> control passively displays a static text value. Zen submits the <label> along with other controls on the <form>.
<label> has the same general-purpose attributes as any Zen control. For descriptions, see the section “Control Attributes.”

5.5.2 <text>

The Zen <text> control is a wrapper around the HTML <input type="text"> element. Zen <text> displays a text
input box like this:

<text> has the following attributes:

108 Using Zen Components

Zen Controls

DescriptionAttribute

<text> has the same general-purpose attributes as any Zen control. For descriptions,
see the section “Control Attributes.” The <text> value is a string of text.

Control component
attributes

Indicates whether the value of this text control can be automatically completed by
default by the browser.

autocomplete

Maximum number of characters that the user may enter within this text control.maxlength

A placeholder that specifies a short hint describing the expected value of an input
field, for example, a sample value or a short description of the expected format. The
hint is displayed in the input field when it is empty.

placeholder

Integer indicating the HTML width of the input area for this text control. The default
size is 20.

size

If true, spellcheck is enabled. This is an HTML5 attribute. It works correctly only on
HTML5 compliant browsers. Supported only by IE10 and higher. The default value
is true.
spellcheck has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

spellcheck

5.5.3 <textarea>

The Zen <textarea> control is a wrapper around the HTML <textarea> element. Zen <textarea> displays a multi-line
text input box, like this:

<textarea> has the following attributes:

DescriptionAttribute

<textarea> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <textarea> value is a string
of text that may or may not include line break characters, depending on what the
user types. Keep in mind that many browsers do not cope well with long lines of
unbroken text; that is, greater than 4K characters with no white space.

Control component
attributes

Number of columns in the <textarea> control. The default is 19.cols

Number of rows in the <textarea> control. The default is 2.rows

If true, spellcheck is enabled. This is an HTML5 attribute. It works correctly only on
HTML5 compliant browsers. Supported only by IE10 and higher. The default value
is true.
spellcheck has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

spellcheck

Using Zen Components 109

Text

5.5.4 <password>

The Zen <password> control is a wrapper around the HTML <input type="password"> element. Zen <password>
displays a text input box for passwords. Any text that the user enters into the <password> control is echoed as a dot instead
of being displayed on the screen. For example:

Note: For an example of a user login page that use the <password> element to control access to a Zen application, see
the section “Controlling Access to Applications” in the “Zen Security” chapter of Developing Zen Applications.

<password> has the following attributes:

DescriptionAttribute

<password> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <password> value is a string
of text.

Control component
attributes

Maximum number of characters that the user may enter within this control.maxlength

Integer indicating the HTML width of the input area for this control. The default size
is 20.

size

5.6 Selections
Zen offers the following selection controls:

• “<checkbox>” — The user selects or clears a check box

• “<multiSelectSet>” — The user selects or clears one or more check boxes.

• “<fileUpload>” — The user browses to choose a file

• “<colorPicker>” — The user selects one color from a palette

• “<radioSet>” — The user clicks one in a simple row of radio buttons

• “<radioButton>” — Radio buttons might be placed anywhere on the page

The difference between <radioButton> and <radioSet> is that <radioSet> is simpler to lay out. Use <radioSet> for a concise
list of choices. Use <radioButton> when you want a more complex page layout that provides intervening information or
images in between the radio button choices, or when you want to place radio buttons in a vertical group.

5.6.1 <checkbox>

The Zen <checkbox> control is a wrapper around the HTML <input type="check"> element. The Zen <checkbox>
control displays a caption next to the check box and detects user mouse clicks on the caption text as well as on the check
box. Unlike an HTML check box, the Zen <checkbox> control always submits a value. Zen <checkbox> looks like this:

<checkbox> has the following attributes:

110 Using Zen Components

Zen Controls

DescriptionAttribute

<checkbox> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” <checkbox> always has its
clientType set to "boolean". This means the <checkbox> value is expressed as 1 or
0 in XData Contents and server-side code, and true or false in client-side code. A
value of 1 or true means the check box is currently selected; 0 or false means it is
clear.

Control component
attributes

Text displayed to the right of the check box. The above example uses:

<checkbox caption="Enabled"/>

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The caption value can be a literal string, or it can contain a Zen #()# runtime
expression.

caption

Name of a CSS style class to apply to the caption text. The default is:

checkboxCaption

captionClass

5.6.2 <multiSelectSet>

The <multiSelectSet> control displays a column of check buttons to show a complete set of choices. The user can select
one or more of the listed choices. A Zen <multiSelectSet> looks like this:

To define a <multiSelectSet>, provide a valueList for the user to choose from. If you also provide a corresponding displayList
it provides the displayed captions for the user to see. For example, you could produce the sample <multiSelectSet> illustrated
above by providing the following statement in XData Contents:

<multiSelectSet displayList="One,Two,Three,Four"
 valueList="1,2,3,4" />

<multiSelectSet> has the following attributes:

DescriptionAttribute

<multiSelectSet> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <multiSelectSet> value is a
comma-separated list of the values that are currently checked. Items appear in this
list in the same order as in the valueList

It is also possible to programmatically set the value of the <radioSet> to any arbitrary
value using the client-side setValue method. If the value of the <multiSelectSet>
does not correspond to any item in the valueList, all check boxes in the set appear
clear.

Control component
attributes

Using Zen Components 111

Selections

DescriptionAttribute

Name of the CSS style class to apply to captions for check boxes within this
<multiSelectSet>. The default is the built-in CSS style class
multiSelectSetCaption.

captionClass

Serves the same function as the choiceColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

choiceColumn

Comma-separated list of choices to display for this <multiSelectSet>. displayList
applies only if a valueList is defined. Display values may differ from the actual logical
values.

If there is an empty value ("") within the items in the displayList, as in:

valueList=",A,B,C"

Then an additional check box is displayed for the empty value. The caption for this
empty value is specified by the emptyCaption attribute.

The displayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true).
This makes it easy to localize its text into other languages, and permits use of the
$$$Text macros when you assign values to this property from client-side or server-
side code.

Any localized displayList string must remain a comma-separated list.

displayList

The default caption to use for any check boxes in this <multiSelectSet> that have
an empty value ("") assigned to them in the displayList. If you do not specify an
emptyCaption, the default caption is:

None

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

emptyCaption

Comma-separated list of tooltip text strings for each check box in the <multiSelect-
Set>.

The titleList attribute has its ZENLOCALIZE datatype parameter set to 1 (true). This
makes it easy to localize its text into other languages, and permits use of the $$$Text
macros when you assign values to this property from client-side or server-side code.

Any localized titleList string must remain a comma-separated list.

titleList

Serves the same function as the valueColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

valueColumn

112 Using Zen Components

Zen Controls

DescriptionAttribute

Comma-separated list of logical values for the <multiSelectSet>. If there is an empty
value ("") in the valueList (for example, "A,,B,C"), then an additional button is displayed
for the empty value. The label for the empty value is specified by the emptyCaption.

The value of the <multiSelectSet> is a comma-separated list of the values that are
currently checked. Items appear in this list in the same order as in the valueList. Use
the displayList to provide a corresponding list of choices to display to the user.

Zen assumes that every value within the set is distinct. If a valueList contains duplicate
items, as in:

valueList="A,A,A"

Then user selections produce unexpected behavior.

valueList

5.6.3 <fileUpload>

The <fileUpload> component is a simple wrapper for the HTML <input type="file"> element. A Zen <fileUpload>
control looks like this:

The precise appearance and text used in the control is determined by the browser, and therefore varies with different
browsers. When the user has selected a file, the text “No file chosen” is replaced with the filename, or text indicating the
number of files selected in the case of multiple upload.

A user clicks the button to open a file open dialog and navigate to the file of interest, then select and open the file. The next
action depends on the browser. When the user submits the form on which the <fileUpload> appears, on some browsers,
the value of the <fileUpload> component is the full pathname including the filename. On many modern browsers, the value
is the filename only. Browser manufacturers offer this denial of visibility into the full path as a security measure. If included
in the browser design, this security measure cannot be overruled by a Zen application.

To be sure that your Zen application is independent of the user’s choice of browser, you can strip the full pathname from
the returned value of the <fileUpload> component. As an example, suppose your <fileUpload> component has an id of
getFile. Inside your %OnSubmit method, you can have these lines of ObjectScript code:

ClassMethod %OnSubmit(pSubmit As %ZEN.Submit) As %Status
{
 Set file = pSubmit.%GetValue("getFile")
 Set file = ##class(%Library.File).GetFilename(file) // strip out the path on IE
 // ... other lines of code here ...
 Quit $$$OK
}

<fileUpload> has the following attributes:

Using Zen Components 113

Selections

DescriptionAttribute

<fileUpload> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <fileUpload> value is a string
that is the full pathname of a file.

Control component
attributes

Comma-separated list of MIME types that can be uploaded. If provided, this value
is used as the accept attribute value for the HTML <input> element.

accept

Maximum number of characters that the user may enter in this control.This property
was used in the past, when browsers allowed the user to type a filename into this
control. It is retained primarily for compatibility with earlier versions of Caché

maxlength

If true, allow multiple files to be uploaded at once. The default value is false. This
property requires an HTML5 compliant browser.

multiple

Integer indicating the HTML width of the input area for this control. The default size
is 20.

size

The fileSelect dialog offers a mechanism to select files on the server. See the section “File Selection Dialog Window.”

Important: If you use the <fileUpload> component, you need to be aware of an important security restriction on the
file upload control that is enforced by most browsers. The following paragraphs describe this restriction.

Most modern browsers regard the value field of a file upload control to be read-only for security purposes. The rationale
behind this is that, if it were possible to set the value field via a script, it would be trivial to link a form submit event to any
other event generator on the page. A devious programmer could, for example, embed a hidden form, either not displayed
or clipped to an area only 1 pixel square, and program it to covertly copy files off the client machine every time the mouse
pointer moved. For this reason, the value of the file to be uploaded on a form submit can only be set by direct user action
on most browsers. No modern browsers allow the value to be set quietly in the background.

5.6.4 <colorPicker>

The <colorPicker> component displays a row of color choices. The user can click on a color to select it. <colorPicker>
offers a simple alternative to the complex palette in <colorPane>. A Zen <colorPicker> looks like this:

<colorPicker> has the following attributes:

DescriptionAttribute

<colorPicker> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <colorPicker> value is a string
that identifies the most recently selected CSS color value.

Control component
attributes

Comma-separated list of CSS color values to display within the control, from left to
right. The default colorList value is as shown in the example above:

",black,gray,darkblue,darkred,darkgreen,blue,red,green,yellow,orange,plum,purple,white"

colorList

114 Using Zen Components

Zen Controls

5.6.5 <radioSet>

The <radioSet> control displays a row of radio buttons to show a complete set of choices. A Zen <radioSet> looks like
this:

5.6.5.1 <radioSet> General Attributes

To define a <radioSet>, provide a valueList for the user to choose from and a corresponding displayList for the user to see.
For example, you could produce the sample <radioSet> illustrated above by providing the following statement in XData
Contents:

<radioSet id="QuarkStatus" name="QuarkStatus"
 displayList="Up,Down,Charmed,Strange,Top,Bottom"
 valueList="U,D,C,S,T,B"/>

<radioSet> has the following general-purpose attributes.

DescriptionAttribute

<radioSet> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <radioSet> value is the logical
value of the currently selected button in the set. This logical value comes from the
corresponding valueList entry for the <radioSet>.

It is also possible to programmatically set the value of the <radioSet> to any arbitrary
value using the client-side setValue method. If the value of the <radioSet> does not
correspond to any item in the valueList, all buttons in the set appear clear.

Control component
attributes

<radioSet> has similar attributes to <tablePane> for specifying the data source.
<radioSet> supports maxRows, queryClass, queryName, and sql. See “<radioSet>
Query Attributes.”

Data source attributes

Name of the CSS style class to apply to captions for radio buttons within this
<radioSet>. The default is the built-in CSS style class radioSetCaption.

captionClass

Serves the same function as the choiceColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

choiceColumn

Comma-separated list of choices to display for this <radioSet>. displayList applies
only if a valueList is defined. Display values may differ from the actual logical values.

If there is an empty value ("") within the items in the displayList, as in:

valueList=",A,B,C"

Then an additional button is displayed for the empty value.The caption for this empty
value is specified by the emptyCaption attribute.

The displayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true).
This makes it easy to localize its text into other languages, and permits use of the
$$$Text macros when you assign values to this property from client-side or server-
side code.

Any localized displayList string must remain a comma-separated list.

displayList

Using Zen Components 115

Selections

DescriptionAttribute

The default caption to use for any buttons within this <radioSet> that have an empty
value ("") assigned to them in the displayList. If you do not specify an emptyCaption,
the default caption is:

None

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

emptyCaption

Comma-separated list of tooltip text strings for each radio button in the <radioSet>.

The titleList attribute has its ZENLOCALIZE datatype parameter set to 1 (true). This
makes it easy to localize its text into other languages, and permits use of the $$$Text
macros when you assign values to this property from client-side or server-side code.

Any localized titleList string must remain a comma-separated list.

titleList

Serves the same function as the valueColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

valueColumn

Comma-separated list of logical values for the <radioSet>. One of these logical values
becomes the <radioSet> value whenever the user clicks on the corresponding button.
Use the displayList to provide the corresponding list of choices to display to the user.

Zen assumes that every value within the set is distinct. If a valueList contains duplicate
items, as in:

valueList="A,A,A"

Then user selections produce unexpected behavior.

valueList

5.6.5.2 <radioSet> Query Attributes

Rather than provide a valueList and a displayList, a <radioSet> can indicate a data source for its buttons via an SQL query.
<radioSet> offers a number of attributes for this purpose. When you use this technique, the columns returned by the query
determine what is displayed in the <radioSet> as follows:

• If the %ResultSet has one column, the contents of this column are used as both the logical and display values within
the radioSet.

• If the %ResultSet has two (or more) columns, the contents of the first column supply the logical value and the contents
of the second column supply the display values.

<radioSet> provides several attributes that support using a query to generate the result set. For details and examples, see
the following sections in the chapter “Zen Tables”:

• How to use query attributes with <radioSet>:

– Data Sources (maxRows)

– Specifying an SQL Query (sql)

– Referencing a Class Query (queryClass, queryName)

• How to provide <parameter> elements within <radioSet>:

– Query Parameters

116 Using Zen Components

Zen Controls

5.6.6 <radioButton>

The Zen <radioButton> control is a wrapper around the HTML <input type="radio"> element with some enhanced
capabilities. The Zen <radioButton> control has the following attributes:

DescriptionAttribute

<radioButton> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.”

name (not id) establishes the association between radio buttons.You create a set
of associated radio buttons by adding <radioButton> elements to XData Contents
and assigning the same name value to each <radioButton> that in the set.

At runtime, value always contains the optionValue of the button in the set that is
currently selected. As soon as the user selects one of the buttons in the set, Zen
resets the value of every button in this set to the optionValue of the selected button.
This makes it very easy for you to determine which button in the set is currently
selected, by programmatically checking the value property of any button in the set.

Control component
attributes

The caption text for this <radioButton>. Each button in the set needs a caption so
that the user can distinguish between the choices.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The caption value can be a literal string, or it can contain a Zen #()# runtime
expression.

caption

Name of the CSS style class to apply to the captions for this <radioButton>. The
default is the built-in CSS style class radioButtonCaption.

captionClass

Defines a logical value to associate with this <radioButton>. The optionValue for
each radio button in the set must be unique.

The optionValue can be a literal string, or it can contain a Zen #()# runtime expression.

optionValue

5.7 Lists
Zen offers the following list controls:

• “<select>” — You display a list box by using the Zen wrapper for HTML <select>

• “<listBox>” — You define a Zen list box with fixed options for the user to choose

• “<dataListBox>” — Zen generates a list box for you, based on a runtime query

• “<combobox>” — You define a Zen combo box with fixed options for the user to choose

• “<dataCombo>” — Zen generates a combo box for you, based on a runtime query

• “<lookup>” — You define a control that provides a way to select a value from a list of options.

A list box offers a simple list of options, but a combo box has two parts:

• A text control that displays the current value of the control

Using Zen Components 117

Lists

• A drop-down list that displays a set of options for the user to select

A combo box drop-down list may appear when activated by the user, for example when the user clicks the button beside
the control. There are a number of ways to reveal the drop-down list. The user can click on an image or button, or the list
can simply appear when the cursor has hovered over the control for some length of time. You can specify these details
when you place a list control on a Zen form, or simply use the default characteristics that Zen provides.

5.7.1 <select>

The Zen <select> control is a wrapper around the HTML <select> element. Zen <select> produces a list from which the
user can select an item.

To define a Zen <select> list, provide a valueList for the user to choose from and a corresponding displayList for the user
to see. The following table describes these and other attributes for the Zen <select> component.

118 Using Zen Components

Zen Controls

DescriptionAttribute

Using Zen Components 119

Lists

DescriptionAttribute

<select> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The <select> value is a string
indicating the user’s current choice from the <select> list.

Control component
attributes

Rather than provide a valueList and a displayList, a Zen <select> control can indicate
a data source for its list via an SQL query. Zen <select> offers a number of attributes

Data source attributes

for this purpose. When you use this technique, the columns returned by the SQL
query determine what is displayed within the <select> list as follows:

• If the %ResultSet has one column, the contents of this column are used as both
the logical and display values within the drop-down.

• If the %ResultSet has two (or more) columns, the contents of the first column
supply the logical value and the contents of the second column supply the display
values.

<select> supports the query attributes maxRows, queryClass, queryName, and sql.
For details and examples, see the following sections in the chapter “Zen Tables”:

• How to use query attributes with <select>:

– Data Sources (maxRows)

– Specifying an SQL Query (sql)

– Referencing a Class Query (queryClass, queryName)

• How to provide <parameter> elements within <select>:

– Query Parameters

Serves the same function as the choiceColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

choiceColumn

Comma-separated list of values to display for this <select> list. displayList applies
only if a valueList is defined. Display values may differ from the actual logical values.

displayList

The displayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true).
This makes it easy to localize its text into other languages, and permits use of the
$$$Text macros when you assign values to this property from client-side or server-
side code.

Any localized displayList string must remain a comma-separated list.

Text that is displayed in the "empty" item added if showEmpty is true. The default is
"".

emptyText

When true, the <select> outputs an extra at the top of its drop-down box.The attribute
emptyText provides content for this item. The default value of emptyText is "".

showEmpty

Typically, this is the desired behavior, so the default value of showEmpty is true.
Regardless of the value of showEmpty, this blank row does not display when the
<dataCombo> has its required attribute set to true.

showEmpty has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

120 Using Zen Components

Zen Controls

DescriptionAttribute

Number of rows to display in the <select> list.size

Serves the same function as the valueColumn attribute in dataCombo, see
“<dataCombo> General Attributes.”

valueColumn

Comma-separated list of logical values for the <select> list.valueList

5.7.2 <listBox>

The Zen <listBox> control displays a list box, whose options may be individually formatted.

The Zen <listBox> control is not a wrapper around HTML <select>. The Zen <listBox> is implemented using HTML
primitives. This allows the <listBox> to provide functionality not available with HTML <select>, including:

• Greater control over the contents of the list

• Solutions to problems with Internet Explorer interoperating with CSS

5.7.2.1 <listBox> Options

The simplest way to define a Zen list box is to provide a set of <option> elements inside a <listBox> component. The fol-
lowing statements produce the sample list box shown previously:

<listBox id="listBox" label="listBox" listWidth="240px"
 onchange="zenPage.notifyOnChange(zenThis);"
 value="2">
 <option value="1" text="Apple" />
 <option value="2" text="Banana" style="font-size: 1.5em; "/>
 <option value="3" text="Cherry" />
 <option value="4" text="Pumpkin" />
 <option value="5" text="Eggplant" style="font-size: 2.1em; "/>
</listBox>

The <option> element is the XML projection of the %ZEN.Auxiliary.option class and supports the attributes described in the
following table.

DescriptionAttribute

CSS style to apply to this option.style

Display value. This is the text that the user sees in the list box.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

text

Logical value. This is the value that Zen submits for this control when it submits the
form.You must always provide both text and value for each option in the list.

value

Using Zen Components 121

Lists

When you work with %ZEN.Component.listBox programmatically, you work with <option> elements as members of the
options property, a list collection. Each <option> in the <listBox> becomes a member of the options collection, associated
with an ordinal position: 1, 2, 3, etc.

5.7.2.2 <listBox> General Attributes

<listBox> and <dataListBox> have the following general-purpose attributes in common.

Table 5–2: List Box Component Attributes

DescriptionAttribute

A list box has the same general-purpose attributes as any Zen control. For descriptions, see
the section “Control Attributes.” The list box value is a string of text that represents the
currently selected logical value of the control.

Control
component
attributes

CSS length value. If defined, listHeight overrides the default height of the list box window,
which is 250px.

listHeight

CSS length value. If defined, listWidth overrides the default width of the list box window,
which is 250px.

listWidth

0-based index of the currently selected option in the list box. The default selectedIndex is
–1 (nothing is selected).

selectedIndex

The display text that corresponds to the currently selected item. Do not access the text value
directly; use getProperty('text') instead.

text

5.7.2.3 <listBox> Drag and Drop

Like all controls, <listBox> supports data drag when the <listBox> dragEnabled attribute is true. This allows the application
user to drag values from the list box and drop them on other controls. If dropEnabled is also true, values from other com-
ponents can be dropped onto this <listBox>, where they are appended to the end of the list. This is different from the simpler
replacement that drag and drop provides for other Zen controls. This special case for <listBox> enables the user to drag
options from one list to another. If both drag and drop are enabled, the user can rearrange the order of list items within the
same <listBox> by using the mouse to drag list items into a new position and drop them there.

To enable drag and drop features to work, the <page> that contains the <listBox> must have its dragAndDrop attribute set
to true. For details, see the “Data Drag and Drop” section at the beginning of this chapter.

5.7.3 <dataListBox>

A <dataListBox> is a specialized type of <listBox> that presents the user with a list of options obtained at runtime via an
SQL query. Unlike <listBox>, <dataListBox> does not allow you to specify <option> elements or to set styles for individual
options in the list. This is because <dataListBox> uses a query to obtain a dynamic list of options. There are no statically
defined options in a <dataListBox>, so there are no <option> elements.

A <dataListBox> with an item selected looks like this:

122 Using Zen Components

Zen Controls

<dataListBox> has the following attributes:

DescriptionAttribute

<dataListBox> has the same general-purpose attributes as <listBox>. For descriptions,
see the section “<listBox> General Attributes.”

List box attributes

Using Zen Components 123

Lists

DescriptionAttribute

The <dataListBox> provides its list by creating, executing, and fetching from a
%ResultSet object on the server.You can specify how to create this %ResultSet object
using the attributes that the <dataListBox> inherits from its parent class
%ZEN.Component.querySource.

The columns returned by the SQL query determine what is displayed within the
<dataListBox> list, as follows:

• If the %ResultSet has one column, the contents of this column are used as both
the logical and display values within the drop-down.

• If the %ResultSet has two (or more) columns, the contents of the first column
supply the logical value and the contents of the second column supply the display
values.

For details and examples of using QuerySource attributes with <dataListBox>, see
the following sections in the chapter “Zen Tables”:

• How to indicate a data source for a <dataListBox>:

– Data Sources (maxRows)

– Specifying an SQL Query (sql)

– Generating an SQL Query (groupByClause, orderByClause, tableName,
whereClause)

– Referencing a Class Query (queryClass, queryName)

– Using a Callback Method (OnCreateResultSet, OnExecuteResultSet)

• How to provide <parameter> elements within <dataListBox>:

– Query Parameters

Data source attributes

<dataListBox> has an sqlLookup attribute that works in a manner similar to
<dataCombo>. The primary difference in behavior is that if the value found by
sqlLookup is not already visible in the list, <dataListBox> does not bring it into view.
For additional information, see the section “<dataCombo> Logical and Display
Values.”

sqlLookup

Name of a server-side callback method in the Zen page class. Find further information
following this table.

OnDrawItem

(Read-only) Number of options within the list. This is calculated when the query for
this component is run. It has no value until the list is displayed.

itemCount

The OnDrawItem method returns the HTML to display within the cell for the given item. This is the place to escape special
characters or make other last-minute adjustments to the HTML before displaying it.

Zen invokes this method when it first draws the list box, automatically passing it the following parameters:

• %ResultSet — the result set from OnCreateResultSet, if this <dataListBox> uses a result set to generate its content

• %String — the logical value for the item

• %String — the display value for the item

124 Using Zen Components

Zen Controls

The callback must return a %String that contains the resulting HTML. The following example shows a valid method signature:

Method DrawItem(pRS As %ResultSet,
 pValue As %String,
 pText As %String) As %String
{
 Set tx=pText
 Set tx=$REPLACE(tx,"&eacute;",$ZCVT($CHAR(233),"O","HTML"))
 Set tx=$REPLACE(tx,"&ntilde;",$ZCVT($CHAR(241),"O","HTML"))
 Quit tx
}

To use the above method as the callback, the developer would set OnDrawItem="DrawItem" for the <dataListBox>.

5.7.4 <combobox>

The Zen <combobox> provides a text field with a drop-down list below it:

Unlike some other controls described in this chapter, the Zen <combobox> control is not a wrapper around HTML <select>.
The Zen <combobox> is implemented using HTML primitives. This allows the <combobox> to provide functionality not
available with HTML <select>, including:

• The ability to edit values in the text box

• Greater control over the contents of the list

• Solutions to problems with Internet Explorer interoperating with CSS

5.7.4.1 <combobox> Logical and Display Values

To define a <combobox>, provide a valueList for the user to choose from and a corresponding displayList for the user to
see. The following table describes these <combobox> attributes.

DescriptionAttribute

A comma-separated list of values to display for the list in this combo box. displayList
applies only if a valueList is defined. Display values may differ from the actual logical
values.

The displayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true).
This makes it easy to localize its text into other languages, and permits use of the
$$$Text macros when you assign values to this property from client-side or server-
side code.

Any localized displayList string must remain a comma-separated list.

displayList

valueList overrides any <option> elements provided within the <combobox> (see
the discussion following this table).The valueList is a comma-separated list of logical
values for the drop-down list in this <combobox>. If you provide a valueList, you
must also provide a displayList.

valueList

Using Zen Components 125

Lists

5.7.4.2 <combobox> Options

Rather than provide a valueList and a displayList, you can define a <combobox> by providing a set of <option> elements
inside a <combobox> component. <option> is more flexible than a valueList and displayList because it allows you to apply
a CSS style to each of the list entries individually. For example:

<combobox id="comboboxEdit" label="combobox Editable" editable="true">
 <option value="1" text="Apple" />
 <option value="2" text="Banana" style="font-size: 2.5em; "/>
</combobox>

The <listBox> control also uses <option> to add entries. See the section “<listBox Options” for more information.

5.7.4.3 <combobox> General Attributes

<combobox> and <dataCombo> have the following attributes in common.

Table 5–3: Combo Box Component Attributes

DescriptionAttribute

A combo box has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” The combo box value is a string of
text that represents the currently selected logical value of the control.

Control component
attributes

Caption used for the button when the comboType is "button".

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

buttonCaption

URI of the image to display for the combo button in its normal state.buttonImage

URI of image to display for the combo button in its down (pressed) state.buttonImageDown

Popup title used for the drop-down button when comboType is "button" or "image".

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

buttonTitle

How the drop-down box is activated for the combobox:

• "image" indicates that a user-clickable image should be displayed next to the combo
box text box. This is the default.

• "button" indicates that a button should be displayed next to the combo box text box.

• "timer" indicates that the drop-down should appear shortly after the user enters a
value within the combo box text box.

comboType

When comboType is "timer", delay specifies how many milliseconds to wait after user
finishes typing before showing the drop-down. The default is 250 milliseconds.

delay

CSS length value. If defined, dropdownHeight overrides the default height of the
drop-down window, which is 250px.

dropdownHeight

CSS length value. If defined, dropdownWidth overrides the default width of the
drop-down window, which is 250px.

dropdownWidth

126 Using Zen Components

Zen Controls

DescriptionAttribute

If true, a user can directly edit the value within the input box as if it were a text field.
The default is false.

editable has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

editable

Maximum number of characters that the user may enter within this control.maxlength

If true, Zen uses the JavaScript scrollIntoView function to try and make visible the cur-
rently selected item within the drop-down.

scrollIntoView has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

scrollIntoView

0-based index of the currently selected option in the drop-down list. The default
selectedIndex is –1 (nothing is selected).

selectedIndex

HTML width of the text input area for this control. The default size is 20.size

If true, and if editable is also true, values entered by the user may be used as the value
of the control. If false, the value is restricted to one of the choices within the drop-down
list. The default is false.

unrestricted has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

unrestricted

%ZEN.Component.combobox is a subclass of the %ZEN.Component.text control. This means you can use the various
methods defined by the text control to manipulate the text box portion of a <combobox> or <dataCombo>.

5.7.5 <dataCombo>

A <dataCombo> is a specialized type of <combobox> that presents the user with a list of options obtained at runtime via
an SQL query. Unlike <combobox>, <dataCombo> does not allow you to specify <option> elements or to set styles for
individual options in the list. This is because <dataCombo> uses a query to obtain a dynamic list of options. There are no
statically defined options in a <dataCombo>, so there are no <option> elements.

A <dataCombo> with text entered for a search looks like this:

Using Zen Components 127

Lists

5.7.5.1 <dataCombo> Query Attributes

The <dataCombo> provides its drop-down list by creating, executing, and fetching from a %ResultSet object on the server.
Initially, the contents of the drop-down are empty, until a user action causes the drop-down to appear. At this point a call
to the server fetches the drop-down contents. You can change this behavior by setting the cached attribute of the <data-
Combo>.

You can specify how the <dataCombo> creates its %ResultSet object using the attributes that the <dataCombo> inherits
from its parent class %ZEN.Component.querySource. The columns returned by the SQL query determine what is displayed
within the <dataCombo> list, as follows:

• If the %ResultSet has one column, the contents of this column are used as both the logical and display values within
the drop-down list.

• If the %ResultSet has two (or more) columns, the contents of the first column supply the logical value and the contents
of the second column supply the display values. You can change which columns are used to provide the logical and
display values using the valueColumn and choiceColumn attributes.

• If the %ResultSet has more than two columns, you can use the displayColumns and columnHeaders attributes to
specify that the drop-down should display multiple columns.

For details and examples, see the following sections in the chapter “Zen Tables”:

• “Data Sources” (maxRows)

• “Specifying an SQL Query” (sql)

• “Generating an SQL Query” (groupByClause, orderByClause, tableName, whereClause)

• “Referencing a Class Query” (queryClass, queryName)

• “Using a Callback Method” (OnCreateResultSet, OnExecuteResultSet)

5.7.5.2 <dataCombo> Query Parameters

The query used to provide the contents of the <dataCombo> drop-down list may contain one or more runtime ? parameters,
such as:

WHERE Name %STARTSWITH ?

Values for query parameters can be provided in one of the following ways:

• The <dataCombo> can define a <parameter> list, as described in the “Zen Tables” topic “Query Parameters.” The
parameter values replace ? parameters in the order in which they appear in the SQL query. It is possible to modify the
values of these parameters programmatically from the client; if you do so, be sure to call the
%ZEN.Component.dataCombo method clearCache so that the drop-down query is re-executed with the new values.

• If non-zero, searchKeyLen is the maximum number of search characters for Zen to take from the combo input box and
pass as the first parameter to the SQL query that provides the contents of the drop-down list.

If zero, the contents of the input box are not used as a query parameter. The default is 0.

If searchKeyLen is non-zero, and editable is true, then the first searchKeyLen characters in the current contents of the
input box are used as the value for the first query parameter (that is, parms(1)). The first member of the parameters
list becomes the value of parms(2), the second member of the parameter list becomes the value of parms(3), and
so on.

If any parameter value is equal to "?" the current search key value (the value used for the first parameter) is used for
this query parameter as well.

128 Using Zen Components

Zen Controls

5.7.5.3 <dataCombo> Logical and Display Values

Any list box or combo box has two current values:

• Logical value — its actual stored value as returned by the getValue method

• Display value — the value that the user views and selects in the drop-down list

These two values are usually different, but they can be the same.

The Zen controls <select>, <listBox>, and <combobox> provide a fixed list of logical and display values. When an appli-
cation sets the value of one of these controls, it is simple for the control to identify which display value is associated with
the new logical value.

<dataListBox> and <dataCombo> acquire their values dynamically, so additional steps are needed to match logical and
display values. When an application sets the local value of a <dataCombo> control, internally the <dataCombo> tries to
find the display value that best matches this logical value. This works differently on the server and client:

• On the server, <dataCombo> executes the SQL statement defined by its sqlLookup attribute.

• On the client, the <dataCombo> first looks for a match for a given logical value within its drop-down cache. If it does
not find a match, it calls a server method to execute the sqlLookup query.

For example, suppose you want to define a <dataCombo> to show a set of Customer names; the display value is Name
while the logical value is the ID of the Customer. To do this you define a <dataCombo> with two SQL statements, as follows:

<dataCombo id="MyCombo"
 sql="SELECT ID,Name FROM MyApp.Customer WHERE Name %STARTSWITH ? ORDER BY Name"
 sqlLookup="SELECT Name FROM MyApp.Customer WHERE ID = ?"
 editable="true"
 searchKeyLen="10"
 />

This sample <dataCombo> definition has the following effects:

1. The SQL query provided by the sql attribute is invoked whenever the Zen page displays the drop-down list. It provides
a set of logical and display values for the <dataCombo>. The <dataCombo> stores the results of the last sql query in
a local cache.

2. The SQL query provided by the sqlLookup attribute is invoked to find a specific display value for a specific logical
value. The sqlLookup ? parameter gets its value from the current logical value of the <dataCombo> control.

3. The sqlLookup query is also executed when the application tries to set the logical value of this <dataCombo> at runtime
and the logical and display values are not already stored in the cache.

4. The searchKeyLen value in the example indicates that Zen passes up to the first 10 characters from the combo input
box to the SQL query that provides the contents of the drop-down list.

The sql and sqlLookup queries can use query parameters as described in the section “<dataCombo> Query Parameters.”

The sqlLookup attribute has the underlying data type %ZEN.Datatype.sql. This means it cannot be accessed from the client.
Its value is encrypted (using the current session key) when it is sent to the client. If this value is returned to the server, it is
automatically decrypted. This makes it possible to place sensitive data on the client for future processing on the server,
without letting a user view this data.

If you use the sqlLookup attribute to retrieve a list of user choices from a table, and you also set the attribute unrestricted
to true so that the user can enter values that do not exist in the underlying table, the lookup that you specify in sqlLookup
does not occur. unrestricted has the effect of disabling sqlLookup.

The sqlLookup attribute value must escape any XML special characters. For example, in place of the less-than symbol <
you must substitute the XML entity < as follows:

Using Zen Components 129

Lists

sqlLookup=
"select * from infonet_daten.abopos where lieferadresse=? and status<9"

The following table lists XML special characters that cause problems when they appear in sqlLookup strings, and the XML
entities to substitute for them.

Table 5–4: XML Entities for Use in sqlLookup Attribute Values

DescriptionXML
Entity

Character

Right angle bracket or “greater than” symbol.>>

Left angle bracket or “less than” symbol.<<

Ampersand.&&

Single quotation mark or apostrophe. A string enclosed in single quotes needs the
' entity to represent the ' character.

''

Double quotation mark. A string enclosed in double quotes needs the " entity
to represent the " character.

""

5.7.5.4 <dataCombo> General Attributes

In addition to the attributes described in previous sections, <dataCombo> supports the following general-purpose attributes.

DescriptionAttribute

<dataCombo> has the same general-purpose attributes as <combobox>. For
descriptions, see the section “<combobox> General Attributes.” There can be no
statically defined options for a <dataCombo>, so it does not support the displayList
or valueList attributes.

Combo box attributes

If there are multiple data columns displayed in the drop-down list, auxColumn is the
1-based column number of the column that provides an additional auxiliary value for
this control. auxColumn provides a way to supply an additional value that is not the
display or logical value. If the auxColumn value is not a valid column number, no
auxiliary data is provided. The default auxColumn value is 0.

auxColumn

If cached is true, when the page is first displayed, it executes a query to fetch the
initial contents of the drop-down list, and sets the itemCount property to the number
of items within the drop-down.The client uses these cached results instead of going
back to the server to fetch the contents of the drop-down list.You can clear the drop-
down cache at any time by modifying the search parameters for the query, or by
invoking the clearCache method.

The default value for cached is false. In this case the user must take action to request
the drop-down list before the query fetches its contents.

The cached attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Attribute Data Types.”

cached

If there are multiple data columns displayed within the drop-down list, choiceColumn
is the 1-based column number of the column that provides the display value for this
control. The default choiceColumn value is 2. If the supplied choiceColumn value is
greater than the number of columns in the query, the second column is used.

choiceColumn

130 Using Zen Components

Zen Controls

DescriptionAttribute

If true, and this <dataCombo> is bound to a data controller, then the contents of the
drop-down list are cleared whenever a new instance is loaded into the controller.
The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

clearOnLoad

If defined, columnHeaders is a comma-separated list of column headers to display
in the drop-down list.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

Any localized columnHeaders string must remain a comma-separated list.

columnHeaders

Indicates how display values should be rendered. Possible values are:

• "text" — The display values are HTML-escaped before being rendered. This is
the default.

• "html" — The display values are not HTML-escaped before being rendered.

contentType

If there are multiple data columns in the %ResultSet for the <dataCombo>,
displayColumns can provide a comma-separated list of 1–based column numbers.
This list identifies which columns out of the %ResultSet should be displayed.

displayColumns

Text that is displayed in the "empty" item added if showEmpty is true. The default is
"".

emptyText

(Read-only) Number of items in the drop-down list. This value is set as a side effect
of populating the drop-down list. It has no value until the list is displayed.

If cached is true, when the page is first displayed, it executes a query to fetch the
initial contents of the drop-down list, and sets the itemCount property to the number
of items within the drop-down immediately after the page’s %OnAfterCreatePage
callback method is invoked.. The client uses these cached results instead of going
back to the server to fetch the contents of the drop-down list.

You can clear the drop-down cache at any time by modifying the search parameters
for the query, or by invoking the clearCache method.

The default value for cached is false. In this case the user must take action to request
the drop-down list before the query fetches its contents.

itemCount

This message is temporarily displayed while a server-side query is running to populate
the <dataCombo> list. The default is:

$$$Text("Loading...","%ZEN");

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

loadingMessage

If true, and if the result set contains more than 2 columns, display multiple columns
in the drop-down box. The default is true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

multiColumn

Using Zen Components 131

Lists

DescriptionAttribute

The onshowDropdown event handler for the <dataCombo>. Zen invokes this handler
just before the drop-down list is displayed. See “Zen Component Event Handlers.”
If the expression returns a value, this value is used as the filter value for the drop-
down query instead of the value typed into the input box.

onshowDropdown

If non-zero, searchKeyLen is the maximum number of search characters for Zen to
take from the combo input box and pass as the first parameter to the SQL query that
provides the contents of the drop-down list.

If zero, the contents of the input box are not used as a query parameter. The default
is 0.

If searchKeyLen is non-zero, and editable is true, then the first searchKeyLen char-
acters in the current contents of the input box are used as the value for the first query
parameter (that is, parms(1)). The first member of the parameters list becomes the
value of parms(2), the second member of the parameter list becomes the value of
parms(3), and so on.

If any parameter value is equal to "?" the current search key value (the value used
for the first parameter) is used for this query parameter as well.

searchKeyLen

When true, the <dataCombo> outputs an extra at the top of its drop-down box. The
attribute emptyText provides content for this item. The default value of emptyText is
"". Typically, this is the desired behavior, so the default value of showEmpty is true.
Regardless of the value of showEmpty, this blank row does not display when the
<dataCombo> has its required attribute set to true.

showEmpty has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showEmpty

If there are multiple data columns in the %ResultSet for the <dataCombo>,
valueColumn identifies the 1-based column number of the column that provides the
logical value for this control. The default valueColumn is 1. If the supplied
valueColumn value is greater than the number of columns in the query, the first
column is used.

valueColumn

5.7.5.5 <dataCombo> Display Sequence

If you are interested in details of how Zen displays the <dataCombo>, the following table lists the internal events in sequence,
organized by user viewpoint, browser-based execution, and server-side execution. Most of the communication details are
handled by the CSP technology underlying Zen. For background information, see the “Zen Client and Server” chapter in
Using Zen.

Table 5–5: <dataCombo> Display Sequence

On the ServerIn the BrowserUser Viewpoint

Select the drop-down1

Drop-down is activated2

Send hyperevent to the server to
execute SQL

3

Receive hyperevent to execute SQL4

132 Using Zen Components

Zen Controls

On the ServerIn the BrowserUser Viewpoint

Send hyperevent response (consisting
of JavaScript code) to populate the
drop-down unit

5

Server fills the drop-down list6

List fills with items7

User selects an item8

Drop-down item is selected9

Call client-side select event handler10

Send hyperevent to the server to start
a ZenMethod

11

Receive hyperevent to start
ZenMethod

12

Update server-side DOM13

Send hyperevent response (consisting
of JavaScript code) to synchronize
client DOM with server DOM

14

Update client-side DOM to reflect
changes made on the server during
the ZenMethod

15

Update visual presentation of
DOM-bound components to match
new client-side DOM

16

Form fields get filled in
based on the selection

17

5.7.6 <lookup>

A <lookup> control is a specialized type of control that provides a way to select a value from a list of options. This is an
HTML5 component. It works correctly only on HTML5 compliant browsers. This control supports the following attributes:

DescriptionAttribute

A context string used to determine the selection list for this component. The context
string should take the form: ?parm1=value.

context

If this control is used in a form that is associated with a <dataController>, this attribute
specifies the name of the property in the <dataController> that provides the display
value for this control.

displayBinding

The name of the property in data element that supplies the value of the control after
the user has made a selection.

idProperty

Using Zen Components 133

Lists

DescriptionAttribute

The name of the property in the data element that supplies a path to an image file.
If this attribute is defined, and the specified property exists, the control shows the
image in the popup instead of the text value. The image path is resolved relative to
CSP/broker in the Caché installation directory. When the user makes a selection,
the data element specified by textProperty supplies the value.

imageProperty

The path to an image file that supplies the image used to invoke the lookup popup.
The image path is resolved relative to CSP/broker in the Caché installation directory.

lookupIcon

A message to show in the lookup popup when no selections are available.The default
value is “Nothing to show!”

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

noResultsMessage

The ongetdata event handler, which returns a JavaScript array of data to display in
the lookup popup. This event handler can return any array of object or literal values.

ongetdata

The onshowPopup event handler, which is fired just before the popup is displayed.onshowPopup

The title to display in the popup.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

popupLabel

A comma-separated list of property names used to create the display text in the
popup list.

propertyList

Specify if there should be a filter text box in the pop up.showFilter

Size of the base (non popup) portion of this control.The number provided is multiplied
by 10 to get the width.

size

A comma-separated list of CSS styles to apply to all the cells in the popup list.styleList

Display value for this control. The value attribute contains the logical value.text

The name of the property in the data element that supplies the text value.textProperty

The following image shows the <lookup> control and identifies its main components.

This image shows the selection popup and identifies its main components. This example uses the styleList property to apply
blue color to the selections. The property showFilter controls the presence of the text filter box. If the ongetdata event
handler does not return any selections, the text provided by noResultsMessage replaces the list of selections .

134 Using Zen Components

Zen Controls

The following code examples generate the <lookup> control illustrated in the previous images.

<page xmlns="http://www.intersystems.com/zen" title="">
 <lookup
 popupLabel="City Selector"
 label="Choose a City:"
 lookupIcon="MyApp/eye_16.png"
 ongetdata="return zenPage.myData();"
 styleList="color:blue,"
 idProperty="id"
 textProperty="text"
 value="Seattle"
 />
</page>

ClientMethod myData() [Language = javascript]
{
 var data = [
 {id:1, text:'Boston',},
 {id:2, text:'New York'},
 {id:3, text:'Atlanta'},
 {id:4, text:'Chicago'},
 {id:5, text:'Tucson'},
 {id:6, text:'Seattle'},
 {id:7, text:'San Francisco'},
 {id:8, text:'Los Angeles'},
 {id:9, text:'San Diego'}
];
 return data;
}

The attribute imageProperty lets you use images in the selection popup. For example, the following <lookup> control and
ongetdata callback:

<page xmlns="http://www.intersystems.com/zen" title="">
 <lookup
 label="Choose a Direction:"
 ongetdata="return zenPage.myData();"
 imageProperty="image"
 textProperty="text"
 />
</page>

ClientMethod myData() [Language = javascript]
{
 var data = [
 {id:1, text:'Down', image:'images/arrowBD.png'},
 {id:2, text:'Left', image:'images/arrowBL.png'},
 {id:3, text:'Right', image:'images/arrowBR.png'},
 {id:4, text:'Up', image:'images/arrowBU.png'}];
 return data;
}

Result in a popup that uses images, as shown in the following illustration:

Using Zen Components 135

Lists

You can use the attribute propertyList to construct the display text in the popup from more than one data element. This
attribute supplies a comma-separated list of property names. The <lookup> control uses values associated with those names
to populate the lookup list.

<page xmlns="http://www.intersystems.com/zen" title="">
 <lookup
 ongetdata="return zenPage.myData();"
 idProperty="lname"
 propertyList="fname,lname,dob"
 />
</page>

Results in a popup where each line contains the values from the fields fname, lname, and dob in the data. Only the field
specified by idProperty becomes the value of the control after the user has made a selection.

You can also use CSS to control the appearance of items in the popup. The CSS class for lookup items is lookupItem.
For example, the following CSS sets the background of each item in the popup to yellow.

.lookupItem {
 background-color:yellow;
}

5.8 Dates
Zen offers the following date selection controls:

• “<calendar>” — The user selects dates from a popup calendar

• “<dateSelect>” — The user selects a month, a day, and a year

• “<dateText>” — The user can enter text or select a date

The components described in this topic are simple date selection controls that enable users to enter dates as values in forms.
Zen offers another component, called <schedulePane>, which is not a date selection control. <schedulePane> displays a
daily, weekly, or monthly calendar with time slots for each date. Users can define appointments and place them in the
appropriate time slots. For details, see the “Schedule Calendar” section in the chapter “Other Zen Components.”

136 Using Zen Components

Zen Controls

5.8.1 <calendar>

The <calendar> component displays a navigable calendar, one month at a time. The user can view and select dates from
this calendar. A <calendar> initially displays with the current date highlighted in bold (7 in the example below) and the
currently selected date in bold with a yellow background color (14 in the example below). A Zen <calendar> looks like
this:

<calendar> has the following attributes:

DescriptionAttribute

<calendar> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” On the client, the <calendar>
value is a string in the format YYYY-MM-DD. On the server, the <calendar> value
has the %Timestamp datatype.

Control component
attributes

Comma-separated list of day abbreviations to show at the top of the calendar. If you
do not provide a dayList value, the default is:

$$$Text("S,M,T,W,T,F,S")

The dayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true). This
makes it easy to localize its text into other languages, and permits use of the $$$Text
macros when you assign values to this property from client-side or server-side code.

Any localized dayList string must remain a comma-separated list.

dayList

Provides a default value for the time portion of the <calendar> value.The defaultTime
is used as the initial time displayed in the popup calendar if the following conditions
are met:

• The property showTime is true.

• The value supplied does not include a time portion.

• defaultTime is a valid time string.

The calendar itself defaults to a time value of "01:00:00" when a time is not specified
or when the date value passed is invalid.

defaultTime

Four-digit end year number for the year selector in the calendar. If not defined, the
default is the year portion of maxDate, if defined. Otherwise, the default endYear is
30 years from now.

endYear

Number (Sunday=0, Saturday=6) that specifies which day of the week is displayed
as the starting day of the week. The default is 0 (Sunday).

firstDayOfWeek

Using Zen Components 137

Dates

DescriptionAttribute

If true, this calendar displays a single month and provides no way for the user to
change month and year. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

fixedMonth

HTML length value giving the size of the gap between the month and year indicators
at the top of the calendar. Setting this provides a way to adjust the width of the
calendar. The above example uses the default of 40px.

gapWidth

String in the format YYYY-MM-DD (datatype %Timestamp on the server). If specified,
this is the latest date the <calendar> accepts as its value. The maxDate value does
not affect which years are displayed by the calendar unless endYear is omitted.

The value supplied for maxDate can be a literal string, or it can contain a Zen #()#
runtime expression.

maxDate

String in the format YYYY-MM-DD (datatype %Timestamp on the server). If specified,
this is the earliest date the <calendar> accepts as its value.The minDate value does
not affect which years are displayed by the calendar unless startYear is omitted.

The value supplied for minDate can be a literal string, or it can contain a Zen #()#
runtime expression.

minDate

Number (January=1, December=12) that specifies which month of the year is currently
displayed by the calendar. This is not the same as the current <calendar> value,
which includes a day and year, which can include time, and whose month may be
different.

month

Comma-separated list of month names to display in the list of months that the user
can choose from the calendar. If you do not provide a monthList value, the default
is:

$$$Text("January,February,March,April,May,June,July,August,September,October,November,December")

monthList has its ZENLOCALIZE datatype parameter set to 1 (true). This makes it
easy to localize its text into other languages, and permits use of the $$$Text macros
when you assign values to this property from client-side or server-side code.

Any localized monthList string must remain a comma-separated list.

monthList

If true, this component displays a text entry field below the main calendar. In the
example above, showTime is true. The default is false.

The user can enter a time of day in the showTime field using the 24–hour time format
HH:MM:SS. When the form is submitted, the <calendar> value accepts both date
and time values in the following ODBC/JDBC timestamp format: YYYY-MM-DD
HH:MM:SS

showTime has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showTime

Four-digit start year number for the year selector in the calendar. If not defined, the
default is the year portion of minDate, if defined. Otherwise, the default startYear is
10 years ago.

startYear

138 Using Zen Components

Zen Controls

DescriptionAttribute

Caption text for the showTime field. If you do not provide a timeCaption value, the
default is:

$$$Text("Time:")

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

timeCaption

Four-digit number that specifies which year is currently displayed by the calendar.
This is not the same as the current <calendar> value, which includes a day and
month, which can include time, and whose year may be different.

year

5.8.2 <dateSelect>

The <dateSelect> control displays three drop-down lists. From left to right, the lists allow the user to select a month, a day
of the month, and a year. If the user types a character in any of these fields, Zen displays the closest matching value for
that list, if one exists, such as “March” or “May” for M. <dateSelect> is useful for cases like birth dates or expiration dates
when a popup calendar like <dateText> can be cumbersome.

A Zen <dateSelect> component looks like this. In the example, the user is selecting from the month drop-down list.

<dateSelect> has the following attributes:

DescriptionAttribute

<dateSelect> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.”

On the client, the <dateSelect> value is a string in the format YYYY-MM-DD. On the
server, the <dateText> value has the %Timestamp datatype.

Any HTML events defined for <dateSelect> (onfocus, onclick, etc.) apply to each of
the three drop-down lists independently.

Control component
attributes

Using Zen Components 139

Dates

DescriptionAttribute

String that specifies the order in which to display the drop-down lists, from left to
right. The default is "MDY". Possible values are:

• "MDY" — Month, Day, Year

• "DMY" — Day, Month, Year

• "YMD" — Year, Month, Day

• "YDM" — Year, Day, Month

• "DM" — Day, Month

• "MD" — Month, Day

• "YM" — Year, Month

• "Y" — Year

• "M" — Month

The value supplied for format can be a literal string, or it can contain a Zen #()#
runtime expression.

format

Integer specifying the last year allowed in the year drop-down list. The default is the
current year plus 20.

The value supplied for maxYear can be a literal string, or it can contain a Zen #()#
runtime expression.

maxYear

Integer specifying the earliest year allowed in the year drop-down list. The default is
1900.

The value supplied for minYear can be a literal string, or it can contain a Zen #()#
runtime expression.

minYear

Comma-separated list of month names to display in the list of months that the user
can choose from the calendar. If you do not provide a monthList value, the default
is:

$$$Text("January,February,March,April,May,June,July,August,September,October,November,December")

monthList has its ZENLOCALIZE datatype parameter set to 1 (true). This makes it
easy to localize its text into other languages, and permits use of the $$$Text macros
when you assign values to this property from client-side or server-side code.

Any localized monthList string must remain a comma-separated list.

monthList

If true, this component shows the first 3 characters of the month names in the month
drop-down list. In the example above, shortMonth is false. The default is false.

shortMonth has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

shortMonth has its ZENLOCALIZE datatype parameter set to 1 (true). This makes
it easy to localize the 3–character version of the month name into other languages.

shortMonth

140 Using Zen Components

Zen Controls

DescriptionAttribute

If true, this component shows the ordinal month number along with month names in
the month drop-down list. In the example above, showMonthNumber is false. The
default is false.

showMonthNumber has the underlying data type %ZEN.Datatype.boolean. See “Zen
Attribute Data Types.”

showMonthNumber has its ZENLOCALIZE datatype parameter set to 1 (true). This
makes it easy to localize the longer text for the month selection into other languages.

showMonthNumber

5.8.3 <dateText>

The <dateText> control is essentially a combo box. It displays a text box as well as a button that, when pressed, displays
a popup calendar. When the user enters a value into the text area of this control, Zen either converts this value into the
closest matching date value, or it displays an invalid date message. As a comparison, see the <dateSelect> component.

A Zen <dateText> component looks like this:

<dateText> has the following attributes:

DescriptionAttribute

<dateText> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.” On the client, the <dateText>
value is a string in the format YYYY-MM-DD. On the server, the <dateText> value
has the %Timestamp datatype. However, you can change what the user sees in the
<dateText> display; see the format and separator attributes.

Control component
attributes

Comma-separated list of day abbreviations to show at the top of the calendar. If you
do not provide a dayList value, the default is:

$$$Text("S,M,T,W,T,F,S")

The dayList attribute has its ZENLOCALIZE datatype parameter set to 1 (true). This
makes it easy to localize its text into other languages, and permits use of the $$$Text
macros when you assign values to this property from client-side or server-side code.

Any localized dayList string must remain a comma-separated list.

dayList

Using Zen Components 141

Dates

DescriptionAttribute

Provides a default value for the time portion of the <dateText> control value. The
defaultTime is used as the initial time displayed in the popup calendar if the following
conditions are met:

• The property showTime is true.

• The value supplied does not include a time portion.

• defaultTime is a valid time string.

The calendar itself defaults to a time value of "01:00:00" when a time is not specified
or when the date value passed is invalid.

defaultTime

Number (Sunday=0, Saturday=6) that specifies which day of the week is displayed
as the starting day of the week. The default is 0 (Sunday).

firstDayOfWeek

String that specifies the display format for this component. The internal value of this
control is always YYYY-MM-DD, but you can change what the user sees.The default
is "YMD". Possible values are:

• "YDM" — Year, Day, Month

• "MDY" — Month, Day, Year

• "DMY" — Day, Month, Year

The value supplied for format can be a literal string, or it can contain a Zen #()#
runtime expression.

format

Message displayed by control when the date entered by the user fails validation.
The default is:

$$$Text("Invalid Date","%ZEN");

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

invalidDateMessage

String in the format YYYY-MM-DD (datatype %Timestamp on the server). If specified,
this is the latest date the <dateText> accepts as its value. The maxDate value does
not affect which years are displayed by the calendar unless endYear is omitted.

The value supplied for maxDate can be a literal string, or it can contain a Zen #()#
runtime expression.

maxDate

String in the format YYYY-MM-DD (datatype %Timestamp on the server). If specified,
this is the earliest date the <dateText> accepts as its value.The minDate value does
not affect which years are displayed by the calendar unless startYear is omitted.

The value supplied for minDate can be a literal string, or it can contain a Zen #()#
runtime expression.

minDate

142 Using Zen Components

Zen Controls

DescriptionAttribute

Comma-separated list of month names to display in the list of months that the user
can choose from the calendar. If you do not provide a monthList value, the default
is:

$$$Text("January,February,March,April,May,June,July,August,September,October,November,December")

monthList has its ZENLOCALIZE datatype parameter set to 1 (true). This makes it
easy to localize its text into other languages, and permits use of the $$$Text macros
when you assign values to this property from client-side or server-side code.

Any localized monthList string must remain a comma-separated list.

monthList

Separator character to use between date segments. The default is the hyphen
character (-). if the user enters the forward slash (/) instead of a hyphen, the <date-
Text> component accepts it, but the hyphen is the expected format.

As an alternative to the default hyphen, you can use the separator attribute to
specify some other character as the date separator.

If time is also displayed, the time portion of the date is always separated from the
data portion using the colon (:).

separator

If true, this component displays a text entry field below the main calendar. In the
example above, showTime is true. The default is false.

The user can enter a time of day in the showTime field using the 24–hour time format
HH:MM:SS. When the form is submitted, the <calendar> value accepts both date
and time values in the following ODBC/JDBC timestamp format: YYYY-MM-DD
HH:MM:SS

showTime has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showTime

HTML width of the text input area for this control. The default is 15.size

Caption text for the showTime field. If you do not provide a timeCaption value, the
default is:

$$$Text("Time:")

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

timeCaption

You can access the value property of a dateText control programmatically. When you
do this, it bypasses the date matching function that Zen provides when the user sets
the date by typing text in the input field.

value

Using Zen Components 143

Dates

5.9 Grid

5.9.1 <dynaGrid>

The <dynaGrid> control displays a two-dimensional, editable grid, similar to a spreadsheet. When the user clicks in a cell,
an edit control appears in the cell and the user can edit the cell contents. The user presses Enter to save changes. A <dynaGrid>
with a newly edited cell looks like this:

You can create a <dynaGrid> in one of the following ways:

• Specify a data set, rows, and columns. See the section “<dynaGrid> Data Set.”

• Associate the <dynaGrid> with a data controller. See the chapter “Model View Controller.”

5.9.1.1 <dynaGrid> Data Set

The data displayed within the <dynaGrid> is supplied by a %ZEN.Auxiliary.dataSet object. dataSet is a special data container
object that is used to define one-, two-, or three-dimensional data in a form that can be easily transported between the server
and client.

When a <dynaGrid> object is first created, it automatically creates a two–dimensional dataSet object with the number of
rows (dimension 1) and columns (dimension 2) specified by the number of <gridRow> and <gridColumn> entries within
the <dynaGrid> definition in XData Contents. The following example specifies four rows and four columns for the initial
dataSet object:

<dynaGrid id="myGrid" OnCreateDataSet="CreateDS">
 <gridColumn width="100"/>
 <gridColumn width="100"/>
 <gridColumn width="100"/>
 <gridColumn width="100"/>
 <gridRow />
 <gridRow />
 <gridRow />
 <gridRow readOnly="true" />
</dynaGrid>

An application can change the size and contents of the initial dataSet object by defining a server-side callback method.
You can specify the name of this callback method using the <dynaGrid> OnCreateDataSet attribute, as in the example
above. The OnCreateDataSet value must be the name of a server-side callback method defined within the page class that
contains the <dynaGrid> control. In the above example, this method name is CreateDS. The OnCreateDataSet callback
method is called once, when the <dynaGrid> object is first created on the server and before the <dynaGrid> is first displayed.

The signature of the OnCreateDataSet callback method must look like this:

Method CreateDS(
 pGrid As %ZEN.Component.dynaGrid,
 pDataSet As %ZEN.Auxiliary.dataSet) As %Status
{ }

Where:

• pGrid is the dynaGrid object that is invoking the callback.

• pDataSet is the dataSet object associated with the dynaGrid object.

144 Using Zen Components

Zen Controls

• The method returns a %Status value indicating success or failure.

Typically a OnCreateDataSet callback method looks like this:

Method CreateDS(
 pGrid As %ZEN.Component.dynaGrid,
 pDataSet As %ZEN.Auxiliary.dataSet) As %Status
{
 // make sure dataSet is cleared out
 Do pDataSet.%Clear()

 // fill in contents of dataSet
 // This is a 2-D data structure

 // row labels (dimension 1)
 Do pDataSet.%SetLabel("Boston",1,1)
 Do pDataSet.%SetLabel("New York",2,1)
 Do pDataSet.%SetLabel("Chicago",3,1)
 Do pDataSet.%SetLabel("Miami",4,1)

 // column labels (dimension 2)
 Do pDataSet.%SetLabel("Cars",1,2)
 Do pDataSet.%SetLabel("Trucks",2,2)
 Do pDataSet.%SetLabel("Trains",3,2)
 Do pDataSet.%SetLabel("Planes",4,2)

 // get size of dataSet
 Set rows = pDataSet.%GetDimSize(1)
 Set cols = pDataSet.%GetDimSize(2)

 // fill in initial data values
 For r=1:1:rows {
 For c=1:1:cols {
 Set value = 0
 Do pDataSet.%SetValue(value,r,c)
 }
 }

 Quit $$$OK
}

The above example defines a two–dimensional dataSet object with four rows and four columns. It supplies labels for the
rows and columns and then loops over the cells to provide initial values for the cells.

If the OnCreateDataSet callback changes the dataSet object to contain three dimensions, this gives the <dynaGrid> the
ability to move among “pages” of data. Each page is displayed as a two-dimensional grid that represents the currently vis-
ible page. The following figure illustrates this data model. For details regarding the label attributes shown in the figure, see
the “<gridRow>,” “<gridColumn>,” and “<dynaGrid> Attributes” sections in this chapter.

Using Zen Components 145

Grid

Figure 5–1: Data Model for the Dynamic Grid Control

If there are pages in the <dynaGrid>, the gridLabel cell provides navigation information as follows. Click on the << symbol
for the previous page or the >> symbol for the next page. The number indicates which page you are currently viewing:

5.9.1.2 <dynaGrid> Methods

Since the dataSet object is designed to work on either the server or the client, it provides local APIs for both environments.
The following table lists the server-side (ObjectScript) methods. For further details, and to see the list of client-side
(JavaScript) methods, see the class documentation for %ZEN.Auxiliary.dataSet.

Note: When you work with %ZEN.Component.dynaGrid programmatically, on the server side you can access the dataSet

object via the dataSet property of the dynaGrid object. On the client, you cannot access the dataSet directly; you
must the dynaGrid object’s getDataSet method to get the dataSet object.

DescriptionServer Method

Clear the contents of the dataSet (set every cell to "") without changing its size or
number of dimensions.

%Clear

Gets the contents of the dataSet as a multidimensional array, subscripted by the
1–based dimensional addresses of the cells (row, column, page).This array is passed
to %GetArray by reference.

%GetArray

Returns the number of dimensions within the dataSet.%GetDimensions

146 Using Zen Components

Zen Controls

DescriptionServer Method

Receives a 1–based number identifying a dimension (row, column, page) and returns
the number of cells in that dimension.

%GetDimSize

Receives two numbers:

• 1–based number identifying a cell position within a dimension

• 1–based number identifying the dimension (row, column, page)

%GetLabel returns the value of the label at the specified position.

%GetLabel

Receives up to three 1–based numbers identifying a specific cell in the grid (row,
column, page). Gets the value of the cell at that position.

%GetValue

Receives up to four arguments:

• A multidimensional array, passed by reference, and subscripted by the 1–based
dimensional addresses of the cells (row, column, page). The local array must
have the same dimensionality as the dataSet and must have the correct number
and type of subscripts.

• Up to three 1–based numbers identifying the number of cells in each dimension
of the grid (row, column, page).

%SetArray copies the contents of the array into the dataSet.

%SetArray

Sets the number of dimensions within the dataSet to 1, 2, or 3.%SetDimensions

Receives three arguments:

• String that specifies a label.

• 1–based number identifying a cell position within a dimension

• 1–based number identifying the dimension (row, column, page)

%SetLabel copies the string to the label at the specified position.

%SetLabel

Receives up to four arguments:

• String that specifies a value.

• Up to three 1–based numbers identifying a specific cell in the grid (row, column,
page).

%SetValue sets the value of the cell at the indicated position. %SetValue also
updates the dimension size, if needed.

%SetValue

5.9.1.3 <gridRow>

A <dynaGrid> with dimensions greater than zero must contain one or more <gridRow> and <gridColumn> elements to
define the initial dimensions of the grid. <gridRow> defines dimension 1 of a one-, two-, or three-dimensional <dynaGrid>.

The <gridRow> element is the XML projection of the %ZEN.Auxiliary.gridRow class. <gridRow> supports the attributes
described in the following table.

Using Zen Components 147

Grid

DescriptionAttribute

HTML height value to apply to this row, such as 0.3in or 3%.height

If true, this row is not displayed. The default is false.

hidden has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

hidden

Default text label for the row.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

label

If true, cells in this row are read-only; the user cannot edit them. The default is false.

readOnly has the underlying data type %ZEN.Datatype.boolean. See Zen Attribute Data
Types.

readOnly

Logical name of the row.rowName

CSS style to apply to cells in this row, for example:

color: red;

If there is a column style and a row style active for a given cell, the row style is applied
before the column style. This means the column style might override the row style.

style

Help text displayed when mouse hovers over this row. If there is a row title and a
column title active for a given cell, the column title overrides the row title.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

When you work with %ZEN.Component.dynaGrid programmatically, you work with <gridRow> elements as members of
the dynaGrid property called rows. This is a list collection of %ZEN.Auxiliary.gridRow objects. Each <gridRow> provided
in the original <dynaGrid> definition in XData Contents becomes a member of the rows collection, associated with its
ordinal position in the <dynaGrid>: 1, 2, 3, etc.

5.9.1.4 <gridColumn>

A <dynaGrid> with dimensions greater than zero must contain one or more <gridRow> and <gridColumn> elements to
define the initial dimensions of the grid. <gridColumn> defines dimension 2 of a two- or three-dimensional <dynaGrid>.

The <gridColumn> element is the XML projection of the %ZEN.Auxiliary.gridColumn class. <gridColumn> supports the
attributes described in the following table.

DescriptionAttribute

Logical name of the column.columnName

If true, this column is not displayed. The default is false.

hidden has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

hidden

148 Using Zen Components

Zen Controls

DescriptionAttribute

Default text label for the column.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

label

If true, cells in this column are read-only; the user cannot edit them. The default is
false.

readOnly has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

readOnly

CSS style to apply to cells in this column, for example:

color: red;

If there is a row style and a column style active for a given cell, the row style is applied
before the column style. This means the column style might override the row style.

style

Help text displayed when mouse hovers over this column. If there is a row title and
a column title active for a given cell, the column title overrides the row title.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

HTML width value to apply to this column, such as 0.3in or 3%.width

When you work with %ZEN.Component.dynaGrid programmatically, you work with <gridColumn> elements as members
of the dynaGrid property called columns. This is a list collection of %ZEN.Auxiliary.gridColumn objects. Each <gridColumn>
provided in the original <dynaGrid> definition in XData Contents becomes a member of the columns collection, associated
with its ordinal position in the <dynaGrid>: 1, 2, 3, etc.

5.9.1.5 <dynaGrid> Attributes

When you place a <dynaGrid> element within an XData Contents block, you can assign it the following attributes. When
working with the <dynaGrid> programmatically, these attributes are available as properties of the dynaGrid object.

DescriptionAttribute

<dynaGrid> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.”

Unlike most other controls, <dynaGrid> does not have a single value. Also, the
<dynaGrid> width plays a special role in laying out the grid. For details, see the
“<dynaGrid> Layout” section following this table.

Control component
attributes

Default width for columns that do not supply a width.You must specify columnWidth
in pixels, for example 75px. The default is 100px.

If no columnWidth is set and a <gridColumn> does not supply a width, the width of
the column is calculated by dividing the remaining width of the grid amongst the
columns with unspecified widths.

For further details, see the “<dynaGrid> Layout” section following this table.

columnWidth

Using Zen Components 149

Grid

DescriptionAttribute

If this <dynaGrid> is associated with a data controller, the controllerId attribute
identifies the controller that provides the data for this <dynaGrid>. The controllerId
value must match the id value provided for that <dataController>. See the chapter
“Model View Controller. ”

controllerId

The 1–based column number of the currently selected cell in the grid. The default
(until the user makes selections) is 1.

currColumn

The 1–based page number of the data currently displayed in the grid. If the data set
associated with this grid contains three–dimensional data, currPage indicates which
page (along the third dimension) is currently displayed. The default is 1.

currPage

The 1–based row number of the currently selected cell in the grid. The default (until
the user makes selections) is 1.

currRow

CSS class to apply to the HTML table that displays the grid.gridClass

Caption to display in the upper-left corner cell.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

gridLabel

If true, the contents of cells within the grid do not word wrap. If false, they do. The
default is true.

nowrap has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

nowrap

The onchangecell event handler for the <dynaGrid>. Zen invokes this handler
whenever the user changes the contents of a cell. See “Zen Component Event
Handlers.”

If you omit the onchangecell attribute, the default behavior is to assign the user-
entered value to the cell.

onchangecell

Client-side JavaScript expression that is executed whenever the user clicks on a
column header cell (at the top of a column).

onclickcolumn

Client-side JavaScript expression that is executed whenever the user clicks on a
row header cell (at the left of a row).

onclickrow

The OnCreateDataSet value is the name of a server-side callback method that
provides the data set associated with this <dynaGrid>. For details, see the section
“<dynaGrid> Data Set.”

OnCreateDataSet

Client-side JavaScript expression that is executed whenever the user double-clicks
on the <dynaGrid>.

ondblclick

Client-side JavaScript expression that is executed when the <dynaGrid> is about to
draw a cell. If this event handler returns a value, this value is used as DHTML to
render the cell contents. This convention provides a way to display custom cell
formatting within a <dynaGrid>.

ondrawcell

150 Using Zen Components

Zen Controls

DescriptionAttribute

Client-side JavaScript expression that is executed when the <dynaGrid> is ready to
accept user input in one of its cells. If the oneditcell event handler returns a value,
this value is used as DHTML to render the editor used for the cell. oneditcell provides
a way to display a custom cell editor within a <dynaGrid>. The default behavior is to
place an HTML input control over that region of the grid to permit the user to enter
data. There is no need to override this default, but you may.

oneditcell

The onnotifyView event handler for the <dynaGrid>. See “Zen Component Event
Handlers.” This attribute applies if the <dynaGrid> is associated with a data controller.
Zen invokes this handler each time the data controller connected to this <dynaGrid>
raises an event. See the chapter “Model View Controller. ”

onnotifyView

Client-side JavaScript expression that is executed whenever the user navigates to
a new cell. The current cell row and column numbers are updated before the
onselectcell call is made. The event handler is passed two variables, row and col,
which contain the 1-based row and column number of the current cell.

onselectcell

rowLabelWidth applies to the column of row labels.You must specify rowLabelWidth
in pixels, for example 75px. The default is 100px.

For further details, see the “<dynaGrid> Layout” section following this table.

rowLabelWidth

If true, Zen uses the JavaScript scrollIntoView function to try and make visible the
currently selected item within the grid.

scrollIntoView has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

scrollIntoView

If true, column labels are displayed in a row along the top of the grid. The default is
true.

showColumnLabels has the underlying data type %ZEN.Datatype.boolean. See “Zen
Attribute Data Types.”

showColumnLabels

If true, row labels are displayed in a column along the left side of the grid.The default
is true.

showRowLabels has the underlying data type %ZEN.Datatype.boolean. See “Zen
Attribute Data Types.”

showRowLabels

5.9.1.6 <dynaGrid> Layout

If the default layout of the <dynaGrid> does not suit your needs, you can adjust it. Laying out a <dynaGrid> involves many
factors. These factors interact in ways that can counterbalance each other and produce surprising results. This section
explains the underlying layout scheme for <dynaGrid> and the factors that you can control to produce the desired layout
on the page.

The dimensions that you specify for the <dynaGrid> reserve space on the page in which to view the contents of the grid.
The contents of the grid consist of the <dynaGrid> rows and columns. In practice, the contents may be larger, smaller, or
the same size as the viewing space that you have allowed. If they are larger or smaller, the viewing space may resize itself
to fit them. Alternatively, the viewing space may remain static and therefore “crop” or “mat” the grid contents. These
options are under your control.

The primary interaction in <dynaGrid> layout is between the following two factors:

Using Zen Components 151

Grid

• The width specified for the <dynaGrid> reserves a viewing space on the page.

• The widths specified for columns within the <dynaGrid> lay out the grid contents relative to the viewing space.

Space Reserved to Display the <dynaGrid>
The dimensions that you specify using <dynaGrid> attributes specify the size of the enclosing HTML <div> that Zen gen-
erates from your <dynaGrid> specification. The size of this <div> is the size of the viewing space for the <dynaGrid>. You
can specify this size by providing a width attribute for the <dynaGrid>, specifying a width attribute in the related CSS
section, or providing a width value in an enclosingStyle attribute for the <dynaGrid>.

The resulting <dynaGrid> layout depends on whether the width is set to "auto" or to some fixed width. There is one
behavior for "auto" and several behaviors for fixed widths depending on how the widths are set. If you do not set a width
for the <dynaGrid>, the width defaults to "auto".

The layout variations for <dynaGrid> width settings are as follows:

• "auto" — The viewing space expands or shrinks to match the width of the grid contents.

• Fixed width — There are three cases:

– If the <dynaGrid> contents turn out to be larger than the fixed viewing space, the viewing space size does not
expand to fit the contents. Zen adds scroll bars to grant access to hidden parts of the grid.

– If the <dynaGrid> contents turn out to be smaller than the fixed viewing space, the viewing space size does not
shrink to fit the contents. Zen leaves any excess space blank.

– If all <gridColumn> width values are specified as percentages, the columns expand or shrink proportionally, to
exactly match the size of the viewing space.

Width of <dynaGrid> Data Columns
You can control the layout of <dynaGrid> contents by specifying column widths using the <dynaGrid> attributes
rowLabelWidth and columnWidth and the <gridColumn> attribute width. The following sections explain how the values
you choose for these attributes affect the layout results.

<dynaGrid> rowLabelWidth
rowLabelWidth applies to the column of row labels that appears as the leftmost column in the grid. The column of row
labels acts as a vertical header for the grid, and so it is not treated like <gridColumn> elements, which contain grid data.

Unlike the <gridColumn> width attribute, the <dynaGrid> rowLabelWidth does not support percentage values. You must
specify rowLabelWidth in pixels, for example 75px. The default is 100px.

<dynaGrid> columnWidth
columnWidth gives a default width for columns that do not supply a width. The <dynaGrid> columnWidth does not support
percentage values. You must specify columnWidth in pixels, for example 75px. The default is 100px.

columnWidth is essential to the default calculation when a <dynaGrid> uses the default width ("auto") and specifies all of
its <gridColumn> width values as percentages. In this case, Zen computes a display width for the data columns using
columnWidth as described in the “<gridColumn> width” section.

The total width of a <dynaGrid> is the total width of all data columns plus whatever number of pixels was specified for
rowLabelWidth, plus the space needed to render any specified margins, borders or cell padding. The <dynaGrid> viewing
space sizes itself to display the entire grid.

<gridColumn> width
The <gridColumn> width attribute determines the width of individual data columns and may be specified in pixels (px) or
percentages (%). Pixels and percentages may be freely mixed among the <gridColumn> elements in a given <dynaGrid>
specification, with the following results:

152 Using Zen Components

Zen Controls

• A column width in pixels is always respected.

• If some columns are specified in percentages and others in pixels, Zen uses the size of the pixel-based columns to
calculate the width of the remaining columns.

• If all column widths are given as percentages and the <dynaGrid> has been given a fixed size, the grid performs a
scale-to-fit operation such that the grid, any associate headers, borders, and column data exactly fill the defined viewing
space.

If all the column widths are given as percentages and the <dynaGrid> has "auto" size or no size specified at all, the narrowest
column is assigned the width of the <dynaGrid> columnWidth, and all other columns are sized with respect to the size of
this column, as follows:

1. Find the <gridColumn> with the smallest percentage value. This is the narrowest column.

2. Consult the <dynaGrid> columnWidth value, assign this number of pixels as the width of the narrowest column, then
use this result to calculate the number of pixels that corresponds to 1%.

For example, if the smallest <gridColumn> width is 5% and the <dynaGrid> columnWidth is 75px, Zen calculates that
there are 15 pixels in every 1%, for a total width of 150 pixels across all data columns in this grid.

3. Convert the percentage values for all other data columns into numbers of pixels.

5.9.2 <dataGrid>

<dataGrid> implements a component for viewing and editing tabular data. This is an HTML5 component. It works correctly
only on HTML5 compliant browsers.

<dataGrid> has the following attributes:

DescriptionAttribute

<dataGrid> has the same general-purpose attributes as any Zen control. For
descriptions, see the section “Control Attributes.”

Control component
attributes

If true, the user can use the cursor to resize columns. The default value is true.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

canResizeColumns

Specifies the background color of cells when the cursor hovers over them.The default
value is #EEEEEE. See “Data Grid Layout.”

cellHoverColor

A string containing comma separated values. Each value in the string specifies the
1-based row number of a row in which the row-selector check box is selected. If all
rows are checked, the value is set to "all".

The property showRowSelector must be “ true” for the user to be able to see and
use the check boxes.

checkedRows

Additional CSS style to apply to column headers in this grid. The property
showColumnLabels controls visibility of column headers.You can use
columnHeaderStyle to set a height for column headers that is independent of the
row height set using rowHeight or rowHeaderStyle.

columnHeaderStyle

Using Zen Components 153

Grid

DescriptionAttribute

Specifies how parent column labels with multiple child labels are displayed. If true,
then one parent label is displayed for each set of children. If false, then the parent
row label is repeated for each child. The default value is false.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

columnLabelSpan

Default width, in pixels, for columns that do not supply a width.

If no columnWidth is set and a column does not supply a width, the width of the col-
umn is calculated by dividing the remaining width of the grid amongst the columns
with unspecified widths.

columnWidth

The background color to apply to the currently selected cell. The default value is
#D0D0FF. See “Data Grid Layout.”

currCellBackground

The foreground color to apply to the currently selected cell. The default value is
#000000. See “Data Grid Layout.”

currCellColor

The 1–based column number of the currently selected cell in the grid. The default,
until the user makes selections, is 1.

currColumn

The 1–based page number of the data page currently displayed in the grid. If the
grid displays data on multiple pages, currPage indicates which page is currently
displayed. The default value is 1. Use the getCurrPage method to view the value of
currPage. The attribute pageSize specifies the number of rows on each page. See
the section on “Paging.” .

currPage

The 1–based row number of the currently selected cell in the grid. The default, until
the user makes selections, is 1.

currRow

The background color to apply to even rows when the attribute showZebra is true.
The default value is "#F8F8F8". See “Data Grid Layout.”

evenRowBackground

The foreground color to apply to even rows when the attribute showZebra is true.
The default value is #000000. See “Data Grid Layout.”

evenRowColor

If supplied, this is a key used to filter results that are already on the client. See “Fil-
tering.”

filterKey

The default format to apply to cells in this grid. This is a DeepSee format string: e.g.,
"###.##". Row and column-level formatting overrides this format.

format

An optional CSS style to apply to the grid status area. See “Data Grid Layout.”gridStatusStyle

An optional title to display along top of grid.gridTitle

An optional CSS style to apply to grid title. See “Data Grid Layout.”gridTitleStyle

If true, users can select a range of cells in the grid. The default value is false.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

multiSelect

The background color to apply to odd rows when the attribute showZebra is true.
The default value is #FFFFFF. See “Data Grid Layout.”

oddRowBackground

154 Using Zen Components

Zen Controls

DescriptionAttribute

The foreground color to apply to odd rows when the attribute showZebra is true.The
default value is #000000. See “Data Grid Layout.”

oddRowColor

The number or rows displayed on each page when the grid displays data on multiple
pages. Use the getPageSize method to view the value of pageSize. The default
value is 0, which displays all rows on a single page. See the section on “Paging.”

pageSize

Specifies whether data paging should occur on the server or on the client.The default
value is "client".

pagingMode

An additional CSS style to apply to row headers in this grid. The property
showRowLabels controls visibility of row headers. If this property is used to set height,
and rowHeight is also set, the grid uses the larger of the two values.

rowHeaderStyle

The default height, in pixels, used for rows that do not supply a height. If not defined,
then the height is calculated. If height is also set with rowHeaderStyle, the grid uses
the larger of the two values.

rowHeight

Specifies how parent row labels with multiple child labels are displayed. If true, then
one parent label is displayed for each set of children. If false, then the parent row
label is repeated for each child. The default value is true.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

rowLabelSpan

Specifies the width of the column of row labels.The number you provide is interpreted
as a number of pixels. If you do not provide a value, the width is calculated.

rowLabelWidth

This specifies the current selected range of cells as a comma-separated list of inte-
gers. The list is of the form: startRow, startCol, endRow, endCol. All cells numbers
are 1-based. If the range is equal to "", then no cells are selected. This property is
used only if the attribute multiSelect is true.

selectedRange

Specifies how selection works within the grid. If the value is "rows", then the user
selects entire rows at a time. If the value is "cells", then the user can select and move
between individual cells. The default value is "rows".

selectMode

If true, column labels are displayed in a row along the top of the grid. The default is
true. See “Data Grid Layout.”

The default column labels are the column names as provided by the data source.
You can use the caption property of <columnDescriptor> to specify column labels.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

showColumnLabels

If true, row labels are displayed in a column along the left side of the grid.The default
is true. See “Data Grid Layout.”

The default row labels are 1–based row numbers assigned to the rows.You can use
the caption property of <rowDescriptor> to specify row labels.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

showRowLabels

Using Zen Components 155

Grid

DescriptionAttribute

If true, display a check box in each row to allow selection of the row. If
showColumnLabels is also true, a check box in the left-most column of the grid lets
the user select or de-select all rows at once. The default value is false. See “Data
Grid Layout.”

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

showRowSelector

If true, display the grid with “zebra striping”, alternating colors applied to rows. The
default value is true. See “Data Grid Layout.”

The attributes oddRowBackground and evenRowBackground specify the background
colors used, and oddRowColor and evenRowColor specify the foreground colors
used.

Has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data Types.”

showZebra

For sortable tables, this attribute specifies the 1-based column number of the column
used for sorting results.The direction of the sort is specified by sortOrder.The default
value is 0, which means no column is sorted. See “Sorting.”

sortColumn

Indicates where columns are sorted. Possible values are "client" or "server". The
default value is “client”. As of this release, server-side sorting is not implemented.

sortMode

For sortable tables, this attribute specifies the sort order for values in the column
specified by sortColumn. Possible values are: "" (unsorted), "asc" (ascending), or
"desc" (descending). The default value is unsorted. See “Sorting.”

sortOrder

An additional style to apply to cells in this grid. This is applied before any row and
column-level styles.

style

Optional descriptor for the summary row.summaryRow

Setting this property to 0 disables code execution when loading and rendering the
grid, which is useful when you want to enter the equals sign (=) and not a formula
in a particular column. This is a grid-wide setting.

useEngine

The 1-based column number of the column that supplies the value for a row in the
table. The default value is 1.

valueColumn

The following figure shows the major components of a <dataGrid>. In addition to the labeled items, the figure illustrates
odd and even color and background color.

156 Using Zen Components

Zen Controls

Figure 5–2: Data Grid Layout

The following attributes specify event handlers. See “Zen Component Event Handlers.”

Using Zen Components 157

Grid

DescriptionAttribute

158 Using Zen Components

Zen Controls

DescriptionAttribute

A client-side JavaScript expression that is executed when the user executes an
action within a cell, such as clicking on a column-defined checkbox, button, or link.

onaction

Generally this expression invokes a client-side JavaScript method defined in the
page class. This method becomes the “onaction event handler” for the grid. The
current cell row and column number are updated before this call is made. The event
handler is passed 3 variables, row, name, and value, which contain the row number
of the current cell (1-based), the logical name of the column, and the current value
of the action control, if applicable.

The onchangecell event handler for the grid. Zen invokes this handler whenever the
user finishes editing a cell value. See “Zen Component Event Handlers.” The current

onchangecell

cell row and column number is updated before this call is made. The event handler
is passed the new cell value. It should return the value to be placed into the cell or
null to cancel the edit.

The ondrawcell event handler for the grid. Zen invokes this handler whenever a cell
is about to be drawn. See “Zen Component Event Handlers.” The event handler is

ondrawcell

passed value, row, and col (1-based). If this event handler returns a value, then it is
used to render the cell contents. The return value of this event handler is either null,
in which case the default rendering is used for the cell, or an object with any of the
following properties:

• content - HTML to display within the cell.

• align - horizontal alignment for the cell.

• style - CSS style for the cell.

• format - format string for the cell (ignored if content is supplied).

• image - image for the cell (ignored if content is supplied).

• type - type for the cell (ignored if content is supplied).

• value - value for the cell (ignored if content is supplied).

The onfiltercell event handler for the grid. Zen invokes this handler when the user
enters a new filterKey.The event handler is passed an object, info, with the properties

onfiltercell

row, col, value, and key. The event handler should return true if the row containing
the cell matches the filter, or false otherwise.

The ongetlookupdata event handler for the grid. It returns a JavaScript array of data
to display within the popup for a lookup column.The returned value can be any array
of object or literal values.

ongetlookupdata

The ongetstatus event handler for the grid. If defined, this event handler returns the
HTML that is displayed in the status area of this grid. The status area is located at
the bottom of grid.

ongetstatus

The ongettitle event handler for the grid. If defined, this event handler returns the
HTML that is displayed in the title area of this grid.The title area is located at the top
of grid. This supercedes the gridTitle property if defined.

ongettitle

Using Zen Components 159

Grid

DescriptionAttribute

The onheaderclick event handler for the grid. If defined, this event is fired when the
user clicks on a row or column header. The variable which indicates which header
is clicked: "row" or "column". The variable index indicates the ordinal number of the
header (1-based).

onheaderclick

The client-side JavaScript expression that is executed whenever the user navigates
to a new cell. The current cell row and column numbers are updated before the
onselectcell call is made. The event handler is passed two variables, row and col,
which contain the 1-based row and column number of the current cell. See “Selecting
Rows and Cells.”

onselectcell

The onselectrow event handler for the grid. If defined, this event is fired when the
user toggles any of the visible row selector check boxes in the grid. A single variable,
range, is passed to the event handler.The range is a string enumerating the currently
checked rows. This variable has two special values: "" indicating that no rows are
currently checked, and the reserved value "all" indicating that all rows are checked.
For values between these extremes, the range parameter is a CSV string listing the
(1-based) indices of the currently checked rows. Because this event is linked to the
toggling of the row selectors, it only fires if showRowSelector is true. See “Selecting
Rows and Cells.”

onselectrow

5.9.2.1 Creating a Data Grid

You can create an empty <dataGrid> control by simply adding the component to the Zen page:

<dataGrid id="grid"/>

You can control the size of the <dataGrid> by putting CSS styles in the XData Style section of the page. For example, if
the grid id is 'grid':

#grid
 {
 width: 600px;
 height: 600px;
 }

You can also control the size of the grid using JavaScript by setting the width and height of the grid's enclosing div and
then invoking the grid's adjustSizes method to lay out the internal parts of the grid:

zen('grid').adjustSizes();

5.9.2.2 Connecting the Grid to Data

The <dataGrid> is a data view component and can be connected to an <altJSONProvider>. See the section “Zen JSON
Components” in the book Developing Zen Applications. For example, if you have an <altJSONProvider> that supplies an
array of objects:

<altJSONProvider id="json" OnGetArray="GetData" />

You can connect the <dataGrid> to this <altJSONProvider> by setting the controllerId:

<dataGrid id="grid" controllerId="json" />

The grid now displays the data served by the <altJSONProvider>. In this case, all the properties provided by the <altJSON-
Provider> are displayed as columns and there is one row for every object (data series) supplied by the provider.

160 Using Zen Components

Zen Controls

5.9.2.3 Filtering

<dataGrid> supports client-side filtering of the grid contents. Filtering limits the data actually displayed by applying a fil-
tering function to the client-side data before displaying it in the grid. You can override the default filtering behavior by
overriding the onfiltercell event handler.

5.9.2.4 Searching

<dataGrid> supports server-side searching. The search is performed by changing the parameters used to fetch the data
displayed in the grid. Typically this is done by reloading the contents of an <altJSONProvider>.

5.9.2.5 Sorting

A <dataGrid> supports column-wise sorting on the client. The attribute sortColumn specifies the column used for sorting.
The attribute sortOrder determines the order in which the column should be sorted. If showColumnLabels is true, the column
label for the sorted column displays an arrow that indicates the direction of the sort, as illustrated in the following figures.

Figure 5–3: Ascending and Descending Sort Order

The attribute sortMode can have a value of either “client” or “server,” indicating client-side or server-side sorting. The
default value is “client.” As of this release, server-side sorting is not implemented.

5.9.2.6 Paging

The <dataGrid> component supports paging. Each page of the grid displays a fixed set of rows. Paging can be done on
either the client or the server. If paging is done on the client, the grid loads all the rows and the user pages through them
on the client. If paging is done on the server, the grid loads one page at a time from the server.

To use client-side paging:

• Set the <dataGrid> pagingMode attribute to "client":

<dataGrid pagingMode="client" />

• Set the <dataGrid> pageSize attribute to the number of rows to show per page:

<dataGrid="10"/>

If the number of rows displayed by the grid is greater than the number specified by pageSize, a set of paging buttons is
displayed on the bottom of the grid. See “Data Grid Layout.”

To use server-side paging:

• Set the <dataGrid> pagingMode attribute to "server":

<dataGrid pagingMode="server" />

Using Zen Components 161

Grid

• The <dataGrid> pageSize attribute is ignored. Instead, set the pageSize attribute of the <altJSONSQLProvider>.

5.9.2.7 Selecting Rows and Cells

The properties onselectcell and onselectrow let you define an event handlers that run when the end user selects a row or
cell in the <dataGrid>. For example, a Zen page containing an <altJSONProvider> and <dataGrid> as follows:

<page xmlns="http://www.intersystems.com/zen">
 <altJSONProvider id="json" OnGetArray="GetData" />
 <dataGrid id="grid"
 controllerId="json"
 showRowSelector="true"
 onselectrow="zenPage.rowSelected(range);" />
</page>

And a rowSelected callback defined as follows:

ClientMethod rowSelected(range) [Language = javascript]
{
 alert("Selected rows are: "+range);
}

Pops up an alert message showing the currently selected rows. Similarly, the following page:

<page xmlns="http://www.intersystems.com/zen">
 <altJSONProvider id="json" OnGetArray="GetData" />
 <dataGrid id="grid"
 controllerId="json"
 multiSelect="true"
 selectMode="cells"
 onselectcell="zenPage.cellSelected(row, col);" />
</page>

And a cellSelected callback defined as follows:

ClientMethod cellSelected(row, col) [Language = javascript]
{
 alert("Selected cell is: "+ row + ", " + col);
 var rng = zen('grid').selectedRange
 alert("Selected range is: " + rng);
}

5.9.2.8 Column Descriptors

You can exercise more direct control over the contents of the grid by defining one or more <columnDescriptor> objects.
If the grid contains <columnDescriptor> objects, it no longer automatically displays all of the data supplied by its data
controller. You must provide a <columnDescriptor> for each column you want in the grid. The value property specifies
the data shown in each column.

<dataGrid id="grid" controllerId="json">
 <columnDescriptor value="100"/>
 <columnDescriptor value="=[@Name]"/>
 <columnDescriptor value="=[@City]"/>
</dataGrid>

The grid in this example shows 3 columns. The first column displays the value "100" in each cell. The second column
displays the value of the Name property supplied by the altJSONProvider. The "=" character at the start indicates that this
is an expression (or formula). The [] brackets enclose an identifier. The identifier "@Name" specifies the Name property
supplied by the data controller.

<columnDescriptor> has the following attributes:

DescriptionAttribute

Optional horizontal alignment to apply to this column. Use this to control alignment
rather than the style property.

align

162 Using Zen Components

Zen Controls

DescriptionAttribute

Optional caption to apply to this element. It appears in the grid as the column label
text.

caption

Optional child descriptors for this column.columns

Optional format to apply to this element.format

Optional horizontal alignment to apply to the header for this column. If not defined,
then the value specified in align is used. Use this to control alignment rather than
the style property.

headerAlign

Style string to apply to the header for this column.headerStyle

Do not show this column.hidden

For image columns, this is the name of the image to display.image

This event is used to compute the lookup (popup) information for this column.ongetlookupspec

Optional priority to apply to this element.priority

Optional readOnly attribute to apply to this element. If true, the contents of this column
cannot be edited. The default value is false.

readOnly

Style string for this column.style

If the <dataGrid> selectMode property is set to "cells", then you can use the type
property of the column descriptor to specify the type of edit control that is displayed
in the cell when it is selected. Possible values for the type property are:

• "string" — display a string value and edit as a string.

• "image" — display an image (using the url in the image property).

• "button" — display a button.You must implement an onaction handler to supply
behavior for the button.

• "checkbox" — display a checkbox.

• "link" — display an HTML link.You must implement an onaction handler to
supply behavior for the link.

• "lookup" — display a lookup control.You must implement an ongetlookupdata
handler to supply behavior for the lookup.

• "user" — display arbitrary HTML as defined by the ondrawcell callback

type

Optional default value for this column. This can be a literal value or an expression
such as this one: "=[@Name]"
The "=" character at the start indicates that this is an expression (or formula). The [
] brackets enclose an identifier.The identifier "@Name" specifies the Name property
supplied by the data controller.

If you do not specify the value attribute, the grid displays values from the data con-
troller in the order in which they are supplied.

value

Optional default minimum width, in pixels, used for this column on initial rendering.
The actual width may be adjusted higher as needed depending on the actual widths
of data in the cells themselves. This setting does not preclude the end user from
manually resizing the column width to a smaller value.

width

Using Zen Components 163

Grid

You can use CSS to modify non-essential display properties of editable cells in a <dataGrid>. The CSS class for editable
cells is dgCellEditor. For example, the following CSS sets the cell background to yellow during editing:

.dgCellEditor {
 background-color:yellow;
}

You can also modify display properties of lookup cells, specifically the image on the button the user clicks to open the
lookup list. The CSS class is dgAction. The URL specified for an image file is resolved with respect to the csp/broker

directory under the Caché install directory. For example, the following CSS sets the lookup button image:

.dgAction {
 background-image:url("lookupicon.png");
}

5.9.2.9 Row Descriptors

You can exercise more direct control over the contents of the grid by defining one or more <rowDescriptor> objects. If the
grid contains <rowDescriptor> objects, it no longer automatically displays what is served by its data controller. You must
provide a <rowDescriptor> for each row you want in the grid.

<dataGrid id="grid" controllerId="json">
 <rowDescriptor caption="ROW 1"/>
 <rowDescriptor caption="ROW 2"/>
 <rowDescriptor caption="ROW 3"/>
</dataGrid>

<rowDescriptor> has the following attributes:

DescriptionAttribute

Optional caption to apply to this element. It appears in the grid as the row label text.caption

Optional format to apply to this element.format

Optional priority to apply to this element.priority

Optional readOnly attribute to apply to this element. If true, the contents of this row
cannot be edited. The default value is false.

readOnly

Optional child descriptors for this row.rows

Style string for this column.style

5.10 Hidden
The Zen <hidden> control is a wrapper around the HTML <input type="hidden"> element. The <hidden> control
is present in the form, and has a value associated with it, but is never visible to the user. The value can be changed program-
matically on the client or server side. When the form is submitted, the values of any <hidden> controls are submitted along
with all the others.

<hidden> has the same general-purpose attributes as any Zen control. For descriptions, see the section “Control Attributes.”

164 Using Zen Components

Zen Controls

6
Model View Controller

Model View Controller, or MVC, is a well known architecture for user interface design. This chapter describes how Zen
implements MVC, and how to add MVC features to a Zen page.

To simplify the flow of data from a data source to a Zen page, Zen provides a set of classes that let you define a data model
(the model) and connect it to a set of Zen components (the view) via an intermediate object (the controller). When the model
associated with a controller changes, these changes are automatically broadcast to all views connected to the controller.

The following are some typical uses of MVC:

• Create a form that displays a set of properties, loaded from a persistent object within the database. The form automat-
ically displays controls appropriate to the data type of each property.

• Display a chart based on values within a form. The chart automatically updates its display whenever the user submits
any changes to the form.

• Display meters representing values calculated on the server. When the page is refreshed, these meters automatically
update themselves with current values from the server.

The following figure shows the three parts of the Zen MVC architecture — model, view, and controller — and indicates
where these objects execute their code. The controller and its associated views are Zen components, placed on the Zen
page. The controller component is hidden from view, but view components are user-visible. The view components display
data values, which they obtain by requesting them from the controller. The controller resides on the client, but has the
ability to execute code on the server. The model resides entirely on the server. It draws its data values from a source on the
server and can respond to requests for data from the controller.

Using Zen Components 165

Figure 6–1: Model View Controller Architecture

The next three sections in this chapter expand the discussion of each part of the previous figure:

• “Model”

• “Controller”

• “View”

Remaining sections in this chapter provide a series of exercises that show how to use MVC features to create a form:

• “Constructing a Model”

• “Binding a <form> to an Object Data Model”

• “Adding Behavior to the <form>”

• “<dynaForm> with an Object Data Model”

• “<dynaForm> with an Adaptor Data Model”

6.1 Model
A data model is any subclass of %ZEN.DataModel.DataModel. A data model can:

1. Retrieve data values from one or more sources, such as:

• A persistent Caché object

• An external database (ODBC or JDBC) via the Caché SQL Gateway

• A Caché global

• An Ensemble business service

2. Place these values into its own properties.

166 Using Zen Components

Model View Controller

3. Make these properties available to be consumed by a data controller.

There are two variations on a data model class. Typically you choose one of these as your parent class when you create a
new data model. The variations are closely related, but serve different purposes. The available data model subclasses are
%ZEN.DataModel.ObjectDataModel and %ZEN.DataModel.Adaptor, as shown in the following figure.

Figure 6–2: Data Model Classes

6.1.1 %ZEN.DataModel.ObjectDataModel

A subclass of %ZEN.DataModel.ObjectDataModel is called an object data model. It defines one or more properties that a
data controller component can consume. Each of these properties is correlated with a value from the data source class. Not
every value in the data source needs to be exposed in the model. This convention allows you to expose in the data model
only those values that you wish to.

An example of this might be a patient record, which contains confidential information that not every application should
expose. Keep in mind that when you use this option, the developer of the object data model class is responsible for imple-
menting methods to load values from a source into data model properties, store values back to a source, and validate values.
This is in contrast to the adaptor data model, where Zen takes care of these details. However, this is not such a difficult
procedure.

For more information about using %ZEN.DataModel.ObjectDataModel, consult the following sources:

• For step by step instructions, see the section “Binding a <form> to an Object Data Model.”

• For code examples, use Studio to view the classes ZENMVC.FormDataModel and ZENMVC.FormDataModel2 in the
“SAMPLES” namespace.

Using Zen Components 167

Model

• For reference information, see the section “Data Model Classes.”

6.1.2 %ZEN.DataModel.Adaptor

There are many times when it is convenient to use a persistent object as a data model. To make this easy to accomplish,
Zen provides the %ZEN.DataModel.Adaptor interface. Adding this class as an additional superclass to a persistent class
makes it possible to use the persistent class as a data model. This data model makes available to a data controller any and
all properties that it contains. This option is useful when you want to expose every property in an existing class.

An example of this might be a class that you are using in an inventory or parts control application, wherein each product
might be described by a class with a large number of properties. If you want to place all of these properties onto a form
automatically without writing another class, you can simply cause the product class to extend %ZEN.DataModel.Adaptor.
Following that, Zen simply generates the form for you, as later topics explain. The drawback of this choice is that your
data and form are very closely linked. If you want some flexibility, you should subclass the object data model class and
implement the internal interface. This is the classic trade-off of convenience versus flexibility.

For more information about using %ZEN.DataModel.Adaptor, consult the following sources:

• For step by step instructions, see the section “<dynaForm> with an Adaptor Data Model.”

• For code examples, use Studio to view the classes ZENMVC.Address and ZENMVC.Person in the “SAMPLES”
namespace.

• For reference information, see the section “Data Model Classes.”

6.2 Controller
A data controller manages the communication between a data model and a data view. A data controller is any subclass of
%ZEN.Auxiliary.dataController. Through class inheritance, every data controller is also a Zen component, as the following
figure shows. This convention permits you to place a data controller on a Zen page.

168 Using Zen Components

Model View Controller

Figure 6–3: Data Controller and Data View Classes

6.2.1 <dataController>

To provide a data controller for a Zen page, simply add a <dataController> or a subclass of %ZEN.Auxiliary.dataController

inside the <page>. The <dataController> component appears in XData Contents along with other components, but it is not
visible onscreen. It acts as an intermediary between a data model and one or more data views.

The following example defines a <dataController> that opens an instance of the class MyApp.MyModel using an id value
of 1. A <dynaForm> is bound to the <dataController> by setting the <dynaForm> controllerId property to the id of the
<dataController>. This causes the <dynaForm> to display a form that provides a Zen control for every property within the
modelClass.

<dataController id="data" modelClass="MyApp.MyModel" modelId="1"/>
<dynaForm id="myForm" controllerId="data"/>

6.2.2 <dataController> Attributes

When you place a <dataController> within a Zen <page>, you can assign it the following attributes:

DescriptionAttribute

A <dataController> has the same general-purpose attributes as any Zen component.
For descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

The id attribute is required for <dataController>. name and condition may also apply.
A <dataController> is not visible, so visual style attributes do not apply.

Zen component
attributes

If true, the <dataController> displays an alert box when it encounters errors while
invoking server-side functions, such as when saving or deleting. The default is true.

alertOnError has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

alertOnError

Using Zen Components 169

Controller

DescriptionAttribute

Setting autoRefresh to a non-zero value turns on automatic refresh mode for this
data controller. In this mode, the data controller reloads its data from the server at
the periodic interval specified by autoRefresh (in milliseconds). autoRefresh is
provided as a convenience for data controller used to drive meters or charts; it is of
limited use for forms. Setting autoRefresh to 0 disables automatic refresh mode.

autoRefresh

Optional. If a data model has multiple data series, defaultSeries is a 1-based number
that specifies which series should be used to provide values to data views that can
only display values from one data series (such as a form). The default is 1.

defaultSeries

Package and class name of the data model class that provides data for this <data-
Controller>.The modelClass value can be a literal string, or it can contain a Zen #()#
runtime expression.

modelClass

String that identifies a specific instance of a data model object.The form and possible
values of the modelId string are determined by the developer of the data model class.
The modelId value can be a literal string, or it can contain a Zen #()# runtime
expression.

modelId

The oncreate event handler for the <dataController>. Zen invokes this handler each
time the createNewObject method is called. See “Zen Component Event Handlers.”

oncreate

Client-side JavaScript expression that runs each time the deleteId method is called.
The ondelete callback is invoked whether or not the delete succeeds. The ondelete
callback can make use of two special variables: id contains the modelId of the
deleted object, and deleted indicates whether or not the delete was successful.

ondelete

Client-side JavaScript expression that runs each time the data controller attempts
to open an instance of a data model object and encounters an error.

When you work with a %ZEN.Auxiliary.dataController programmatically, you can obtain
the most recent error message reported by the data model object associated with
this data controller, by examining the modelError property of the dataController object.
This property is not available as an XML attribute when adding the <dataController>
to the Zen page.To access this property from the client side, use the data controller’s
client-side JavaScript method getError.

onerror

Client-side JavaScript expression that runs each time a data view connected to this
data controller raises an event.

onnotifyController

Client-side JavaScript expression that runs each time the save method is called.
The parameter id is passed to the event handler and contains the current modelId.

onsave

If true, this data controller is read-only, regardless of whether or not its corresponding
data model is read-only. The default is false.

readOnly has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

readOnly

170 Using Zen Components

Model View Controller

6.2.3 <dataController> Methods

A <dataController> or a subclass of %ZEN.Auxiliary.dataController provides the following client side JavaScript methods
for working with the data controller and the data model that it represents. There are more methods described in the online
Class Reference documentation for the %ZEN.Auxiliary.dataController class.

PurposeClient Side Method

Returns the data in this controller as an array of arrays. This is useful when
working with charts.

getDataAsArrays()

Returns the data in this controller as an instance of a zenProxy object with
properties whose names and values correspond to the properties of the current
Data Model object.

If the data model supports more than one data series, then series (0-based)
specifies which series to use (the default is 0).

For information about zenProxy, see Zen Proxy Objects in the “Zen Pages”
chapter of Developing Zen Applications.

getDataAsObject(series)

Returns the data in the specified prop (property) of this data controller object.
This data is equivalent to the value of the corresponding control on the generated
form.

getDataByName(prop)

Return number of dimensions within the dataModel. There are 2 dimensions:
The first is the set of properties, the second has a typical size of 1.

The second dimension may be larger than 1 in cases where the model serves
multiple series for a given model instance. (Such as when providing multiple
data series for charts).

getDimensions()

Return the number of items in the specified dimension dim. dim is 1,2, or 3.getDimSize(dim)

Get the label at position n in the given dimension dim. n is a 0–based number.
dim is 1,2, or 3.

getLabel(n,dim)

Return the current modelClass value.getModelClass()

Return the current modelId value.getModelId()

Notify listeners that the data associated with this data controller has changed.raiseDataChange()

Change the specified property p of this data controller object to the value v.This
also changes the value of the corresponding control on the generated form.

If p is "%id" change the id of this controller. If p is "%series" change the
defaultSeries of this controller. If the data model supports more than one data
series, then s (0-based) specifies which series to use (the default is 0).

Following a call (or multiple calls) to setDataByName, you must subsequently
call raiseDataChange to notify listeners that the data associated with this data
controller has changed.

setDataByName(p,v,s)

Change the modelId value at runtime. Changing the modelId value causes the
controller to load a new record, and to update its associated views.

setModelId(id)

Using Zen Components 171

Controller

PurposeClient Side Method

Change the modelClass value at runtime. Optionally, you can call
setModelClass(name,id) to change both the modelClass and the modelId.
Changing the modelClass value causes the controller to abandon the previous
model and load data from the new model into the controller.

setModelClass(name)

6.3 View
A data view is any Zen component that implements the %ZEN.Component.dataView interface. The list of data view compo-
nents includes:

• “<dynaGrid>”

• “All forms”

• “All charts”

• “All meters”

For an illustration, see the figure “Data Controller and Data View Classes” in the “Data Controller” section.

A data view component connects to its associated data controller at runtime, and uses it to get and set values from the
associated data model. A data view points to its data controller; more than one data view can point to the same data controller.

6.3.1 Data View Attributes

Data view components support the usual Zen component attributes, plus any specialized attributes that are typical of the
specific type of component. Additionally, all data view components support the following attributes, which relate specifically
to the component’s role as a data view.

Important: If a user sets a component’s value by interacting with the Zen page, the controller and thus the model are
notified. If program code sets the value, the controller is not notified, and the value is lost on submit. Program
code should write directly to the controller, which then updates the control.

DescriptionAttribute

Identifies the data controller for this data view (). The controllerId value must match
the id value provided for that <dataController> component.

controllerId

The onnotifyView event handler for the data view component. Zen invokes this
handler each time the data controller associated with this data view raises an event.
See “Zen Component Event Handlers.”

onnotifyView

Meters and controls support the following property:

172 Using Zen Components

Model View Controller

DescriptionAttribute

Identifies the data model property that is bound to this component. This property
provides the value that the component displays:

dataBinding

• If the dataBinding value is a simple property name, this is assumed to be a
property within the data model class identified by the <dataController> modelClass
attribute.

• Alternatively, dataBinding can provide a full package, class, and property name.

dataBinding is generally suitable for components that display a single value (meters
or controls). Each meter on a Zen page must supply a controllerId and a dataBinding.
Controls do not support the data view interface, so cannot supply a controllerId, but
if the form that contains the controls has an associated data controller, each control
within the form can supply a dataBinding attribute that identifies which property it
displays.

6.3.2 The Controller Object

When you work with a data view component programmatically, you can obtain a reference to the associated
%ZEN.Auxiliary.dataController object via the following properties of the %ZEN.Component.dataView interface:

• controller — Use in JavaScript code that runs on the client side

• %controller — Use in ObjectScript, Caché Basic, or Caché MVBasic code that runs on the server side

6.3.3 Multiple Data Views

Whenever a user modifies a value within one of the controls that is bound to a data controller, the data controller is notified.
It is common for data views to share a controller; for example, different types of chart on the same page could share the
same data controller to display different visualizations of the same data, as in the following figure. If there are multiple
data view components connected to the same data controller, they are all notified of any change to a bound control.

For examples of shared data controllers, use Studio to view the classes ZENMVC.MVCChart and ZENMVC.MVCMeters. The
class ZENMVC.MVCMeters uses the same data controller to provide values for a <dynaGrid> and several meters. The class
ZENMVC.MVCChart provides a <dynaGrid> and three charts that all use the same data controller. Try entering the following
URIs in the browser:

http://localhost:57772/csp/samples/ZENMVC.MVCChart.cls

http://localhost:57772/csp/samples/ZENMVC.MVCMeters.cls

Where 57772 is the web server port number that you have assigned to Caché.

When you change a value in one of these pages by editing it in the <dynaGrid> and pressing Enter, this change affects the
corresponding value in all the charts (or meters) on the same page, because all of them share the same data controller. In
the following figure, the user has just modified the Trucks field in the <dynaGrid> for ZENMVC.MVCChart.

Using Zen Components 173

View

http://localhost:57772/csp/samples/ZENMVC.MVCChart.cls
http://localhost:57772/csp/samples/ZENMVC.MVCMeters.cls

6.4 Constructing a Model
This topic provides the first in a series of exercises that show how to use the Model View Controller to create a form. If
you have a new Caché installation, before you begin these exercises you must first run the ZENDemo home page. Loading
this page silently generates data records for the SAMPLES namespace. You only need to do this once per Caché installation.

Enter the following URI in the browser:

http://localhost:57772/csp/samples/ZENDemo.Home.cls

Where 57772 is the web server port number that you have assigned to Caché.

6.4.1 Step 1:Type of Model

There are two basic choices when generating a form using the Model View Controller:

• %ZEN.DataModel.ObjectDataModel or %ZEN.DataModel.Adaptor

An object data model takes more work to code. An object data model gives you explicit control over which properties
end up in the model, so it makes more sense for cases when you want to shield certain properties from display or when
you want to display charts, which require very fine data control. The choice of adaptor data model is simple and con-
venient, but it imposes a burden on the original persistent object, in that you must change its class code to allow it to
become an adaptor data model.

• <form> or <dynaForm>

A <form> is a good choice for the key forms that are critical to the success of your application. A <form> requires
more work to encode, but provides as fine a level of control as you need to perfect the results. A <dynaForm> provides
automatic results and automatically updates its layout if you change the underlying data model. This is useful to gen-
erate forms for large volumes of detailed information such as system administration, inventory, or maintenance requests.

For this exercise we choose an object data model and a <form>.

6.4.2 Step 2: Object Data Model

Suppose a persistent object called Patient contains a patient record. This object may have hundreds of properties. Suppose
you want to create a simple page that only displays demographic information, in this case the patient’s name and city of
residence. This is a clear case for using %ZEN.DataModel.ObjectDataModel.

174 Using Zen Components

Model View Controller

http://localhost:57772/csp/samples/ZENDemo.Home.cls

First, define an object data model class called PatientModel that knows how to load and store properties from the Patient
object:

1. Start Studio.

2. Choose File > Change Namespace or F4.

3. Choose the SAMPLES namespace.

4.
Choose File > New or Ctrl-N or the icon.

5. Click the General tab.

6. Click the Caché Class Definition icon.

7. Click OK.

8. For Package Name enter:

MyApp

9. In the Class Name field, type:

PatientModel

10. Click Next.

11. Choose Extends

12. Click Next and enter (or browse to) this class name:

%ZEN.DataModel.ObjectDataModel

13. Click Finish.

Studio creates and displays a skeletal object data model class:

Class MyApp.PatientModel Extends %ZEN.DataModel.ObjectDataModel
{

}

14. Add properties and methods to complete the class as shown in the following code example. This example defines two
properties for the data model (Name and City). It also overrides several of the server-side methods in the
%ZEN.DataModel.ObjectDataModel interface. For documentation of these methods, see the section “Object Data Model
Callback Methods.”

Class MyApp.PatientModel Extends %ZEN.DataModel.ObjectDataModel
{
 Property Name As %String;
 Property City As %String;

 /// Load an instance of a new (unsaved) source object for this DataModel.
 Method %OnNewSource(Output pSC As %Status = {$$$OK}) As %RegisteredObject
 {
 Quit ##class(ZENDemo.Data.Patient).%New()
 }

 /// Save instance of associated source object.
 Method %OnSaveSource(pSource As ZENDemo.Data.Patient) As %Status
 {
 Set tSC=pSource.%Save()
 If $$$ISOK(tSC) Set ..%id=pSource.%Id()
 Quit tSC
 }

 /// Load an instance of the source object for this DataModel.
 Method %OnOpenSource(pID As %String, pConcurrency As %Integer = -1,
 Output pSC As %Status = {$$$OK}) As %RegisteredObject
 {
 Quit ##class(ZENDemo.Data.Patient).%OpenId(pID,pConcurrency,.pSC)
 }

Using Zen Components 175

Constructing a Model

 /// Delete instance of associated source object.
 ClassMethod %OnDeleteSource(pID As %String) As %Status
 {
 Quit ##class(ZENDemo.Data.Patient).%DeleteId(pID)
 }

 /// Do the actual work of loading values from the source object.
 Method %OnLoadModel(pSource As ZENDemo.Data.Patient) As %Status
 {
 Set ..Name = pSource.Name
 Set ..City = pSource.Home.City
 Quit $$$OK
 }

 /// Do the actual work of storing values into the source object.
 Method %OnStoreModel(pSource As ZENDemo.Data.Patient) As %Status
 {
 Set pSource.Name = ..Name
 Set pSource.Home.City = ..City
 Quit $$$OK
 }
}

15.
Choose Build > Compile or Ctrl-F7 or the icon.

6.5 Binding a <form> to an Object Data Model
This exercise creates a data controller based on the object data model from the previous exercise, “Constructing a Model.”
It then binds a form to this data controller.

6.5.1 Step 1: Data Controller

If you do not already have a simple Zen application and page class available from previous exercises, create them now
using instructions from the “Zen Tutorial” chapter in Using Zen:

• “Creating a Zen Application” — Create the class MyApp.MyNewApp.

• “Creating a Zen Page” — Create the class MyApp.MyNewPage. You only need to complete the steps in the first section,
“Step 1: New Page Wizard.”

Now place a data controller component on the Zen page by adding a <dataController> element in the MyApp.MyNewPage

class XData Contents block, inside the <page> container, as follows:

<dataController id="patientData"
 modelClass="MyApp.PatientModel"
 modelId="1" />

Where:

• id is the unique identifier of the data controller on the Zen page. A data view (such as a form) specifies its data controller
using this id.

• modelClass is package and class name of the data model class. The previous exercise, “Constructing a Model,” created
the class MyApp.PatientModel which is an object data model that represents objects of the ZENDemo.Data.Patient class.

• modelId is a number that identifies the record to initially load from the data source. In this case, it is the identifier of
a specific ZENDemo.Data.Patient object.

Note: The <dataController> component is not visible on the page.

176 Using Zen Components

Model View Controller

6.5.2 Step 2: Data View

Now create a form and connect it to the data controller, as follows:

1. Place a <form> component inside the <page> container.

Bind the form to the data controller that you created in “Step 1: Data Controller” by setting the <form> controllerId
to match the <dataController> id value. For example:

<form controllerId="patientData" id="MyForm" >
</form>

The id attribute does not affect the binding but becomes useful in a future step, when we save the form.

2. Within the <form> add two <text> controls.

Bind each control to a property of the data model by providing a dataBinding attribute that identifies a property within
the modelClass of the <dataController>. Also provide a label for each control. For example:

<form controllerId="patientData" id="MyForm" >
 <text label="Patient Name" dataBinding="Name" />
 <text label="Patient City" dataBinding="City" />
</form>

The label attribute does not have any purpose relative to the Model View Controller, but it is necessary if we want our
controls to have a meaningful labels on the Zen page.

6.5.3 Step 3: Initial Results

View your initial results as follows:

1. Open your Zen page class in Studio.

2.
Choose Build > Compile or Ctrl-F7 or the icon.

3.
Choose View > Web Page or the icon.

The data controller component creates a MyApp.PatientModel object on the server, and asks it to load data from data
source record number 1 (identified by the <dataController> modelId attribute) into its own properties. The data controller
places these data values into the appropriate controls within the form. The dataBinding attribute for each control
identifies which property provides the value for that control, Name or City.

The following figure shows our form with the current values from record 1.

6.5.4 Step 4: Saving the Form

Suppose you want the user to be able to edit the values in this form, and to save changes. To save the values in a form
associated with a data controller, your application must call the form’s save method. Typically you would enable this as
follows:

1. Add a client-side method to the page class as follows:

Using Zen Components 177

Binding a <form> to an Object Data Model

ClientMethod save() [Language = javascript]
{
 var form = zen('MyForm');
 form.save();
}

Now you can see why it was important to define an id for our <form>. The JavaScript function zen needs this id to get
a pointer to the form so that we can call its save method.

2. Add to your page a <button> that calls this method to save the form.

The entire <page> definition now looks something like this:

<page xmlns="http://www.intersystems.com/zen" title="">
 <dataController id="patientData"
 modelClass="MyApp.PatientModel"
 modelId="1" />
 <form controllerId="patientData" id="MyForm">
 <text label="Patient Name" dataBinding="Name" />
 <text label="Patient City" dataBinding="City" />
 </form>
 <button caption="Save" onclick="zenPage.save();"/>
</page>

3. Try editing the data and clicking Save.

Each time the user clicks the Save button, the form save method calls back to the server and saves the data by calling the
appropriate methods of the data model class. During this process, the form asks the data controller to assist with data vali-
dation of the various properties. The source of this validation logic is the data model class.

The data controller also has a save method we can use. There is a difference between saving the form and saving the controller.
Calling the save method of the form triggers the form validation logic, after which the form instructs the controller to save
data by calling the appropriate methods of the data model class. Saving the controller skips form validation.

You can try out basic form validation in step 3 of this example as follows: If you empty the Patient Name field entirely and
click Save, a validation error occurs. This is because the Patient property is marked as Required in the ZENDemo.Data.Patient

class that serves as our data source. However, if you change the Patient Name or Patient City to any non-empty value, the
form saves correctly. It is easier to prove this to yourself once you have extended the form to allow you to easily view more
than one data record. Then you can switch back and forth between records to see that they in fact contain your changes.

Note: For further validation examples, try using and viewing the Zen page class ZENMVC.MVCForm in the SAMPLES
namespace. Try entering the following URI in the browser:

http://localhost:57772/csp/samples/ZENMVC.MVCForm.cls

Where 57772 is the web server port number that you have assigned to Caché. Edit values in one of the forms
shown on the page, and click a Submit button. You can use Studio to view the class code.

6.5.5 Step 5: Performing Client-side Validation

Rather than wait for server-side validation, we can add client-side validation to the data model class by defining a property-
specific IsValidJS method. This is a JavaScript ClientClassMethod that uses the naming convention propertyIsValidJS
and returns an error message if the value of the given property is invalid or '' (an empty string) if the value is OK. This
method can be defined within the data model class, or you can define a datatype class that defines an IsValidJS method.

Adding the following method to the MyApp.PatientModel class causes the data controller to automatically apply this validation
to the City property on the client each time its save method is called:

ClientClassMethod CityIsValidJS(value) [Language = javascript]
{
 return ('Boston' == value) ? 'Invalid City Name' : '';
}

178 Using Zen Components

Model View Controller

http://localhost:57772/csp/samples/ZENMVC.MVCForm.cls

6.5.6 Step 6: Setting Values Programmatically

In order to set data values programmatically, set the value in the controller and then tell the controller to notify all of its
views of the change. To set the value, you can use the controller method setDataByName, and then use raiseDataChange
to notify the views. You have to call raiseDataChange explicitly, which allows you to change multiple values in the controller
and only raise the event once.

ClientMethod ChangeValue() [Language = javascript] {
 var controller = zenPage.getComponentById('patientData');
 controller.setDataByName('Name','Public,John Q');
 controller.raiseDataChange();
}

6.6 Adding Behavior to the <form>
The %ZEN.Auxiliary.dataController class offers several useful methods. Suppose you want to enhance your page from the
previous exercise, “Binding a <form> to an Object Data Model,” so that it can open new records, create new records,
delete existent records, or reset the current record to a particular model ID. This topic explain how to accomplish these
tasks using dataController methods such as getModelId and setModelId.

6.6.1 Step 1: Opening a New Record

When you ask the browser to display the page you have been building during these exercises, it always displays the same
data record. This is because you have configured the modelId property of your <dataController> element with the value of
1. You can see what happens if you change this property to other values, such as 2, 3, or 4, up to 1000.

However, you must remember that these values represent real ID values of existing instances of the ZENDemo.Data.Patient

class. These instances exist because all of the classes in ZENDemo.Data are populated automatically when you first run
“The Zen Demo” as described in the “Introducing Zen” chapter of Using Zen.

Suppose you want to give the user the option of choosing which record to view. There are several options, including:

• Add a text field that allows the user to enter an ID

• Add a combo box that allows the user to choose the record by one of its properties, such as a patient name

• Add a table that allows the user to click on a patient name and see the details on a form below

It does not matter which option you choose for user input. The key task is for your page to be able to tell the data controller
to load the record. You can accomplish this as follows:

1. Open your Zen page class in Studio.

2. Add a new text field to the <form>:

<form controllerId="patientData" id="MyForm">
 <text label="ID:"
 onblur="zenPage.loadRecord(zenThis.getValue())"
 dataBinding="%id"/>
 <text label="Patient Name" dataBinding="Name" />
 <text label="Patient City" dataBinding="City" />
</form>

3. Add a corresponding client-side method:

Using Zen Components 179

Adding Behavior to the <form>

ClientMethod loadRecord(id) [Language = javascript]
{
 var controller = zen('patientData');
 controller.setModelId(id);
}

The onblur event calls a client-side method loadRecord that first gets a pointer to the data controller using its id value
"patientData", then uses whatever the user has entered in the <text> field as a modelId to load the desired record from
the data model. To actually load the record, loadRecord uses the data controller method setModelId.

Also observe that this example binds the ID field to the %id property of the data model, so that this field always shows
you the ID of the current record. This step is not necessary for setModelId to work, but it is very useful in “Step 2:
Creating and Deleting Records” in this exercise.

4.
Choose Build > Compile or Ctrl-F7 or the icon.

5.
Choose View > Web Page or the icon.

The following figure shows the form.

6. Try the onblur functionality as follows:

• Enter 2 (or any other number) in the ID field.

• Press the Tab key to move out of the ID field.

• The alternate record should display.

7. In the exercise “Binding a <form> to an Object Data Model,” during “Step 4: Saving the Form,” you added Save

functionality without the ability to easily test it. Try it now, as follows:

• Note the number of the current record.

• Make a significant change to the Name or City field.

• Click Save.

• Enter a different number in the ID field.

• Press the Tab key to move out of the ID field.

• The alternate record should display.

• Enter the number for the record that you saved in the ID field.

• Press the Tab key to move out of the ID field.

• Your saved changes should be visible on the form.

180 Using Zen Components

Model View Controller

6.6.2 Step 2: Creating and Deleting Records

Creating and deleting records are also simple tasks. Modify your page to add the necessary buttons and client side code as
follows.

1. Open your Zen page class in Studio.

2. After the <form> and before the closing </page>, replace the single Save button with the following <hgroup>:

<hgroup>
 <button caption="Save" onclick="zenPage.save()"/>
 <button caption="New" onclick="zenPage.newRecord()"/>
 <button caption="Update" onclick="zenPage.updateRecord()"/>
 <button caption="Delete" onclick="zenPage.deleteRecord()"/>
</hgroup>

These statements add the buttons to an <hgroup> so that they appear on the screen in a row. Each button defines its
onclick method as a different client-side method.

3. Add the corresponding new client-side methods to the page class:

ClientMethod newRecord() [Language = javascript]
{
 var controller = zen('patientData');
 controller.createNewObject();
}

And:

ClientMethod updateRecord() [Language = javascript]
{
 var controller = zen('patientData');
 controller.update();
}

And:

ClientMethod deleteRecord() [Language = javascript]
{
 var controller = zen('patientData');
 controller.deleteId(controller.getModelId());
 controller.createNewObject();
}

Each of these methods uses a different dataController method to achieve its purposes.

4.
Choose Build > Compile or Ctrl-F7 or the icon.

5.
Choose View > Web Page or the icon.

The following figure shows the form.

Using Zen Components 181

Adding Behavior to the <form>

6.6.2.1 New

Suppose the user clicks New. Calling createNewObject immediately creates a new empty model. In the browser, every
time the user clicks New the form is emptied. After that, if the user completes the empty form and clicks Save, this invokes
the form’s save method. This (eventually) leads to a call to the data model’s %OnSaveSource method on the server.

In the exercise “Binding a <form> to an Object Data Model,” during “Step 4: Saving the Form,” you added Save func-
tionality by causing the %OnSaveSource method to set the %id property of the model to the ID of the saved object, as
follows:

Method %OnSaveSource(pSource As ZENDemo.Data.Patient) As %Status
 {
 Set tSC=pSource.%Save()
 If $$$ISOK(tSC) Set ..%id=pSource.%Id()
 Quit tSC
 }

As a result, every time the user clicks New, enters values, then clicks Save, the form shows the newly assigned ID to the
user (thanks to the dataBinding on that field). Of course, this only works if the data entered in the form passes validation.
Name is a required field, so if no Name is entered, the record is not saved.

6.6.2.2 Delete

Suppose the user clicks Delete. The data controller’s deleteId method expects to receive an input argument containing the
ID for the record to be deleted. Therefore, when the user clicks Delete, the page uses the data controller’s getModelId
method to determine the ID of the record the user is currently viewing. It passes this ID on to deleteId. This (eventually)
leads to a call to the data model’s %OnDeleteSource method on the server. The source object is deleted, and since there
is no longer source object, the page calls the data controller’s createNewObject method to empty the form and prepare it
for new input.

Although the code examples in this chapter do not take advantage of this feature, the deleteId method returns a Boolean
value, true or false. It is true if it successfully deleted the record. It is false if it failed, or if the data controller or its data
model are read-only. A data controller is read-only if its readOnly attribute is set to 1 (true). A data model is read-only if
its class parameter is set to 1 (true).

Important: If, while using this exercise, you delete a record with a specific ID, this object no longer exists. You cannot
view or create a record with this ID again.

6.6.2.3 Update

Before clicking Update, the user must enter an ID number (between 1 and 1000) in the ID field. The page updates the form
fields with data from that record. This fails only if you have previously deleted a record with that ID.

182 Using Zen Components

Model View Controller

6.6.2.4 Errors

A data controller has a server-side property called modelError that is a string containing the most recent error message that
the data controller encountered while saving, loading, deleting, or invoking a server-side action. A data controller also has
a client-side JavaScript method, getError, that an application can invoke to get the modelError value. getError has no
arguments and returns the modelError string. It returns an empty string '' if there is no current error.

6.7 <dynaForm> with an Object Data Model
This topic explains how to use <dynaForm> with a data controller. In this case the data model is an object data model.

6.7.1 Step 1: <dynaForm> is Easy

You may create your first <dynaForm> very easily as follows:

1. Create a new Zen page class. Use the instructions from the exercise “Creating a Zen Page” in the “Zen Tutorial”
chapter of Using Zen. Call your new class anything you like, but keep it in the MyApp package. Be careful not to
overwrite any of your previous work.

2. In XData Contents, place a <dataController> and <dynaForm> inside <page>:

<page xmlns="http://www.intersystems.com/zen" title="">
 <dataController id="patientData"
 modelClass="MyApp.PatientModel"
 modelId="1" />
 <dynaForm controllerId="patientData"/>
</page>

3.
Choose Build > Compile or Ctrl-F7 or the icon.

4.
Choose View > Web Page or the icon.

The form displays two fields that contain the current Name and City values for the record whose modelId you entered
in the <dataController> statement. Perhaps you have changed these values, or deleted this record, during previous
exercises. Whatever data is now available for that modelId displays.

The label for each control is determined by the corresponding property name in MyApp.PatientModel. These labels are
different from the text you assigned to the caption attribute when you used <form> and <text> components to lay out
the form. In all other respects, this display is identical to the display you first saw in the exercise “Binding a <form>
to an Object Data Model,” during “Step 3: Initial Results.” Later steps show how to set specific labels for the controls
in a <dynaForm>.

6.7.2 Step 2: Converting to <dynaForm>

Now you are ready to recreate the <form> example from previous exercises in this chapter as a <dynaForm>. To do this,
you need to rewrite your MyApp.MyNewPage XData Contents block so that it looks like this:

Using Zen Components 183

<dynaForm> with an Object Data Model

<page xmlns="http://www.intersystems.com/zen" title="">

 <dataController id="patientData"
 modelClass="MyApp.PatientModel" />

 <dynaForm id="MyForm"
 controllerId="patientData"
 defaultGroupId="generatedFields">
 <text label="ID:"
 onblur="zenPage.loadRecord(zenThis.getValue())"
 dataBinding="%id"/>
 <vgroup id="generatedFields"/>
 </dynaForm>

 <hgroup>
 <button caption="Save" onclick="zenPage.save()"/>
 <button caption="New" onclick="zenPage.newRecord()"/>
 <button caption="Update" onclick="zenPage.updateRecord()"/>
 <button caption="Delete" onclick="zenPage.deleteRecord()"/>
 </hgroup>
</page>

That is:

1. In Studio, return to your existing sample page, MyApp.MyNewPage.

2. Remove or comment out this <form>, which specifies each control individually:

<form id="MyForm"
 controllerId="patientData" >
 <text label="ID:"
 onblur="zenPage.loadRecord(zenThis.getValue())"
 dataBinding="%id"/>
 <text label="Patient Name" dataBinding="Name" />
 <text label="Patient City" dataBinding="City" />
</form>

3. Add this <dynaForm>, which relies on the data controller to supply it with any control definitions that can be generated
based on properties in the data model:

<dynaForm id="MyForm"
 controllerId="patientData"
 defaultGroupId="generatedFields">
 <text label="ID:"
 onblur="zenPage.loadRecord(zenThis.getValue())"
 dataBinding="%id"/>
 <vgroup id="generatedFields"/>
</dynaForm>

Where:

• controllerId identifies the data controller.

• defaultGroupId identifies the group, on the form, that contains the controls generated by that data controller.

• defaultGroupId is optional; but if it appears in the <dynaGroup> then somewhere inside the <dynaForm>, you
must specify a group with an id that matches the defaultGroupId, in this case a <vgroup>.

• If you want controls to appear on the form that do not depend on the data controller, such as the control whose
value is based on the %id variable, you must place them explicitly, as shown.

4.
Choose Build > Compile or Ctrl-F7 or the icon.

5.
Choose View > Web Page or the icon.

The following <dynaForm> displays:

184 Using Zen Components

Model View Controller

6. You may assign specific labels to the generated controls on the <dynaForm> as follows:

• In Studio, open the object data model class, MyApp.PatientModel.

• Edit the properties to add the ZENLABEL parameter to each of them:

Property Name As %String(ZENLABEL = "Patient Name");

And:

Property City As %String(ZENLABEL = "Patient City");

•
Choose Build > Compile or Ctrl-F7 or the icon to compile the data model.

7. Refresh your Zen page MyApp.MyNewPage in the browser.

Your <dynaForm> and <form> now produce identical results.

6.7.3 Step 3: Automatic Control Selection

When you use <dynaForm> instead of <form>, it is no longer necessary to add data view components (controls) to the
form, item by item, as described in the section “Binding a <form> to an Object Data Model.” <dynaForm> automatically
extracts this information from the data model at compile time.

The following exercise demonstrates the use of a <dynaForm> by adapting your page class from previous exercises so that
it uses a different data model. When you complete the exercise and display the page, a new form appears whose controls
are clearly different from those in previous exercises:

1. Return to Studio in the SAMPLES namespace.

2. Choose Tools > Copy Class.

3. The Class Copy dialog displays. Enter:

• Copy Class — MyApp.PatientModel

• To — MyApp.EmployeeModel

• Select the Replace Instances of Class Name check box.

• Click OK.

The new class definition for MyApp.EmployeeModel displays in Studio.

4. Edit MyApp.EmployeeModel so that it has the following three properties only:

Property Name As %String;
Property Salary As %Numeric;
Property Active As %Boolean;

Using Zen Components 185

<dynaForm> with an Object Data Model

5. Edit the methods inside MyApp.EmployeeModel to work with the new properties:

Method %OnLoadModel(pSource As ZENDemo.Data.Employee) As %Status
{
 Set ..Name = pSource.Name
 Set ..Salary = pSource.Salary
 Set ..Active = pSource.Active
 Quit $$$OK
}

And:

Method %OnStoreModel(pSource As ZENDemo.Data.Employee) As %Status
{
 Set pSource.Name = ..Name
 Set pSource.Salary = ..Salary
 Set pSource.Active = ..Active
 Quit $$$OK
}

6.
Choose Build > Compile or Ctrl-F7 or the icon.

7. Choose Tools > Copy Class.

8. The Class Copy dialog displays. Enter:

• Copy Class — MyApp.MyNewPage

• To — MyApp.MyOtherPage

• Select the Replace Instances of Class Name check box.

• Click OK.

The new class definition for MyApp.MyOtherPage displays in Studio.

9. Take a shortcut by leaving the <dataController> id as "patientData".

You may ignore this shortcut by globally replacing "patientData" with a more meaningful id, for example "employee-
Data". However, make sure you change all the instances of this id string in the class to avoid errors at runtime.

10. Change the <dataController> modelClass to "MyApp.EmployeeModel".

11.
Choose Build > Compile or Ctrl-F7 or the icon.

12.
Choose View > Web Page or the icon.

The following figure shows the resulting form, with the values for record 5.

<dynaForm> has chosen controls for this form as follows:

186 Using Zen Components

Model View Controller

• <text> for the Name, which is a %String

• <text> for the Salary, which is %Numeric

• <checkbox> for the Active status, which is a %Boolean

6.7.3.1 <dynaForm> Controls Based on Data Types

<dynaForm> determines which type of control to assign to each property in the model based on the data type of that property.
The following table match property data types with the <dynaForm> controls they generate.

Note: If you do not like the choices that <dynaForm> makes, you can switch to <form> and bind each control to a
property individually, using the dataBinding attribute as described in the exercise “Binding a <form> to an Object
Data Model” during “Step 2: Data View.”

Table 6–1: <dynaForm> Controls Based on Data Types

ControlDetailsData Type

<textarea>See “Array Data Types” following the table.%ArrayOfDataTypes

<checkbox>—%Boolean

<dateSelect>In YYYY-MM-DD format%Date

<text>In other formats%Date

<radioSet>Using a VALUELIST with 4 or fewer values.%Enumerated

<combobox>Using a VALUELIST with more than 4 values%Enumerated

<textarea>See “List Data Types” following the table.%ListOfDataTypes

<text>—%Numeric

<dataCombo><dynaForm> generates an SQL queryObject reference

<textarea>%CharacterStreamStream

<image>%BinaryStreamStream

<textarea>With MAXLEN over 250%String

<text>With MAXLEN between 1 and 250%String

<text>All types not listed abovePublic properties

Not displayedAny properties marked privatePrivate properties

Most of the data types listed in the previous table are defined as Caché classes. As such, they can define class parameters,
including the VALUELIST, DISPLAYLIST, and MAXLEN parameters mentioned in the table. These parameters provide
details about the data type.

For %Enumerated properties, the VALUELIST parameter specifies the internal values (1, 2, 3) and the DISPLAYLIST
parameter specifies the names that are displayed for the user to choose (High, Medium, Low). For %String properties, the
MAXLEN parameter specifies a maximum length.

Many other class parameters are available. For details, see the “Parameters” section in the “Data Types” chapter of Using
Caché Objects.

Using Zen Components 187

<dynaForm> with an Object Data Model

List Data Types
For a property whose data type is %ListOfDataTypes, Zen streams the list collection to the client as one string delimited by
carriage return characters. The resulting <textarea> control displays one collection item per line of text.

For a <dynaForm>, this convention works when the data model class sets this property parameter:

ZENCONTROL="textarea"

For details, see “Data Model Property Parameters” in the “Data Model Classes” section of this chapter.

For a <form>, this convention works when you bind a <textarea> control to the property of type %ListOfDataTypes using
the dataBinding attribute.

See the exercise “Binding a <form> to an Object Data Model” during “Step 2: Data View.”

Array Data Types
For a property whose data type is %ArrayOfDataTypes, the conventions are the same as for %ListOfDataTypes, except that
the serialized string takes this form:

key:value[CR]key:value[CR]key:value

Where : is a single colon and [CR] represents a single carriage return character.

6.8 <dynaForm> with an Adaptor Data Model
This topic explains how to use <dynaForm> with a data controller when the data model is an adaptor data model. This
approach is particularly convenient when you have an existing class with a large number of properties that you need to
display on a form. In that case it would be extremely time-consuming to add these properties one by one to a subclass of
%ZEN.DataModel.ObjectDataModel, as demonstrated in the previous exercises in this chapter.

<dynaForm> can save coding time, especially when you use it in combination with a subclass of %ZEN.DataModel.Adaptor.
All you need to do then is to create a Zen page class whose <page> contains a <dataController> and a <dynaForm>. Your
subclass of %ZEN.DataModel.Adaptor becomes the model, the view, and the controller, all in one. All of its properties
become controls on the resulting <dynaForm>. Zen generates the appropriate control type for property automatically.

6.8.1 Step 1: Generating the Form

The basic outline for using <dynaForm> with an adaptor data model is as follows:

Note: This example is based on the Zen classes ZENMVC.MVCDynaForm, ZENMVC.Person, and ZENMVC.Address in
the SAMPLES namespace.

1. Edit a persistent class so that it also extends %ZEN.DataModel.Adaptor, for example:

Class ZENMVC.Person Extends (%Persistent, %ZEN.DataModel.Adaptor)
{
 Property Name As %String [Required];
 Property SSN As %String;
 Property DOB As %Date;
 Property Salary As %Numeric;
 Property Active As %Boolean;
 Property Home As Address;
 Property Business As Address;
}

The Person class includes properties defined by another class, Address, which must also extend %ZEN.DataModel.Adaptor

but which need not be persistent, for example:

188 Using Zen Components

Model View Controller

Class ZENMVC.Address Extends (%SerialObject, %ZEN.DataModel.Adaptor)
{
 Property City As %String(MAXLEN = 50);
 Property State As %String(MAXLEN = 2);
 Property Zip As %String(MAXLEN = 15);
}

2. Compile both data model classes.

3. Create a new Zen page class.

4. In XData Contents, place a <dataController> and <dynaForm> inside <page>:

<page xmlns="http://www.intersystems.com/zen" title="">
 <dataController id="source" modelClass="ZENMVC.Person" modelId=""/>
 <dynaForm id="MyForm" controllerId="source" />
</page>

5. Compile the Zen page class.

6.
Choose View > Web Page or the icon.

<dynaForm> generates the appropriate controls and displays the form, for example:

For a table that matches data types with the <dynaForm> controls they generate, see the “<dynaForm> Controls Based on
Data Types” table in this chapter.

6.8.2 Step 2: Property Parameters

Once you have the basics in place, you may refine the form by assigning data model parameters to the properties in the
persistent class that you are using as an adaptor data model. For example:

1. Open the data model class Person from “Step 1: Generating the Form” in this exercise.

2. Add data model parameters to the properties as shown below:

Using Zen Components 189

<dynaForm> with an Adaptor Data Model

Class ZENMVC.Person Extends (%Persistent, %ZEN.DataModel.Adaptor)
{
 Property Name As %String (ZENLABEL = "Employee Name") [Required];
 Property SSN As %String (ZENREADONLY = 1);
 Property DOB As %Date (ZENLABEL = "DateofBirth", ZENATTRS="format:DMY");
 Property Salary As %Numeric (ZENHIDDEN = 1);
 Property Active As %Boolean
 (ZENLABEL = "Is this person working?", ZENATTRS="showLabel:false");
 Property Home As Address;
 Property Business As Address;
}

3. Compile the Person class.

4. Refresh your view of the Zen page class in the browser.

<dynaForm> generates the appropriate controls and displays the form, for example:

The data model parameters have the following effects:

• ZENATTRS applies the specified attribute(s) and value(s) to the generated control.

• ZENHIDDEN hides the control associated with that property.

• ZENLABEL replaces the default label (the property name) with a custom string.

• ZENREADONLY displays the control but prevents the user from editing its contents.

For a table that lists more data model parameters, and explains their effects on generated controls in the <dynaForm>, see
the section “Data Model Property Parameters.”

6.8.3 Step 3: Adding Behavior to the <dynaForm>

Adding behavior to a <dynaForm> is quite similar to the steps for <form>. For <dynaForm>, the steps are:

1. Open the Zen page class from “Step 2: Property Parameters.”

2. Add a <text> control to display the current model ID value, and buttons to permit Update, New, and Save operations,
as follows:

190 Using Zen Components

Model View Controller

<page xmlns="http://www.intersystems.com/zen" title="">

 <text label="Model ID:" id="idText" dataBinding="%id"
 onblur="zenPage.loadRecord(zenThis.getValue())" />
 <spacer height="10"/>

 <dataController id="source" modelClass="ZENMVC.Person" modelId=""/>
 <dynaForm id="MyForm" controllerId="source" />

 <hgroup>
 <button caption="Update" onclick="zenPage.showRecord();" />
 <button caption="New" onclick="zenPage.newRecord();" />
 <button caption="Save" onclick="zenPage.save();" />
 </hgroup>

</page>

3. Add the corresponding new client-side methods to the page class:

ClientMethod loadRecord(id) [Language = javascript]
{
 var controller = zen('source');
 controller.setModelId(id);
}

And:

ClientMethod showRecord() [Language = javascript]
{
 var controller = zen('source');
 controller.update();
}

And:

ClientMethod newRecord() [Language = javascript]
{
 var text = zen('idText');
 text.setValue("");
 var controller = zen('source');
 controller.createNewObject();
}

And:

ClientMethod save() [Language = javascript]
{
 var form = zen('MyForm');
 form.save();
}

4. Compile the Zen page class.

5.
Choose View > Web Page or the icon.

6. Click the New button.

7. Enter data in the fields (except the Model ID and the read-only SSN field) and click Save.

8. Click the New button again, just to clear the fields.

9. Enter the number 1 in the ID field and click Update. The corresponding record displays. For example:

Using Zen Components 191

<dynaForm> with an Adaptor Data Model

Since you have provided no special format for model ID values in the Person class, the default prevails. This means
each new record you add gets a sequential number starting at 1. You may add more records by repeating steps 6 and
7. The numbers increment automatically.

If you try to view a record by entering an ID number that does not exist, the <dynaForm> displays with all of its fields
disabled. You may click New to redisplay an active form in which to enter data for a new record.

6.8.4 Step 4:Virtual Properties

If you want to interject changes in a data model before using it, you can override the %OnGetPropertyInfo method in
the data model class. This is the way to add virtual properties that you want to use in the model, but that do not exist in the
class that you began with. In order to use virtual properties, you must ensure that the data model class parameter
DYNAMICPROPERTIES is set to 1 (true). Its default value in the %ZEN.DataModel.Adaptor class is 0 (false). You can
use %OnGetPropertyInfo with either type of data model, but it makes the most sense for an adaptor data model because
in that case you are using an existing class as a data model.

This exercise adds a %OnGetPropertyInfo method to the adaptor data model class Person from the previous exercises in
this chapter:

1. Open the Person class in Studio.

2. Choose Class > Override.

3. Select %OnGetPropertyInfo and click OK.

Studio adds a skeleton %OnGetPropertyInfo method to the class.

4. Edit the method as follows:

192 Using Zen Components

Model View Controller

These statements add a <checkbox> and a <textarea> to any <dynaForm> generated by the model.

ClassMethod %OnGetPropertyInfo(pIndex As %Integer,
 ByRef pInfo As %String,
 pExtended As %Boolean = 0) As %Status
{
 #; Increment past the 3 embedded properties from the last Address object.
 #; This is not necessary when the last property in the Person object
 #; is a simple data type such as %String or %Boolean or %Numeric.
 Set pIndex = pIndex + 3

 #; add a field at the end of the form
 Set pInfo("Extra") = pIndex
 Set pInfo("Extra","%type") = "checkbox"
 Set pInfo("Extra","caption") = "Extra!"
 Set pInfo("Extra","label") = "This is an extra checkbox."
 Set pIndex = pIndex + 1

 #; add another field at the end of the form
 Set pInfo("Comments") = pIndex
 Set pInfo("Comments","%type") = "textarea"
 Set pInfo("Comments","caption") = "Please enter additional comments:"
 Set pIndex = pIndex + 1

 Quit $$$OK
}

5. Recompile the Person class.

6. Refresh your view of the Zen page class in the browser.

<dynaForm> generates the appropriate controls and displays the form, for example:

Using Zen Components 193

<dynaForm> with an Adaptor Data Model

6.9 Data Model Classes
The basic behavior of data models comes from the abstract base class %ZEN.DataModel.DataModel. This class defines the
basic data model interface which is, in turn, implemented by subclasses. A data model class can be one of the following
types:

• The data model class serves as a wrapper for an independent data source. The data model object provides the interface
and the source object (or objects) provide the actual data. In this case the data model class must implement the additional
callback methods related to the data source object. Our form examples followed this convention by subclassing
%ZEN.DataModel.ObjectDataModel and overriding several server-side callback methods.

• The data model class is also the data source object. The data model object provides both the data and the interface. In
this case, there is no need to override the callback methods related to the data source object. All you need to do is to
make your data source class implement the %ZEN.DataModel.Adaptor interface. Then you can use the resulting class
directly as the modelClass for the <dataController> component in your page class.

6.9.1 Data Model Class Properties

The %ZEN.DataModel.DataModel class provides the following properties:

• String that identifies the currently active instance of the data model object, also known as the model ID. This value
can be initially set by providing a modelId attribute in the <dataController> definition. The exact form and possible
values of the model ID are up to the developer of a specific data model class. The property names are:

– dataModelId — Use in JavaScript code that runs on the client side

– %id — Use in ObjectScript, Caché Basic, or Caché MVBasic code that runs on the server side

For examples, see “Adding Behavior to the <form>” in this chapter.

• Array of strings that provide display names for the data series in the model. Each string labels one data series. The
array is subscripted by series number (1–based). The property names are:

– seriesNames — Use in JavaScript code that runs on the client side

– %seriesNames — Use in ObjectScript, Caché Basic, or Caché MVBasic code that runs on the server side

• Number of data series contained within the data model. The property names are:

– seriesCount — Use in JavaScript code that runs on the client side

– %seriesCount — Use in ObjectScript, Caché Basic, or Caché MVBasic code that runs on the server side

For details, see the section “Data Model Series.”

6.9.2 Data Model Class Parameters

Data model classes provide class parameters that determine the type of data model. The following table lists them.

194 Using Zen Components

Model View Controller

Table 6–2: Data Model Class Parameters

DescriptionProperty Parameter

Available for subclasses of %ZEN.DataModel.ObjectDataModel only.You must provide
a value for this parameter if you wish to use Zen localization.

DOMAIN

1 (true) or 0 (false). If true, this model supports virtual properties. For background
information, see the section “Virtual Properties.” The default value for DYNAM-
ICPROPERTIES is:

DYNAMICPROPERTIES

• 1 (true) for %ZEN.DataModel.ObjectDataModel

• 0 (false) for %ZEN.DataModel.Adaptor

1 (true) or 0 (false). If true, indicates that this is a read-only model. It can be used
to display data but not to generate editable forms. The default is 0 (false).

READONLYMODEL

6.9.3 Data Model Property Parameters

The %ZEN.DataModel.ObjectDataModel class provides property parameters that you can apply to the data model properties
that you wish to use as controls on a form. These parameters let you provide more specific control over the properties of
the data model class. The utility class %ZEN.DataModel.objectModelParameters defines these parameters; the following
table lists them.

Note: For examples, use Studio to view the classes ZENMVC.FormDataModel and ZENMVC.FormDataModel2 in the
SAMPLES namespace. Also see the exercise “<dynaForm> with an Adaptor Data Model” in this chapter.

Table 6–3: Data Model Property Parameters

DescriptionProperty Parameter

List of additional attributes to apply to the control used for this property. This string
should have the following form:

"attribute:value|attribute:value"

ZENATTRS

Type of control used to display this property within a form; If not defined, Zen
chooses the control type based on the data type of the property.

If you specify a simple class name as the value of ZENCONTROL, Zen assumes
that this class is in the package %ZEN.Component. The following example specifies
the class %ZEN.Component.textarea:

ZENCONTROL = "textarea"

You can also specify a full package and class name as the value of ZENCONTROL.
The package and class must reside in the same namespace as the class that is
defining the ZENCONTROL parameter value. The following example specifies a
custom component class:

ZENCONTROL = "MyPackage.Utils.textAreaAppendable"

ZENCONTROL

If defined, this is the name of the column used to provide a display value for SQL
statements automatically generated for this property.

ZENDISPLAYCOLUMN

Using Zen Components 195

Data Model Classes

DescriptionProperty Parameter

The id of a group component that the control used for this property should be added
to. This provides a way to control layout. If not defined, the control is added directly
to the form.

ZENGROUP

1 (true) or 0 (false). If true, indicates that this is a hidden field. When the value of
this field is sent to the client, it is not displayed. The default is 0 (false).

ZENHIDDEN

Label used for this property within a form.The label text cannot contain the comma
(,) character, because it is added to a comma-delimited list of labels.

ZENLABEL

1 (true) or 0 (false). If true, this is a read-only field and cannot be edited by the user.
The default for is 0 (false).

ZENREADONLY

The ZENSIZE parameter provides a value for the size property of a control, if the
control has one. The interpretation of size depends on the HTML element created
by the control. For example, for a text control, size is proportional to the number of
characters displayed. This behavior is defined by HTML, not Zen.

ZENSIZE

If defined, this is an SQL statement used to find possible values for this property.
This parameter corresponds to the sql property of the various data-driven Zen
components. For details, see the “Specifying an SQL Query” section in the chapter
“Zen Tables. ”

ZENSQL

If defined, this is an SQL statement used to find the appropriate display value for
a given logical value. This parameter corresponds to the sqlLookup property of
data-driven Zen components like <dataListBox> and <dataCombo>. For details,
see the “<dataCombo> Logical and Display Values” section in the chapter “Zen
Controls.”

ZENSQLLOOKUP

A positive integer. If specified, this overrides the (1–based) default tab order of the
control used to display the property within a form. All controls with ZENTAB specified
are placed before controls that do not define it.

ZENTAB

Optional popup title string displayed for this property within a form.ZENTITLE

6.9.4 Value Lists and Display Lists

Some of the fields in a form associated with a data model might need separate value lists and display lists. Both are lists
of strings. The value list gives the logical values for storage on the server, and the display list specifies the choices that the
application displays to the user on the client. These concepts apply to an MVC data model as follows:

• If you are using a <form> with a data model, this concept applies to any of the controls that offer valueList and
displayList attributes: <radioSet>, <select>, or <combobox>. For details, see the chapter “Zen Controls.”

• If you are using a <dynaForm> with a data model, this concept applies to any property whose data type uses VALUELIST
and DISPLAYLIST class parameters, for example a property of type %Enumerated. For a table that matches data types
with the <dynaForm> controls they generate, see the “<dynaForm> Controls Based on Data Types” table earlier in
this chapter.

These controls (or in the case of <dynaForm>, the controls that Zen automatically generates to represent these properties)
show their display lists on the client. The data model always converts values to the display format before sending them to
the client. If the Zen application is not localized, the client-side value list and display list are both the same: they are iden-
tical to the server-side display list. Any client-side logic for this control must expect these values.

If the Zen application is localized into multiple languages, and if the data model class correctly defines the DOMAIN class
parameter, then the conventions are a bit different. The client-side value list is still the same as the server-side display list,

196 Using Zen Components

Model View Controller

but now the client-side display list consists of the server-side display values in the local language. Any client-side logic for
this control must expect these values.

As an example, suppose a property in an MVC data model class uses VALUELIST and DISPLAYLIST as follows:

Property Sex As %String(VALUELIST=",1,2", DISPLAYLIST=",Male,Female");

In this case, the logical value of Sex is 1 or 2. This is what is stored in the database and this is what server-side logic uses.
An MVC form only sees the display values. Specifically it sees something like this:

radioSet.valueList = "Male,Female"
radioSet.displayList = $$$Text("Male,Female")

Note: For more about localization, the DOMAIN parameter, and $$$Text macros, see the “Zen Localization” chapter
in Developing Zen Applications.

6.9.5 Object Data Model Callback Methods

When you create an object data model, you subclass %ZEN.DataModel.ObjectDataModel and provide implementations for
its server-side callback methods. The following table describes these methods in detail. You first encountered several of
these methods in the exercise “Constructing a Model” during “Step 2: Object Data Model” . For these methods the
Example column contains the word “Yes.”

Table 6–4: Object Data Model Callback Methods

This Callback Method is Invoked When...ExampleMethod

The data model is deleted.This method is implemented by the subclasses
of the data model class, if they exist.

—%OnDeleteModel

The data model is deleted. If implemented, it is responsible for deleting
the object that has the given id and returning the status code resulting
from that operation.

Yes%OnDeleteSource

The %GetPropertyInfo method invokes it. See the discussion following
this table.

—%OnGetPropertyInfo

A user-defined, named action is invoked on this model object. See the
discussion following this table. This method is implemented by the
subclasses of the data model class, if they exist.

—%OnInvokeAction

Zen does the actual work of loading values from the data source into the
data model object. The only data to load is the data that is actually seen
by the user. This is the place to perform any aggregation or other
operations on the data before storing it.

Yes%OnLoadModel

A data model needs a new instance. If implemented, it opens a new
(unsaved) instance of the data source object used by the data model,
and return its reference.

Yes%OnNewSource

A data model is opened. If implemented, it opens an instance of the data
source object used by the data model, and returns its reference

Yes%OnOpenSource

The data model is saved. If implemented, it is responsible for saving
changes to the data source. It saves the given source object and return
the status code resulting from that operation. Before returning the status
code, it sets the data model’s %id property to the identifier for the source
object.

Yes%OnSaveSource

Using Zen Components 197

Data Model Classes

This Callback Method is Invoked When...ExampleMethod

Zen does the actual work of copying values from the data model to the
data source. This method loads data from the model (probably changed
by the user through a form) back into the source object.

Yes%OnStoreModel

A form connected to this data model is submitted. The contents of this
data model are filled in from the submitted values before this callback is
invoked. Implementing this callback is optional.

—%OnSubmit

6.9.6 Virtual Properties

When a data controller needs to find information about the properties within a data model, it calls the data model’s
%GetPropertyInfo method. This returns a multidimensional array containing details about the properties of the data model.
The code that assembles this information is automatically generated based on the properties, property types, and property
parameters of the data model class.

A data model class can modify the property information returned by %GetPropertyInfo by overriding the
%OnGetPropertyInfo callback method. %GetPropertyInfo invokes the %OnGetPropertyInfo immediately before it
returns the property information. %OnGetPropertyInfo receives, by reference, the multidimensional array containing the
property information. %OnGetPropertyInfo can modify the contents of this array as it sees fit. Properties can be added,
removed, or have their attributes changed. Attributes that you add using this method are called virtual properties. In order
to use virtual properties, you must ensure that the data model class parameter DYNAMICPROPERTIES is set to 1 (true).

Note: For examples, see the exercise “<dynaForm> with an Adaptor Data Model” during “Step 4: Virtual Properties.”

The %OnGetPropertyInfo signature looks like this:

ClassMethod %OnGetPropertyInfo(pIndex As %Integer,
 ByRef pInfo As %String,
 pExtended As %Boolean = 0,
 pModelId As %String = "",
 pContainer As %String = "") As %Status

Where:

• pIndex is the index number that should be used to add the next property to the list.

• pInfo is a multidimensional array containing information about the properties of this data model.

• If pExtended is true, then complete information about the properties should be returned; if false, then only property
names need be returned (applications can simply ignore this).

• pModelId a string that identifies the currently active instance of the data model object, also known as the model ID.
This is provided for cases where the contents of a dynamic form may vary by instance of the data model object. The
exact form and possible values of the model ID are up to the developer of a specific data model class.

• If this is an embedded property, pContainer is the name of the property that contains it.

Within the %OnGetPropertyInfo method, the property information array pInfo is subscripted by property name. The
top node for each property contains an integer index number used to determine the ordinal position of a property within a
dynamically generated form:

If you want %OnGetPropertyInfo to add a new property to a data model, simply add the appropriate nodes to the property
information array. The new property is treated as a “virtual” property. That is, you can set and get its value by name even
though there is no property formally defined with this name. When adding a new property in %OnGetPropertyInfo, set
the top level node to the current index number and then increment the index by 1:

 pInfo("Property") = pIndex
 Set pIndex = pIndex + 1

198 Using Zen Components

Model View Controller

The property information array has a number of subnodes that can be defined to provide values for other property attributes.
Built-in attributes start with % and include:

• pInfo("Property","%type") = "control"

The %type subnode identifies the name of the Zen control that should be used for properties of this type when using
a dynamic form. Note that this name is the class name of a component. If no package name is provided, it is assumed
that this is a component in the %ZEN.Component package. Use a full class name if you wish to specify a component
from a different package.

• pInfo("Property","%group") = "groupId"

The %group subnode indicates the id of a group component contained by a dynamic form. If %group is specified and
there is a group with this id, then the control for this property is created within this group. This provides a way to
control the layout of controls within a dynamic form.

Attributes that do not start with a % specify values that should be applied to a property of the control with the same name.
For example, the following statement causes a dynamic form to set the label property of the control used for the MyProp
property to "My Label".

Set pInfo("MyProp","label") = "This is an extra field!"

Data models and data controllers each support the %OnGetPropertyInfo method. At runtime, the order in which Zen
adds controls to the generated form is as follows:

1. Creates an initial list of controls based on the data model properties and their parameters.

2. Modifies this list of controls by calling the data model’s %OnGetPropertyInfo method, if present.

3. Further modifies this list of controls by calling the data controller’s %OnGetPropertyInfo method, if present.

6.9.7 Controller Actions

The %OnInvokeAction callback lets you define “actions” that can be invoked on the data model via the data controller.
The client can invoke an action by calling the dataController’s invokeAction method as follows:

controller.invokeAction('MyAction',data);

This, in turn, invokes the server-side %OnInvokeAction callback of the data model, passing it the name of the action and
the data value. The interpretation of the action name and data is up to the application developer.

6.9.8 Data Model Series

The basic data model object consists of a series of name-value pairs.

Using Zen Components 199

Data Model Classes

Figure 6–4: Data Model with Name-Value Pairs

The name-value pairs in the data model comprise all of the properties in the data model class, minus those properties marked
ZENHIDDEN, plus any properties added by %OnGetPropertyInfo, minus any properties deleted by %OnGetProperty.
By default, the number of series is 1, but it could be larger. If there are multiple series in the model, conceptually it becomes
a matrix.

Figure 6–5: Data Model with Data Series

You can add multiple series to the model if you write your own %OnLoadModel method, as in the SAMPLES class
ZENMVC.ChartDataModel2, shown below. This example creates three series for the model and assigns values to data model
properties in each of the series.

Class ZENMVC.ChartDataModel2 Extends %ZEN.DataModel.ObjectDataModel
{
Property Cars As %Integer;
Property Trucks As %Integer;
Property Trains As %Integer;
Property Airplanes As %Integer;
Property Ships As %Integer;

Method %OnLoadModel(pSource As %RegisteredObject) As %Status
{
 Set scale = 100

 #; This model has multiple data series. We set up the data series here.
 Set ..%seriesCount = 3
 Set ..%seriesNames(1) = "USA"
 Set ..%seriesNames(2) = "Europe"
 Set ..%seriesNames(3) = "Asia"

 #; Now we provide data for each property within each series.
 #; We use the %data array so that we can address multiple series.
 For n = 1:1:..%seriesCount {

200 Using Zen Components

Model View Controller

 Set ..%data(n,"Cars") = $RANDOM(100) * scale
 Set ..%data(n,"Trucks") = $RANDOM(100) * scale
 Set ..%data(n,"Trains") = $RANDOM(100) * scale
 Set ..%data(n,"Airplanes") = $RANDOM(100) * scale
 Set ..%data(n,"Ships") = $RANDOM(100) * scale
 }
 Quit $$$OK
 }
}

When your data model has multiple series, if you bind the data model to a chart, the chart automatically picks up the various
series, although you need to be careful with a pie chart. Series work similarly for a grid. A form can only display one series
at a time, so you need to rely on the data controller attribute defaultSeries to determine which series is currently in view.

6.9.9 Custom Data Model Classes

%ZEN.DataModel.ObjectDataModel or %ZEN.DataModel.Adaptor are sufficient for most needs. However, sometimes a
developer might want to create a special category of data model, for example to represent a global. In that case the developer
must subclass %ZEN.DataModel.DataModel and implement the details of this subclass.

The following table lists methods that applications can call in order to work with a data model object. The behavior of these
methods is up to the specific %ZEN.DataModel.DataModel subclass that implements them.

Table 6–5: Custom Data Model Class Methods

DescriptionMethod

Delete an instance of a data model object given an identifier value. This takes the given
identifier value and uses it to delete an instance of a source object (if applicable). (If the
data model object serves as both interface and data source, then the data model object
itself is deleted).

%DeleteModel

Open an instance of a data model object given an identifier value. This takes the given
identifier value and uses it to find an instance of a source object (if applicable) and then
copies the appropriate values of the source object into the properties of the data model
object. (If the data model object serves as both interface and data source, then this
copying is not carried out).

%OpenModel

Save an instance of a data model object. This copies the properties of the data model
object back to the appropriate source object (if applicable) and then asks the source
object to save itself. (If the data model object serves as both interface and data source,
then the data model itself is saved.).

%SaveModel

Using Zen Components 201

Data Model Classes

7
Navigation Components

The “Zen Layout” chapter of Using Zen introduces Zen group components as the key to laying out the Zen page. In that
chapter, the “Groups” section describes the simple group components <hgroup>, <vgroup>, <page>, <pane>, and <spacer>.

This chapter describes a more complex set of group and menu components. A developer can use these components to support
navigation through Zen applications:

• “Links” link to other Zen pages, or other application content, via a URI.

• “Menus” present and manage a structured set of choices, usually links.

• “Navigator” creates a navigation interface similar to that found on mobile devices.

• “Tabs” define tabbed menus and tabbed forms.

• “Trees” provide a hierarchical outline of links that expands or contracts in response to user clicks.

• “Filters” allow you to filter the available choices by category.

The following table organizes Zen navigation components into two categories: containers (at left) and contained (at right).
This chapter describes each component in the order listed in the table.

Components It Typically ContainsPurposeContainer

<link> for each link.Provide a link to another page or to a
popup message.

(Any)

<locatorLink> for each link in the navigation
sequence.

Navigation bar for the top of the page.<locatorBar>

<menuItem> for each option.

<menuSeparator> for the space between
options.

Menu container. The default layout is
vertical but you can use the layout attribute
to change to horizontal layout.
Alternatively, you may use <hmenu> or
<vmenu>.

<menu>

Horizontally oriented menu<hmenu>

Vertically oriented menu<vmenu>

Using Zen Components 203

Components It Typically ContainsPurposeContainer

<tab> for each option.Traditional set of tabs from which the user
can choose one to be displayed on top of
the set.

<tabGroup>

A tabbed menu that displays a button for
each tab. Clicking on a button makes the
tab contents display beneath the button.
Each tab consists of menu items.

<lookoutMenu>

Inside a <lookoutMenu>, each <tab> contains
<menuItem> and <menuSeparator>
components.

A tab is a group that may contain any
combination of components.

<tab>

For a simple navigation tree, you can provide
<link> components within <expando>.

Expanding and contracting group which
may contain any combination of
components.

<expando>

Generated links. These either use the data
within the global or are supplied by the
callback. <dynaTree> is not a group and does
not contain other components.

Expandable tree of links.<dynaTree>

Buttons laid out in a grid according to the
number of columns specified. <buttonView>
is not a group and does not contain other
components.

Set of links that permits filtering according
to categories.

<buttonView>

The following figure lists most of the components described in this chapter. All of the classes shown in the diagram are in
the package %ZEN.Component, for example %ZEN.Component.tab. The diagram shows the inheritance relationships for
these classes. It also highlights which of these components can contain other components, by showing which components
inherit from %ZEN.Component.group.

Figure 7–1: Zen Navigation Components

204 Using Zen Components

Navigation Components

7.1 Links
The following Zen components provide links to content that is available via a URI:

• “<link>”

• “<locatorBar>”

7.1.1 <link>

The <link> component outputs a simple link (an HTML anchor element) to the Zen page. The default formatting for this
type of link is to use color and underline it. <link> has the following attributes:

DescriptionAttribute

<link> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Text for this link in the Zen page display.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The caption value can be a literal string, or it can contain a Zen #()# runtime
expression.

caption

If true, this link is disabled. The default is false. A newly disabled link is redisplayed,
without an anchor tag, to ensure that it is truly disabled from the user’s point of view.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

disabled

URI of the content to display when the user clicks the caption text. If you want to
invoke a client-side JavaScript method in the href, start the URI with javascript:
as in:

href="javascript:zenPage.myMethod();"

The href value can be a literal string, or it can contain a Zen #()# runtime expression.

href

The onclick event handler for the link. Zen invokes this handler when the user clicks
on the link. See “Zen Component Event Handlers.” If onclick is specified, href is
ignored. If onclick is not specified, the link displays the content specified by href.

onclick

CSS style to apply to cells in this link, for example:

color: red;

style

Using Zen Components 205

Links

DescriptionAttribute

String that controls where the new document is displayed when the user clicks on a
link. In HTML, this is typically the name of a frame; however HTML also defines the
following special values, which you can assign to the target attribute to get the desired
behavior:

• "_blank" — Open the link in a new window

• "_parent" — Open the link in the parent window

• "_self" — Open the link in the current window

• "_top" — Open the link in the topmost window

target

Help message to display when the user hovers the cursor over the link, without
clicking.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

The title value can be a literal string, or it can contain a Zen #()# runtime expression.

title

One way to use <link> is to place it within an <expando> component to present a tree-style menu of links.

7.1.2 <locatorBar>

A <locatorBar> looks like the following example, based on the class ZENDemo.ActiveGroupDemo in the SAMPLES
namespace. The <locatorBar> is the horizontal bar along the top of the illustration.

The corresponding <locatorBar> definition follows:

<locatorBar id="locator" OnGetQuickLinks="GetQuickLinks">
 <locatorLink caption="Home" title="Home page"
 href="ZENDemo.Home.cls"/>
 <locatorLink caption="Active Group Demo"
 title="Active Group Demo" />
</locatorBar>

This <locatorBar> definition contains two <locatorLink> entries, which display in sequential order beginning at the far left
end of the bar:

206 Using Zen Components

Navigation Components

[Home] > [Active Group Demo]

The caption for each <locatorLink> is enclosed in square brackets and is separated by a right angle bracket from the next
<locatorLink> in the sequence, from left to right. The user can display the title as a tooltip.

At the far right end of the bar is the drop-down list of quick links that this <locatorBar> has established by identifying an
OnGetQuickLinks callback. The illustration shows that the user is hovering the cursor over this list and is about to make a
selection. Doing so would cause the page identified by that link to display.

<locatorBar> has the following attributes:

Using Zen Components 207

Links

DescriptionAttribute

<locatorBar> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Name of a server-side callback method in the Zen page class.This method provides
HTML content for the locator bar using &html<> syntax or WRITE commands.

Zen invokes this method whenever it draws the locator bar, automatically passing it
a %String that contains the seed value from the <locatorBar>. The callback must
return a %Status data type. The following is a valid method signature:

Method DrawBar(pSeed As %String) As %Status

To use the above method as the callback, the developer would set
OnDrawBar="DrawBar" for the <locatorBar>.

OnDrawBar

Name of a server-side callback method in the Zen page class. This method defines
a set of quick links to appear as a Go to drop-down list at the top right of the locator
bar. For details, see the discussion following this table.

OnGetQuickLinks

Allows you to pass some arbitrary value to the OnDrawBar callback.The seed value
can be a literal string, or it can contain a Zen #()# runtime expression.

seed

The OnGetQuickLinks attribute provides the name of a server-side callback method in the Zen page class. This method
must fill the array that is provided to it. If the method constructs a valid array, Zen displays each entry in the array as a Go

to drop-down list at the top right of the locator bar. Zen invokes this method whenever it draws the locator bar, automatically
passing in its single output parameter, an array subscripted by link caption. The callback must return a %Status value.

The following sample ObjectScript statement provides one entry for the array:

Set pLink("caption")="uri"

Where:

• caption is the label that appears on the link

• uri is the URI string, which may include query parameters in addition to the base URI

The following example shows a valid method signature and use of parameters. It generates the quick links shown in the
illustration at the beginning of this topic. To use the following method as the callback, the developer would set
OnGetQuickLinks="GetLinks" for the <locatorBar>.

ClassMethod GetQuickLinks(Output pLinks) As %Status
{
 Set pLinks("Home") = "ZENDemo.Home.cls"
 Set pLinks("Expense Calculator") = "ZENDemo.ExpenseCalculator.cls"
 Set pLinks("MVC Master Detail") = "ZENMVC.MVCMasterDetail.cls"
 Set pLinks("MVC Chart") = "ZENMVC.MVCChart.cls"
 Set pLinks("MVC Meters") = "ZENMVC.MVCMeters.cls"
 Set pLinks("MVC Form") = "ZENMVC.MVCForm.cls"
 Set pLinks("Test Suite") = "ZENTest.HomePage.cls"
 Set pLinks("Controls") = "ZENDemo.ControlTest.cls"
 Set pLinks("Methods") = "ZENDemo.MethodTest.cls"
 Quit $$$OK
}

If you want to define the same set of quick links to use on more than one page in your application, you can define a method
in your Zen application class and then have the callback in each page class invoke this application method, as follows. Note

208 Using Zen Components

Navigation Components

the dot (.) in front of the parameter pLinks in the call to the application class method. This is because it is an output
parameter:

ClassMethod GetQuickLinks(Output pLinks) As %Status
{
 #; dispatch to our application class
 Quit %application.GetQuickLinks(.pLinks)
}

7.1.3 <locatorLink>

<locatorLink> can appear only inside the <locatorBar> container. Each <locatorLink> defines one link within the navigation
chain expressed in the <locatorBar>. <locatorLink> is the XML projection of the auxiliary class %ZEN.Auxiliary.locatorLink.
<locatorLink> has the following attributes:

DescriptionAttribute

This value can be used to select a CSS style definition for the <locatorLink>.id

Component name. Typically, this is not used for <locatorLink>.name

Text for this link in the <locatorBar>.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

URI of the content to display when the user clicks the caption text. If you want to
invoke a client-side JavaScript method in the href, start the URI with javascript:
as in:

href="javascript:zenPage.myMethod();"

href

Help message to display when the user hovers the cursor over the link, without
clicking.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

7.2 Menus
Menu components permit you to create classic navigation menus, with lists of choices from which the user can select an
item by clicking on it. With each choice of a menu item, an event may occur depending on how the menu and menu item
have been defined:

• A submenu might display

• A message might pop up

• A different page might display

• The contents of the current page might change

• Something else might happen, depending on how you have programmed the menu to respond when the user selects
each <menuItem>

Using Zen Components 209

Menus

A vertical menu, expanded to three levels, looks like the following example, based on the class ZENTest.MenuTest in the
SAMPLES namespace. Any options that produce submenus use the » right angle quote to indicate this, as shown for
“Submenu” and “Sub Submenu”.

The <menu> definition that produced this illustration is shown below:

<menu id="menu2" layout="vertical">
 <menuItem caption="Menu A" link="javascript: alert('A');" />
 <menuItem caption="Menu B" link="javascript: alert('B');" />
 <menu id="menu2B" caption="Submenu" layout="vertical"
 onactivate="zenPage.activateMenu2B();">
 <menuItem caption="Menu A" link="javascript: alert('A');" id="menu2B_A" />
 <menuItem caption="Menu B" link="javascript: alert('B');" />
 <menu id="menu2BB" caption="Sub Submenu" layout="vertical">
 <menuItem caption="Menu A" link="javascript: alert('A');" />
 <menuItem caption="Menu B" link="javascript: alert('B');" />
 <menuSeparator />
 <menuItem caption="Help Desk" link="ZENApp.HelpDesk.cls" />
 </menu>
 </menu>
 <menuSeparator />
 <menuItem caption="Test Suite" link="ZENTest.HomePage.cls" />
 <menuItem caption="Home" link="ZENDemo.Home.cls" />
</menu>

The next several sections explain details of the menu components in this example. For now, simply note:

• In many cases, the example uses JavaScript alerts in place of URI links for demonstration purposes. link values can
take this form, or they can redirect the browser to other pages in the Zen application, as the example shows:

• A <menu> can contain a <menu>. If so, the contained <menu> becomes a submenu and its caption is listed in sequence
along with any <menuItem> components at the same level. The above example provides three levels of <menu>.

• The example provides a <menuSeparator> on the first- and third-level menus. Note how the <menuSeparator> component
generates the divider bar between “Submenu” and “Test Suite” and between “Sub Submenu” and “Help Desk” in the
output.

Note: The “Client Side Menu Components” chapter in Developing Zen Applications describes more sophisticated menu
components that are more easily fine-tuned and customized. Try the components in this chapter first, and if they
do not suit your needs, consult the other book.

7.2.1 <menuItem>

Each item on a <menu> is defined using <menuItem>. <menuItem> has the following attributes. Since either of them may
display their caption or image as a choice within a menu cell, <menuItem> and <menu> share all of these attributes in
common. <menu> has additional attributes. For descriptions, see the <menu> section.

210 Using Zen Components

Navigation Components

Table 7–1: Menu Cell Attributes

DescriptionAttribute

<menu> and <menuItem> have the same general-purpose attributes as any Zen component.
For descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen
component
attributes

Text for this menu item when it appears as a choice within its containing <menu>.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

If true, this menu item is disabled. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

disabled

The help attribute supplies help text for this menu item.

Generally what you want in place of help is the title attribute. title supplies tooltip text that
displays whenever the user hovers the mouse over this item. All Zen components, including
<menu> and <menuItem>, support the title attribute.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

help

Identifies the pathname and filename of an image to display for this menu item. If both image
and caption are provided, they appear side by side, the image at left and the text at right.

The image path is relative to the Caché installation directory. Typically this path identifies
the images subdirectory for your Zen application, for example:

<image id="myFrame" src="/csp/myApp/images/myPic.png" />

image

If an image is provided, imageHeight is its height in pixels. The default is 16.imageHeight

If an image is provided, imageWidth is its width in pixels. The default is 16.imageWidth

URI of the content to display when the user clicks the menu item. If you want to invoke a
client-side JavaScript method in the link, start the URI with javascript: as in:

link="javascript:zenPage.myMethod();"

link

Name of a Caché resource. The user must have privileges to access this resource or this
menu item becomes disabled. If you are not familiar with Caché resources, see the “Assets
and Resources” chapter in the Caché Security Administration Guide.

linkResource

The onclick event handler for the menu item. Zen invokes this handler when the user clicks
on the menu item. See “Zen Component Event Handlers.” If onclick is specified, link is
ignored. If onclick is not specified, the menu item displays the content specified by link.

onclick

Using Zen Components 211

Menus

DescriptionAttribute

String that controls where the new document is displayed when the user clicks on a menu
item. In HTML, this is typically the name of a frame; however HTML also defines the following
special values, which you can assign to the target attribute to get the desired behavior:

• "_blank" — Open the document in a new window

• "_parent" — Open the document in the parent window

• "_self" — Open the document in the current window

• "_top" — Open document link in the topmost window

target

7.2.2 <menu>, <hmenu>, and <vmenu>

All Zen groups that do not have a predefined layout setting have a vertical layout by default. This is true for the <menu>
component. However, it can be useful to explicitly state the desired layout of the menu group. You can do this by:

• Setting a value for the <menu> layout attribute (as in the example above)

• Choosing one of the following in place of <menu>:

– <hmenu> — a horizontally oriented list of choices

– <vmenu> — a vertically oriented list of choices

<menu>, <hmenu>, and <vmenu> have the following attributes:

DescriptionAttribute

A menu has the same style and layout attributes as any Zen group. For descriptions,
see “Group Layout and Style Attributes” in the “Zen Layout” chapter of Using Zen.
However, the layout attribute does not apply to <hmenu> or <vmenu> because these
components have layout set to "horizontal" and "vertical" respectively.

Zen group attributes

A menu may display its caption or image as a choice within a menu cell. For this
reason, <menu>, <hmenu>, and <vmenu> share several attributes in common with
<menuItem>. For descriptions, see the <menuItem> section.

Zen menu cell
attributes

The onactivate event handler for the menu. See “Zen Component Event Handlers.”
Used if this menu is a submenu. Zen invokes this handler just before the submenu
is made visible.

onactivate

Client-side JavaScript expression that Zen invokes when the user moves the mouse
over this menu item. Generally this expression invokes a client-side JavaScript
method.

onshowHelp

7.2.3 <menuSeparator>

A <menuSeparator> bar helps to visually group the options on a <menu>. <menuSeparator> has the same general-purpose
attributes as any Zen component. For descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

212 Using Zen Components

Navigation Components

7.2.4 <accordionMenu>

An <accordionMenu> is a simple HTML5 accordion menu component. This component runs correctly only on HTML5
compliant browsers. <accordionMenu> supports the following attributes:

DescriptionAttribute

The ongetdata event handler. If it is defined, this event returns an array of items to
be displayed in the menu.

ongetdata

The onselect event handler. If it is defined, this event is fired when the user clicks
on an item in the menu.

onselect

The currently selected item.This is a string of the form 'index1,index2,index3', where
each index is the 0-based ordinal position of a menu, and its first and second level
children. <accordionMenu> does not support more than three levels.

selectedIndex

An additional style to apply to items in the menu.style

You can get data to populate the <accordionMenu> either from an ongetdata event handler, or by using the controllerId
property to connect the menu to an <altJSONProvider>. The following code samples show a simple <accordionMenu> that
uses an <altJSONProvider> which gets data from an OnGetArray callback method.

<page xmlns="http://www.intersystems.com/zen" title="">
 <altJSONProvider id="jsonP" OnGetArray="GetData"/>
 <accordionMenu
 id="testMenu"
 selectedIndex="1,2"
 controllerId="jsonP"
 width="200"
 onselect="zen('sid').setProperty('value',key);"
 />
 <text id="sid" size="20"/>
</page>

Method GetData(ByRef pParameters, Output pMetaData, Output pData) As %Status
{
 Set pMetaData = $LB("key","caption","image")

 Set pData(0) = $LB("1","Menu A","images/folderclosed.gif")
 Set pData(0,1) = $LB("0,1","Selection 1","images/file.png")
 Set pData(0,2) = $LB("0,2","Selection 2","images/file.png")
 Set pData(0,3) = $LB("0,3","Selection 3","images/file.png")
 Set pData(1) = $LB("1","Menu B","images/folderclosed.gif")
 Set pData(1,1) = $LB("1,1","Choice 1","images/file.png")
 Set pData(1,2) = $LB("1,2","Choice 2","images/file.png")
 Set pData(1,3) = $LB("1,3","Choice 3","images/file.png")
 Set pData(2) = $LB("1","Menu C","images/folderclosed.gif")
 Set pData(2,1) = $LB("2,1","Item 1","images/file.png")
 Set pData(2,2) = $LB("2,2","Item 2","images/file.png")
 Set pData(2,3) = $LB("2,3","Item 3","images/file.png")

 Quit $$$OK
}

The OnGetArray method uses the pMetaData argument to return a list of property names. You can use whatever property
names you like, but also include in this list any or all of the following property names, which are given special handling
by the <accordionMenu> component:

The OnGetArray Callback Method

• key – A value that identifies the selected menu item. Available to the onselect event handler.

• caption – Supplies text that appears in the menu item.

• action – A value that identifies the action to take when the user selects a menu item. Available to the onselect event
handler.

• targetId – A value that identifies the object of the action. Available to the onselect event handler.

Using Zen Components 213

Menus

• image – Supplies the path to an image that appears in the menu item.

• children – An array of menu nodes that describe the submenu for a menu item.

<accordionMenu> passes the values provided for key, action, and targetId to the onselect event handler. The following
simple example illustrates the availability of these values in the event handler.

ClientMethod itemSelected(key, action, targetId) [Language = javascript]
{
 alert(key + " " + action + " " + targetId);
}

The text provided in the caption property appears as a label for the menu item. The image file supplied by the image property
appears as part of the menu item label, to the left of the text. You do not generally need to specify the children property,
as it is filled in by the <altJSONProvider> based on subscripts in the pData array provided by the OnGetArray callback.

7.3 Navigator
The <navigator> component creates a combination navigation and simple settings interface similar to that found on mobile
devices. This is an HTML5 component. It works correctly only on HTML5 compliant browsers. The <navigator> component
is implemented by the %ZEN.Component.navigator class.

The navigator component is completely driven by JavaScript data. The only Zen object needed to drive the navigator is the
navigator component itself. The component can operate in the following modes:

• The top-level of the control is initially visible.

• The top-level is initially hidden and has to be made visible by a user event, such as pressing on an icon to make it
appear.

<navigator> supports the following properties:

DescriptionAttribute

A menu has the same style and layout attributes as any Zen group. For descriptions,
see “Group Layout and Style Attributes” in the “Zen Layout” chapter of Using Zen.

Zen group attributes

Style to apply to the navigator background.backgroundStyle

Width of columns (in pixels). The default value is 320, which is also the value that
gives the best visual results.

columnWidth

Width in pixels of the disclosure bar on the left.The attribute showDisclosure controls
visibility of the disclosure bar. Clicking on the disclosure bar expands and contracts
the navigator.

disclosureWidth

If true, then show the navigator. If false, the navigator is contracted, and not visible.
The default value is true.

expanded

Height of the footer (in pixels). Set to 0 for no footer. The default value is 0. A value
of 40 shows the footer with the best visual results.

footerHeight

Height of the header (in pixels). The default value is 40, which is also the value that
gives the best visual results.

headerHeight

214 Using Zen Components

Navigation Components

DescriptionAttribute

The onarrange event handler. See “Zen Component Event Handlers.” Zen invokes
this handler when the order of items in the current sheet has changed. This event is
passed 3 arguments: key, swap, and final. final is true when a value is finished
changing. swap is an object with the property index and newIndex, containing the
index of the item to move and its new location.

onarrange

The onbuttonclick event handler. Zen invokes this handler when the user has clicks
on a "header" or "footer" button.

onbuttonclick

The onchange event handler. Zen invokes this handler when a control within the
property sheet has changed value. This event is passed 3 arguments: key, value,
and final. final is true when a value is finished changing (such as when the user stops
pressing a stepper button).

onchange

The onclosebuttonclick event handler. Zen invokes this handler when the user clicks
on a "close" button for an item.

onclosebuttonclick

The onexpand event handler. Zen invokes this handler when the user expands or
contracts this component.

onexpand

The ongetcontent event handler: This defines the client-side code that defines the
content of a "sheet" within this component. This is passed level, key, and value as
arguments. This code should return an object with any of the following properties:

• title – the title to display for the sheet.

• url – if defined, the url to display as an iframe in the sheet (in the same domain).

• html – custom html to display within the sheet.

• childIndex – index number (0-based) of child of this component to display.

• items – array of JavaScript objects used to define the contents.

ongetcontent

The onindent event handler. Zen invokes this handler when the indentation level of
an item in the current sheet has changed. This event is passed 3 arguments: key,
list, and final. final is true when a value is finished changing. list is a an array contain-
ing the new ordinal positions of the items.

onindent

The onpopupaction event handler. Zen invokes this handler when the user has
invoked and applied a popup for an item.

onpopupaction

The onselect event handler. Zen invokes this handler when a new choice has been
selected within the property sheet. This handler is also called when a "drill" item is
selected. This event is passed 3 arguments: key, value, and which. The value of
which is "select" or "drill".

onselect

If true, show the disclosure bar on the left. The attribute disclosureWidth controls
width of the disclosure bar.

showDisclosure

Using Zen Components 215

Navigator

7.3.1 Creating and Sizing a <navigator>

Adding a navigator component to a page displays an empty navigator panel:

<navigator id="navigator"/>

You can use CSS to control the size of the navigator, either in a style sheet or in JavaScript. For example, if the navigator
has the id "navigator", the following code sets the height of the navigator to 600 pixels:

#navigator {
 height: 600px;
}

You can use the headerHeight attribute to control the height of the header banner:

<navigator headerHeight="10"/>

You can also programmatically set the header height using the navigator's setHeight method, which also readjusts any
internal geometry.

You can use the columnWidth attribute to control the width of the navigator. However, be aware that the navigator is
designed for a fixed width of 320 pixels. The layout of menu controls does not display well at other widths.

You can use the expanded attribute to hide the navigator by completely collapsing it into a thin strip. The navigator defines
an onexpand event that fires whenever the navigator is expanded or contracted. You can use this event to adjust the layout
of other controls on the page when the navigator changes size.

7.3.2 Adding Content to the Navigator

The key to adding content is the ongetcontent event handler, which is called whenever the navigator needs to get content
to display.

It is important to understand the stack-based nature of the navigator. You can think of the navigator as being a stack of
playing cards. The navigator initially displays one card, and the ongetcontent event handler is called to get content for that
card. If the user drills down into an item in the navigator, then a new card is placed on top of the previous card and
ongetcontent is called again to get the contents of the new card. The user may then go back to the previous card or drill
down yet another level.

To define content for the initial card (referred to as a sheet within the navigator API), define an ongetcontent handler:

<navigator ongetcontent="return zenPage.getContentForLevel(level,key);"/>

Note that you need to use return so that the return value of the method is passed along. The callback method is passed two
parameters:

• level – the 0-based stack level of the navigator

• key – the programmer-defined identifier for the current sheet. This is always ''for the initial sheet.

Here is a basic implementation of an ongetcontent handler method:

ClientMethod getContentForLevel(level, key) [Language = javascript]
{
 var content = { title: 'My Navigator', items:[] };
 return content;
}

The ongetcontent handler is expected to return an object with certain properties in it:

• title is the title that is displayed within the banner of the navigator.

• items is an array of items to display on the sheet.

216 Using Zen Components

Navigation Components

The following example returns some content:

ClientMethod getContentForLevel(level, key) [Language = javascript]
{
 var content = { title: 'My Navigator', items:[] };

 switch (key) {
 case '':
 // root
 content.items[content.items.length] =
 {display:'caption', caption:'Red'};
 content.items[content.items.length] =
 {display:'caption', caption:'Green'};
 content.items[content.items.length] =
 {display:'caption', caption:'Blue'};
 break;
 }

 return content;
}

key is '' for the initial sheet. This example returns 3 items in the items array. Each item is an object with certain properties
in it, in this case display, which specifies what to display and caption, the caption to display for each item.

At this point, the navigator does not do anything very interesting. You can use an onselect event handler to implement
additional behavior. This event handler is called when the user selects an item:

<navigator ... onselect="alert(key);" ... />

This also has no effect, because there are no actions defined for the items in the navigator. Change the definition of the
items so that they define action and key:

{display:'caption', caption:'Red', action:'select', key:'red'};
{display:'caption', caption:'Green', action:'select', key:'green'};
{display:'caption', caption:'Blue', action:'select', key:'blue'};

When the user clicks on an item in the navigator, the onselect action fires and passes along the key value.

The available values for action are:

• 'select' – fire the onselect callback.

• 'drill' – drill down one level.

• 'link' – navigate to a new URL, value supplies the URL.

• 'apply' – apply the value of the current item, which causes the navigator's onchange handler to fire.

The following additional item uses the 'drill' action:

content.items[content.items.length] =
 {display:'caption', caption:'Gray', action:'drill', key:'gray'};

The navigator now displays Gray as an option, with a drill-down icon. If we click on Gray, a new sheet appears on the
navigator.

To supply content for this sheet, we need to modify our ongetcontent handler to add a case for when the value of key is
'gray':

Using Zen Components 217

Navigator

switch(key) {
 case '':
 // root
 content.items[content.items.length] =
 {display:'caption', caption:'Red', action:'select', key:'red'};
 content.items[content.items.length] =
 {display:'caption', caption:'Green', action:'select', key:'green'};
 content.items[content.items.length] =
 {display:'caption', caption:'Blue', action:'select', key:'blue'};
 content.items[content.items.length] =
 {display:'caption', caption:'Gray', action:'drill', key:'gray'};
 break;
 case 'gray':
 // gray
 content.items[content.items.length] =
 {display:'caption', caption:'Black', action:'select', key:'black'};
 content.items[content.items.length] =
 {display:'caption', caption:'White', action:'select', key:'white'};
 break;
}

A more sophisticated onselect callback makes the page behavior more interesting:

<navigator ... onselect="zenPage.selectHandler(key);" ... />

ClientMethod selectHandler(key) [Language = javascript]
{
 zenPage.getEnclosingDiv().style.background = key;
 while (zen('navigator').popSheet());
}

Now when the user selects an item, the color of the page changes, assuming that the value of key is a valid color value. The
call to popSheet(), restores the navigator to its first sheet (keep popping until the stack level is back to 0).

You can also define a value for each item that is also passed to the onselect callback. In this case it is better to use value
for the color name. In the following item definition, value specifies a darker shade of red:

{display:'caption', caption:'Red', action:'select', key:'red', value:'#330000'};

Pass value to the onselect callback, and use it to set the page color:

<navigator ... onselect="zenPage.selectHandler(key, value);" ... />

ClientMethod selectHandler(key, value) [Language = javascript]
{
 zenPage.getEnclosingDiv().style.background = value;
 while (zen('navigator').popSheet());
}

7.3.3 Changing the Display and Appearance of Items

Each item can define a display attribute. This can take one of the following values:

• 'caption' – display the item caption

• 'caption-value-vt' – display the caption and value laid out vertically.

• 'caption-value-hz' – display the caption and value laid out horizontally.

• 'value' – display the item value Note that if the caption or value are too long, they are truncated.

• 'image-caption' – display an image and the caption

• 'image-caption-value-vt' – display an image and the caption and value laid out vertically.

• 'image-caption-value-hz' – display an image and the caption and value laid out horizontally.

The image is specified by the image property of the item:

218 Using Zen Components

Navigation Components

{display:'caption-image', caption:'Red',
 image:'deepsee/blueprint_plan_48.gif', action:'select',
 key:'green', value:'green'};

If image is not defined, a default image is used. If you do not want an image, but want the same indent as if there were an
image, then use image:'none'.

You can also add properties that control the style of an item:

• style – CSS style applied to the overall item (typically background).

• captionStyle – CSS style applied to the item caption.

• valueStyle – CSS style applied to the item value.

• disabled – if defined and true, then this item is disabled.

• selected – if defined and true, then display this item with the style defined for selected items.

• checked – if defined and true, then indicate that this item is checked

7.3.4 Editing Values in Items

A navigator can do more than act as a menu. You can use it to display and edit values using a small set of edit controls.
These controls include:

• 'string' – display a simple text entry box

• 'slider' – display a slider control. minValue and maxValue can be used to define the range.

• 'slider-toggle' – display a slider control with a checkbox. If the checkbox is turned off the value is set to "".

• 'stepper' – display a up/down stepper control. minValue and maxValue can be used to define the range.

• 'stepper-value' – display a stepper with a value.

• 'switch' – display an on/off switch.

• 'choice' – display a small set of choices as buttons. valueList and displayList define the set of values and labels. This
only works well for a small set of small choices due to the geometry of the navigator.

Perform the following steps to display an edit control:

• Set the value of the display property to something that displays a value, 'caption-value-hz' is a good choice.

• Set the value of the edit property to one of the available control types.

Here is an example of content items defining the various controls:

case 'edit':
 // edit controls
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'String',
 edit:'string', key:'string', value:''};
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Slider',
 edit:'slider', key:'slider', value:0, minValue:0, maxValue:100};
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Stepper',
 edit:'stepper', key:'stepper', value:0, minValue:0, maxValue:100};
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Stepper 2',
 edit:'stepper-value', key:'stepper-value', value:0,
 minValue:0, maxValue:100};
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Switch',
 edit:'switch', key:'switch', value:0};
 content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Choice',

Using Zen Components 219

Navigator

 edit:'choice', key:'choice', value:'box',
 valueList:'box,circle', displayList:'Box,Circle'};
 break;

Note that the action property is ignored if you define an edit property. value is the initial value of the control. It is not
updated. You need to define an onchange callback to apply any changes and then make sure these values are used when
the ongetcontent handler is next called.

The onchange callback is connected to the navigator component:

<navigator onchange="zenPage.dataChange(key,value,final);" ...

The onchange callback is passed 3 arguments: the key value for the item that has changed, the new value, and a final flag.
The final flag is true if the value is done changing, and is relevant to sliders and steppers. It lets you track changes as they
occur, or wait until they are complete.

7.3.5 Creating a Multiple Choice Item

If you want to let the user select a value from a set of choices and the choice control is too restrictive, you can create a sheet
containing multiple choices and then let the user drill down to select one. The following example defines a simple list to
select a political party. First, define a property on the page to hold the current choice:

Property party As %String;

The following item displays this property:

content.items[content.items.length] =
 {display:'caption-value-hz', caption:'Party', action:'drill',
 key:'party', value:this.party};

This item displays both the caption and the value, which is this.party. The action is drill. When the user drills down
on this item, the ongetcontent handler asks for the contents for the sheet identified by the key 'party'. This sheet provides
the list of political parties:

case 'party':
 content.items[content.items.length] =
 {display:'value', selected:this.party=='Democrat',
 value:'Democrat', action:'apply'};
 content.items[content.items.length] =
 {display:'value', selected:this.party=='Independent',
 value:'Independent', action:'apply'};
 content.items[content.items.length] =
 {display:'value', selected:this.party=='Libertarian',
 value:'Libertarian', action:'apply'};
 content.items[content.items.length] =
 {display:'value', selected:this.party=='Republican',
 value:'Republican', action:'apply'};
 break;

For each of these items, the action is 'apply’. When the user selects an option the onchange handler for the navigator is
called and the sheet is popped off the stack. Note the use of selected to indicate the current value. The onchange handler
updates the property party, so that when the original sheet is displayed, it shows the user's choice.

ClientMethod dataChange(key, value, final) [Language = javascript]
{
 // apply change to data model
 switch (key) {
 case 'party':
 this.party = value;
 break;
 }
}

220 Using Zen Components

Navigation Components

7.3.6 Displaying HTML

The content object returned by the ongetcontent handler can return arbitrary HTML to display in a navigator sheet. To do
this, define a property called html in the content object, and set it to include valid HTML:

switch(key)
 case 'custom':
 content.html =
 'This is some text!'
 content.title = 'HTML'
 break;

The html content fires data change events by invoking the navigator's applyValue method. This fires the onchange handler
using the key value for the entire panel, which in this case is 'custom'.

7.4 Toolbar
The <toolbar> component is a versatile component that can display a series of different items along a horizontal bar. This
is an HTML5 component. It works correctly only on HTML5 compliant browsers. The <toolbar> component is implemented
by the %ZEN.Component.toolbar class.

<toolbar> has the following attributes:

DescriptionAttribute

Additional style to apply to images in the menu. Use this to change the size of images.imageStyle

onchange event handler. Provides notification that a control in the toolbar has changed
value. This event is passed the following arguments: key, value, and final. final is
true when a value is finished changing.

onchange

ongetdata event handler. If defined, this event returns an array of items to be
displayed in the menu.

ongetdata

onpagechange event handler. If defined, this event is fired when the user selects a
new page number from a "pages" item.This event is passed the following arguments:
key and page (selected page, 1-based). from the data element associated with the
menu choice.

onpagechange

onselect event handler. If defined, this event is fired when the user clicks on a item
in the menu. This event is passed the following arguments: key, action, and targetId
from the data element associated with the menu choice.

onselect

The index (0-based) of the first top-level item to be display when scrolled.scrollOffset

The index (0-based) of the selected item in the top-level menu.selectedIndex

Additional style to apply to items in the menu.style

You can display the following types of item in the toolbar:

• "item" – show a menu item. This is a caption that the user can click. An "item" may also define a list of children that
are displayed as a drop-down menu. Clicking on an item raises the onselect event.

• "tab" – show a "tab". This is a caption that the user can click. When the user clicks a tab, it becomes the current tab
and all other tab items are unselected. Clicking on a tab raises the onselect event.

• "message" – display a text message.

Using Zen Components 221

Toolbar

• "choice" – display a set of choices (using a displayList and valueList) as a choice button.

• "pages" – display a set of paging buttons, such as may be present on a search results page. In this case you can specify
the minValue (first page #), maxValue (last page #) and value (current page). Clicking on a page invokes the
onchangepage event.

You define the contents of the toolbar with a JavaScript object, which you can supply with the ongetdata event handler or
by connecting to an <altJSONProvider>. The JavaScript object is assumed to have a collection named children that define
a set of objects that specify the items in the toolbar. Each of these objects has a type property that indicates what type of
item to display. The caption is the caption. and key is a key used to identify an item, such as in a callback event.

For example, the following Zen page and ongetdata event handler create an example toolbar:

XData Contents [XMLNamespace = "http://www.intersystems.com/zen"]
{
 <page xmlns="http://www.intersystems.com/zen" title="">
 <toolbar label="Test Toolbar" width="900px"
 ongetdata="return zenPage.myData();" />
 </page>
}

ClientMethod myData() [Language = javascript]
{
 var data = {
 children:[
 { caption:"Home", key:"menuHome", type:'item' },
 { caption:"Menu", key:"menuMenu", type:'item',
 children:[
 { caption:"Menu 1", key:"menu1", type:'item'},
 { caption:"Menu 2", key:"menu2", type:'item'},
 { caption:"Menu 3", key:"menu3", type:'item'}
]
 },
 { caption:"", key:"menuChoice", type:'choice', valueList:'On,Maybe,Off' },

 { caption:"Tab 1", key:"menuTab1", type:'tab' },
 { caption:"Tab 2", key:"menuTab2", type:'tab', selected:true },
 { caption:"Tab 3", key:"menuTab3", type:'tab' },
 { caption:"This is a message", key:"menuMsg", type:'message' },
 { html:'<input type="text"/>', key:"menuSearch", type:'item' },
 { caption:'Page', key:"menuPages", type:'pages', minValue:1,maxValue:20,value:15 },
]
 };
 return data;
}

7.5 Tabs
The following Zen components support tabbed menus and forms for Zen applications:

• “<tabGroup>”

• “<lookoutMenu>”

• “<tab>”

7.5.1 <tabGroup>

A <tabGroup> displays a set of <tab> components. It can only display one <tab> at a time. The user can choose one of
these tabs to be displayed on top of the set. A <tabGroup> looks like the following example, based on the class
ZENTest.TabTest in the SAMPLES namespace.

222 Using Zen Components

Navigation Components

In the above example, the user has clicked the tab labelled “First Page.” In the following example, the user has clicked the
tab labelled “Second Page” and has clicked the down-arrow to select a “Home City” option from the <dataCombo> control.

The <tabGroup> definition that produces these illustrations is shown below:

<tabGroup id="tabGroup" showTabBar="true"
 onshowTab="zenPage.updateButtons();" remember="true">
 <tab caption="First Page">
 <hgroup>
 <spacer width="15" />
 <vgroup>
 <spacer height="5"/>
 <html>This is the first tab!</html>
 <form width="75%" layout="vertical"
 cellStyle="padding: 2px; padding-left: 5px; padding-right: 5px;"
 groupStyle="border:1px solid darkblue;">
 <titleBox title="My Form" titleStyle="background: #DDDDFF;"
 containerStyle="padding: 0px;" />
 <spacer height="5"/>
 <colorPicker title="This is a custom control!"

Using Zen Components 223

Tabs

 label="Color:" name="Color" />
 <text label="Color Name:" name="ColorName" size="12" />
 <text label="DOB:" id="DOB" name="DOB" size="15"
 maxlength="10" valign="bottom"/>
 <dataCombo label="Patient:" name="Patient" size="24"
 sql="SELECT Name FROM ZENDemo_Data.Employee
 WHERE Name %STARTSWITH ? ORDER BY Name"/>
 </form>
 </vgroup>
 </hgroup>
 </tab>
 <tab caption="Second Page">
 <spacer height="5"/>
 <html>This is the second tab!</html>
 <dataCombo label="Home City:" name="City" size="24"
 sql="SELECT Location FROM ZENApp_Data.Customer
 WHERE Location %STARTSWITH ? ORDER BY Name"/>
 </tab>
 <tab caption="Third Page" tabResource="MyResource">
 <spacer height="5"/>
 <html>This is the third tab!</html>
 <dynaGrid id="grid">
 <gridColumn label="Name" width="25%" />
 <gridColumn label="Salary" width="25%" />
 <gridColumn label="Comment" width="50%" />
 <gridRow label="R1" />
 <gridRow label="R2" />
 <gridRow label="R3" />
 </dynaGrid>
 </tab>
</tabGroup>

When a <tabGroup> has contents that do not fit within its defined height or width, Zen clips the display of excess content
at the right and bottom edges of the defined <tabGroup> size, leaving room for a horizontal or vertical scrollbar that allows
the user to scroll to view the contents. Application and page level stylesheets can override this default behavior by applying
the CSS property overflow to the element class tabGroupBody.

<tabGroup> has the following attributes. Since either <tabGroup> or <lookoutMenu> may display <tab> components, both
<tabGroup> and <lookoutMenu> share these attributes. <lookoutMenu> has additional attributes. For descriptions, see the
<lookoutMenu> section.

Table 7–2:Tab Group Attributes

DescriptionAttribute

<tabGroup> and <lookoutMenu> each have the same style and layout attributes as any Zen
group. For descriptions, see “Group Layout and Style Attributes” in the “Zen Layout” chapter
of Using Zen. For <tabGroup>, the height attribute has no effect; it is necessary to control
the height of the <tabGroup> from the CSS stylesheet.

Zen group
attributes

1–based sequential number of the tab currently displayed. The default is 1.

The currTab value may contain Zen #()# runtime expressions.

currTab

The onhideTab event handler for the menu item. Zen invokes this handler when a previously
displayed tab becomes hidden. See “Zen Component Event Handlers.”

onhideTab

Client-side JavaScript expression that Zen invokes when a previously hidden tab becomes
the displayed tab. Generally this expression invokes a client-side JavaScript method.

onshowTab

If true, remember the most recently displayed tab number in a session cookie and return to
this tab when redisplayed. The default is false.

remember has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

remember

224 Using Zen Components

Navigation Components

DescriptionAttribute

If true, display the set of tabs that belong to this <tabGroup>. By setting showBody to false,
and setting showTabBar true, you can display a set of tab bar buttons with no tab contents
underneath. The default for showBody is true, and for showTabBar is false.

showBody has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

showBody

If true, display a set of tab buttons along the top of this group. The default is false.

showTabBar has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

showTabBar

7.5.2 <lookoutMenu>

A <lookoutMenu> presents a stack of buttons, one for each tab. Clicking on a button shifts the other buttons down so that
they display below the contents of the currently selected tab.

The following example is based on the class ZENTest.LookoutMenuTest in the SAMPLES namespace. In the illustration,
the user has clicked the “Animal” button to reveal the contents of that tab. This selection moved the remaining buttons to
the bottom of the lookout menu. The cursor is now on the “Vegetables” menu item. If the user clicks this item, the content
of its link is activated as defined in the corresponding <menuItem>.

A <lookoutMenu> contains a set of <tab> components, which in turn contain <menuItem> and <menuSeparator> components.
These tabs are groups that can contain any component, but when they are present inside a <lookoutMenu> they contain the
components that would normally define a <menu>.

The <lookoutMenu> definition that produced the above illustration follows:

<lookoutMenu id="lookout" expandable="true">
 <tab caption="Animal" id="animal">
 <menuItem caption="Mineral"
 link="javascript: zenPage.toggleTab('mineral');"
 image="images/folder.gif" />
 <menuItem caption="Vegetables"
 link="javascript: zenPage.toggleTab('vegetable');"
 image="images/folder.gif" />
 <menuItem caption="Cheese"
 link="javascript: zenPage.toggleTab('cheese');"

Using Zen Components 225

Tabs

 image="images/folder.gif" />
 </tab>
 <tab caption="Mineral" id="mineral" tabResource="MyResource">
 <form>
 <text label="Name:" />
 <text label="Weight:" />
 </form>
 </tab>
 <tab caption="Vegetable" id="vegetable" disabled="false">
 <menuItem caption="Menu A"
 link="javascript: alert('A');"
 help="Option A" image="images/folder.gif" />
 <menuItem caption="Menu B"
 link="javascript: alert('B');"
 help="Option B" image="images/folder.gif" />
 <menuSeparator />
 <menuItem caption="Disable"
 link="javascript: zenPage.toggleTab('vegetable');"
 image="images/folder.gif" />
 </tab>
 <tab caption="Cheese" id="cheese">
 <menuItem caption="Menu C" link="javascript: alert('C');"
 help="Option C" image="images/folder.gif" />
 </tab>
</lookoutMenu>

<lookoutMenu> has the following attributes:

DescriptionAttribute

<lookoutMenu> has the same general-purpose attributes as <tabGroup>. For
descriptions, see the “Tab Group Attributes” table in the <tabGroup> section.

Zen tab group
attributes

If true, this <lookoutMenu> group is expandable. The default is false.

When expandable is true, an expansion bar displays along the top of the <lookout-
Menu> as shown in the illustration above. The user clicks on this bar to toggle the
expanded state of the <lookoutMenu>. When the menu is contracted, only the
expansion bar is visible.The user clicks the bar again to expand the <lookoutMenu>.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

expandable

If true, this <lookoutMenu> group is expanded (children visible). If false, it is contracted
(children not visible). The default is true.

expanded has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

expanded

The oncontract event handler for the <lookoutMenu>. Zen invokes this handler just
before contracting (hiding) the children of this <lookoutMenu> group. See “Zen
Component Event Handlers.”

oncontract

Client-side JavaScript expression that Zen invokes just before expanding (displaying)
the children of this <lookoutMenu> group.

onexpand

7.5.3 <tab>

A <tab> is a specialized group that defines a tab within a <tabGroup> or <lookoutMenu>. <tab> has the following attributes:

226 Using Zen Components

Navigation Components

DescriptionAttribute

<tab> has the same style and layout attributes as any Zen group. For descriptions,
see “Group Layout and Style Attributes” in the “Zen Layout” chapter of Using Zen.

A <tabGroup> or <lookoutMenu> uses the hidden attribute to make the current tab
visible and all other tabs invisible. That is, when a <tabGroup> or <lookoutMenu> is
displayed, it sets the hidden attribute for the currently visible <tab> to false and sets
all the others to true.

For this reason, explicitly setting hidden for a <tab> element has no effect. If you
need to prevent users from accessing a <tab> you can set its disabled attribute to
true.

Zen group attributes

Text for this tab when it appears as a choice within its containing <tabGroup> or
<lookoutMenu>.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

An optional URI value. If defined, the tab displayed within the <tabGroup> bar
becomes a link referring to this URI. No link is displayed for the current tab.

The link value may contain Zen #()# runtime expressions.

link

Name of a Caché resource. The user must have privileges to access this resource
or this tab becomes disabled. If you are not familiar with Caché resources, see the
“Assets and Resources” chapter in the Caché Security Administration Guide.

tabResource

7.6 Trees
The following Zen components each provide a hierarchical outline of links. The outline expands or contracts in response
to user clicks:

• <expando>

• <dynaTree>

7.6.1 <expando>

The <expando> is a group with the ability to show or hide its children. A right-arrow graphic () beside the <expando>
label indicates that the group is expanded (displayed), and a down-arrow graphic () indicates that the group is contracted
(hidden). A fully contracted <expando> group looks like the following example.

The user expands the group by clicking on its label. The contents of the <expando> then display below the label. As a Zen
group, an <expando> may contain any type of Zen component. In particular, each level of the <expando> may contain
additional, nested <expando> groups that can be expanded or contracted independently of the containing <expando> group.

Using Zen Components 227

Trees

In the following example, the user has just clicked on the label to expand the group. The cursor is now poised to contract
the <expando> by clicking the label again. This example contains three nested <expando> groups. The innermost <expando>
uses a horizontal layout, and contains <button> components instead of <titleBox> components as in the other levels.

The <expando> definition that produced this example follows:

<expando caption="Landscape Architect's Bookshelf"
 childIndent="35px" remember="true">
 <spacer height="1" />
 <titleBox title="National Arboretum"
 subtitle="Book of Outstanding Garden Plants" />
 <titleBox title="Perennials"
 subtitle="The Definitive Reference" />
 <titleBox title="Japanese Gardens"
 subtitle="Design Principles, Aesthetic Values" />
 <spacer height="1" />

 <expando caption="Graham Stuart Thomas" OnDrawContent="DrawContent"
 childIndent="35px" remember="true">

 <expando caption="Three Gardens of Pleasant Flowers"
 layout="horizontal" childIndent="35px" remember="true">
 <button caption="Cambridge" onclick="zenPage.cambridgeClick()"/>
 <button caption="Oak Cottage" onclick="zenPage.oakCottageClick()"/>
 <button caption="Briar Cottage" onclick="zenPage.briarCottageClick()"/>
 </expando>

 <titleBox title="Ornamental Shrubs"
 subtitle="Climbers and Bamboos" />
 <titleBox title="Perennial Garden Plants"
 subtitle="or The Modern Florilegium" />
 <titleBox title="The Art of Planting"
 subtitle="or The Planter's Handbook" />
 </expando>

 <spacer height="1" />

228 Using Zen Components

Navigation Components

 <titleBox title="Trees and Shrubs"
 subtitle="for Dry California Landscapes" />
 <titleBox title="Architectural Graphic Standards"
 subtitle="of the American Institute of Architects" />
</expando>

This definition references a number of methods defined in the page class. For example, the second-level <expando> references
the server-side callback method DrawContent to produce additional formatted text, in this case a list of honors awarded
to the author of the books listed. DrawContent looks like this:

Method DrawContent(ByRef expando As %ZEN.Component.expando) As %Status
{
 &html< (OBE, VMH, DHM, VMM)>
 Quit $$$OK
}

The <expando> component has the following attributes:

DescriptionAttribute

<expando> has the same style and layout attributes as any Zen group. For
descriptions, see “Group Layout and Style Attributes” in the “Zen Layout” chapter
of Using Zen. The default layout for <expando> is vertical.

Zen group attributes

If true, Zen animates the appearance and disappearance of the <expando> group
contents. If false, it does not.

animate has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

animate

Text to display as the title of this <expando> group. This text displays even when
the <expando> is contracted. This text is not automatically HTML escaped.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

HTML length value giving the amount to indent the children in the expanded list of
items. The above example uses 35px. The default is to use no indentation, aligning
the children with the caption.

childIndent

If true, this <expando> group is expanded (children visible). If false, it is contracted
(children not visible). The default is true.

expanded has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

expanded

If true, display a border around the entire group and display the caption within a more
formal title box.This more formal version of the <expando> component is also known
as a disclosure. The default is false.

framed has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute Data
Types.”

The %ZEN.Component.expando class offers a server-side callback method
%OnDrawTitleOptions which, if defined in a subclass of %ZEN.Component.expando,
provides a way to add content to the right side of the title bar when framed is true.
Any HTML written by %OnDrawTitleOptions is injected into the title bar when the
<expando> is displayed.

framed

Using Zen Components 229

Trees

DescriptionAttribute

URI of the image to display when the <expando> group is contracted. The path that
you provide for imageContracted must be relative to the CSP directory in the Caché
installation directory. The default for imageContracted is a right-arrow graphic ()
located at the URI broker/images/disclosure-contracted.gif.

imageContracted

URI of the image to display when the <expando> group is expanded. The path that
you provide for imageExpanded must be relative to the CSP directory in the Caché
installation directory. The default for imageExpanded is a down-arrow graphic ()
located at the URI broker/images/disclosure-expanded.gif.

imageExpanded

The oncontract event handler for the <expando>. Zen invokes this handler just before
contracting (hiding) the children of this <expando> group. See “Zen Component
Event Handlers.”

oncontract

Name of a server-side callback method in the Zen page class. This method injects
HTML content into the <expando> using &html<> syntax or WRITE commands.

Zen invokes this method whenever it draws the <expando>, automatically passing
it a %String that contains the seed value from the <expando>. The callback must
return a %Status data type. The following is a valid method signature:

Method DrawMe(pSeed As %String) As %Status

To use the above method as the callback, the developer would set
OnDrawContent="DrawMe" for the <expando>.

OnDrawContent

Client-side JavaScript expression that Zen invokes just before expanding (displaying)
the children of this <expando> group.

onexpand

If true, remember the most recent expanded state in a session cookie and return to
this state when redisplayed. The default is false.

remember has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

remember

<expando> can be particularly useful in navigation when combined with <link>.

7.6.2 <dynaTree>

The <dynaTree> component displays a hierarchical collection of user-defined items as an expandable tree. In many ways
<dynaTree> is similar to <expando>. However, instead of specifying the components that it contains, <dynaTree> acquires
its contents dynamically at runtime. You can provide data for a <dynaTree> as follows:

• Use the “dataGlobal attribute” to specify a global whose data supplies the contents of the tree.

• Use the “OnGetNodeInfo callback” to get data for each node within the tree.

• Use the “OnGetTreeInfo callback” to fill in a local array that supplies the contents of the tree.

Note that <dynaTree> builds the tree from the root of the global or array. It does not support starting the tree from a node
other than the base node.

230 Using Zen Components

Navigation Components

7.6.2.1 <dynaTree> Using a Global

The simplest way to define a <dynaTree> is to use a Caché global (multidimensional array). For background information
about globals, refer to the book Using Caché Globals.

The following <dynaTree> definition references the ^myTree global by providing the dataGlobal attribute:

<dynaTree id="tree" dataGlobal="^myTree" />

This definition causes the contents of the ^myTree global to be displayed on the page as nodes within an expandable tree.

Node Labels
Suppose you define ^myTree using the following statements at the Terminal command line:

 Set ^myTree("Root","Item 1") = "ZENMVC.MVCForm.cls"
 Set ^myTree("Root","Item 2") = "http://www.intersystems.com"
 Set ^myTree("Root","Item 2","SubItem") = "ZENDemo.Home.cls"

Each global node now has one or more subscripts, such as "Root" or "Item 2". Zen uses these subscripts as the display
values for nodes in the <dynaTree>. The logical value for each node is the value of the global at that subscript. Our ̂ myTree
global can now generate a <dynaTree> that looks like the following illustration. This <dynaTree> is fully expanded, with
the user holding the cursor over the node "SubItem" at the lowest level. Based on the previous SET statements, the logical
value for this node is "ZENDemo.Home.cls" and its display value is "SubItem"

When you use a global to define a <dynaTree>, the resulting nodes always appear in alphabetical order (by label) because
that is the way globals are organized in the database.

Node Values
When the user clicks on a <dynaTree> node label such as:

"SubItem"

The corresponding node value is triggered. If the values are set as described in the “Node Labels” section of this chapter,
then this value is:

"ZENDemo.Home.cls"

Each node value is a string. Typically the node values are URI values. For example:

• The name of a Zen page class:

"ZENMVC.MVCForm.cls"

• A web site:

"http://www.intersystems.com"

• Or the URI of some other content.

If you want a link to invoke JavaScript, you can start the URI with the string javascript: as in the following examples:

• You can invoke a client-side JavaScript method in the page class:

"javascript: zenPage.myMethod();"

• Or simply execute a JavaScript expression:

Using Zen Components 231

Trees

"javascript: alert('You clicked me!');"

When providing a JavaScript expression, use double quotes to enclose the value and single quotes (if needed) inside
the expression, as shown above.

7.6.2.2 Parameters for <dynaTree> Callback Methods

A <dynaTree> can contain zero or more <parameter> elements. Each <parameter> specifies an input parameter for the
callback method that generates the <dynaTree>. This callback method might be:

• “OnGetNodeInfo” to get data for each node within the tree.

• “OnGetTreeInfo” to fill in a local array that supplies the contents of the tree.

The <parameter> element has the following attributes:

DescriptionAttribute

The paramName must be unique within the <dynaTree>. It becomes a subscript in
the array of parameters passed to the callback method.

paramName

The value supplied for a <parameter> can be a literal string, or it can contain a Zen
#()# runtime expression.

value

7.6.2.3 <dynaTree> OnGetNodeInfo Callback Method

<dynaTree> can get its list of nodes by invoking a server-side callback method defined in the page class. The method name
is specified using the OnGetNodeInfo attribute. For example:

<dynaTree id="myTree"
 OnGetNodeInfo="GetNodeInfo"
 onclick="zenPage.treeClick(zenThis);" >
 <parameter paramName="a" value="10" />
 <parameter paramName="b" value="20" />
</dynaTree>

This example defines a tree whose nodes are provided by the server-side callback method GetNodeInfo. When the user
clicks on an item, the treeClick method is called. The example also provides two parameters for the GetNodeInfo method.

The OnGetNodeInfo callback is called repeatedly to get information about each node displayed within the tree. Zen handles
this repetition as follows:

• A tree contains a set of top-level nodes at level 1. A node may contain child nodes; each child is considered to have a
level number one greater than its parent: 2, 3, 4, etc.

• Starting with level 1, Zen calls the OnGetNodeInfo callback repeatedly until it returns false, indicating that there are
no more nodes at the current level.

• If a node reports that it has child nodes, Zen calls the OnGetNodeInfo callback repeatedly (with the appropriate value
for pLevel) to get information on each child node until false is returned for that child level.

The OnGetNodeInfo callback method must have a signature that looks like this:

Method GetNodeInfo(Output tSC As %Status,
 ByRef pParams As %String,
 pLevel As %Integer,
 ByRef pHandle As %String,
 pNodeInfo As %ZEN.Auxiliary.NodeInfo) As %Boolean

Where:

• The method returns a %Boolean value indicating whether or not there is a node at the level indicated by pLevel.

232 Using Zen Components

Navigation Components

• tSC is a status code, returned by reference, that indicates success.

• pParms represents any <parameter> elements defined by the <dynaTree>. pParms is an array. Each member of this
array uses its paramName as a subscript and its value as a value.

• pLevel is the current level of the tree.

• pHandle is user-definable value that is passed, unchanged, to each call to the callback. The callback can use this store
any state information it needs while providing the view information.

• pNodeInfo is a pre-instantiated %ZEN.Auxiliary.NodeInfo object and is used to specify how the tree node should be
displayed. A %ZEN.Auxiliary.NodeInfo object has the following properties.

DescriptionProperty

If true, this node (if it has children) is initially displayed as expanded. If false, it is
initially displayed as contracted. The default is true.

expanded has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.” It has the value 1 or 0 in server-side code, true or false in client-side
code.

expanded

If true, this node has one or more child nodes. If this is the case, the next call to the
OnGetNodeInfo callback fetches information about these child nodes. The default is
true.

hasChildren has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.” It has the value 1 or 0 in server-side code, true or false in client-side
code.

hasChildren

If non-empty, link defines a link that is used if the user clicks on this node. This can
be a URI such as the name of a page to display, or a JavaScript expression. If you
want to invoke a client-side JavaScript method in the link, start the URI with
javascript: as in:

link="javascript:zenPage.myMethod();"

When providing a JavaScript expression, use double quotes to enclose the value
and single quotes (if needed) inside the expression.

link

A string containing a value to display for this node within the tree.text

A string containing a logical value to associate with this node within the tree.value

The following code example provides a complete OnGetNodeInfo method.

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
<page xmlns="http://www.intersystems.com/zen" title="">
<dynaTree id="myTree" OnGetNodeInfo="GetNodeInfo">
</dynaTree>
</page>
}

Method GetNodeInfo(
 Output tSC As %Status, ByRef pParams As %String,
 pLevel As %Integer, ByRef pHandle As %String,
 pNodeInfo As %ZEN.Auxiliary.NodeInfo) As %Boolean
{
 // We store our personal state information in pHandle that is passed,
 // unchanged, to each call to the callback.
 // In the beginning: pHandle = ""
 If pHandle = ""
 {
 Set pHandle = 1
 }

Using Zen Components 233

Trees

 // Let's create 10 nodes
 ElseIf (pHandle = 10)
 {
 Quit 0
 }
 // Set the node count as name and value
 Set pNodeInfo.value = "Node "_pHandle
 Set pNodeInfo.text = "test"_pHandle
 Set pNodeInfo.expanded = 1

 // We add subnode within the 3rd node...
 If (pHandle = 3)
 {
 Set pNodeInfo.hasChildren = 1
 }
 // ...and also subnode for the 6th subnode of the 3rd node.
 ElseIf (pHandle = 6)
 {
 Set pNodeInfo.hasChildren = 1
 }

 Set pHandle = pHandle + 1

 Quit 1
 }

7.6.2.4 <dynaTree> OnGetTreeInfo Callback Method

<dynaTree> can get its complete tree as an multidimensional array of node information, by invoking a server-side callback
method defined in the page class. The method name is specified using the OnGetTreeInfo attribute. For example:

<dynaTree id="tree"
 OnGetTreeInfo="GetTreeInfo"
 onclick="zenPage.treeClick(zenThis);">
 <parameter paramName="count" value="20"/>
</dynaTree>

The OnGetTreeInfo callback method must have a signature that looks like this:

ClassMethod GetTreeInfo(pRoot As %String, Output pTree, ByRef pParms) As %Status

Where:

• The method returns a status code.

• pParms represents any <parameter> elements defined by the <dynaTree>. pParms is an array. Each member of this
array uses its paramName as a subscript and its value as a value.

• pRoot is the display name of the node to be loaded.

The previous example defines a <dynaTree> whose data is provided by the server-side callback method GetTreeInfo.
When the user clicks on an item, the treeClick method is called with the value 20 in its parameter array subscripted by the
key "count".

Important: If you use OnGetTreeInfo to define the <dynaTree> this excludes using the OnGetNodeInfo or dataGlobal
attributes in the same <dynaTree>.

The following example implements GetTreeInfo from the previous example. This shows the required method signature
for an OnGetTreeInfo callback. For further examples, see the class ZENTest.DynaTreeTest in the SAMPLES namespace.
In that example there are several different OnGetTreeInfo callbacks. The user clicks a radio button to choose which of these
callbacks is used to generate the <dynaTree> on this page.

ClassMethod GetTreeInfo(pRoot As %String, Output pTree, ByRef pParms) As %Status
{
 if pRoot=""
 {
 #; top-most nodes are children of 0
 Set pTree(0,"ch",1) = ""
 Set pTree(0,"ch",2) = ""
 Set pTree(0,"ch",3) = ""

234 Using Zen Components

Navigation Components

 #; each node supplies: $LB(caption, value, hasChildren, link, expanded, icon)
 Set pTree(1) = $LB("Animal","Animal",1,"",1,,"General types of animal")
 Set pTree(2) = $LB("Mineral","Mineral",1,"",1,,"General types of mineral")
 Set pTree(3) = $LB("Vegetable","Vegetable",1,"",1,,"General types of vegetable")
 }
 elseif pRoot="Animal" //id 1
 {
 Set pTree(4) = $LB("Mammal","Mammal",1,"",1)
 Set pTree(0,"ch",4) = ""
 }
 elseif pRoot="Mineral" //id 2
 {
 Set pTree(7) = $LB("Rock","Rock",0,"",1)
 Set pTree(0,"ch",7) = ""
 }
 elseif pRoot="Vegetable" //id 3
 {
 Set pTree(8) = $LB("Fruit","Fruit",1,"",1)
 Set pTree(0,"ch",8) = ""
 }
 elseif pRoot="Mammal" //id 4
 {
 Set pTree(5) = $LB("Cat","Cat",0,"",1)
 Set pTree(6) = $LB("Dog","Dog",0,"",1)
 Set pTree(0,"ch",5) = ""
 Set pTree(0,"ch",6) = ""
 }
 elseif pRoot="Fruit" //id 8
 {
 Set pTree(9) = $LB("Apple","Apple",0,"",1)
 Set pTree(10) = $LB("Banana","Banana",0,"",1)
 Set pTree(11) = $LB("Cherry","Cherry",0,"",1)
 Set pTree(0,"ch",9) = ""
 Set pTree(0,"ch",10) = ""
 Set pTree(0,"ch",11) = ""
 }
 Quit $$$OK
}

7.6.2.5 <dynaTree> Attributes

The <dynaTree> component is the XML projection of the %ZEN.Component.dynaTree class. This topic has already described
the dataGlobal, OnGetNodeInfo, and OnGetTreeInfo attributes in detail. The following table lists all the <dynaTree>
attributes.

The purpose of many <dynaTree> attributes is to configure the images that the user clicks to control expansion and contrac-
tion. The following diagram shows many of the images that the <dynaTree> displays while the component is in use. The
following table describes how to configure these images, if you wish to substitute your own images instead.

DescriptionAttribute

<dynaTree> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Using Zen Components 235

Trees

DescriptionAttribute

HTML length value giving the amount by which each level within the dynaTree should
be indented. The default is to use no indentation.

childIndent applies only when showLines is false.When showLines is true, indentation
is controlled by the <dynaTree> to fit the lines that it provides.

childIndent

Name of a Caché global (multidimensional array) that can provide the contents of
the <dynaTree>. This string must include the ^ prefix that is characteristic of Caché
global names, for example:

dataGlobal="^myTree"

Using dataGlobal excludes OnGetNodeInfo. For details, see the section “<dynaTree>
Using a Global” in this chapter.

dataGlobal

File name for the image to display when the <dynaTree> is contracted. The user
clicks on this image to expand the group. The default for imageContracted is the
plus sign whose file name is contracted.gif.

You may specify an alternate image. The image file that you identify must reside in
the images directory under the Caché installation directory.

imageContracted applies only when showLines is false. When showLines is true, a
plus sign automatically appears as part of the graphical image that displays the lines.

imageContracted

File name for the image to display when the <dynaTree> is expanded. The user
clicks on this image to contract the group. The default for imageExpanded is the
minus sign whose file name is expanded.gif.

You may specify an alternate image. The image file that you identify must reside in
the images directory under the Caché installation directory.

imageExpanded applies only when showLines is false. When showLines is true, a
minus sign automatically appears as part of the graphical image that displays the
lines.

imageExpanded

File name for the image to display beside a closed folder node. This is a node that
has children but is currently closed (contracted). The user clicks on this image to

expand the node.The default for imageFolderClosed is a closed folder icon whose
file name is folderclosed.gif.

You may specify an alternate image. The image file that you identify must reside in
the images directory under the Caché installation directory.

imageFolderClosed

File name for the image to display beside an open folder node. This is a node that
has children and is currently open (expanded). The user clicks on this image to

contract the node.The default for imageFolderOpen is an open folder icon whose
file name is folderopen.gif.

You may specify an alternate image. The image file that you identify must reside in
the images directory under the Caché installation directory.

imageFolderOpen

236 Using Zen Components

Navigation Components

DescriptionAttribute

File name for the image to display beside a leaf node.This is a node with no children
in the <dynaTree>. The user clicks on this image to select the node. The default for

imageNode is a file icon whose file name is node.gif.

You may specify an alternate image. The image file that you identify must reside in
the images directory under the Caché installation directory.

imageNode

If true, show dashed lines between the nodes of the tree. The default is false.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

showLines

The onchange event handler for the <dynaTree>. Zen invokes this handler when the
current value of the <dynaTree> changes. See “Zen Component Event Handlers.”

onchange

Client-side JavaScript expression that Zen invokes when the user clicks on a node
within the <dynaTree>.

onclick

Client-side JavaScript expression that Zen invokes when the user double-clicks on
a node within the <dynaTree>.

ondblclick

Name of a server-side callback method that reports information about each node
within the tree. Using OnGetNodeInfo excludes dataGlobal. For details, see the
section “<dynaTree> Using an OnGetNodeInfo Callback” in this chapter.

OnGetNodeInfo

Name of a server-side callback method that fills in a local array that supplies the
contents of the tree. Using OnGetTreeInfo excludes both OnGetNodeInfo and
dataGlobal. For details, see the section “<dynaTree> Using an OnGetTreeInfo
Callback” in this chapter.

OnGetTreeInfo

0-based index of the currently selected node in the <dynaTree>. The default
selectedIndex is –1 (nothing is selected).

selectedIndex

When you work with %ZEN.Component.dynaTree programmatically, you must also know about the following properties
of the dynaTree class:

• Each <parameter> element provided in the original <dynaTree> definition in XData Contents becomes a member of
the dynaTree parameters property, a list collection of %ZEN.Auxiliary.parameter objects. Each <parameter> acquires
an ordinal position in the parameters collection: 1, 2, 3, etc.

• The read-only text property holds the text (display) value of the currently selected node within the tree. This is the node
label that displays in the <dynaTree>.

• The read-only value property holds the logical (actual) value of the currently selected node within the tree. This is the
string that is activated when the user clicks the corresponding label in the <dynaTree>.

7.6.2.6 <dynaTree> Drag and Drop

<dynaTree> supports data drag operations when its dragEnabled attribute is set to true. This is possible because each node
in a <dynaTree> has a logical value and a display value defined.

Data drag is explained in the “Data Drag and Drop” section in the chapter “Zen Controls.” Essentially, the user clicks
the mouse button down while the cursor is positioned on a <dynaTree> node, then moves the mouse away from the
<dynaTree> while still holding down the button. Data drag captures the current value of the <dynaTree> node where the
drag operation began. If the logical value and displayed value are different, this difference is preserved when the data is
captured.

Using Zen Components 237

Trees

The data acquired from a <dynaTree> node can be dropped on any Zen component that has drop enabled. Generally this
is a Zen control. <dynaTree> does not support data drop, as it is not a control and cannot accept data input from the client
side.

7.7 Filters
Zen offers a <buttonView> component that allows you to lay out a set of navigation choices as buttons in a grid. Typically,
<buttonView> is used to display progressive filter buttons that allow a user to narrow down a search, as on the InterSystems
documentation home page:

In the previous example, the user has just clicked the JavaScript button. This has disabled all the other buttons in the same
category as JavaScript, and has caused the Reset button to activate and change color. To re-enable all the buttons in this
category, the user could click the JavaScript button again.

A <buttonView> may contain multiple categories of buttons. Each category works like a set of radio buttons, in that only
one button in the category may be selected at any time. In the following example, many more categories in the <buttonView>
have been selected.

238 Using Zen Components

Navigation Components

Every <buttonView> component automatically provides a Reset button that is enabled only when the user has made at least
one selection. Reset appears as the top left entry in the grid. If clicked, Reset cancels all current user selections in the
<buttonView>.

7.7.1 <buttonView>

The <buttonView> component does not contain any other components. It provides its buttons dynamically, via a server-
side callback method. <buttonView> has the following attributes:

DescriptionAttribute

<buttonView> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Number of columns for the grid. If not specified, the default is 4. The number of rows
is determined dynamically depending on the total number of items and the columns
value.

columns

Name of a server-side callback method that provides the list of items to display for
this component. For details, see the “<buttonView> OnGetButtonInfo” section
following this table.

OnGetButtonInfo

Using Zen Components 239

Filters

DescriptionAttribute

The onselect event handler for the <buttonView>. Zen invokes this handler when
the user selects a new button. The onselect handler method must have one input
parameter that you can use to pass it the current string value of the <buttonView>.
For details, see the “<buttonView> onselect” section following this table. See “Zen
Component Event Handlers.”

onselect

Allows you to pass some arbitrary value to the OnGetButtonInfo callback. The seed
value can be a literal string, or it can contain a Zen #()# runtime expression.

For suggestions about how to use the <buttonView> seed value, see the “<button-
View> OnGetButtonInfo” section following this table.

seed

A string containing the currently selected value from the component.

Each entry in the <buttonView> value string takes the following form:

category:button;

If there are multiple categories in the <buttonView>, and the user makes a selection
in more than one category, Zen appends each subsequent choice to the existing
value string. When the user has selected multiple buttons, the value string takes the
following form:

category:button;category:button;category:button;

The user can click the built-in Reset button to empty the value string and start over.

value

7.7.1.1 <buttonView> XData Contents

The following XData Contents excerpt defines a <buttonView> and an <html> component:

<hgroup width="100%" cellVAlign="top" cellAlign="left">
 <buttonView id="filter" columns="2"
 OnGetButtonInfo="GetFilterList"
 onselect="zenPage.filterChange(value);"
 />
 <spacer width="10"/>
 <html id="myContent" OnDrawContent="DrawMyContent"/>
</hgroup>

The next several topics explain how user selections in this <buttonView> can cause this <html> component to invoke its
OnDrawContent method, effectively redrawing the <html> component based on the user’s selections in the <buttonView>.

7.7.1.2 <buttonView> OnGetButtonInfo

The server-side callback method identified by the <buttonView> OnGetButtonInfo attribute must be defined in the page
class. It must return a %Status value, and it must have two input parameters in the following order:

• A %String. If you provide a seed value for the <buttonView>, it is automatically passed to the OnGetButtonInfo callback
method.

• An array passed by reference. This array contains an array of button descriptions when the method returns.

To support the previous <buttonView> syntax example, the page class would also need to define a method called
GetFilterList with the following signature. Zen automatically invokes the method and uses the array that it creates,
whenever it displays the <buttonView> component:

ClassMethod GetFilterList(pSeed As %String, ByRef pInfo) As %Status

240 Using Zen Components

Navigation Components

The OnGetButtonInfo callback method must fill the array that was passed to it by reference with a required category,
caption, and value for each button. Optionally, each array entry can also contain tooltip text and a disabled flag for the
button. An ObjectScript statement such as the following would correctly set the array entry for button number n:

Set pInfo(n) = $LB(category,caption,button,tooltip,disabled)

Where:

• $LB is shorthand for the ObjectScript function $LISTBUILD.

• n is the 1–based button number.

• category is the name assigned to the category that contains this button.

You must group buttons in the <buttonView> into categories. All buttons with the same category value work together,
like a set of radio buttons. When one button in a category is selected, none of the other buttons in that category can be
selected.

This feature is visible in the figure at the beginning of this topic, for which all of the buttons that correspond to pro-
gramming languages have had their category set to the same string. The user has clicked one of these buttons (JavaScript)
so all of the other buttons in this category are disabled. This action has not affected any of the buttons in other categories.

• caption is the text that appears on the face of the button. You can use a $$$Text macro to support localization of the
caption.

• button is part of the string value that is recorded when this button is selected. Each entry in the value string for the
<buttonView> component takes the following form:

category:button;

If the user makes a selection in more than one category, Zen appends each subsequent choice to the existing value
string, as in:

category:button;category:button;category:button;

• tooltip is the text that displays when the user hovers the cursor over the button. The tooltip can also use $$$Text.

• disabled, if true, disables this button. The button still displays, but is grayed out.

The following is a sample ObjectScript statement that defines a button for a <buttonView> by assigning a value to an entry
in the pInfo array:

 Set pInfo($I(pInfo))=
 $LB("adv",$$$Text("Expert Tools"),"Expert",$$$Text("For expert users only"))

Where $I is shorthand for the ObjectScript function $INCREMENT.

7.7.1.3 <buttonView> onselect

The example in “<buttonView> XData Contents” identifies an onselect handler called filterChange that accepts one
parameter, the current value of the <buttonView> component:

<buttonView id="filter" columns="2"
 OnGetButtonInfo="GetFilterList"
 onselect="zenPage.filterChange(value);"
 />

filterChange could then work as follows:

Using Zen Components 241

Filters

ClientMethod filterChange(list) [Language = javascript]
{
 var html = zen('myContent');
 var div = html.getEnclosingDiv();
 div.scrollTop = 0;
 html.seed = list;
 html.refreshContents();
}

This onselect handler does the following:

1. Calls the JavaScript function zen to retrieve the <html> component that appears on the page along with the <button-
View>. This <html> component had the following definition in XData Contents:

<html id="myContent" OnDrawContent="DrawMyContent"/>

That is why filterChange uses this statement:

var html = zen('myContent');

2. Assigns the incoming <buttonView> value to the <html> seed attribute:

html.seed = list;

3. Refreshes the <html> component:

html.refreshContents();

This automatically invokes the OnDrawContent handler for the <html> component. This callback must be a server-
side method defined in the page class. It must accept a %String as input and return a %Status data type. In this case,
its name is DrawMyContent.

DrawMyContent uses the <html> seed (that is, the <buttonView> value) to determine what to do while redrawing
the <html> component. It is up to this method to figure out how to use the filtering information provided by multiple
user selections in the <buttonView>. The <buttonView> simply provides a value.

242 Using Zen Components

Navigation Components

8
Popup Windows and Dialogs

This chapter describes Zen components that “pop up” to display their contents over the main application page. The tradeoff
for the flexibility provided by these components is that you must provide more programming in the page class to make
them effective. This chapter describes the following components:

• “Modal Groups” — Make HTML content visible in response to a user event.

• “Popup Windows” — Pop up a new window that displays a Zen page or any other content.

• “Dialogs” — Pop up a dialog that prompts the user and accepts user input.

8.1 Modal Groups
A modal group is a specialized group component that normally does not display its contents. When the modal group is
made visible, only its contents receive user events. Any event that occurs outside of the modal group (such as a mouse
click) automatically hides the modal group. Zen uses this modal mechanism when it creates drop-down menus and drop-
down combobox controls. You can also use this mechanism for popup items.

You can define the contents of a modal group either by placing a <modalGroup> component within the page class or by
creating an instance of the %ZEN.Component.modalGroup class programmatically. There are three options:

• “Static” — Place a <modalGroup> component in the page class XData Contents block. Its contents remain hidden
until a client-side method on the page calls the modalGroup show method.

• “Dynamic” — Have the page call its createComponent method to create a modalGroup component dynamically.
Add components to the group. Display it by calling the modalGroup show method.

• “Built-in” — Have the page call the modalGroup show method to display one of the built-in modal groups: "msgBox"
or "calendar"

To close the current modal group, the page must invoke its endModal method. Generally endModal is triggered by an
event handler for one of the buttons in the modal group (OK, Cancel, or similar). It is an error to call endModal if there is
no modal group currently displayed.

While a modal group has the editing focus, keyboard controls are disabled. For example, it is not possible to use Tab to
move from field to field within the modal group. This prevents the user from (inadvertently) pressing Tab to navigate
through all the fields and then back to the page, while the modal group has focus. The modal group keeps the focus until
the user either clicks away from it or clicks the button that has been set up to close the modal group.

Using Zen Components 243

Note: For Internet Explorer (IE) only: When displaying a modal group, Zen hides the contents of any <embed> elements
(that is, SVG content). This is because IE ignores zindex setting for <embed> elements.

You can customize the behavior of a component within a modal group by modifying its modal callback methods:

• onStartModalHandler(zindex) — If present, fires upon notification that this component is about to become modal.
That is, it is pushed to the front of the display. The caller supplies a zindex value large enough to ensure that this
component is placed above all others currently visible in the browser.

• onEndModalHandler(zindex) — If present, fires upon notification that this component is about to stop being modal.
That is, it is no longer be pushed to the front of the display. The caller supplies a zindex value small enough to ensure
that this component returns to its normal layer relative to other components in the browser.

8.1.1 Static Modal Groups

In static mode, the modal group is defined within a page class XData Contents block using XML statements. The contents
of the group are hidden until the modal group component’s show method is called; then they are displayed in a popup
window.

The following steps set this up in the page class:

1. Supply a <modalGroup> definition within the <page> in XData Contents. For example:

<modalGroup id="mgStatic" groupTitle="Popup">
 <text id="mgText" label="Value:" />
 <button id="mgButton" caption="OK" onclick="zenPage.mgBtnClick();"/>
</modalGroup>

2. Provide a client-side method to display the modal group. For example:

ClientMethod modalGroupStatic() [Language = javascript]
{
 var group = this.getComponentById('mgStatic');
 group.show();
}

This method:

• Finds the <modalGroup> on the <page> by calling getComponentById with the <modalGroup> id value

• Calls the client-side show method. No arguments are needed because the <modalGroup> definition provides all
the necessary information to show.

3. Somewhere within the <page> you must give the user a mechanism to invoke the modalGroupStatic method to display
the modal group. The following example provides a button:

<button caption="Enter a New Value"
 onclick="zenPage.modalGroupStatic();"
 title="Display a modal group using a static definition." />

4. For testing purposes, you may provide the <page> with a field in which to echo the data from the popup:

<html id="mgHtml">No data entered yet. </html>

The page XData Contents block now looks like this.

244 Using Zen Components

Popup Windows and Dialogs

<page xmlns="http://www.intersystems.com/zen"
 xmlns:demo="http://www.intersystems.com/zendemo" height="100%">
 <html id="mgHtml">No data entered yet. </html>
 <button caption="Enter a New Value"
 onclick="zenPage.modalGroupStatic();"
 title="Display a modal group using a static definition." />
 <modalGroup id="mgStatic" groupTitle="Popup">
 <text id="mgText" label="Value:" />
 <button id="mgButton" caption="OK" onclick="zenPage.mgBtnClick();"/>
 </modalGroup>
</page>

5. You must give the user a mechanism to close the popup. Additionally, if your popup invited the user to enter values,
you want to retrieve and use these values. The following client-side method in the page class does this:

ClientMethod mgBtnClick() [Language = javascript]
{
 // get value from text field
 var ctrl = zen('mgText');

 // write user value into HTML component
 zenSetProp('mgHtml','content','User entered: ' + ctrl.getValue());

 // hide the modal group
 zenPage.endModal();
}

This method:

• Executes when the user clicks OK in the popup. This works because step 1 identified this method as the onclick
event handler for the <button> in the <modalGroup>.

• Finds the <text> control from the <modalGroup> by calling the JavaScript function zen with the <text> id value

• Gets the value entered into the <text> control by calling getValue

• Finds the <html> component on the <page> and sets the content property of the <html> component, by calling
the JavaScript utility function zenSetProp() with the <html> id value. The new <html> content value concatenates
a literal string with the newly acquired <text> value.

• Calls the page’s endModal method to close the popup.

The user may interact with this sample page as follows:

1. The user initially sees:

2. Clicking the button on this page invokes the modalGroupStatic method. This causes a window to pop up in front of
the main page. The contents of the popup are the contents of the <modalGroup>. The popup title is the <modalGroup>
groupTitle text.

In the illustration below, the user has typed a value in the <text> control within the popup:

3. Clicking the OK button in this popup invokes the mgBtnClick method. This closes the popup and changes the contents
of the <html> component on the <page> to echo the user input, as follows:

Using Zen Components 245

Modal Groups

The above example is similar to one available in the class ZENDemo.MethodTest in the SAMPLES namespace. You can
try this sample from the Zen Demo main page by choosing Home, Overview, Methods, then Modal Group: Static. To get
started, see “The Zen Demo” as described in the “Introducing Zen” chapter of Using Zen.

8.1.2 Dynamic Modal Groups

In dynamic mode, the page creates a modal group component programmatically, by calling the client-side JavaScript
methods createComponent, addChild, and setProperty. The sequence culminates in a call to the modalGroup show
method with the appropriate arguments.

The following steps set this up in the page class:

1. Provide a client-side method to display the modal group. For example:

ClientMethod modalGroupDynamic() [Language = javascript]
{
 // create a modal group
 var group = this.createComponent('modalGroup');

 // add components dynamically
 var col = this.createComponent('colorPicker');
 group.addChild(col);
 col.setProperty('id','myCol');

 var radio = this.createComponent('radioSet');
 radio.setProperty('id','myRadio');
 group.addChild(radio);

 zenPage.addChild(group);
 zenPage.refreshContents(true);
 radio.setProperty('valueList','elm,maple,oak');

 var btn = this.createComponent('button');
 group.addChild(btn);
 btn.setProperty('caption','Save');
 btn.setProperty('onclick','zenPage.btnClick();');

 // Show the group in "dynamic" mode.
 zenPage.refreshContents(true);
 group.show();
}

This method:

• Calls the page’s createComponent method to add a modalGroup component

• Adds a colorPicker to the group

– Calls the page’s createComponent method to create a colorPicker control

– Calls the modal group’s addChild method to add the colorPicker to the group

– Calls the color picker’s setProperty method to give the colorPicker an id value

• Adds a radioSet to the group in the same way

• Adds a button to the group in the same way

• Calls the button’s setProperty method to set its onclick value to the name of a client-side method that executes
when the user clicks this button

• Calls the modal group’s show method with these arguments:

– A title for the popup window

246 Using Zen Components

Popup Windows and Dialogs

– The keyword 'dynamic'

– The keyword null in argument positions three, four, and five

– An optional width value of '236'

For argument details, see “The show Method” in this chapter.

2. Somewhere within the <page> you must give the user a mechanism to invoke the modalGroupDynamic method to
display the modal group. The following example provides a button:

<button caption="Choose Plantings"
 onclick="zenPage.modalGroupDynamic();"
 title="Display a modal group using a dynamic definition." />

3. For testing purposes, you may provide the <page> with a field in which to echo the data from the popup:

<html id="mgHtml">No data entered yet. </html>

The page XData Contents block now looks like this.

<page xmlns="http://www.intersystems.com/zen"
 xmlns:demo="http://www.intersystems.com/zendemo" height="100%">
 <html id="mgHtml">No data entered yet. </html>
 <button caption="Choose Plantings"
 onclick="zenPage.modalGroupDynamic();"
 title="Display a modal group using a dynamic definition." />
</page>

4. You must give the user a mechanism to close the popup. Additionally, if your popup invited the user to enter values,
you want to retrieve and use these values. The following client-side method in the page class does this:

ClientMethod btnClick() [Language = javascript]
{
 // get values from controls
 var col = zen('myCol');
 var radio = zen('myRadio');

 // write user values into HTML component
 zenSetProp('mgHtml','content','User entered: ' +
 col.getValue() + ' ' + radio.getValue());

 // hide the modal group
 zenPage.endModal();
}

This method:

• Executes when the user clicks Save in the popup. This works because step 1 identified this method as the onclick
event handler for the Save button in the modal group.

• Finds the color picker and radio set controls by calling the JavaScript utility function zen() with their id values.

• Finds the <html> component on the <page> and sets the content property of the <html> component by calling the
JavaScript utility function zenSetProp() with the <html> id value. The new <html> content concatenates a literal
string with the color picker and radio set values, acquired using getValue().

• Calls the page’s endModal() method to close the popup.

The user may interact with this sample page as follows:

1. The user initially sees:

Using Zen Components 247

Modal Groups

2. Clicking the button on this page invokes the modalGroupDynamic method. This causes a window to pop up in front
of the main page. The contents of the popup are the child components that modalGroupDynamic added. The popup
title is the first argument that modalGroupDynamic passed to the show method.

In the illustration below, the user has clicked on a color and a radio button:

3. Clicking the Save button in this popup invokes the btnClick method. This closes the popup and changes the contents
of the <html> component on the <page> as follows:

8.1.3 Built-in Modal Groups

In built-in mode, Zen dynamically creates and displays one of its built-in modal groups. This option is much simpler than
the steps for a dynamic modal group. There are two options for built-in modal groups:

• "calendar" — Display the built-in “calendar box.”

• "msgBox" — Display the built-in “message box.”

8.1.3.1 Calendar

The following steps add a calendar popup to a Zen page class:

1. Provide a client-side method to display the modal group.

ClientMethod modalGroupCalendar() [Language = javascript]
{
 var group = zenPage.createComponent('modalGroup');
 group.setProperty('onaction','zenPage.calendarAction(group);');
 group.show('Select a date:','calendar','2005-12-12');
}

This method:

• Calls the page’s createComponent method to add a modalGroup component

• Calls the modal group’s setProperty method that sets its onaction value to the name of a client-side method.
setProperty executes when the user performs any action on this popup, such as selecting a date value from the
calendar. It accepts an argument, group, that represents the modalGroup instance.

• Calls the modal group’s show method with three arguments:

– A title for the popup window

– The keyword 'calendar'

– An optional pre-selected date for the calendar to display when it pops up

248 Using Zen Components

Popup Windows and Dialogs

2. Somewhere within the <page> you must give the user a mechanism to invoke the method that displays the modal
group. The following example provides a button:

<button caption="Display a Calendar"
 onclick="zenPage.modalGroupCalendar();" />

3. Finally, you must retrieve and use the date value acquired by the calendar control, and then close the popup. The fol-
lowing client-side method in the page class does this:

ClientMethod calendarAction(group) [Language = javascript]
{
 alert("You selected: " + group.getValue());

 // write user value into HTML component
 zenSetProp('mgHtml','content','User entered: ' + group.getValue());
}

This method:

• Executes when the user clicks on a specific date value in the popup. This works because step 1 identified this
method as the onaction event handler for the modal group.

• Calls the modal group’s getValue method to retrieve the date value entered into the calendar.

• Issues a JavaScript alert message that confirms the value.

• Finds the <html> component on the <page> and sets the content property of the <html> component by calling the
JavaScript utility function zenSetProp() with the <html> id value. The new <html> content value concatenates a
literal string with the newly acquired date value.

• Does not call the page’s endModal method. The built-in calendar modal group closes automatically when the
user chooses a date.

The user may interact with this sample page as follows:

1. The user initially sees:

2. Clicking the button on this page invokes the modalGroupCalendar method. This causes a window to pop up in front
of the main page. The popup title is the first argument that modalGroupCalendar passed to the show method. The
currently selected date is the one specified by the third show argument.

3. Selecting a different month, year, and date from the preselected value automatically invokes the calendarAction
method. This closes the popup and displays a browser alert message that echoes the new date value:

Using Zen Components 249

Modal Groups

4. Dismissing the alert makes it easy to see that the contents of the <html> component on the <page> have now changed
as follows:

The above example is similar to one available in the class ZENDemo.MethodTest in the SAMPLES namespace. You can
try this sample from the Zen Demo main page by choosing Home, Overview, Methods, and Modal Group: Calendar. To get
started, see “The Zen Demo” as described in the “Introducing Zen” chapter of Using Zen.

8.1.3.2 Message Box

The following steps add a message box popup to a Zen page class:

1. Provide a client-side method to display the modal group.

ClientMethod modalGroupMsg() [Language = javascript]
{
 var group = this.createComponent('modalGroup');
 group.show('My New Message','msgBox',
 'This
message
contains HTML!');
}

This method:

• Calls the page’s createComponent method to add a modalGroup component

• Calls the modal group’s show method with three arguments:

– A title for the popup window

– The keyword 'msgBox'

– HTML-formatted message content for the popup message

2. Somewhere within the <page> you must give the user a mechanism to invoke the method that displays the modal
group. The following example provide a button:

<button caption="Display a Message"
 onclick="zenPage.modalGroupMsg();" />

3. When the user clicks this button, the popup displays:

250 Using Zen Components

Popup Windows and Dialogs

Clicking OK on the popup dismisses it.

The above example is similar to one available in the class ZENDemo.MethodTest in the SAMPLES namespace. You can
try this sample from the Zen Demo main page Home, Overview, Methods, and Modal Group: MsgBox. To get started, see
“The Zen Demo” as described in the “Introducing Zen” chapter of Using Zen.

8.1.4 The show Method

show is a client-side JavaScript method that displays a modal group. It has no return value, and up to eight optional arguments.
Previous topics in the “Modal Groups” section have discussed some of these arguments. A complete list follows:

• title — Title for the popup window. For static modal groups, this overrides the groupTitle value in the <modalGroup>
definition.

• type — One of the following keywords:

– "calendar" — Display the built-in calendar box.

– "dynamic" — Display a dynamically created modal group.

– "msgBox" — Display the built-in message box.

– "static" — Display a statically defined <modalGroup>.

If no type argument is supplied, the default is "static" if a <modalGroup> definition exists within the <page>.
Otherwise the default is "dynamic".

• value — Value to display when a built-in modal group is used. When the type is:

– "calendar" — value is a date in YYYY-MM-DD format. When the window pops up, the calendar displays this
month and year with value as a pre-selected date.

– "msgBox" — value is the HTML-formatted message content for the popup message.

• top — Vertical coordinate of the top left corner of the popup window (0 is the top of the screen)

• left — Horizontal coordinate of the top left corner of the popup window (0 is the far left of the screen)

• wid — Width of the popup window

• hgt — Height of the popup window

• parms — Object containing a set of additional characteristics passed on to the modalGroup as a set of name-value pairs.
Typically this offers a way to pass additional parameters to the popup calendar.

8.1.5 <modalGroup> Attributes

The <modalGroup> component is the XML projection of the %ZEN.Component.modalGroup class. The following table
lists the <modalGroup> attributes that are available when defining a <modalGroup> within a page class XData Contents
definition.

DescriptionAttribute

<modalGroup> has the same style and layout attributes as any Zen group. For
descriptions, see “Group Layout and Style Attributes” in the “Zen Layout” chapter
of Using Zen.

Zen group attributes

Using Zen Components 251

Modal Groups

DescriptionAttribute

Title to display at the top of the modal group. For static modal groups, you can set
the groupTitle value in the <modalGroup> definition. Otherwise, this value is set
dynamically by the first argument of the show method.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

groupTitle

Caption displayed in OK button for a message box. The default is "OK".

Although you can enter ordinary text for this attribute, it has the underlying data type
%%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

okCaption

The onaction event event handler for the <modalGroup>. Zen invokes this handler
whenever the user takes action on a built-in modal group popup ("msgBox" or
"calendar"). See “Zen Component Event Handlers.”

If you provide a seed value for the <modalGroup>, it is automatically passed to the
onaction event handler.

onaction

Client-side JavaScript expression that runs when the modal group is hidden.onhideGroup

Client-side JavaScript expression that runs when the modal group is made visible.onshowGroup

Allows you to pass some arbitrary value to the onaction event handler.seed

(Read-only) value is set by the show method; applications should not set this.
However, it is sometimes useful to retrieve this value, for example when working
with the built-in calendar modal group.

value

8.2 Popup Windows
A popup window is a new browser window that pops up over the currently active window in response to a user event. The
popup window becomes the active window as soon as it is displayed, and remains dominant until the user closes it. The
following table lists the client-side JavaScript methods that control popup windows. Except for onPopupAction, these Zen
page methods are final and cannot be overridden. onPopupAction is a Zen component method that needs to be overridden
to control popup behavior. Since Zen pages are also components, they support the onPopupAction client-side method.

By default, Zen renders popup windows as <div> elements drawn on the current Zen page. If you want popup dialogs to
display in separate windows, you can set the global ^%ISC.ZEN.useSoftModals to 0 or override the method
%OnUseSoftModals so that it returns 0.

Note that you should avoid using characters other than alphanumeric characters and the underscore in pop-up window
names because doing so is incompatible with certain browsers

252 Using Zen Components

Popup Windows and Dialogs

Table 8–1: Client Side Methods for Controlling Popup Windows

DescriptionClient-Side Method

Launch a popup window. Either identify the parent component, or allow it to
default to the current Zen page.

launchPopupWindow(...)

Notify the parent component for the current popup that a user action has
occurred. Optionally close the popup as well.

firePopupAction(...)

The parent component invokes this method each time it is notified that a user
action has occurred on the popup.

onPopupAction(...)

Close the current popup with no further action.cancelPopup()

To display a popup window from a Zen page, follow these steps:

1. Create a Zen page class to display as a popup window. In our examples, this is “ the popup page” or:

MyApp.MyDialog.cls

When you design a popup page, add properties to it that correspond to URI parameters you expect to pass to it when
invoking the popup; for example:

Property ABC As %String(ZENURL="ABC");

2. Open a Zen page class that you plan to use as the window that launches the popup. In our examples, this is “ the parent
page.”

3. Add a client-side method to the parent page and make this method call launchPopupWindow.

In the following example, the popup page class name appears as the first argument in the call to launchPopupWindow,
correctly enclosed in zenLink syntax with single quotes. This call to launchPopupWindow passes a single URI
parameter called ABC to the popup page with a value of 22:

ClientMethod showPopupWindow() [Language = javascript]
{
 var parms = new Object();
 parms.ABC = 22;
 zenPage.launchPopupWindow(
 zenLink('MyApp.MyDialog.cls'),
 'A True Dialogue',
 'status,scrollbars,resizable,width=400,height=300',
 parms);
}

For more detailed descriptions, see the list of arguments following these instructions.

4. Place a component on the parent page whose onclick attribute invokes the client-side method that invokes
launchPopupWindow. For example:

<button caption="Initiate Conversation"
 onclick="zenPage.showPopupWindow();"
 title="A demonstration of launching a popup window" />

5. Examine the popup page class. Make sure it provides a component that invokes the firePopupAction method.
firePopupAction notifies the parent of the popup window that a user action has occurred in the popup. firePopupAction
has three arguments:

• action — If an action parameter is not specified, the literal string ok is the action code.

• value — Your code must provide a value; this value is automatically passed as an argument to the parent’s
onPopupAction method.

• close — close is true by default. If true, the popup window closes after notifying the parent window.

Using Zen Components 253

Popup Windows

For example:

 // tell our parent window that OK was pressed; do not close this window.
 this.firePopupAction('apply',this.getDialogValue(),false);

6. In the parent component class, override the onPopupAction method to provide an appropriate response when the
popup page fires a popup action. The general idea is to retrieve and use the value returned by the popup page. If you
did not identify a parent component, the parent is the page that invoked the popup. If the parent is the page, you must
override onPopupAction in the parent page class. In the onPopupAction method signature:

• popupName is the name of the popup window sending the action.

• action is the name of the action.

• value is the value associated with the action.

All of these arguments are automatically passed to onPopupAction from the popup page’s firePopupAction method.

Within the onPopupAction method, you may use the returned value in any way you wish. The following example
saves the value into the content property of an <html> component:

Important: When Internet Explorer is the browser, do not use a submit operation to save values from any popup
window. Simply save the values.

ClientMethod onPopupAction(popupName, action, value) [Language = javascript]
{
 zenSetProp('mgHtml','content','User entered: ' + value);
}

7. If you created a button or link on the parent page, such as the one shown in step 4 above, clicking that button now
displays your popup page in a separate window, overlaying the parent page.

The client side method launchPopupWindow has the following arguments, in sequential order:

1. url – A string that identifies the content you wish to display, either:

• The name of a Zen page class, including its package name and .cls extension

• The URI of the desired content

The JavaScript function zenLink makes sure that any additional URI parameters, such as session tracking values, are
included in the link. You may use zenLink with the class name or with any URI. In the following example, the client-
side method uses JavaScript string concatenation to construct a URI from several disparate elements before making
the call to the Zen page method launchPopupWindow. The example also uses the escape function to correctly format
any variable values used in the string:

ClientMethod editCSSValue(context) [Language = javascript]
{
 var ctrl = this.getComponentById('value');
 var value = ctrl.getValue();
 var url = zenLink('%ZEN.Dialog.cssDeclarationEditor.cls?context='
 + escape(context) + '&declaration=' + escape(value));
 zenPage.launchPopupWindow(url,
 'CSSDeclarationEditor',
 'resizable,width=500,height=700');
}

2. pageName – A string that identifies the popup window.

3. features – A comma-separated list of window attributes expected by the JavaScript function window_open.

254 Using Zen Components

Popup Windows and Dialogs

The results of these attributes are browser-dependent. Some developers prefer the Internet Explorer behavior, which
is truly modal: the modal window stays on top and nothing can happen in the application until the user dismisses the
modal window. Other developers prefer the non-modal behavior, which other browsers use regardless of how you set
up this call: the modal window is just another window in the application and other windows can take priority over the
modal window if the user clicks on them.

If you want to make the behavior in Internet Explorer consistent with the behavior in other browsers, include the string
modal=no in the list of window attributes for launchPopupWindow. For example:

 zenPage.launchPopupWindow(url,
 'CSSDeclarationEditor',
 'resizable,width=500,height=700,modal=no'
);

4. parms – If provided, parms is an array of values to be used as parameters in the URI string that invokes the popup
window. You can use the parms argument to supply parameters for the URI so that you do not have to worry about
correctly formatting and concatenating URI parameters in the url argument.

The convention for populating the parms array with values is as follows:

var parms = new Object();
parms.Aaa = 10;
parms.Bbb = 20;
zenPage.launchPopupWindow(url,
 'CSSDeclarationEditor',
 'resizable,width=500,height=700,modal=no'
 parms);

Given the above sample code, launchPopupWindow uses Aaa and Bbb as URI parameters, and gives these parameters
the values that you assigned to the corresponding members of the parms array (10 and 20). launchPopupWindow
takes care of all the details of correctly escaping these parameter values and combining them with the url value in the
URI string.

Each member of the parms array must correspond to a ZENURL property in the popup page class; for example:

Property Aaa As %String(ZENURL="Aaa");
Property Bbb As %String(ZENURL="Bbb");

5. parent – If provided, parent identifies the Zen component to be notified when the firePopupAction method fires. This
can be any component on the page, or the page object itself. If no parent value is supplied, the parent defaults to the
page. If provided, the parent value is the system-assigned index number used internally to identify this component.
For components within repeating groups, parent includes a dot followed by a number indicating the (1–based) position
of this component within the group. Applications can use but should not set the parent value.

8.3 Dialogs
Zen includes some built-in classes designed to work as popup dialog windows. A Zen dialog window can contain any of
the usual Zen components. All dialog windows are subclasses of %ZEN.Dialog.standardDialog, which is a Zen page class.
This base class provides classic dialog buttons such as OK, Apply, and Cancel, as well as conventions for retrieving the
values entered into the dialog if the user clicks OK.

This topic describes the conventions for working with Zen dialog windows:

• Displaying the built-in file select window

• Displaying the built-in color select window

• Displaying an search dialog window

• Creating a new dialog window based on %ZEN.Dialog.standardDialog

Using Zen Components 255

Dialogs

• Creating a new dialog window template, as an alternative to %ZEN.Dialog.standardDialog

8.3.1 File Selection Dialog Window

The %ZEN.Dialog.fileSelect window displays and lets the user choose from a list of directories and files on the server system.
The resulting value is a full path and filename.

Important: To use the fileSelect dialog to view the file system on the server, the current user must hold USE privileges
on one of the following resources: %Admin_Manage, %Admin_Operate, %Admin_Security, or %Devel-
opment.

To display the fileSelect dialog as a popup window, use the steps in the “Popup Windows” section of this chapter, but in
the step that describes adding a client-side method, provide a method similar to the following:

ClientMethod showPopupFile() [Language = javascript]
{
var pathname = '\Temp';
var showdir = '0';
zenPage.launchPopupWindow(
 '%ZEN.Dialog.fileSelect.cls?Dir=' + escape(pathname) +
 '&showdirectoryonly=' + showdir,
 'FileSelectWindow',
 'status,scrollbars,resizable,width=660,height=700');
}

The method calls the Zen page method launchPopupWindow with these arguments:

• URI string beginning with the filename of the %ZEN.Dialog.fileSelect class. The filename is all that is needed, but in
this case, the URI continues with various parameters, including:

– Pathname for the file search window. This is either a full pathname or a path relative to the Caché system manage-
ment directory (\mgr under the Caché installation directory). If omitted, the default is the Caché system management
directory.

– A showdirectoryonly value of 0 so that files are visible in the display. You can omit this, as 0 is the default.
Set showdirectoryonly to 1 if you want to show directories only.

• Identifier for the popup window

• Comma-separated list of popup window characteristics

For a more complete example using %ZEN.Dialog.fileSelect, see ZENTest.FormTest2 in the SAMPLES namespace. For
further details about the launchPopupWindow method, see the “Popup Windows” section, earlier in this chapter.

8.3.2 Color Selection Dialog Window

The %ZEN.Dialog.colorSelect window lets the user choose from a set of colored cells. The resulting value is an HTML color
value, such as #F3FDDA. To display the fileSelect dialog as a popup window, use the steps in the “Popup Windows”
section of this chapter, but in step 2, provide a client-side method similar to the following:

ClientMethod showPopupColor() [Language = javascript]
{
 zenPage.launchPopupWindow(
 '%ZEN.Dialog.colorSelect.cls',
 'ColorPicker',
 'status,scrollbars,resizable,width=500,height=700');}

This method calls the client-side function launchPopupWindow with arguments as follows:

• Filename of the %ZEN.Dialog.colorSelect class

256 Using Zen Components

Popup Windows and Dialogs

• Identifier for the popup window

• Comma-separated list of popup window characteristics

For further details about the launchPopupWindow method, see the “Popup Windows” section, earlier in this chapter.

8.3.3 Search Dialog Window

The %ZEN.Dialog.searchDialog window lets the user construct and execute an SQL query. This class has the following
properties:

• query — the SQL statement used to populate the search form. This value cannot be passed in as a ZENURL parameter.
Instead, applications should subclass %ZEN.Dialog.searchDialog and provide the query value using server-side logic
in the subclass.

• paramNames — provides a comma-separated list of names to display for parameters in the search form.

8.3.4 Creating a Dialog Window

To create a new type of Zen dialog window based on %ZEN.Dialog.standardDialog:

1. Subclass %ZEN.Dialog.standardDialog.

2. Add a new XData block with:

• The name dialogBody

• A <pane> as the container

• An id value for the component that you identify as the source of user input

For example:

XData dialogBody
{
 <pane>
 <text label="I say: " value="What do you think?" />
 <textarea label="And you say: " id="yourReply" />
 </pane>
}

3. Override the server-side callback method %OnGetTitle, for example:

Method %OnGetTitle() As %String
{
 Quit $$$TextHTML("This is My Dialog")
}

4. Override the server-side callback method %OnGetSubtitle, for example:

Method %OnGetSubtitle() As %String
{
 Quit $$$TextHTML("by John Smith")
}

5. Override the client-side JavaScript method getDialogValue so that it returns a value, for example:

ClientMethod getDialogValue() [Language = javascript]
{
 return this.getComponentById('yourReply').getValue()
}

6. To give the dialog an Apply button (in addition to the automatic OK and Cancel buttons) override the APPLYBUTTON
parameter and set it to 1:

Using Zen Components 257

Dialogs

Parameter APPLYBUTTON = 1;

7. To enable the $$$Text localization macros, give the DOMAIN parameter a meaningful value:

Parameter DOMAIN = "MyDomain";

8. When displayed, this dialog appears as follows:

8.3.5 Creating a Dialog Window Template

Suppose you want to apply your own styling to the dialogs, rather than using the same layout and graphics as in the Zen
standard dialog. The most straightforward way to accomplish this is to create a new dialog window template class and use
it as an alternative to %ZEN.Dialog.standardDialog in the above instructions. The steps are:

1. Subclass %ZEN.Dialog.standardDialog.

2. In your subclass, apply the style differences you require.

3. When creating new dialogs using the instructions in the “Creating a Dialog Window” section in this chapter, extend
the new subclass instead of extending %ZEN.Dialog.standardDialog

4. When you need a file selector class:

• Copy the class %ZEN.Dialog.fileSelect

• Edit the copy so that it extends your new dialog window template class instead of extending
%ZEN.Dialog.standardDialog

5. When you need a color selector class:

• Copy the class %ZEN.Dialog.colorSelect

• Edit the copy so that it extends your new dialog window template class instead of extending
%ZEN.Dialog.standardDialog

258 Using Zen Components

Popup Windows and Dialogs

9
Other Zen Components

This chapter describes components that fit into none of the categories defined in other chapters of this book: layout, tables,
meters, charts, forms, controls, navigation aids, or popups.

• “<colorPane>” — A large, detailed palette from which the user can select colors

• “<colorWheel>” — A continuous color gradient from which the user can select colors.

• “<dynaView>” — Display a view box based on data provided by a callback method.

• “<fieldSet>” — A group component that helps visually organize a form

• “<finderPane>” — A Finder-like browser for hierarchically organized data.

• “<html>” — A snippet of arbitrary HTML content

• “<iframe>” — A static image or other content within a frame

• “<repeatingGroup>” — Repeat the same layout for each item returned by a runtime query.

• “<schedulePane>” — Display a daily, weekly, or monthly calendar with time slots for each date.

• “<timer>” — A non-visible component that fires an event after a time interval

If you have examined the full roster of components, including those listed above, and still do not see the functionality you
need, consider adding a custom component to the Zen library. For full instructions, see the “Custom Components” chapter
in Developing Zen Applications.

9.1 HTML Content
The Zen <html> component provides a way to place arbitrary HTML content within a Zen page. The HTML content is
displayed within the Zen page exactly as specified. This content is drawn within an enclosing HTML <div> in the same
manner as any other Zen component.

There are several ways to define the content displayed by the <html> element:

• Literally specify the content within the <html> component:

<html id="myContent">
This is some HTML.
</html>

The content must be well-formed. That is, any HTML elements within the content must have matching closing elements,
and any attribute values must be quoted correctly. The <script> tag is not allowed.

Using Zen Components 259

The content may not reference other Zen components. However, it may contain Zen #()# runtime expressions.

• Define a server-side OnDrawContent callback method that writes HTML content. If you define such a method, and
reference it from the <html> element, this method is called whenever the <html> component is displayed.

<html id="myContent" OnDrawContent="GetHTMLContent" />

The method itself would look something like this:

Method GetHTMLContent(pSeed As %String) As %Status
{
 &html<This is some HTML!>
 Quit $$$OK
}

• The <html> component has a content property that is a string of HTML statements. You can set the content property’s
initial value by placing the desired HTML tags in between the <html> and </html> elements in XData Contents, or
by referencing an OnDrawContent callback.

Client code can change the value of the content property by resetting it from JavaScript. The following example uses
the JavaScript utility function zenSetProp() to do this:

// get html content
zenSetProp('myContent','content','some new content');

The <html> component has the following attributes:

DescriptionAttribute

<html> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Name of a server-side callback method in the Zen page class.This method provides
HTML content using &html<> syntax or WRITE commands.

Zen invokes this method whenever it draws the <html> component, automatically
passing it a %String that contains the component’s seed value. The callback must
return a %Status data type. The following is a valid method signature:

Method DrawMe(pSeed As %String) As %Status

To use the above method as the callback, the developer would set
OnDrawContent="DrawMe" for the <html> component.

OnDrawContent

Allows you to pass some arbitrary value to the OnDrawContent callback.seed

9.2 Framed Content
The Zen <iframe> component is a wrapper for the HTML <iframe> element. It may display images or other content within
a frame.

260 Using Zen Components

Other Zen Components

9.2.1 <iframe> Attributes

The Zen <iframe> component has the following attributes:

DescriptionAttribute

<iframe> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

URI that provides the link to the long (text) description of the frame.longdesc

The align value for the HTML <iframe>: "left", "right", or "center".frameAlign

The frameborder value for the HTML <iframe>. If true, the frame has a border; if
false it does not have a border.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Attribute
Data Types.”

frameBorder

The scrolling value for the HTML <iframe>: "auto", "yes", or "no".scrolling

Identifies the pathname and filename of the frame content. The path is either an
absolute pathname or a path relative to the Caché installation directory, for example:

<iframe id="myFrame" src="/csp/myApp/myPic.png" />

src

If you wish to change the contents of the frame from the client, you can do so programmatically by resetting the value of
the src property of the iframe object.

When changing the src property value on the client side, do not simply set the property, as in:

var frame=zen('contentFrame');
frame.src='C:\myfile';

Instead, use the setProperty() method, as in:

var frame=zen('contentFrame');
frame.setProperty('src','C:\myfile');

9.2.2 Images as Button Controls

If you wish to place an image on a button control, so that you can define an onclick event or other types of event for it, use
the <image> control, which gives greater control over event handling. For details, see the description of the <image> control
in the chapter “Zen Controls.”

9.2.3 Rendering Image Data Streams

InterSystems advises that you do not use <iframe> to render image data streams. Instead, use <image> as described in the
chapter “Zen Controls.” This convention is imperative when the image is in JPG format and the browser is Internet Explorer
(IE). This topic explains the details.

Suppose you want to use an <iframe> to render content retrieved from the database via a CSP routine that serves up a data
stream. The stream could be PDFs, GIFs, JPGs, Docs, RTFs, etc. It turns out that, when the image is in JPG format and the
browser is IE, rendering JPG data in an <iframe> incapacitates core Zen functionality.

Using Zen Components 261

Framed Content

The root of the problem is in the way IE renders data streams.

When browsers like Firefox see that the data stream isn’t an HTML page, they create a dummy DOM to wrap around the
incoming stream; GIFs and JPGs become HTML tags with their src attribute set to the URI provided, PDFs auto-
matically generate HTML <EMBED> tags to launch the viewer, etc. In these cases, a DOM is always created and the normal
scoping rules of JavaScript execution apply.

IE is different. It does not create a DOM; it swaps out normal page processing in favor of a dedicated viewer for the content
in question. For ordinary web pages this is usually not an issue. If you are just loading a picture or downloading a PDF,
there is nothing to interact with the DOM, so it does not matter if the DOM is there or not.

The problem arises when the content is being loaded into an <iframe> under IE.

Content requiring an external plug-in, such a PDFs or RTFs, seem to work fine with IE. The embedded GIF viewer also
seems to play well. The JPG viewer, however, does not. If a JPG image is loaded as a direct stream into an <iframe>, when
IE initializes the embedded viewer it obliterates, not just the JavaScript execution space for the <iframe>, but the entire
JavaScript namespace for the page, deleting global client-side variables and JavaScript function definitions. After the viewer
is initialized, JavaScript continues to function outside the <iframe> for event callbacks and such, but chances are good that
any client-side data initialized before the loading of the <iframe> has been reset to null.

The best cross-platform solution for dealing with cases like these is to use the Zen components <iframe> and <image> as
follows:

• <iframe> for HTML documents or data streams requiring external plug-ins (such as PDFs)

• <image> to render data streams of types GIF, JPG or PNG

The only downside to this solution is that if streams are being retrieved from the database, two queries are required: one
to determine the type of data being sent and a second to send the actual data. The overhead in this case is almost exclusively
the network overhead, as the data volume is trivial. Therefore, the best practice for rendering data streams retrieved from
the database is as follows:

1. Define the template display page with both an <iframe> and an <image>. Both components are initially hidden
(hidden='true').

2. Query to find out what type of data is to be rendered.

3. Based on this query, set the src attribute of either the <iframe> or the <image> to the URI of the data stream and set
the corresponding component to be visible (hidden='false')

4. When the page is closing, reset the displayed component to be hidden (hidden='true') so that the page is ready
for the next data stream.

Other permutations are possible, but this is the basic idea. It is not necessary to use an <iframe> to display image data on
a web page, and doing so with a JPG under IE breaks Zen, so do not use <iframe> for this purpose; use <image> instead.

9.3 Timer
The <timer> component has no visual representation. It raises a client-side event after a specified time period. You may
place a <timer> on the Zen page within XData Contents as follows:

XData Contents [XMLNamespace="http://www.intersystems.com/zen"]
{
<page>
 <timer ontimeout="zenPage.timeout(zenThis);" timeout="10000" />
</page>
}

262 Using Zen Components

Other Zen Components

<timer> has the following attributes:

DescriptionAttribute

The ontimeout event handler for the timer. Zen invokes this handler whenever the
timer runs out. It must accept an argument, timer, that represents this timer object.
The <timer> element can use the built-in variable zenThis to pass the timer object
to the method. See “Zen Component Event Handlers.”

ontimeout

Number of milliseconds in the timer. Zen automatically starts the timer when the
page is first loaded. When the timeout time has elapsed, Zen fires the ontimeout
expression.

The example above sets a timeout value of 10,000 milliseconds. This provides an
timeout value of 10 seconds.

timeout

The client-side ontimeout method might look something like the following. A <timer> only fires its ontimeout event once,
so your JavaScript method must restart the timer (by calling its startTimer method) before exiting. The following example
does this:

ClientMethod timeout(timer) [Language = javascript]
{
 // ...do something

 // restart the timer
 timer.startTimer();
}

9.4 Field Sets
A <fieldSet> is a group component that draws an outer box around the children and displays a title within this box. This
creates a visual panel that can help to organize a page. The following example from the SAMPLES namespace class
ZENApp.HelpDesk defines a panel called “Details” that contains a form with several different controls.

The <fieldSet> that produces the above example looks like this:

<fieldSet id="detailGroup" legend="Details">
 <form id="detailForm" layout="vertical" labelPosition="top"
 cellStyle="padding: 2px; padding-left: 5px; padding-right: 5px;"
 onchange="zenPage.detailFormChange(zenThis);" >
 <hgroup>
 <text id="ID" name="ID" label="ID" readOnly="true" size="5"/>
 <spacer width="15"/>
 <text id="CreateDate" name="CreateDate" label="Date"
 readOnly="true" size="8"/>
 <spacer width="15"/>
 <dataCombo id="Priority" name="Priority" label="Priority" size="12"
 dropdownHeight="150px" editable="false" unrestricted="true"
 sql="SELECT Name FROM ZENApp_Data.Priority ORDER BY Name"/>
 <spacer width="15"/>
 <dataCombo id="Customer" name="Customer" label="Customer" size="24"

Using Zen Components 263

Field Sets

 dropdownHeight="150px" editable="false" unrestricted="true"
 sql="SELECT ID,Name FROM ZENApp_Data.Customer ORDER BY Name"/>
 <spacer width="15"/>
 <dataCombo id="AssignedTo" name="AssignedTo" label="Assigned To" size="24"
 dropdownHeight="150px" editable="false" unrestricted="true"
 sql="SELECT ID,Name FROM ZENApp_Data.Employee ORDER BY Name"/>
 </hgroup>
 <textarea id="Comments" name="Comments"
 label="Comments" rows="3" cols="60"/>
 <button id="btnSave" caption="Save" disabled="true"
 onclick="zenPage.detailFormSave();" />
 </form>
</fieldSet>

A <fieldSet> group may contain a <form>, as above, or a <form> may contain a <fieldSet>. A <fieldSet> provides a visual
grouping only; it is not a Zen form, because it does not provide any form behavior such as validation or submit. <fieldSet>
has the following attributes:

DescriptionAttribute

<fieldSet> has the same style and layout attributes as any Zen group. For
descriptions, see “Group Layout and Style Attributes” in the “Zen Layout” chapter
of Using Zen.

Zen group attributes

Text specifying the caption to display for this <fieldSet>. The legend can be a literal
string, or it can contain a Zen #()# runtime expression.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

legend

Text specifying a popup message to display for this <fieldSet>. The title can be a
literal string, or it can contain a Zen #()# runtime expression.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

title

9.5 Color Selector
The <colorPane> component lets the user view and select colors or enter RGB values in a large color palette. The palette
is a grid that can be visualized as one possible slice from a three-dimensional cube of available colors. The <colorPane>
captures a slice from the cube by accepting the user’s choice of one of three faces (red, green, or blue) and slicing through
the cube, parallel to that face, at some saturation level (brighter or dimmer) to produce a grid of colors.

From the user’s viewpoint, the <colorPane> has these features:

• The user selects a color by clicking a square in the palette.

• The user can cycle through different faces and slices of the color cube by clicking on the red, green, or blue color bars
at left, bottom, and right. The segmented bar at left allows the user to select a slice that uses a brighter or dimmer range
of color combinations.

• The bar at top right displays the currently selected color and its corresponding HTML hexadecimal value. The user
can copy (but not edit) the text value from this color bar.

• At top left, the user can change the text entry fields R, G, and B to any number in the range 0–255, then click on the
color bar at top right to apply these changes and see the result. The text fields R, G, and B also respond to user selections
from the palette.

A <colorPane> with a color selected looks like this:

264 Using Zen Components

Other Zen Components

<colorPane> has the following attributes. For a simpler color selection component, see “<colorPicker>.”

DescriptionAttribute

<colorPane> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

<colorPane> is not a full-blown control component, but it does allow the user to select
a value, and it can be used within Zen forms. Any control attribute not listed in this
table is not available for <colorPane>.

Zen component
attributes

0–based column number of the currently selected cell in the color palette.The default
is 0. The range is from 0 to 15.

currCol

0–based row number of the currently selected cell in the color palette. The default
is 0. The range is from 0 to 15.

currRow

0–based slice number of the currently selected slice of the 3–dimensional color cube.
The default is 0. The range is from 0 to 15.

currSlice

Face number of the currently selected face of the 3–dimensional color cube: 1, 2,
or 3. The default is 1.

face

The onchange event handler for the <colorPane>. Zen invokes this handler when
the value of the <colorPane> component changes. See “Zen Component Event
Handlers.”

onchange

Client-side JavaScript expression that Zen invokes when the user double-clicks on
the <colorPane> component.

ondblclick

Using Zen Components 265

Color Selector

DescriptionAttribute

String that identifies the most recently selected HTML hexadecimal value.The default
is:

#FFFFFF

value

9.6 Color Wheel
The <colorWheel> component lets the user view and select colors from a continuous color gradient. The color wheel
actually provides two different groups of controls. You can either use the color wheel and intensity slider to pick a shade
from the wheel, or use the separate RGB sliders to mix a specific color.

When you use the disk and intensity slider, move the slider to the left to see darker tones, or to the right to see lighter ones.
The rendering of the disk offers real time feedback as to the current settings. Once you have the right range of colors displayed,
click on the desired region of the disk. A cross-hair shows you where you clicked and the background of the preview box
at the bottom of the widget updates to reflect your choice. Also, the RGB sliders update to reflect the selected color.

When you use the RGB sliders, drag the sliders to adjust the contributions of the individual RGB color guns. The current
value for each gun displays in the box to the left of the slider. The color resulting from the contributions of all three guns
appears in the background of the preview box at the bottom of the control. Also, the intensity slider, color disk, and cross-
hair location update to reflect the current color.

A <colorWheel> with a color selected looks like this:

<colorWheel> has the following attributes. For a color selection component that lets you select from a color palette, see
“<colorPane>.” . For a simple color selection component that lets you choose from a limited set of colors, see “<color-
Picker>.”

266 Using Zen Components

Other Zen Components

DescriptionAttribute

<colorWheel> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Show the preview box at the bottom of the control that is filled with the currently
selected color and stamped with the HTML Hex color specification.

showPreview

Show the panel containing three sliders that allows the user to select values for the
RGB color guns.

showRGBPanel

The value that is automatically initialized for the <colorWheel> when it is displayed.
This property does not hold the value selected by the user.You need to use the
getValue method to get the current value of a control. The default value is:

#7f7f7f

value

9.7 Repeating Group
A <repeatingGroup> is a specialized group component that defines the layout for a single group item, then outputs multiple
items with this layout. The number of items, and the data contained in each item, is determined by a runtime query.

<repeatingGroup> has the following attributes:

DescriptionAttribute

<repeatingGroup> has the same style and layout attributes as any Zen group. For
descriptions, see “Group Layout and Style Attributes” in the “Zen Layout” chapter
of Using Zen. The default layout for a <repeatingGroup> is vertical.

Zen group attributes

<repeatingGroup> has similar attributes to <tablePane> for specifying the data
source. <repeatingGroup> supports maxRows, queryClass, queryName, and sql.
For details and examples, see the following sections in the chapter “Zen Tables”:

• How to use query attributes with <repeatingGroup>:

– “Data Sources” (maxRows)

– “Specifying an SQL Query ” (sql)

– “Referencing a Class Query” (queryClass, queryName)

• How to provide <parameter> elements within <repeatingGroup>:

– “Query Parameters”

Data source attributes

The onclickitem event handler for the <repeatingGroup>. Zen invokes this handler
when the user clicks on an item within the repeating group. See “Zen Component
Event Handlers.”

onclickitem

Using Zen Components 267

Repeating Group

http://localhost:57774/csp/documatic/%25CSP.Documatic.cls?PAGE=CLASS&LIBRARY=%25SYS&CLASSNAME=%25ZEN.ComponentEx.colorWheel#getValue

DescriptionAttribute

The (0–based) index number of the currently selected item. The default value is –1,
which indicates there is no current selection.

selectedIndex

The typical layout strategy for a repeating group is for the <repeatingGroup> element to enclose a horizontal group that
contains the individual item. Since the default layout for a <repeatingGroup> is vertical, the result of this arrangement is
that each item is laid out horizontally, while the set of items is laid out from top to bottom.

The following excerpt from an XData Contents block provides an example of this layout strategy for <repeatingGroup>.
This is similar to the XData Contents block in the class ZENTest.RepeatingGroupTest in the SAMPLES namespace. Note
the <hgroup> that defines the individual entry. This <hgroup> contains a <button> and an <html> component.

<vgroup>
 <repeatingGroup id="repeatingGroup"
 maxRows="1000"
 sql="SELECT TOP ? Name,Title,SSN,Salary,FavoriteColor
 FROM ZENDemo_Data.Employee WHERE Name %STARTSWITH ?">
 <parameter value="#(%page.Rows)#" />
 <parameter value="#(%page.SearchKey)#" />
 <hgroup>
 <button caption="#(%query.Name)#"
 title="Salary: $ #(%query.Salary)#"
 onclick="alert('Salary: $ #(%query.Salary)#\n
 Favorite Color: #(%query.FavoriteColor)#\n
 ID Number: #(%query.SSN)#')" />
 <html>
 #(%query.Title)#
 </html>
 </hgroup>
 </repeatingGroup>
 <spacer height="25"/>
 <form>
 <text id="search" label="Key:" value="#(%page.SearchKey)#" size="10"/>
 <text id="rows" label="Rows:" value="#(%page.Rows)#" size="5"/>
 <button caption="Search" onclick="zenPage.refreshGroup();" />
 </form>
</vgroup>

The following figure illustrates sample output from this excerpt. To produce this output, the user entered the key C, requested
10 rows, and then clicked Search. This caused Zen to display the repeating group using the first 10 entries that start with
the letter C. The user then clicked an employee name in the group to display the alert window, which contains data retrieved
from the server during the query.

On the output side, only one object is created for each child of the repeating group, but there are multiple HTML renderings
within that object, one for each child. The rendered HTML incorporates the current item number into each generated id
value used to identify the HTML elements on the page.

268 Using Zen Components

Other Zen Components

InterSystems recommends that you keep the use of <repeatingGroups> reasonably simple. Repeating groups within
repeating groups are not supported.

9.8 Dynamic View
The <dynaView> component displays a set of user-defined items within a view box, similar to the way a file dialog box
might display a set of files or directories. <dynaView> items can displayed in one of two modes:

• "list" — All items are displayed compactly in a grid. Only the first column of data is displayed.

• "details" — Each item is displayed as one row within a table. Each row may present several columns of data.

A <dynaView> in “details” mode looks like the following example, based on the class ZENTest.DynaViewTest in the
SAMPLES namespace.

9.8.1 <dynaView> OnGetViewContents Callback Method

<dynaView> gets its data by invoking a server-side callback method defined in the Zen page class. The method name is
specified using the <dynaView> OnGetViewContents attribute, as shown in the following example. In this example, the
method name is GetViewContents.

<dynaView id="view" viewType="details"
 OnGetViewContents="GetViewContents"
 onchange="zenPage.viewChange(zenThis);" >
 <parameter paramName="label" value="Draft" />
</dynaView>

A <dynaView> can contain zero or more <parameter> elements. Each <parameter> specifies an input parameter for the
OnGetViewContents callback method. Each <parameter> may have the following attributes:

Using Zen Components 269

Dynamic View

DescriptionAttribute

If you wish to be able to access the parameter to change its value at runtime, in
response to user actions on the client side, then you must give the <parameter>
element an id. With a parameter defined as follows:

<parameter id="parmLabel" paramName="label" value="Draft" />

A client-side JavaScript method in the same Zen page class could change the value
of this parameter to “Final” as follows:

var parm = zen(parmLabel); parm.value = "Final";

id

The paramName must be unique within the <dynaView>. It becomes a subscript in
the array of parameters passed to the callback method.

paramName

The value supplied for a <parameter> can be a literal string, or it can contain a Zen
#()# runtime expression.

value

The OnGetViewContents callback method must have a signature that looks like this:

Method GetViewContents(
 ByRef pParms As %String,
 Output pContents As %String,
 Output pHeaders As %String) As %Status

Where:

• The method returns a %Status value indicating success or failure.

• pParms represents any <parameter> elements defined by the <dynaView>. pParms is an array. Each member of this
array uses its paramName as a subscript and its value as a value.

• pContents is a multidimensional array that describes the set of items that is displayed within the view box. The array
is subscripted by item number (starting with 1). Each array element is a $List structure containing the following
information. You can use the ObjectScript function $LISTBUILD ($LB) to create each list item for pContents, using
statements such as the following inside the callback method:

 Set pContents(n) =
 $LB(textValue,logicalValue,icon,col2,col3)

Where:

– textValue is the value displayed for the item

– logicalValue is a logical value associated with the item

– icon is the URI of the image to be displayed with the item (if any)

– Any subsequent values (col2, col3, and so forth) define the values to display in any additional columns when the
dynaView is in “details” mode

• pHeaders is a multidimensional array that provides a set of column headers, subscripted by column number. When the
dynaView is in “details” mode, this is used to define how many columns of data to display and what the column headers
are. For example:

 // define 3 column headers
 Set pHeaders(1) = "Name"
 Set pHeaders(2) = "Size"
 Set pHeaders(3) = "Date"

270 Using Zen Components

Other Zen Components

The icons used in a dynaView belong to a CSS class called dynaViewIcon, which enables you to use CSS to control the
appearance of the icon. For example, the following CSS insures that the icon is displayed as 16px x 16px:

 .dynaViewIcon {
 height: 16px;
 width: 16px;
 }

9.8.2 <dynaView> Attributes

The previous topic described the OnGetViewContents attribute in detail. The following table lists all the <dynaView>
attributes.

DescriptionProperty

The onchange event handler for the <dynaView>. Zen invokes this handler when
the current value of the <dynaView> changes. See “Zen Component Event Handlers.”

onchange

Client-side JavaScript expression that Zen invokes when the user clicks on a node
within the <dynaView>.

onclick

Client-side JavaScript expression that Zen invokes when the user double-clicks on
a node within the <dynaView>.

ondblclick

Name of a server-side callback method that provides the contents of the <dynaView>.
For details, see the section “<dynaView> OnGetViewContents Callback Method.”

OnGetViewContents

Client-side JavaScript expression that Zen invokes when the user selects an item
by either pressing the Enter key or double-clicking

onselect

Number of rows to display when the <dynaView> is in list mode.rows

0-based index of the currently selected node in the <dynaView>. The default
selectedIndex is –1 (nothing is selected).

selectedIndex

Specifies how the contents of the <dynaView> should be displayed. Possible values
are:

• "list" — all items are displayed compactly in rows and columns

• "details" — each item is displayed as one row within a table

viewType

When you work with %ZEN.Component.dynaView programmatically, you must also know about the following properties
of the dynaView class:

• Each <parameter> element provided in the original <dynaView> definition in XData Contents becomes a member of
the dynaView parameters property, a list collection of %ZEN.Auxiliary.parameter objects. Each <parameter> acquires
an ordinal position in the parameters collection: 1, 2, 3, etc.

• The read-only text property holds the text (display) value of the currently selected node within the tree. This is the node
label that displays in the <dynaView>.

• The read-only value property holds the logical (actual) value of the currently selected node within the tree. This is the
string that is activated when the user clicks the corresponding label in the <dynaView>.

Using Zen Components 271

Dynamic View

9.9 Schedule Calendar
A <schedulePane> displays a daily, weekly, or monthly calendar with time slots for each date. Users can define appointments
and place them in the appropriate time slots. The following example shows a <schedulePane> in Week mode with several
appointments defined. This example is similar to the class ZENTest.SchedulePaneTest in the SAMPLES namespace.

Note: The <schedulePane> is not a control, and does not return a value. For simple date selection controls that enable
users to enter dates as values in forms, see the “Dates” section in the chapter “Zen Controls.”

9.9.1 <schedulePane> OnGetScheduleInfo Callback Method

<schedulePane> gets its data by invoking a server-side callback method defined in the Zen page class. The method name
is specified using the <schedulePane> OnGetScheduleInfo attribute, as shown in the following example. In this example,
the method name is GetScheduleInfo.

<schedulePane id="schedule" caption="Schedule for Bob"
 dateFormat="5" interval="30" startTime="540" endTime="1020"
 dropEnabled="true" ondrop="zenPage.scheduleDataDrop(dragData);"
 onselectitem="zenPage.selectItem(id,time);"
 OnGetScheduleInfo="GetScheduleInfo">
 <parameter id="parmPerson" paramName="Person" value="Bob" />
</schedulePane>

A <schedulePane> can contain zero or more <parameter> elements. Each <parameter> specifies an input parameter for the
OnGetScheduleInfo callback method. Each <parameter> may have the following attributes:

272 Using Zen Components

Other Zen Components

DescriptionAttribute

If you wish to be able to access the parameter to change its value at runtime, in
response to user actions on the client side, then you must give the <parameter>
element an id. With a parameter defined as follows:

<parameter id="parmPerson" paramName="Person" value="Bob" />

A client-side JavaScript method in the same Zen page class could change the value
of this parameter to “Sally” as follows:

var parm = zen('parmPerson'); parm.value = "Sally";

id

The paramName must be unique within the <schedulePane>. It becomes a subscript
in the array of parameters passed to the callback method.

paramName

The value supplied for a <parameter> can be a literal string, or it can contain a Zen
#()# runtime expression.

value

The OnGetScheduleInfo callback method must have a signature that looks like this:

ClassMethod GetScheduleInfo
 (ByRef pParms As %String,
 pStartDate As %Date,
 pEndDate As %Date,
 ByRef pInfo As %List) As %Boolean

Where:

• The method returns a %Boolean value which is true to indicate success; otherwise it is false.

• pParms represents any <parameter> elements defined by the <schedulePane>. pParms is an array. Each member of
this array uses its paramName as a subscript and its value as a value.

• pStartDate is the starting date and time in $HOROLOG ($H) format, the internal storage format for dates in Caché.
As described in the Caché ObjectScript Reference, this format gives the number of days since December 31, 1840;
then a comma; then the number of seconds since midnight. That is:

date,time

Where both date and time are integers.

• pEndDate is the ending date and time in $HOROLOG ($H) format.

• pInfo is a multidimensional array that describes the time slots that are displayed within the schedule calendar. The
array is subscripted as follows:

– day is the date in $HOROLOG ($H) format.

– time is an integer expressing the start time for this time slot as a number of minutes since midnight. Your code is
more readable if you express this value as a calculated multiple of 60, using 9*60 for 9 a.m. instead of the literal
value 540, but either is correct.

– n is an integer (starting with 1, and usually equal to 1) that you can use as needed to distinguish between time slots
that have the same day and time values.

Each pInfo array element is a $List structure containing the following information. You can use the ObjectScript
function $LISTBUILD ($LB) to create each list item for pInfo, using statements such as the following inside the callback
method:

 Set pInfo(day,time,n) =
 $LISTBUILD(duration,id,text,type,style)

Using Zen Components 273

Schedule Calendar

Where:

– duration is an integer specifying the number of minutes to reserve for this time slot in the schedule.

– id is an integer that the onselectitem event handler uses to uniquely identify this time slot when it is selected in
the schedule.

– text is the text description to display in this time slot in the schedule.

– type is either 0 or 1:

• 0 is an unavailable time slot

• 1 is a scheduled time slot

– style is a CSS style to apply to this time slot in the schedule. This value overrides any competing styles that might
otherwise apply to this time slot.

The following example sets up a 60-minute staff meeting at 9 a.m. on the given start date, designates it as a scheduled time
slot, and colors its background green on the schedule calendar display:

ClassMethod GetScheduleInfo(ByRef pParms As %String,
 pStartDate As %Date,
 pEndDate As %Date,
 ByRef pInfo As %List)
 As %Boolean
{
 Set pInfo(pStartDate,9*60,1)
 = $LB(60,1,"Staff Meeting",1,"background: green;")
 Quit 1
}

You can also provide a style that applies to all of the time slots in a particular day by setting a top node of the pInfo array
to a CSS style value. For example:

 Set pInfo(day) = "background: yellow;"

9.9.2 <schedulePane> Attributes

This topic has already described the OnGetScheduleInfo attribute in detail. The following table lists all the <schedulePane>
attributes.

DescriptionAttribute

<schedulePane> has the same general-purpose attributes as any Zen component.
For descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

Text to display as a caption along the top of the schedule. The text is not HTML
escaped, so it can contain markup.The caption value can be a literal string, or it can
contain a Zen #()# runtime expression.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

Integer giving the height of time slots in the schedule calendar, in pixels. The default
is 30, as shown in the illustration for dateFormat. Do not specify units with cellHeight.

cellHeight

274 Using Zen Components

Other Zen Components

DescriptionAttribute

Date to display, in YYYY-MM-DD format. The default is the current date. The
schedule calendar displays a range of days that contain this date value. The actual
range depends on the current value of the view attribute:"day", "week", or "month".

The date value can be a literal string, or it can contain a Zen #()# runtime expression.

date

Integer that specifies the date format to use in the headers for the schedule calendar.
The <schedulePane> automatically displays this date below the name of the day of
the week.

The default dateFormat is –1. This generates the date in the format “Feb 18, 2009”
as shown in the following illustration. As the illustration shows, you can also configure
the headerHeight and cellHeight attributes for this part of the schedule calendar
display.

For a list of the integers you can use as values for dateFormat, see the description
of dformat in the “Parameters” section for the $ZDATETIME ($ZDT) function in the
Caché ObjectScript Reference. dateFormat allows nearly the same range of values
as dformat. dateFormat supports –1 and the values 1 through 13.

dateFormat

Comma-separated list of the full names of days of the week.

The default dayList value uses the $$$Text macro with the English values Sunday
through Saturday. Using this macro ensures that this dayList value is automatically
included in the list of strings to translate for your application when you export them
from the message dictionary, as long as you also set the DOMAIN parameter in the
Zen class. For details, see the “$$$Text Macros” section in the “Zen Localization”
chapter of Developing Zen Applications.

You can use $$$Text with dayList because its ZENLOCALIZE datatype parameter
is set to 1 (true). Any localized dayList string must remain a comma-separated list
of seven items when translated. Be sure to coordinate dayList changes with
shortDayList and firstDayOfWeek.

dayList

Ending time for the daily time slots to be displayed on the schedule calendar. This
is an integer expressing the number of minutes since midnight.The default endTime
is 1080, which means 6 p.m.The range for endTime is 0 through 1440, which covers
all 24 hours in the day.

If the end user schedules an appointment that falls outside the startTime and endTime,
the calendar expands to display that time slot.

The endTime value can be a literal string, or it can contain a Zen #()# runtime
expression.

endTime

Using Zen Components 275

Schedule Calendar

DescriptionAttribute

Integer that specifies which day of the week is displayed as the starting day of the
week in the schedule calendar. 0 means Sunday, 1 means Monday, and so on up
to 6, which means Saturday. The default firstDayOfWeek is 0.

The purpose of the firstDayOfWeek attribute is to allow you to customize the
schedule calendar for different locales. Be sure to coordinate firstDayOfWeek changes
with dayList and shortDayList.

firstDayOfWeek

Integer giving the height of the header row at the top of the schedule calendar, in
pixels. This header row is where Zen displays the names of days and their dates.
The default is 40, as shown in the illustration for dateFormat. Do not specify units
with headerHeight.

headerHeight

Integer giving the number of minutes in each time slot on the calendar. The default
interval is 30; the minimum is 5. The interval value can be a literal string, or it can
contain a Zen #()# runtime expression.

interval

Comma-separated list of the full names of months of the year.The default monthList
value uses the $$$Text macro with the English values January through December.

You can use $$$Text with monthList because its ZENLOCALIZE datatype parameter
is set to 1 (true). Any localized monthList string must remain a comma-separated
list of twelve items when translated.

monthList

Name of a server-side callback method in the Zen page class. This method gets the
information needed to display the schedule.

For details, see the section “<schedulePane> OnGetScheduleInfo Callback Method.”

OnGetScheduleInfo

The onselectitem event handler for the <schedulePane>. Zen invokes this handler
when the user clicks on an item within the schedule calendar. See “Zen Component
Event Handlers.”

An onselectitem definition generally looks like this:

<schedulePane onselectitem="zenPage.selectItem(id,time);" ... >

While the signature for the onselectitem handler method in the Zen page class looks
like this:

ClientMethod selectItem(id, time)[Language = javascript]

The handler uses the following two special variables as arguments:

• id — the user defined identifier for a scheduled item as provided by the
OnGetScheduleInfo callback (or null for an empty cell).

• time — the time value associated with the cell (in yyyy-mm-dd hh:mm:ss format).

onselectitem

276 Using Zen Components

Other Zen Components

DescriptionAttribute

Comma-separated list of the abbreviated names of days of the week. The default
shortDayList value uses the $$$Text macro with the following string:

Sun,Mon,Tue,Wed,Thu,Fri,Sat

You can use $$$Text with shortDayList because its ZENLOCALIZE datatype
parameter is set to 1 (true). Any localized shortDayList string must remain a comma-
separated list of seven items when translated. Be sure to coordinate shortDayList
changes with dayList and firstDayOfWeek.

shortDayList

Comma-separated list of the abbreviated names of months of the year. The default
shortMonthList value uses the $$$Text macro with the following string:

Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec

You can use $$$Text with shortMonthList because its ZENLOCALIZE datatype
parameter is set to 1 (true). Any localized shortMonthList string must remain a comma-
separated list of twelve items when translated.

shortMonthList

Starting time for the daily time slots to be displayed on the schedule calendar. This
is an integer expressing the number of minutes since midnight.The default startTime
is 480, which means 8 a.m.The range for startTime is 0 through 1440, which covers
all 24 hours in the day.

If the end user schedules an appointment that falls outside the startTime and endTime,
the calendar expands to display that time slot.

The startTime value can be a literal string, or it can contain a Zen #()# runtime
expression.

startTime

Specifies what type of schedule to display. Possible values are "day", "week", or
"month".The default is "day".The view value can be a literal string, or it can contain
a Zen #()# runtime expression.

view

When you work with %ZEN.ComponentEx.schedulePane programmatically, you must also know about the following
properties of the schedulePane class:

• Each <parameter> element provided in the original <schedulePane> definition in XData Contents becomes a member
of the schedulePane parameters property, a list collection of %ZEN.Auxiliary.parameter objects. Each <parameter>
acquires an ordinal position in the parameters collection: 1, 2, 3, etc.

• The read-only selectedTime property holds the start time of the currently selected time slot in the schedule calendar.
The selectedTime is an integer that gives the number of seconds since 0, at midnight.

• The read-only selectedInterval property holds the length, in minutes, of the currently selected time slot in the schedule
calendar. Add the selectedInterval to the selectedTime to calculate an end time.

9.10 Finder Pane
The <finderPane> component implements a simple browser for hierarchically organized data. Data must be supplied in
JavaScript Object Notation (JSON). The Zen component <altJSONProvider> provides data in this format. See the section
“Zen JSON Components” in the book Developing Zen Applications. (But also see Using JSON in Caché.)

Using Zen Components 277

Finder Pane

The sample class ZENTest.FinderPaneTest in the SAMPLES namespace, illustrates the use of <finderPane> with <altJSON-
Provider>. The following example shows the code that creates the JSON component, and sets the OnGetArray callback to
the method GetFinderArray, which is defined in the class.

<altJSONProvider id="json" OnGetArray="GetFinderArray"/>

The next example shows the code that creates the finder pane. It sets the ongetdata property of <finderPane> to the
getContentObject method of the <altJSONProvider> component. This method returns the client-side version of the data
supplied by the <altJSONProvider>. The properties onselectitem, ondrawdetails, and ondrawempty are set to methods
defined in the class.

<finderPane id="finder"
 ongetdata="return zen('json').getContentObject();"
 onselectitem="return zenPage.itemSelected(item);"
 ondrawdetails="return zenPage.drawDetails(item);"
 ondrawempty="return zenPage.drawEmptyFinder();" />

<finderPane> has the following attributes:

DescriptionAttribute

<finderPane> has the same general-purpose attributes as any Zen component. For
descriptions, see these sections:

• “Behavior” in the “Zen Component Concepts” chapter of Using Zen

• “Component Style Attributes” in the “Zen Style” chapter of Using Zen

Zen component
attributes

If true, then animate the appearance of the finder. The default is true.animate

Text to display as a caption along the top of the finder.The text is not HTML escaped,
so it can contain markup. The caption value can be a literal string, or it can contain
a Zen #()# runtime expression.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Attribute Data Types.”

caption

Width of columns in the finder when in "columns" mode. The default is 200 pixels.
Use the viewType attribute to select “columns” mode.

columnWidth

The default icon to display for folder items in “ icons” mode. Use the viewType
attribute to select “icons” mode. The default value is the filename of an image file
suppled by the system.You can use this attribute to set a different default image.
The filename specifies the path from the csp/broker directory under the Caché install
directory.

The ongeticon event handler can return different image files for items displayed in
the finder.

folderIcon

If true, then apply a high light color to the top-level rows in "list" mode. The default
is false.

hilightTop

278 Using Zen Components

Other Zen Components

DescriptionAttribute

The default icon to display for items in “ icons” mode. Use the viewType attribute to
select “icons” mode. The default value is the filename of an image file suppled by
the system.You can use this attribute to set a different default image. The filename
specifies the path from the csp/broker directory under the Caché install directory.

The ongeticon event handler can return different image files for items displayed in
the finder.

itemIcon

If defined, this is a list of properties that supply the column values in 'list' mode.listColumns

The oncancel event handler: If defined, handles the event fired when the user presses
the escape key within the finder.

oncancel

The ondblclick event handler: If defined, handles the event fired when the user
double-clicks on an item within the finder.

ondblclick

The ondrawdetails event handler: If defined, handles the event fired when an item
with no children is selected. If this event handler returns a value, then it is used as
DHTML to render the item details.

ondrawdetails

The ondrawempty event handler: If defined, handles the event fired when there is
no data available to display within the finder. If this event handler returns a value,
then it is used as DHTML providing content for the empty finder.

ondrawempty

The ondrawitem event handler: If defined, handles the event fired when an item
within the finder is about to be drawn. If this event handler returns a value, then it is
used as DHTML to render the item contents.

ondrawitem

The ongetdata event handler: This defines the client-side code that returns a graph
of javascript objects used to provide the contents of the finder.

ongetdata

The ongeticon event handler. If defined, handles events fired when the finder is in
"icons" view and returns the url of the icon to use for the current item. If it returns ""
(the empty string), then the default icon is used. The current item is passed to the
event handler as an item.

ongeticon

The onlazyload event handler: Used to partially load data into the finder.This defines
the client-side code that returns a graph of javascript objects that are used as the
children of the current node.

onlazyload

The onselectitem event handler. If defined, handles the event fired when the user
clicks on an item within the finder.

onselectitem

User-defined set of parameters. These are currently not used by the finder.parameters

This is a list of numbers (0-based) indicating the current selected item(s). The first
number is the index in the top-most list of items; the second is the index within the
children of the top-most item and so on.

selectedList

Using Zen Components 279

Finder Pane

DescriptionAttribute

The default icon to display for the button that enables users to move up a level when
the finder is in “ icons” mode. Use the viewType attribute to select “icons” mode.
The default value is the filename of an image file suppled by the system.You can
use this attribute to set a different default image. The filename specifies the path
from the csp/broker directory under the Caché install directory.

upIcon

How the contents of the finder component are displayed. Possible values are:

• icons — arranges items in a grid, with an image representing each item.

• list — arranges items in a vertical list.

• columns — arranges items in columns.

The default value is “columns”.

viewType

280 Using Zen Components

Other Zen Components

	Table of Contents
	About This Book
	Zen Attribute Data Types
	Zen Component Event Handlers

	1 Zen Tables
	1.1 <tablePane>
	1.2 Data Sources
	1.2.1 Specifying an SQL Query
	1.2.2 Generating an SQL Query
	1.2.3 Referencing a Class Query
	1.2.4 Using a Callback Method
	1.2.5 Changing the Data Source Programmatically

	1.3 Query Parameters
	1.4 Table Columns
	1.4.1 colName
	1.4.2 OnDrawCell

	1.5 Table Style
	1.6 Conditional Style for Rows or Cells
	1.7 Snapshot Mode
	1.7.1 Fetching Data From the Server
	1.7.2 Navigating Snapshot Tables

	1.8 Column Filters
	1.9 Column Links
	1.10 User Interactions
	1.10.1 Navigation Buttons
	1.10.2 Navigation Keys
	1.10.3 Sorting Tables
	1.10.4 Selecting Rows and Columns

	1.11 Table Refresh
	1.12 Table Touchups
	1.12.1 Data Values
	1.12.2 Header and Body Alignment

	2 Zen and SVG
	2.1 Fonts for SVG
	2.2 SVG Component Layout
	2.2.1 <svgFrame>
	2.2.2 <svgGroup>
	2.2.3 <svgSpacer>
	2.2.4 <rect>

	2.3 SVG Component Attributes
	2.4 Meters
	2.4.1 Providing Data for Meters
	2.4.2 Meter Attributes
	2.4.3 <fuelGauge>
	2.4.4 <indicatorLamp>
	2.4.5 <lightBar>
	2.4.6 <slider>
	2.4.7 <smiley>
	2.4.8 <speedometer>
	2.4.9 <trafficLight>

	2.5 Charts
	2.6 <radialNavigator>
	2.7 <ownerDraw>

	3 Zen Charts
	3.1 Types of Chart
	3.1.1 Bar Charts
	3.1.2 Bubble Charts
	3.1.3 Bullseye Charts
	3.1.4 Combo Charts
	3.1.5 Difference Charts
	3.1.6 High/Low Charts
	3.1.7 Line Charts
	3.1.8 Percent Bar Charts
	3.1.9 Pie Charts
	3.1.10 Scatter Diagrams
	3.1.11 Tree Map Charts

	3.2 Providing Data for Zen Page Charts
	3.2.1 Using a JavaScript Method
	3.2.2 Using a Data Controller
	3.2.3 Limiting the Data Set

	3.3 Chart Layout, Style, and Behavior
	3.3.1 Specifying Size and Position
	3.3.2 Layout and Style
	3.3.3 Plot Area
	3.3.4 Markers
	3.3.5 Legends
	3.3.6 Titles
	3.3.7 User Selections

	3.4 Chart Axes

	4 Zen Forms
	4.1 Forms and Controls
	4.2 User Interactions
	4.3 Defining a Form
	4.4 Providing Values for a Form
	4.5 Detecting Modifications to the Form
	4.6 Validating a Form
	4.7 Errors and Invalid Values
	4.8 Processing a Form Submit
	4.9 User Login Forms
	4.10 Dynamic Forms

	5 Zen Controls
	5.1 Control Attributes
	5.2 Data Drag and Drop
	5.3 Control Methods
	5.4 Buttons
	5.4.1 <button>
	5.4.2 <image>
	5.4.3 <submit>

	5.5 Text
	5.5.1 <label>
	5.5.2 <text>
	5.5.3 <textarea>
	5.5.4 <password>

	5.6 Selections
	5.6.1 <checkbox>
	5.6.2 <multiSelectSet>
	5.6.3 <fileUpload>
	5.6.4 <colorPicker>
	5.6.5 <radioSet>
	5.6.6 <radioButton>

	5.7 Lists
	5.7.1 <select>
	5.7.2 <listBox>
	5.7.3 <dataListBox>
	5.7.4 <combobox>
	5.7.5 <dataCombo>
	5.7.6 <lookup>

	5.8 Dates
	5.8.1 <calendar>
	5.8.2 <dateSelect>
	5.8.3 <dateText>

	5.9 Grid
	5.9.1 <dynaGrid>
	5.9.2 <dataGrid>

	5.10 Hidden

	6 Model View Controller
	6.1 Model
	6.1.1 %ZEN.DataModel.ObjectDataModel
	6.1.2 %ZEN.DataModel.Adaptor

	6.2 Controller
	6.2.1 <dataController>
	6.2.2 <dataController> Attributes
	6.2.3 <dataController> Methods

	6.3 View
	6.3.1 Data View Attributes
	6.3.2 The Controller Object
	6.3.3 Multiple Data Views

	6.4 Constructing a Model
	6.4.1 Step 1: Type of Model
	6.4.2 Step 2: Object Data Model

	6.5 Binding a <form> to an Object Data Model
	6.5.1 Step 1: Data Controller
	6.5.2 Step 2: Data View
	6.5.3 Step 3: Initial Results
	6.5.4 Step 4: Saving the Form
	6.5.5 Step 5: Performing Client-side Validation
	6.5.6 Step 6: Setting Values Programmatically

	6.6 Adding Behavior to the <form>
	6.6.1 Step 1: Opening a New Record
	6.6.2 Step 2: Creating and Deleting Records

	6.7 <dynaForm> with an Object Data Model
	6.7.1 Step 1: <dynaForm> is Easy
	6.7.2 Step 2: Converting to <dynaForm>
	6.7.3 Step 3: Automatic Control Selection

	6.8 <dynaForm> with an Adaptor Data Model
	6.8.1 Step 1: Generating the Form
	6.8.2 Step 2: Property Parameters
	6.8.3 Step 3: Adding Behavior to the <dynaForm>
	6.8.4 Step 4: Virtual Properties

	6.9 Data Model Classes
	6.9.1 Data Model Class Properties
	6.9.2 Data Model Class Parameters
	6.9.3 Data Model Property Parameters
	6.9.4 Value Lists and Display Lists
	6.9.5 Object Data Model Callback Methods
	6.9.6 Virtual Properties
	6.9.7 Controller Actions
	6.9.8 Data Model Series
	6.9.9 Custom Data Model Classes

	7 Navigation Components
	7.1 Links
	7.1.1 <link>
	7.1.2 <locatorBar>
	7.1.3 <locatorLink>

	7.2 Menus
	7.2.1 <menuItem>
	7.2.2 <menu>, <hmenu>, and <vmenu>
	7.2.3 <menuSeparator>
	7.2.4 <accordionMenu>

	7.3 Navigator
	7.3.1 Creating and Sizing a <navigator>
	7.3.2 Adding Content to the Navigator
	7.3.3 Changing the Display and Appearance of Items
	7.3.4 Editing Values in Items
	7.3.5 Creating a Multiple Choice Item
	7.3.6 Displaying HTML

	7.4 Toolbar
	7.5 Tabs
	7.5.1 <tabGroup>
	7.5.2 <lookoutMenu>
	7.5.3 <tab>

	7.6 Trees
	7.6.1 <expando>
	7.6.2 <dynaTree>

	7.7 Filters
	7.7.1 <buttonView>

	8 Popup Windows and Dialogs
	8.1 Modal Groups
	8.1.1 Static Modal Groups
	8.1.2 Dynamic Modal Groups
	8.1.3 Built-in Modal Groups
	8.1.4 The show Method
	8.1.5 <modalGroup> Attributes

	8.2 Popup Windows
	8.3 Dialogs
	8.3.1 File Selection Dialog Window
	8.3.2 Color Selection Dialog Window
	8.3.3 Search Dialog Window
	8.3.4 Creating a Dialog Window
	8.3.5 Creating a Dialog Window Template

	9 Other Zen Components
	9.1 HTML Content
	9.2 Framed Content
	9.2.1 <iframe> Attributes
	9.2.2 Images as Button Controls
	9.2.3 Rendering Image Data Streams

	9.3 Timer
	9.4 Field Sets
	9.5 Color Selector
	9.6 Color Wheel
	9.7 Repeating Group
	9.8 Dynamic View
	9.8.1 <dynaView> OnGetViewContents Callback Method
	9.8.2 <dynaView> Attributes

	9.9 Schedule Calendar
	9.9.1 <schedulePane> OnGetScheduleInfo Callback Method
	9.9.2 <schedulePane> Attributes

	9.10 Finder Pane

	Index

