
Using Java with Caché

Version 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Java with Caché
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 The Caché Java Binding ... 3
1.1 Java Binding Architecture .. 3
1.2 Installation and Configuration .. 4

1.2.1 Java Client Requirements ... 5
1.3 The Caché Java Class Packages ... 6
1.4 Tutorials and Other Documentation ... 6

2 Using the Java Binding ... 7
2.1 Generating Java Proxy Classes ... 7

2.1.1 Generating a Java Class from a Caché Class ... 7
2.2 Using Objects ... 8

2.2.1 Creating a Connection Object .. 9
2.2.2 Creating and Opening Proxy Objects ... 9
2.2.3 Using Methods and Properties ... 10
2.2.4 Saving and Closing .. 10
2.2.5 A Sample Java Binding Application ... 10

2.3 Using Streams .. 12
2.4 Using Queries ... 13

2.4.1 Class Queries .. 13

3 Java Proxy Class Mapping .. 15
3.1 Classes .. 15

3.1.1 Entity Names .. 15
3.1.2 Methods .. 16
3.1.3 Properties ... 17

3.2 Primitive Data Types .. 18

Using Java with Caché iii

List of Figures

Figure 1–1: Java Client/Server Architecture .. 4

iv Using Java with Caché

List of Tables

Table 3–1: Client Data Type to Java Correspondence ... 18

Using Java with Caché v

About This Book

Important: The Caché Java Binding is Deprecated
Java Persistence Architecture (JPA) is the recommended persistence technology for complex object hier-
archies in Java projects. Caché and Ensemble currently support JPA 1.0 and 2.0 via the Hibernate imple-
mentations of the JPA specifications. See “Using the Caché Hibernate Dialect” in Using Caché with
JDBC.

Extreme Event Persistence (XEP) is the recommended persistence technology for high-performance simple
to medium complexity object hierarchies in Java projects. See “Using eXTreme Event Persistence” in
Using Java with Caché eXTreme.

This book is a guide to the Caché Java Binding, which provides a simple, direct way to use Caché objects within a Java
application. The book contains the following sections:

• The Caché Java Binding — introduces the Java binding, and describes its architecture and system requirements.

• Using the Java Binding — provides a quick description of how to use the binding.

• Java Proxy Class Mapping — describes how Caché classes and data types are mapped to Java.

There is also a detailed Table of Contents.

Related Documents
The following documents also contain material related to the Java binding:

• Using Caché with JDBC describes how to use the Caché JDBC driver to connect to external JDBC data sources.

• The Caché Java Binding and JDBC QuickStart Tutorial provides a quick introduction to working with the Java binding.
It includes a complete sample Java binding application.

For general information, see Using InterSystems Documentation.

Using Java with Caché 1

TJAV_preface
GDOC

1
The Caché Java Binding

The Caché Java binding provides a simple, direct way to use Caché objects within a Java application. You can create Java
applications that work with the Caché database in the following ways:

• The Caché Java Binding — The Caché Java binding lets Java applications work directly with objects on a Caché server.
The binding automatically creates Java proxy classes for the Caché classes you specify. Each proxy class is a pure
Java class, containing only standard Java code that provides your Java application with access to the properties and
methods of the corresponding Caché class.

The Caché Java binding offers complete support for object database persistence, including concurrency and transaction
control. In addition, there is a sophisticated data caching scheme to minimize network traffic when the Caché server
and the Java environment are located on separate machines. This mechanism requires no object-relational mapping or
additional middleware.

• The Caché JDBC Driver — Caché includes a level 4 (pure Java) JDBC driver that supports the JDBC version 4.1 API.
The Caché JDBC Driver provides high-performance relational access to Caché. For maximum flexibility, applications
can use JDBC and the Caché Java binding at the same time. See Using Caché with JDBC for details.

This document assumes a prior understanding of Java and the Java standard library. Caché does not include a Java compiler
or development environment.

1.1 Java Binding Architecture
The Caché Java binding gives Java applications a way to access and manipulate objects contained within a Caché server.
These objects can be persistent objects stored within the Caché database or they can be transient objects that perform
operations within a Caché server.

The Caché Java binding consists of the following components:

• The Caché Java Class Generator — an extension to the class compiler that generates pure Java classes from classes
defined in the Caché Class Dictionary.

• The Caché Java Class Packages — pure Java classes that work in conjunction with the Java classes generated by the
Caché Java Class Generator, providing them with transparent connectivity to the objects stored in the Caché database.
(See “The Caché Java Class Packages”).

• The Caché Object Server — a high performance server process that manages communication between Java clients and
a Caché database server. It communicates using standard networking protocols (TCP/IP), and can run on any platform
supported by Caché. The Caché Object Server is used by all Caché language bindings, including Java, JDBC, ODBC,
C++, Perl, and Python.

Using Java with Caché 3

The class compiler can automatically create Java client classes for any classes contained within the Caché Class Dictionary.
These generated Java classes communicate at runtime with their corresponding Caché class on a Caché server. The generated
Java classes contain only pure Java code and are automatically synchronized with the master class definition. This is illustrated
in the following diagram:

Figure 1–1: Java Client/Server Architecture

The basic mechanism works as follows:

• You define one or more classes within Caché. These classes can represent persistent objects stored within the Caché
database or transient objects that run within a Caché server.

• The system generates Java classes that correspond to your Caché classes. These Java classes include methods which
correspond to Caché methods on the server as well as accessor (get and set) methods for object properties.

• At runtime, your Java application connects to a Caché server. It can then create instances of Java objects that correspond
to objects within the Caché server. You can use these objects as you would any other Java objects. Caché automatically
manages all communications as well as client-side data caching.

The runtime architecture consists of the following:

• A Caché database server (or servers).

• A Java Virtual Machine (JVM) in which your Java application runs. Caché does not provide a JVM but works with a
standard JVM. See Java Downloads for All Operating Systems at: http://Java.com/en/download/manual.jsp for information
on obtaining the Java Runtime Environment for your platform.

• A Java application (including servlet, applets, or Swing-based applications).

• At runtime, the Java application connects to Caché using either an object connection interface or a standard JDBC
interface. All communications between the Java application and the Caché server use the TCP/IP protocol.

1.2 Installation and Configuration
All applications using the Caché Java binding are divided into two parts: a Caché server and a Java client. The Caché server
is responsible for database operations as well as the execution of Caché object methods. The Java client is responsible for
the execution of all Java code (such as additional business logic or the user interface). When an application runs, the Java
client connects to and communicates with a Caché server via a TCP/IP socket. The actual deployment configuration is up
to the application developer: the Java client and Caché server may reside on the same physical machine or they may be
located on different machines. Only the Caché server machine requires a copy of Caché.

4 Using Java with Caché

The Caché Java Binding

1.2.1 Java Client Requirements

The online InterSystems Supported Platforms document for this release specifies the current requirements for all Java-based
binding applications:

• See “Supported Java Technologies” for supported Java releases.

• See “Supported Client Platforms: Other Platform Support” for supported Java client platforms.

• If your client application and the Caché server are not running on the same version of Caché, see “Supported Version
Interoperability” for information on compatibility between versions.

The core components of the Java binding are files named cache-jdbc-2.0.0.jar and cache-db-2.0.0.jar, which contain the
Java classes that provide the connection and caching mechanisms for communication with the Caché server, JDBC connec-
tivity, and reflection support. Client applications do not require a local copy of Caché, but the cache-jdbc-2.0.0.jar and
cache-db-2.0.0.jar files must be on the class path of the application when compiling or using Java proxy classes. See “The
Caché Java Class Packages” for more information on these files.

Very little configuration is required to use a Java client with a Caché server. The Java sample programs provided with
Caché should work with no change following a default Caché installation. This section describes the server settings that
are relevant to Java and how to change them.

Every Java client that wishes to connect to a Caché server needs a URL that provides the server IP address, port number,
and Caché namespace, plus a username and password.

The Java sample programs use the following connection information:

 String url = "jdbc:Cache://127.0.0.1:1972/SAMPLES";
 String user = "_SYSTEM";
 String password = "SYS";

To run a Java or JDBC client application, make sure that your installation meets the following requirements:

• The client must be able to access a machine that is currently running a compatible version of the Caché server (see
“Supported Version Interoperability” in the online InterSystems Supported Platforms document for this release). The
client and the server can be running on the same machine.

• Your class path must include the versions of cache-jdbc-2.0.0.jar and cache-db-2.0.0.jar that correspond to your version
of the Java JDK (see “The Caché Java Class Packages”).

• To connect to the Caché server, the client application must have the following information:

– The IP address of the machine on which the Caché server is running. The Java sample programs use "localhost".
If you want a sample program to connect to a different system you will need to change its connection string and
recompile it.

– The TCP/IP port number on which the Caché server is listening. The Java sample programs use 1972; if you want
a sample program to use a different port you will need to change its connection string and recompile it.

– A valid SQL username and password. You can manage SQL usernames and passwords on the [System Adminis-

tration] > [Security] > [Users] page of the Management Portal. The Java sample programs use the administrator
username, "_SYSTEM" and the default password of "SYS" or "sys". Typically, you will change the default
password after installing the server. If you want a sample program to use a different username and password you
will need to change it and recompile it.

– The server namespace containing the classes and data that your client application will use. The Java samples
connect to the SAMPLES namespace, which is pre-installed with Caché.

Using Java with Caché 5

Installation and Configuration

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/
https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

1.3 The Caché Java Class Packages
The files containing the Caché Java class packages are located in <install-dir>\Dev\java\lib\<java-release>, where <install-dir>

is the root directory of your Caché installation and <java-release> corresponds to the Java JDK you are using. See “Caché
Installation Directory” in the Caché Installation Guide for the location of <install-dir> on your system. For supported Java
releases, see “Supported Java Technologies” in the online InterSystems Supported Platforms document for this release.

The Java class packages are contained in the following files:

• cache-jdbc-2.0.0.jar — all other files in this list are dependent on this file. It can be used by itself for JDBC binding
applications.

• cache-db-2.0.0.jar — required for most Java binding applications.

• cache-extreme-2.0.0.jar — required only for Caché eXTreme binding applications (see Using Java with Caché eXTreme).

• cache-gateway-2.0.0.jar — required for JDBC SQL Gateway applications (see “Using the Caché SQL Gateway with
JDBC” in Using Caché with JDBC).

See the JavaDoc in <install-dir>\dev\java\doc\ for the latest and most complete description of these packages.

1.4 Tutorials and Other Documentation
The standard Caché installation provides a tutorial, JavaDoc, and several other documents describing various ways to use
Java with Caché.

• The Caché Java Binding and JDBC QuickStart Tutorial provides a quick introduction to working with the Java binding.
It includes a complete sample Java binding application.

• Complete JavaDoc is available for the Caché Java class cackages. The main index.html file is located in
<install-dir>\dev\java\doc\ (see “Caché Installation Directory” for the location of <install-dir> on your system).

• In addition to this manual, the following documents describe various ways to use Java with Caché:

• Using Caché with JDBC — describes how to use the Caché JDBC driver to connect to external JDBC data sources.

6 Using Java with Caché

The Caché Java Binding

GCI_intro_defaultdir
GCI_intro_defaultdir
GCI_preface
https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/
TJAV_preface
GCI_intro_defaultdir

2
Using the Java Binding

This chapter provides detailed examples of how to use the Caché Java binding within a Java application.

2.1 Generating Java Proxy Classes
To create a Java projection of a Caché class, specify that the Caché class automatically creates a Java class whenever it is
compiled. To do this, add a projection definition to the Caché class. This projection definition specifies that the Class
Compiler also generates Java code for this class whenever the class is compiled.

The process is as follows:

• In the Studio, establish a connection to the namespace of the class and open the class.

• Add a Java projection definition to the class using the Studio's New Projection Wizard: Invoke the New Projection
choice from the Add submenu in the Class menu.

• After choosing a name for the projection, specify its type as %Projection.Java.

• Enter the ROOTDIR parameter, which specifies the directory where the generated Java class will be written.

• Compile the Caché class. This generates the Java projection of the class, whether compilation occurs in the Studio or
from the Terminal command line.

At this point, you have added a line of code to your class definition similar to the following:

 Projection PrjName As %Projection.Java;

where PrjName is the name of the projection.

You can now compile the Java class using either the javac command or some other tool. Whenever you modify and compile
the Caché, its projection automatically updates the projected Java class.

Important: You should never modify the generated Java Projection code directly, or attempt to add custom Java con-
nection code, since this can have serious unintended consequences. The generated code depends on Inter-
Systems internal code that may be changed without notice.

2.1.1 Generating a Java Class from a Caché Class

To use a Caché class from a Java client, generate a Java class to run on the client side.

Using Java with Caché 7

You can specify that a Caché class automatically creates a Java class whenever it is compiled; to do this, add a projection
definition to the Caché class. This projection definition specifies that the Class Compiler also generates Java code for this
class whenever the class is compiled. For more information, see the Projections chapter in Using Studio.

To generate a Java class, do the following:

• In the Studio, establish a connection to the class' namespace and open the class. For instance, to use the Person sample
class, connect to the SAMPLES namespace, open the Person class in the Sample package.

• Add a Java projection definition to the class using the Studio's New Projection Wizard: Invoke the New Projection
choice from the Add submenu in the Class menu.

• After choosing a name for the projection, specify its type as %Projection.Java.

• For the ROOTDIR parameter, enter the directory where the generated Java class will reside.

• On the last screen of the New Projection Wizard, click Finish. At this point, the wizard has added a line of code to
your class definition similar to the following:

 Projection MyProjection As %Projection.Java(ROOTDIR="C:\temp\");

• Compile the Caché class. This generates the Java projection of the class, whether compilation occurs in the Studio or
from the Terminal command line.

• Compile the Java class. You can do this either using the javac command or any other tool that you use for compiling
Java classes.

2.2 Using Objects
A Caché Java binding application can be quite simple. Here is a complete sample program:

import com.intersys.objects.*;
public class TinyBind {
 public static void main(String[] args) {
 try {
// Connect to the Cache' database
 String url="jdbc:Cache://localhost:1972/SAMPLES";
 String username="_SYSTEM";
 String password="SYS";
 Database dbconnection =
 CacheDatabase.getDatabase (url, username, password);

// Create and use a Cache' object
 Sample.Person person = new Sample.Person(dbconnection);
 person.setName("Doe, Joe A");
 System.out.println("Name: " + person.getName());
 }

// Handle exceptions
 catch (CacheException ex) {
 System.out.println("Caught exception: " +
 ex.getClass().getName() + ": " + ex.getMessage());
 }
 }
}

This code performs the following actions:

• Imports the com.intersys.objects.* packages.

• Connects to the Caché database:

– Defines the information needed to connect to the Caché database.

– Creates a Database object (dbconnection).

8 Using Java with Caché

Using the Java Binding

– Creates and uses a Caché object:

• Uses the Database object to create an instance of the Caché Sample.Person class.

– Sets the Name property of the Sample.Person object.

– Gets and prints the Name property.

– Performs standard exception handling.

The following sections discuss these basic actions in more detail.

2.2.1 Creating a Connection Object

The CacheDatabase class is a Java class that manages a connection to a specific Caché server and namespace. It has a static
method, getDatabase(), for creating a connection. This method returns a connection to a Caché database that is derived
from the Database interface.

To establish a connection:

• Import the appropriate packages, which will always include the com.intersys.objects.* packages (which include
CacheDatabase):

 import com.intersys.objects.*;

• Next, declare and initialize variables for use in establishing the connection:

 Database dbconnection = null;
 String url="jdbc:Cache://localhost:1972/NAMESPACE_NAME";
 String username="_SYSTEM";
 String password="sys";

The getDatabase() method establishes a TCP/IP connection from the Java client to the Caché server. The method takes
three arguments, where the first includes a specified IP address (here, the local host, 127.0.0.1), a specified port number
(here, 1972), and to a specified namespace (here, SAMPLES); the second and third arguments are the username and password,
respectively, for logging into the server.

It returns a Database object, here called dbconnection. You can then use getDatabase() to establish the connection:

 dbconnection = CacheDatabase.getDatabase(url, username, password);

Note: It is also possible to create a connection and run queries through the Java-standard JDBC connection interface.
For details, see Using DriverManager to Connect in Using Caché with JDBC.

2.2.2 Creating and Opening Proxy Objects

The following code attempts to connect to the local Caché server:

 String url="jdbc:Cache://localhost:1972/SAMPLES";
 String username="_SYSTEM";
 String password="sys";
 //...
 dbconnection = CacheDatabase.getDatabase (url, username, password);

Next, the program uses standard Java functionality to prompt the user for an ID to open and to get that value. Once there
is an ID, the next step is to open the specified object:

 person = (Sample.Person)Sample.Person._open(dbconnection, new Id(strID));

Using Java with Caché 9

Using Objects

This code invokes the _open() method of the Person object in the Sample package. This method takes two arguments: the
database that contains the object being opened, and the ID of the object being opened. The value being returned is narrowed
(cast) as an instance of Sample.Person because _open() is inherited from the Persistent class and, hence, returns an instance
of that class.

2.2.3 Using Methods and Properties

Once the object is open, the program displays the value of the object's Name property.

 System.out.println("Name: " + person.getName());

Note that, unlike on the Caché server, references to object properties are through the get() and set() methods, rather than
through direct references to the properties themselves.

Embedded Objects
Next, it displays the value of the City property and then gives the City property a new value:

 System.out.println("City: " + person.getHome().getCity());
 person.getHome().setCity("Ulan Bator");

The lines of code that manipulate the City property demonstrate the observation and modification of the properties of an
embedded object. If a property is an object (such as the Home property), then it has its own properties (such as the City

property) with accessor methods. You can invoke these methods using cascading dot syntax.

2.2.4 Saving and Closing

Having given the City property a new value, the application then saves the object, displays the value, closes the object, de-
assigns it, and then shuts itself down.

 person._save();

 // Report the new residence of this person */
 System.out.println("New City: " + person.getHome().getCity());

 // * de-assign the person object */
 dbconnection.closeObject(person.getOref());
 person = null;

 // Close the connection
 dbconnection.close();

Note: Always Close Objects and Connections
Before closing a connection, it is important to call closeObject() on all objects that use the connection. Failure
to do so may compromise the integrity of your data on the server. Objects are opened with a default concurrency
value of 1, meaning that a read lock is acquired if the class uses more than one data node (see “Object Concur-
rency” in Using Caché Objects).

You must also call close() on all connection instances before they go out of scope. Failure to do so can cause
memory leaks and other problems.

2.2.5 A Sample Java Binding Application

SampleApplication.java is a simple Java program that connects to the Caché SAMPLES database, opens and modifies an
instance of a Sample.Person object saved within the database, and executes a predefined query against the database. This
application is invoked from the operating command line, reads an object id value from the command line, and writes output
using the Java system.out object. This example assumes that Caché and Java are running on a Windows machine.

10 Using Java with Caché

Using the Java Binding

GOBJ_concurrency
GOBJ_concurrency

SampleApplication.java is located in the <cachesys>/dev/Java/Samples directory (see Default Caché Installation Directory
in the Caché Installation Guide for the location of <cachesys> on your system). In the Samples directory, compile the
program:

 javac SampleApplication.java

And then run it:

 java SampleApplication

When executed, this program yields results such as:

 C:\java> java SampleApplication
 Enter ID of Sample.Person object to be opened: 1
 Name: Isaacs,Sophia R.
 City: Tampa
 New City: Ulan Bator

 C:\java>

Here is the complete Java source for the sample application:

/*
* SampleApplication.java
*/
import java.io.*;
import java.util.*;
import com.intersys.objects.*;

public class SampleApplication {
 public static void main(String[] args){
 Database dbconnection = null;
 String url="jdbc:Cache://localhost:1972/SAMPLES";
 String username="_SYSTEM";
 String password="sys";
 ObjectServerInfo info = null;
 Sample.Person person = null;

 try {
 // Connect to Cache on the local machine, in the SAMPLES namespace
 dbconnection = CacheDatabase.getDatabase (url, username, password);

 // Open an instance of Sample.Person,
 // whose ID is read in from the console
 InputStreamReader isr = new InputStreamReader(System.in);
 BufferedReader br = new BufferedReader(isr);
 System.out.print("Enter ID of Person object to be opened:");
 String strID = br.readLine();

 // Use the entered strID as an Id and use that Id to
 // to open a Person object with the _open() method inherited
 // from the Persistent class. Since the _open() method returns
 // an instance of Persistent, narrow it to a Person by casting.
 person = (Sample.Person)Sample.Person._open(dbconnection, new Id(strID));

 // Fetch some properties of this object
 System.out.println("Name: " + person.getName());
 System.out.println("City: " + person.getHome().getCity());

 // Modify some properties
 person.getHome().setCity("Ulan Bator");

 // Save the object to the database
 person._save();

 // Report the new residence of this person */
 System.out.println("New City: " + person.getHome().getCity());

 /* de-assign the person object */
 dbconnection.closeObject(person.getOref());
 person = null;

 // Close the connection
 dbconnection.close();

 } catch (Exception ex) {
 System.out.println("Caught exception: "
 + ex.getClass().getName()
 + ": " + ex.getMessage());

Using Java with Caché 11

Using Objects

 }
 }
}

2.3 Using Streams
Caché allows you to create properties known as streams that hold large sequences of characters, either in character or binary
format. Character streams are long sequences of text, such as the contents of a free-form text field in a data entry screen.
Binary streams are usually image or sound files, and are akin to BLOBs (binary large objects) in other database systems.

The process for using a stream in Java is:

• When creating a Java client, define and initialize a variable of the appropriate type – either GlobalBinaryStream or
GlobalCharacterStream. For instance, if you are using a character stream, define a variable such as:

 com.intersys.classes.GlobalCharacterStream localnotes = null;

You can then read content from an instantiated class' stream:

 localnotes = myTest.getNotes();

• Once you have a local copy of the stream, you can read from it

 IntegerHolder len = new IntegerHolder(new Integer(8)) ;
 while (len.value.intValue() != 0) {
 System.out.println(localnotes._read(len));
 } ;

The _read() method's argument is an integer hold specifying how many characters to read and its return value is the
characters that it reads. It also places the number of characters successfully read (whether the number specified or
fewer) in the integer hold variable that was its argument.

When you are writing to or reading from a stream, Caché monitors your position within the stream, so that you can
move backward or forward.

The Caché stream classes are GlobalBinaryStream and GlobalCharacterStream in the com.intersys.classes package. The
basic methods involving streams are:

_write()

Adding content

_writeLine()

Adding content (character streams only)

_read()

Reading content

_readLine()

Reading content (character streams only)

_moveToEnd()

Going to the stream's end

12 Using Java with Caché

Using the Java Binding

_rewind()

Going to the stream's beginning

atEnd()

Check if the current position is at the end of the stream

_sizeGet()

Getting the size of the stream

isNull()

Checking if the stream has content or not

_clear()

Erasing the stream's content

2.4 Using Queries
A Caché query is designed to fit into the framework of JDBC but provides a higher level of abstraction by hiding direct
JDBC calls behind a simple and complete interface of a dynamic query. It has methods for preparing an SQL statement,
binding parameters, executing the query, and traversing the result set.

2.4.1 Class Queries

Caché allows you to define queries as part of a class. These queries are then compiled and can be invoked at runtime.

To invoke a predefined query, use the CacheQuery class:

• Establish a connection to a Caché server (see Creating a Connection Object for details on this process).

• Create an instance of a CacheQuery object using code such as:

 myQuery = new CacheQuery(factory, classname, queryname);

where factory specifies the existing connection, classname specifies the class on which the query is to be run,
and queryname specifies the name of the predefined query that is part of the class.

• Once you have instantiated the CacheQuery object, you can invoke the predefined query:

 java.sql.Result ResultSet = myQuery.execute(parm1);

This method accepts up to three arguments, which it passes directly to the query; if the query accepts four or more
arguments, you can pass in an array of argument values. The method returns an instance of a standard JDBC ResultSet

object.

Using Java with Caché 13

Using Queries

3
Java Proxy Class Mapping

The Caché Java binding reads the definition of a Caché class and uses the information to generate a corresponding Java
class. The generated class provides remote access to an instance of a Caché object from within a Java application. This
chapter describes how Caché objects and data types are mapped to Java code, and provides details on the objects and
methods provided by the Caché Java binding.

3.1 Classes
The projections of Caché classes receive names as Java classes in accordance with the naming conventions listed below.
The type of a class (such as persistent or serial) determines its corresponding Java superclass. For example, persistent
classes have corresponding Java classes derived from the Java Persistent class.

3.1.1 Entity Names

A Caché identifier, such as class or method name, is usually projected to a corresponding Java identifier with the same
name. If a Caché identifier is a Java reserved word, the corresponding Java identifier will preceded by an underscore ("_").

For details on Caché Basic and ObjectScript naming conventions, see Variables in Using Caché ObjectScript, Naming
Conventions in Using Caché Objects, Identifiers and Variables in Using Caché Basic, and Rules and Guidelines for Iden-
tifiers in the Caché Programming Orientation Guide.

Class Names
All class names are unchanged. All Caché packages become Java packages, and the "%" characters within a package name
are translated to "_". In your code, the Caché and Java package names must match each other exactly.

The %Library package is an exception to this rule. There is no one—to—one correspondence between %Library and
any of Java library packages, but most common %Library classes have their stubs in the com.intersys.classes
package. For example, the %Library.Persistent class would be mapped as "com.intersys.classes.Persistent".

Property Names
You can refer directly to Caché properties. To conform to Java property-handling style, the projection of each Caché
property includes two accessor methods: get<Prop>() and set<Prop>(), where <Prop> is the name of the projected
property. If the property name starts with "%", it is replaced by "set_". Hence, the projection of the Color property would
include getColor() and setColor() methods. The projection of a %Concurrency property would have get_Concurrency()
and set_Concurrency() methods.

Method Names
Typically, method names are mapped directly, without changes. Exceptions are:

Using Java with Caché 15

• If the method name starts with "%", this is replaced by "sys_".

• If the method name is a Java reserved word, "_" is prepended to the name.

• For methods of classes that are part of the %Library package, the leading "%" is replaced with a "_" and the first
letter is converted to lowercase.

Formal Variable Names
If a variable within a method formal list starts with "%" it is replaced by "_". If the name is a Java reserved word, "_" is
prepended to the name.

Packages
In general, the Caché package name for a class is used as its Java package name. If a Caché class defines a class parameter,
JAVAPACKAGE, then the Java Generator uses the parameter value for a package name.

3.1.2 Methods

Methods of Caché classes are projected to Java as stub methods of the corresponding Java classes. Instance methods are
projected as Java instance methods; class methods are projected as Java static methods. When called on the client, a method
invokes the actual method implementation on the Caché server.

If a method signature includes arguments with default values, the system generates multiple versions of the method with
different numbers of arguments to simulate default argument values within Java.

For example, suppose you define a simple Caché class with one method as follows:

 Class MyApp.Simple Extends %RegisteredObject {
 Method LookupName(id As %String) As %String {
 // lookup a name using embedded SQL
 Set name = ""
 &sql(SELECT Name INTO :name FROM Person WHERE ID = :id)
 Quit name
 }
 }

The resulting projected Java class would look something like:

 public class Simple extends Object {
 //...
 public String LookupName(String id) throws CacheException {
 // generated code to invoke method remotely...
 // ...
 return typedvalue;
 }
 }

When a projected method is invoked from Java, the Java client first synchronizes the server object cache, then invokes the
method on the Caché server, and, finally, returns the resulting value (if any). If any method arguments are specified as call
by reference then their value is updated as well.

System Methods
In addition to any methods defined by a Caché class, the projected Java class includes a number of automatically generated
system methods to perform various services:

• _close() — Shuts down an object on the server from the client (by invoking the object's %Close method).

• _open() — For persistent objects, open an instance of object stored within the database using the instance's OID as a
handle.

• _openId() — For persistent objects, open an instance of object stored within the database using the instance's class ID
value as a handle.

16 Using Java with Caché

Java Proxy Class Mapping

Passing Null Values and Empty Strings
It is important to remember that Caché represents null values and empty strings differently:

• A Caché NULL value is represented as "" (an empty string).

• A Caché empty string is represented as character $c(0).

This may seem counter-intuitive to many Java programmers, but is consistent with the way NULL is treated in SQL.

An empty string returned from a method with a non-string return type is converted to a null value, making it necessary to
perform a null check on the returned value before using the corresponding object. For example the following line of code
could throw a NullPointerException:

 return myCacheObject.getMyInteger().intValue();

To avoid this, you would perform the following check:

 Integer myInteger = myCacheObject.getMyInteger();
 if (myInteger == null) {
 // handle null value here
 } else
 return myInteger.intValue();

This is also true for parameters returned by reference.

3.1.3 Properties

You can refer to each of a projection's properties using its two accessor methods: get<Prop>() to get its value and set<Prop>()
to set its value.

The values for literal properties (such as strings or integers) are represented using the appropriate Java data type classes
(such as String or Integer).

The values for object-valued properties are represented using the appropriate projected Java class. In addition to the get
and set methods, an object-valued property has additional methods that provide access to the persistent object ID for the
object: idset<Prop>() and idget<Prop>().

For example, suppose you have defined a persistent class within Caché containing two properties, one literal and the other
object-valued:

 Class MyApp.Student Extends %Persistent {
 /// Student's name
 Property Name As %String;
 /// Reference to a school object
 Property School As School;
 }

The Java representation of MyApp.Student contains get and set accessors for both the Name and School properties. In
addition, it provides accessors for the Object Id for the referenced School object.

 public class Student extends Persistent {
 // ...
 public String getName() throws CacheException {
 // implementation...
 }
 public void setName(String value) throws CacheException {
 // implementation...
 }
 public School getSchool() throws CacheException {
 // implementation...
 }
 public void setSchool(School value) throws CacheException {
 // implementation...
 }
 public Id idgetSchool() throws CacheException {
 // implementation...
 }
 public void idsetSchool(Id value) throws CacheException {

Using Java with Caché 17

Classes

 // implementation...
 }
 }

Property Caching
When a projected Java object is instantiated within Java, it fetches a copy of its property values from the Caché server and
copies them into a local Java-side cache. Subsequent access to the object's property values are made against this cache,
reducing the number of messages sent to and from the server. Caché automatically manages this local cache and ensures
that it is synchronized with the corresponding object state on the Caché server.

Property values for which you have defined a get or set method within your Caché class definition (such as for a property
whose value depends on other properties) are not stored within the local cache. Instead, when you access such properties
the corresponding accessor method is invoked on the Caché server. As this can entail higher network traffic, exercise care
when using such properties in a Java environment.

3.2 Primitive Data Types
Caché uses various literal data types (such as strings or numbers) for properties, method return types, and method arguments.
Every Caché data type has an associated client data type. This client data type specifies the Java class to which a variable
is mapped. Hence, using its client data type, every Caché data type is represented using an appropriate Java object such as
Integer or String.

Regardless of a property's type, if it has unset value, then Java represents it using the null keyword. For example, suppose
you create a new object with an Age property that is of type Integer. Prior to setting this property's value, invoking the
getAge() method returns null.

By default, the CLIENTDATATYPE keyword value of a Caché data type determines which Java class is associated with it.
The following table describes this correspondence:

Table 3–1: Client Data Type to Java Correspondence

HolderClassJava PackageJava ClassClientDataType

ByteArrayHoldernullbyteArrayBINARY

BooleanHolderjava.langBooleanBOOLEAN

BigDecimalHolderjava.mathBigDecimalCURRENCY

DateHolderjava.sqlDateDATE

DoubleHolderjava.langDoubleDOUBLE

IdHoldercom.intersys.objectsId (a Caché-provided
class that represents
an Object ID within an
extent)

ID

IntegerHolderjava.langIntegerINT

SysListHoldercom.intersys.objectsSysList (A Java imple-
mentation of Caché
$List structure)

LIST

18 Using Java with Caché

Java Proxy Class Mapping

HolderClassJava PackageJava ClassClientDataType

StringHolderjava.langStringLONG VARCHAR

BigDecimalHolderjava.mathBigDecimalNUMERIC

OidHoldercom.intersys.objectsOid (a Caché-provided
class that represents a
complete Object ID)

OID

StatusCodeHoldercom.intersys.objectsStatusCode (a Caché-
provided class that
represents the status)

STATUS

TimeHolderjava.sqlTimeTIME

TimeStampHolderjava.sqlTimeStampTIMESTAMP

StringHolderjava.langStringVARCHAR

nullnullvoidVoid

Object-valued types (references to other object instances) are represented using the corresponding Java class. Certain Caché
objects are treated as special cases. For example, streams are mapped to the Java stream object, and collections are projected
as collection objects (a class created by InterSystems for Java client use). If a method argument is passed by reference then
a “holder” class is used, such as IntegerHolder or StringHolder.

The JAVATYPE parameter allows you to override the default value and associate a property with a specified client Java
class.

Using Java with Caché 19

Primitive Data Types

	Table of Contents
	About This Book
	1 The Caché Java Binding
	1.1 Java Binding Architecture
	1.2 Installation and Configuration
	1.2.1 Java Client Requirements

	1.3 The Caché Java Class Packages
	1.4 Tutorials and Other Documentation

	2 Using the Java Binding
	2.1 Generating Java Proxy Classes
	2.1.1 Generating a Java Class from a Caché Class

	2.2 Using Objects
	2.2.1 Creating a Connection Object
	2.2.2 Creating and Opening Proxy Objects
	2.2.3 Using Methods and Properties
	2.2.4 Saving and Closing
	2.2.5 A Sample Java Binding Application

	2.3 Using Streams
	2.4 Using Queries
	2.4.1 Class Queries

	3 Java Proxy Class Mapping
	3.1 Classes
	3.1.1 Entity Names
	3.1.2 Methods
	3.1.3 Properties

	3.2 Primitive Data Types

