
Using the Caché Gateway for
.NET

Version 2017.2
2020-06-25

InterSystems Corporation   1 Memorial Drive   Cambridge MA 02142   www.intersystems.com



Using the Caché Gateway for .NET
Caché   Version 2017.2    2020-06-25   
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:



Table of Contents

About This Book .................................................................................................................................... 1

1 Gateway Architecture ......................................................................................................................... 3
1.1 Using Proxy Classes ................................................................................................................... 3
1.2 Using Wrapper Classes with .NET APIs .................................................................................... 4
1.3 Creating and Running a Gateway Server ................................................................................... 5
1.4 Importing Proxy Classes ............................................................................................................ 5
1.5 The .NET Gateway API .............................................................................................................. 6

2 Setting Gateway Server Properties ................................................................................................... 7
2.1 Using the New Object Gateway Form ........................................................................................ 7
2.2 Defining Server Properties Programmatically ........................................................................... 9
2.3 Gateway Server Versions .......................................................................................................... 10

3 Running a Gateway Server .............................................................................................................. 11
3.1 Starting the Server .................................................................................................................... 11

3.1.1 Starting a Server from the Command Prompt ................................................................ 11
3.2 Connecting to a Server Thread ................................................................................................. 12

3.2.1 The Gateway.%Connect() Method ................................................................................. 12
3.3 Disconnecting and Stopping the Server ................................................................................... 12
3.4 Monitoring and Debugging the Gateway ................................................................................. 13

3.4.1 Error Checking ............................................................................................................... 13
3.4.2 Troubleshooting ............................................................................................................. 13

4 Creating Proxy Classes .................................................................................................................... 15
4.1 Using the Studio .NET Gateway Wizard .................................................................................. 15
4.2 Generating Proxy Classes Programmatically ........................................................................... 17

4.2.1 %Import() Method ......................................................................................................... 17
4.2.2 %GetAllClasses() Method ............................................................................................. 18
4.2.3 %ExpressImport() Method ............................................................................................. 18

5 Sample Code ...................................................................................................................................... 19
5.1 Compiling and Running the .NET Test Project ........................................................................ 19

5.1.1 Compiling the .NET Assembly ...................................................................................... 19
5.1.2 Creating and Running the Server ................................................................................... 19
5.1.3 Generating Caché Proxy Classes ................................................................................... 19
5.1.4 Running the Caché DotNet.Test Examples .................................................................... 20

5.2 Source Code for the Test Class ................................................................................................. 20
5.2.1 Test() Method ................................................................................................................. 20
5.2.2 The TestArrays() Method ............................................................................................... 24

6 Mapping Specification ...................................................................................................................... 27
6.1 Assembly and Class Names ...................................................................................................... 27
6.2 Primitives .................................................................................................................................. 27
6.3 Properties .................................................................................................................................. 28
6.4 Methods .................................................................................................................................... 29

6.4.1 Overloaded Methods ...................................................................................................... 29
6.4.2 Method Names ............................................................................................................... 29
6.4.3 Static Methods ................................................................................................................ 30

6.5 Constructors ............................................................................................................................. 30

Using the Caché Gateway for .NET                                                                                                                                        iii



6.6 Constants .................................................................................................................................. 30
6.7 OUT and REF Parameters ........................................................................................................ 30
6.8 .NET Arrays ............................................................................................................................. 31
6.9 Recasting .................................................................................................................................. 31
6.10 .NET Standard Output Redirection ........................................................................................ 32
6.11 Restrictions ............................................................................................................................. 32

iv                                                                                                                                       Using the Caché Gateway for .NET



List of Figures

Figure 1–1: .NET Gateway Operational Model ...................................................................................... 3
Figure 1–2: Connecting to a .NET Gateway Worker Thread .................................................................. 5
Figure 1–3: Importing .NET Classes ....................................................................................................... 6
Figure 2–1: The Object Gateways Page .................................................................................................. 7
Figure 2–2: The New Object Gateway Form ........................................................................................... 8
Figure 4–1: The .NET Gateway Wizard Studio Template ..................................................................... 16
Figure 4–2: Selecting Classes to Import ................................................................................................ 16

Using the Caché Gateway for .NET                                                                                                                                        v





About This Book

This book explains how to enable easy interoperation between Caché and Microsoft .NET Framework components using
the Caché Object Gateway for .NET, which can instantiate an external .NET object and manipulate it as if it were a native
object within Caché.

This book contains the following chapters:

• Gateway Architecture

• Setting Gateway Server Properties

• Running a Gateway Server

• Creating Proxy Classes

• Sample Code

• Mapping Specification

There is also a detailed Table of Contents.
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1
Gateway Architecture

The Caché Object Gateway for .NET (which this book will usually refer to as simply “the .NET Gateway”) provides an
easy way for Caché to interoperate with Microsoft .NET Framework components. The .NET Gateway can instantiate an
external .NET object and manipulate it as if it were a native object within Caché.

Note: The .NET Gateway can also be used in an Ensemble production (see the Ensemble document Using the Object
Gateway for .NET). You can create and test your .NET Gateway classes in Caché, as described in this book, and
then add them to a production using the Ensemble .NET Gateway business service.

1.1 Using Proxy Classes
The external .NET object is represented within Caché by a proxy class. A proxy object looks and behaves just like any
other Caché object, but it has the capability to issue method calls out to the .NET Common Language Runtime (CLR),
either locally or remotely over a TCP/IP connection. Any method call on the Caché proxy object triggers the corresponding
method of a .NET object inside the CLR.

The following diagram offers a conceptual view of Caché and the .NET Gateway at runtime.

Figure 1–1: .NET Gateway Operational Model
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Instances of the .NET Gateway Server run in the CLR. Caché and the CLR may be running on the same machine or on
different machines. The numbered items in the .NET Gateway Operational Model diagram point out the following relation-
ships:

1. A Caché namespace accesses an instance of the .NET Gateway Server. Access is controlled by an instance of the Caché
%Net.Remote.Service class.

2. Each Caché session is connected to a separate thread within the Gateway server. The connection is controlled by an
instance of the Caché %Net.Remote.Gateway class.

3. Each proxy object communicates with a corresponding .NET object.

A call to any Caché proxy method initiates the following sequence of events:

• Caché sends a message over the TCP/IP connection to the .NET Gateway worker thread. The message consists of the
method name, parameters, and occasionally some other information.

• The .NET Gateway worker thread finds the appropriate method or constructor call and invokes it using .NET reflection.

• The results of the method invocation (if any) are sent back to the Caché proxy object over the same TCP/IP channel,
and the proxy method returns the results to the Caché application.

Note: You can access a proxy class with code written in either Caché Basic or ObjectScript. The examples in this docu-
ment use ObjectScript.

1.2 Using Wrapper Classes with .NET APIs
In most cases, you will use the .NET Gateway by creating proxy classes for your custom .NET components (see the chapter
on “Creating Proxy Classes” for details). However, it is also possible to create proxy mappings for an entire third party
.NET application interface specification.

It may be tempting to create mappings for extremely large APIs (such as ADO, Remoting, or ASP.Net), which could then
be reused in any number of applications, but this is not recommended. Such mappings can create hundreds of proxy classes,
even though your application may only need a few of them. You can specify a list of classes that you do not want the proxy
generator to map, but a very large exclusion list is difficult to create and manage.

When using a third party DLL in your application, the best approach is to build a small wrapper class for it, and then create
a proxy for this wrapper. A wrapper class exposes only the functionality you want, which makes the interface between
Caché and the .NET framework very clean and eliminates many potential issues. Wrapper classes provide the following
advantages:

• Fewer proxy classes — When a large .NET DLL is imported directly, hundreds of proxy classes may be generated.
Your application may actually need only a few of these classes. A significant amount of work may be required to
research and define an exclusion list for the import. Defining a wrapper is a much easier way to minimize the number
of classes imported and managed.

• Fewer problems with dependencies — The imported DLL may depend on external classes for successful compilation.
The files and directories containing these classes can be specified in an inclusion list when you run the proxy generator,
but this will cause even more unwanted proxy classes to be generated. When a wrapper is used, the dependent files
and their classes are hidden from the importer, eliminating the need for inclusion and exclusion lists.

• Better performance — A wrapper may allow you to reduce the number of calls made to a DLL. For example, assume
that an imported DLL has a class with a readByte() method that reads one byte at a time. If you import the class
directly, each call to the method will require a separate call to the DLL. It would be much more efficient to define a
wrapper class with a readManyBytes() method that repeatedly calls the readByte() method internally, within .NET.
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• Ability to use legacy DLLs — ActiveX DLLs cannot be used directly in a 64–bit Windows environment, and a DLL
that was not written as a .NET assembly cannot be used with the .NET Gateway even in a 32–bit environment. However,
it is possible to create a wrapper that the .NET Gateway can use to call a DLL indirectly.

1.3 Creating and Running a Gateway Server
Before you can use the .NET Gateway, you must start an instance of the .NET Gateway Server and tell Caché the name of
the host on which the server is running. Once started, a server runs until it is explicitly shut down.

Once the .NET Gateway server is running, each Caché session that needs to invoke .NET class methods must create its
own connection to the server, as shown in the following diagram:

Figure 1–2: Connecting to a .NET Gateway Worker Thread

1. Caché Basic or ObjectScript code sends a connection request.

2. Upon receiving the request, the .NET Gateway server starts a worker thread in which the .NET class methods subse-
quently run.

3. The connection between this .NET Gateway worker thread and the corresponding Caché session remains established
until it is explicitly disconnected. As long as it remains connected, the assigned port for the connection stays “ in use”
and is unavailable for use in other connections.

See Setting Gateway Server Properties for a detailed description of how to create a .NET Gateway Server property definition,
and Running a Gateway Server for details on how to start, connect, disconnect, and stop a server.

1.4 Importing Proxy Classes
Caché proxy classes are generated by sending a query to the .NET Gateway Server, which returns information about the
methods for which proxy classes are required. The imported method information is then used to construct the proxy classes,
as shown in the following diagram:
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Figure 1–3: Importing .NET Classes

1. The Caché session sends an import request.

2. Upon receiving the request, the .NET Gateway worker thread introspects the indicated .NET assemblies and classes.

3. The thread also loads dependent assemblies either from the local directory or from the Global Assembly Cache (GAC).

4. If it finds any .NET classes that are new or changed, or that have no proxy classes on the Caché side, the .NET Gateway
worker thread returns the results of the introspection to the Caché session, which uses the information to generate new
proxy classes.

See Creating Proxy Classes for details on how to generate proxy classes.

1.5 The .NET Gateway API
The following classes provide most of the functionality used by your Caché .NET Gateway applications:

• %Net.Remote.ObjectGateway — an ObjectGateway object contains the property settings required to run and monitor
an instance of the .NET Gateway Server. See Defining a Gateway Server for a detailed description.

• %Net.Remote.Service — a Service object controls the interface between a Caché namespace and an instance of the
.NET Gateway Server. See Running a Gateway Server.

• %Net.Remote.Gateway — a Gateway object controls the connection between a Caché session and a worker thread
within an instance of the .NET Gateway Server, and provides methods to generate proxy classes. See Connecting to a
Server and Generating Proxy Classes Programmatically.

• %Net.Remote.ImportHelper — the ImportHelper class provides some extra class methods for inspecting assemblies and
generating proxy classes. See Generating Caché Proxy Classes.

See the Caché class library documentation for the most complete and up to date information on each of these classes.
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2
Setting Gateway Server Properties

Properties of the ObjectGateway class specify the settings used by the Service class (see “Running a Gateway Server”) to
access and monitor an instance of the .NET Gateway Server. This chapter covers the following topics:

• Using the New Object Gateway Form — The simplest way to define a set of server properties is to use the New Object
Gateway form in the Management Portal, which allows you to create and store a predefined ObjectGateway object.

• Defining Server Properties Programmatically — It is also possible to set the properties of a ObjectGateway object at
runtime.

• Gateway Server Versions — Different versions of the .NET Gateway Server executable are provided for .NET 2.0 and
4.0, and for 32-bit and 64-bit systems.

2.1 Using the New Object Gateway Form
While it is possible to specify the settings for a .NET Gateway Server session entirely in ObjectScript code, it is usually
simpler to use the New Object Gateway form to create and store a persistent %Net.Remote.ObjectGateway object. The fol-
lowing steps summarize the configuration procedure:

1. In the Management Portal, go to [System Administration] > [Configuration] > [Connectivity] > [Object Gateways].

Figure 2–1:The Object Gateways Page

You can use the options on this page to view a Gateway's log of recent activity, start or stop a Gateway, and create,
edit, or delete a Gateway Server definition.

2. On the Object Gateways page, click Create New Gateway. The New Object Gateway form is displayed. Only
the first three fields are required. The following example leaves the default values in place for all fields except Gateway
Name, Port, and Log file (File path is set to the value that would be used if the field were left blank):
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Figure 2–2:The New Object Gateway Form

3. Fill out the form and click Save. The following properties of ObjectGateway can be set:

• Name — Required. A name that you assign to this .NET Gateway definition.

• Server — Required. IP address or name of the machine where the .NET Gateway server executable is located.
The default is "127.0.0.1".

• Port — Required. TCP port number for communication between the .NET Gateway server and the proxy classes
in Caché. Several methods of class Service (see “Running a Gateway Server”) accept the port number as an
optional parameter with a default value of 55000.

• PassPhrase — If this property is checked, the Gateway will require a passphrase to connect.

• LogFile — Full pathname of the file used to log .NET Gateway messages. These messages include acknowledgment
of opening and closing connections to the server, and any difficulties encountered in mapping .NET classes to
Caché proxy classes. This optional property should only be used when debugging.

• AllowedIPAddresses — IP address of the local network adapter to which the server listens. Specify 0.0.0.0 (the
default) to listen on all IP adapters on the machine (including 127.0.0.1, VPNs, and others) rather than just one
adapter. You may not enter more than one address; you must either specify one local IP address, or listen on all
of them. You must provide a value for this argument if you define the LogFile property.

• FilePath — Specifies the full path of the directory where the .NET Gateway server executable is located. This is
used to find the target executable and assemble the command to start the .NET Gateway on a local server, and is
required only when you want to use an executable that is not in the default location. If you do not specify this
setting, the form will use the appropriate default executable for your system and your specified .NET Version.

• Exec64 — (applies only to .NET Gateways on 64-bit platforms) If this property is checked, the Object Gateway
server will be executed as 64-bit. Defaults to 32-bit execution.
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• DotNetVersion — Specifies the .NET version (2.0 or 4.0) to be used (see “Gateway Server Versions”). Defaults
to .NET 2.0.

• Advanced settings (hidden by default)

– HeartbeatInterval — Number of seconds between each communication with the .NET Gateway to check
whether it is active. A value of 0 disables this feature. When enabled, valid values are from 1 to 3600 seconds
(1 hour). The default is 10 seconds.

– HeartbeatFailureTimeout — Number of seconds to wait for a heartbeat response before deciding that the .NET
Gateway is in failure state. If this value is smaller than the HeartbeatInterval property, the Gateway is in failure
state every time the .NET Gateway communication check fails. The maximum value is 86400 seconds (1
day). The default is 30 seconds.

– HeartbeatFailureAction — Action to take if the .NET Gateway goes into a failure state. Valid values are "R"
(Restart) or "N"(None). The default action is Restart, which causes the .NET Gateway to restart.

– HeartbeatFailureRetry — Number of seconds to wait before retrying the HeartbeatFailureAction if the .NET
Gateway server goes into failure state, and stays in failure state. A value of 0 disables this feature, meaning
that once there is a failure that cannot be immediately recovered, there are no attempts at automatic recovery.
Valid values when enabled are from 1 to 86400 (24 hours). The default is 300 seconds (5 minutes).

– InitializationTimeout — Number of seconds to wait for a response during initialization of the Gateway server.
Valid values are from 2 to 300 (5 minutes). The default is 5 seconds.

– ConnectionTimeout — Number of seconds to wait for a connection to be established with the Gateway server.
Valid values are 2 through 300 (5 minutes). The default is 5 seconds.

4. After saving the form, go back to the Object Gateways page. Your new .NET Gateway Server definition should now
be listed there.

2.2 Defining Server Properties Programmatically
The ObjectGateway server properties can also be set programmatically.

Note: In addition to the properties defined by the New Object Gateway form (as shown in the previous section), the
Type property must also be set to "2". This defines the server as a .NET Gateway (as opposed to an Ensemble
Java Gateway, which cannot be used in Caché).

The following example creates a server definition identical to the one generated by the New Object Gateway form described
in the previous section:

 // Create the object and define it as a .NET Gateway
   set gw =  ##class(%Net.Remote.ObjectGateway).%New()
   set gw.Type = "2"   // a .NET Gateway, not an Ensemble Java Gateway

 // Set the properties
   set gw.Name  = "GatewayTwo"
   set gw.Server  = "127.0.0.1"
   set gw.Port  = "55000"
   set gw.PassPhrase = 1
   set gw.LogFile  = "C:\Temp\GatewayTwo.log"
   set gw.AllowedIPAddresses  = "0.0.0.0"
   set gw.FilePath  = "C:\Intersystems\Cache\dev\dotnet\bin\v2.0.50727"
   set gw.Exec64 = 1
   set gw.DotNetVersion = "2.0"
   set gw.HeartbeatInterval  = "10"
   set gw.HeartbeatFailureTimeout  = "30"
   set gw.HeartbeatFailureAction  = "R"
   set gw.HeartbeatFailureRetry  = "300"
   set gw.InitializationTimeout  = "5"
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   set gw.ConnectionTimeout  = "5"

 // Save the object
   set status = gw.%Save()

The call to %Save() is only necessary if you wish to add the object to persistent storage, making it available on the Object
Gateways page of the Management Portal (as described in the previous section).

2.3 Gateway Server Versions
Different versions of the .NET Gateway Server assembly are provided for .NET 2.0 and 4.0. The following versions are
shipped (where install-dir is the path that $SYSTEM.Util.InstallDirectory() returns on your system).

.NET Version 2.0:

• install-dir\dev\dotnet\bin\v2.0.50727\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v2.0.50727\DotNetGatewaySS64.exe

.NET Version 4.0:

• install-dir\dev\dotnet\bin\v4.0.30319\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v4.0.30319\DotNetGatewaySS64.exe

.NET Version 4.5:

• install-dir\dev\dotnet\bin\v4.5\DotNetGatewaySS.exe

• install-dir\dev\dotnet\bin\v4.5\DotNetGatewaySS64.exe

In some applications, these gateways may be used to load unmanaged code libraries. Since a 64-bit process can only load
64-bit DLLs and a 32-bit process can only load 32-bit DLLs, both 32-bit and 64-bit assemblies are provided for each supported
version of .NET. This makes it possible to create gateway applications for 64-bit Windows that can load 32-bit libraries
into the gateway.

Note: The appropriate version of the .NET Framework must be installed on your system in order to use these assemblies.
The Caché installation procedure does not install or upgrade any version of the .NET Framework.
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3
Running a Gateway Server

Each Gateway server session consists of the following components:

• a NET Gateway Server instance (see “Gateway Server Versions”) running in the .NET CLR

• a %Net.Remote.Service object running in a Caché namespace

• a unique TCP port over which the two objects communicate

• one or more connections, where each connection links a Caché %Net.Remote.Gateway object to a thread within the
server instance

See “Gateway Architecture” for a detailed description and several diagrams showing how these components interact.

3.1 Starting the Server
These %Net.Remote.Service methods are available to start the server:

• StartGateway() — Start the .NET Gateway server specified by a Gateway name.

• StartGatewayObject() — Start the .NET Gateway server specified by a Gateway definition object.

• OpenGateway() — Get the Gateway definition object for a given Gateway name.

3.1.1 Starting a Server from the Command Prompt

During development or debugging, or when Caché and the .NET Gateway server run on different machines, you may find
it useful to start the Gateway server from a command prompt.

Note: The Gateway server executable will normally be located in a default directory (see “Gateway Server Versions”).
If you are using classes in local side-by-side assemblies (assemblies not installed into the GAC), copy the executable
to the same directory as those assemblies and run it from there to resolve their dependencies.

Run the program as follows:

DotNetGatewaySS port host logfile

For example:

DotNetGatewaySS 55000 "" ./gatewaySS.log
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DescriptionArgument

Port number on which to listen for the incoming requests.port

Optional — Contains the IP address or hostname where the Gateway server listens.
Specify "", 0.0.0.0, or default to listen on all IP adapters on the machine (127.0.0.1,
VPNs, etc.) rather than just one adapter.

host

Optional — If specified, the command procedure creates a log file of that name.You
must specify the full pathname in the string.

logfile

3.2 Connecting to a Server Thread
Connecting creates a %Net.Remote.Gateway object.

Once the .NET Gateway server is running, each Caché session that needs to invoke .NET class methods must create its
own connection to the .NET Gateway server:

• Caché Basic or ObjectScript code sends a connection request.

• Upon receiving the request, the .NET Gateway server starts a worker thread in which the .NET class methods subse-
quently run.

• The connection between this .NET Gateway worker thread and the corresponding Caché session remains established
until it is explicitly disconnected.

3.2.1 The Gateway.%Connect() Method

The %Connect() method establishes a connection with the .NET Gateway engine. It accepts the following arguments:

DescriptionArgument

Identifies the machine on which the .NET Gateway server is running.host

Port number over which the proxy classes communicate with the .NET classes.port

Caché namespace.namespace

Number of seconds to wait before timing out, the default is 5.timeout

Optional — use this argument to supply additional class paths, such as the
names of additional assembly DLLs that contain the classes you are importing
via the .NET Gateway. See the Import Arguments section for details using this
argument.

additionalClassPaths

3.3 Disconnecting and Stopping the Server
Caché Basic or ObjectScript code that establishes a .NET Gateway worker thread must explicitly disconnect before exiting;
otherwise, the assigned port for the connection stays “ in use” and is unavailable for use in other connections. A worker
thread can be disconnected by calling the %Disconnect() method of the %Net.Remote.Gateway object.

• The %Disconnect() method closes a connection to the .NET Gateway server.
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The following %Net.Remote.Service methods are available to stop the Gateway server:

• StopGateway() — Stop the .NET Gateway server specified by the Gateway name passed to this method.

• StopGatewayObject() — Stop the .NET Gateway server specified by the Gateway definition object passed to this
method.

• ShutdownGateway() — Shutdown the Gateway server.

3.4 Monitoring and Debugging the Gateway
The following %Net.Remote.Service methods are available to monitor a Gateway server:

• CheckMonitor() — Check if Gateway is being monitored and return the monitor job number.

• GatewayMonitor() — The Gateway server is monitored with PING requests, according to the time interval specified
by the HeartbeatInterval property of the Gateway server. Hourly, a record of type "Info" is logged.

• StartMonitor() — If the Gateway server has the HeartbeatInterval property set to a value greater than 0, then job off
a background process to monitor the Gateway server.

• StopMonitor() — Terminate process currently monitoring a Gateway server.

• PingGateway() — "Ping" the Gateway server to check if it's alive.

3.4.1 Error Checking

The .NET Gateway provides error checking as follows:

• When an error occurs while executing Caché proxy methods, the error is, in most cases, a .NET exception, coming
either from the original .NET method itself, or from the .NET Gateway engine. When this happens, an error is trapped.

• The .NET Gateway API methods like %Import() or %Connect() return a typical Caché %Status variable.

In both cases, Caché records the last error value returned from a .NET class (which in many cases is the actual .NET
exception thrown) in the local variable %objlasterror.

You can retrieve the complete text of the error message by calling $system.OBJ.DisplayError, as follows:

 Do $system.OBJ.DisplayError(%objlasterror)

Note that %objlasterror should be used as a debug resource only (for example, in development code that does not yet report
errors properly), so that the underlying problem can be diagnosed and the offending code's error reporting can be corrected.
It is appropriate for such code to kill %objlasterror whenever it uses an error status that is an expected condition and not
a reportable error.

3.4.2 Troubleshooting

The following suggestions may help in certain situations:

• Activate logging

Should you encounter problems while using the .NET Gateway it is always a good idea to turn logging on. This will
also aid InterSystems staff in helping you troubleshoot problems. To activate logging, just define the logfile argument
for the Object Gateway definition you are using (see the chapter on “Setting Gateway Server Properties ”) when you
start the .NET Gateway.
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• Terminal session problems

Sometimes, while using the .NET Gateway in a debugging or test situation, you may encounter problems with a Ter-
minal session becoming unusable, or with write errors in the Terminal window. It is possible that a .NET Gateway
connection terminated without properly disconnecting. In this case, the port used for that connection may be left open.

If you suspect this is the case, to close the port, type the following command at the Terminal prompt:

 Close "|TCP|port"

Where port is the port number to close.

• Connection timeout errors

When writing a query, a .NET application may encounter an <ALARM> error due to a connection timeout error. The
default timeout parameter can be overridden with the following command (assuming you have a command CMD):

CMD.CommandTimeout=/NewTimeoutValue/

• Out of Memory errors

Handling large amounts of data over the .NET Gateway may cause System.OutOfMemoryException errors. In
this situation, raising the numbers of GDI Handles may help. You can raise the number of handles by changing the
following registry entry:

HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Windows\GDIProcessHandleQuota

The default is 10000 (2710 in Hex). It may help to set it to 20000 (4E20 in Hex). Larger Values like 25000 or 30000
are also possible.

See the following Microsoft MDSN article for more information on this subject:

http://social.msdn.microsoft.com/forums/en-US/wpf/thread/8ebf824a-5585-4b24-8e89-61f8be25d5c4/
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4
Creating Proxy Classes

This chapter covers the following topics:

• Using the Studio .NET Gateway Wizard — The simplest way to generate proxy classes for a .NET assembly is to use
the .NET Gateway Wizard plugin supplied with Studio.

• Generating Proxy Classes Programmatically — You can also generate proxy classes from within an ObjectScript program.
The %Net.Remote.Gateway class contains the methods used to import class definitions from .NET assemblies and
generate Gateway proxy classes.

See Using Wrapper Classes with .NET APIs for a description of the preferred method for importing third-party DLLs. See
the Mapping Specification chapter for a detailed description of how .NET classes are mapped to Caché proxy classes.

Note: The .NET Gateway cannot generate proxy classes for .NET generic classes. It similarly cannot import .NET
classes with generic subclasses or subinterfaces.

4.1 Using the Studio .NET Gateway Wizard
The following steps summarize the procedure:

1. Start a .NET Gateway server. The server must be running before the Wizard can be used.

2. In Studio, select Tools > Add-ins > Add-ins... to display the list of available add-ins.

3. Select .Net Gateway Wizard from the Add-ins dialog and click OK. The .Net Gateway Wizard Studio
template is displayed:
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Figure 4–1:The .NET Gateway Wizard Studio Template

4. Fill out the form. The following items can be defined:

• Enter the path and name of a DLL assembly file: — Required. DLL name.

• .NET Gateway server name / IP address: — Required. IP address or name of the machine where the
.NET Gateway server executable is located. The default is "127.0.0.1".

• .NET Gateway server port: — Required. Server port.

• Additional paths\assemblies to be used in finding dependent classes: — Optional.
Specify a list of assembly .dll files or directories, separated by semicolons.

• Exclude dependent classes matching the following prefixes: — Optional. Specify a list of
namespaces and class name prefixes, separated by semicolons.

5. The Wizard displays a list of available classes:

Figure 4–2: Selecting Classes to Import

Check the classes that you want to use, then click Finish.
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4.2 Generating Proxy Classes Programmatically
This section discusses the following methods of the %Net.Remote.Gateway class:

• %Import() — imports .NET classes or assemblies from the .NET side and generates all the necessary proxy classes
for the Caché side.

• %GetAllClasses() — returns a list of all public classes available in the specified assembly DLL.

• %ExpressImport() — combines calls to %Connect(), %Import(), and %Disconnect().

See the %Net.Remote.Gateway Caché class documentation for a complete listing of all Gateway methods.

The %Import() method of the Gateway class sets off the following chain of sequential events:

1. The Caché session sends an import request.

2. Upon receiving the request, the .NET Gateway worker thread introspects the indicated .NET assemblies and classes.

3. The thread also loads dependent assemblies either from the local directory or from the Global Assembly Cache (GAC).

4. If it finds any .NET classes that are new or changed, or that have no proxy classes on the Caché side, the .NET Gateway
worker thread generates new proxy classes for them.

4.2.1 %Import() Method

The %Import() method imports the given class and all its dependencies by creating and compiling all the necessary proxy
classes. The %Import() method returns (in the ByRef argument imported) a list of generated Caché proxy classes. For
details of how .NET class definitions are mapped to Caché proxy classes, see the “Mapping Specification” chapter in this
guide.

%Import() is a onetime, startup operation. It only needs to be called the first time you wish to generate the Caché proxy
classes. It is necessary again only if you recompile your .NET code and wish to regenerate the proxies.

Import Arguments
Before you invoke %Import(), prepare the additionalClassPaths and exclusions arguments. That is, for each argument,
create a new %ListOfDataTypes object and call its Insert() method to fill the list. The optional additionalClassPaths argument
can be used to supply additional path arguments, such as the names of additional assembly DLLs that contain the classes
you are importing via the .NET Gateway. List elements should correspond to individual additional assembly DLL entries,
which require the following format:

" rootdir\...\mydll.dll "

You can try to load an assembly from a directory outside of where DotNetGatewaySS.exe is running, but you might expe-
rience a load error for your assembly when you try to use a class in the assembly. InterSystems recommends that you put
all local assemblies in the same directory as DotNetGatewaySS.exe. You can also specify assemblies in the GAC by using
partial names for them, System.Data, for example.

Import Dependencies and Exclusions
While mapping a .NET class into an Caché proxy class and importing it into Caché, the .NET Gateway loops over all class
dependencies discovered in the given .NET class, including all classes referenced as properties and in argument lists. In
other words, the .NET Gateway collects a list of all class dependencies needed for a successful import of the given class,
then walks that dependency list and generates all necessary proxy classes.
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You can control this process by specifying a list of assembly and class name prefixes to exclude from this process. While
this situation would be rare, it does give you some flexibility to control what classes get imported. The .NET Gateway
automatically excludes a small subset of assemblies such as Microsoft.* assemblies.

4.2.2 %GetAllClasses() Method

This method returns, in the ByRef argument allClasses, a list of all public classes available in the assembly DLL specified
by the first argument, jarFileOrDirectoryName.

4.2.3 %ExpressImport() Method

%ExpressImport() is a one-step convenience class method that combines calls to %Connect(), %Import(), and
%Disconnect(). It returns a list of generated proxies. It also logs that list, if the silent argument is set to 0. The name
argument is a semicolon-delimited list of classes or assembly DLLs.
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5
Sample Code

The standard Caché installation includes a sample project that demonstrates how to generate and use Caché proxy classes
with .NET code. This chapter describes how to compile and run the project, and provides a convenient copy of the Caché
source code.

5.1 Compiling and Running the .NET Test Project
The project code consists of two parts:

• The RemoteTest .NET project located in <Cache-root>\dev\dotnet\samples\remote\test\

• The %Net.Remote.DotNet.Test class, which is part of the Caché class library.

The following sections describe how to compile and run the project.

5.1.1 Compiling the .NET Assembly

Open the RemoteTest project file (RemoteTest.csproj) in Visual Studio and compile it. The DotNetGatewaySamples.dll file
will be created in ..remote\test\obj\Debug. This is the assembly that will be imported into Caché.

5.1.2 Creating and Running the Server

1. Create a .NET Gateway server description, as described in Defining a Gateway Server.

2. Start the server, as described in Running a Gateway Server.

5.1.3 Generating Caché Proxy Classes

To import the sample .NET classes, start a Terminal session and use the following syntax to run the ExpressImport()
method of the %Net.Remote.ImportHelper class:

  do ##class(%Net.Remote.ImportHelper).ExpressImport(gatewaySamplesDll,port)

where gatewaySamplesDll is a fully qualified path to DotNetGatewaySamples.dll (which you generated in step 1), and port
is the port number of the Gateway server over which the proxy classes communicate with the .NET classes (which you
started in step 3).

For example:
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  do ##class(%Net.Remote.ImportHelper).ExpressImport(
    "C:\InterSystems\Cache\dev\dotnet\samples\remote\test\obj\Debug\DotNetGatewaySamples.dll",
    "55000")

You can open Atelier to examine the imported classes, which will be located in the remote/test package in the %SYS

namespace.

This step should be repeated whenever you have modified or recompiled your .NET classes.

5.1.4 Running the Caché DotNet.Test Examples

The %Net.Remote.DotNet.Test class includes two test methods, Test() and TestArrays(). For both methods, the port
argument is the number of the port over which the proxy classes communicate with the .NET classes (as described in the
previous section), and the host argument identifies the machine on which the .NET Gateway server is running. The port
argument is required; the host argument is optional and defaults to 127.0.0.1 (the local machine).

Test()
The Test() method shows how to use the sample classes delivered with Caché. Use the following syntax to run it at the
Terminal:

  do ##class(%Net.Remote.DotNet.Test).Test(port,host)

See The Test() Method for a listing of the ObjectScript code.

TestArrays()
The TestArrays() method demonstrates the use of .NET arrays. Use the following syntax to run it at the Terminal:

  do ##class(%Net.Remote.DotNet.Test).TestArrays(port,host)

See The TestArrays() Method for a listing of the ObjectScript code.

5.2 Source Code for the Test Class
This section provides a convenient copy of the code found in the %Net.Remote.DotNet.Test class, which includes two test
methods, Test() and TestArrays().

Class %Net.Remote.DotNet.Test Extends %RegisteredObject [ Abstract, ProcedureBlock ]
 {
    ClassMethod Test(port As %Integer, host As %String = "127.0.0.1") [ Final ]
    { ///...
    }
    ClassMethod TestArrays(port As %Integer, host As %String = "127.0.0.1") [ Final ]
    { ///...
    }
 }

Note: Using the %objlasterror error status variable
The Test class includes references to %objlasterror, which should be used as a debug resource only (for example,
in development code that does not yet report errors properly), so that the underlying problem can be diagnosed
and the offending code's error reporting can be corrected. It is appropriate for such code to kill %objlasterror
whenever it uses an error status that is an expected condition and not a reportable error.

5.2.1 Test() Method

The Test() method demonstrates how to interact with the DotNetGatewaySamples.dll assembly.
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ClassMethod Test(port As %Integer, host As %String = "127.0.0.1") [ Final ] 
 { ///...
 }

For convenience, the code in this section has been divided into the following parts:

• part 1 — connect to current namespace

• part 2 — create and populate a Student object

• part 3 — hashtable example

• part 4 — modify the hashtable

• part 5 — ArrayList and List examples

• part 6 — create and populate an Address object

• part 7 — change an Address

• part 8 — get an array of Strings

• part 9 — disconnect and catch errors

You can also examine this code by opening it in Atelier.

Test() method (part 1) — connect.

   Set %objlasterror="",$ZT="Error"
   // connect to current namespace, use 2 second timeout
   Set namespace=$Namespace,timeout=2
   Set classPath=##class(%ListOfDataTypes).%New()
   Set sampleDLL="dev/dotnet/bin/DotNetGatewaySamples.dll"
   Set samplePath=$SYSTEM.Util.InstallDirectory()_sampleDLL
   Do classPath.Insert(samplePath)

   // get a connection handle and connect
   Set gateway=##class(%Net.Remote.Gateway).%New()
   Set status=gateway.%Connect(host,port,namespace,timeout,classPath)
   If 'status Goto Error

Test() method (part 2) — create and populate a Student object.

   Set student=##class(remote.test.Student).%New(gateway,29,"976-01-6712")

   // get, set Date
   Write !,"setNextClass returned: "
   Write student.setNextClass($zd($h,3),$zt($h),"White Hall",3.0,0)
   Write !,"Next class on: ",$E(student.myGetNextClassDate(),1,10)
   Write $E(student.getNextClassTime(),11,*),!,!
   // set a String
   Do student.mySetName("John","Smith")
   // set an int

   Do student.mySetID(27)
   Write "Name: ",student.myGetName(),!
   Write "ID: ",student.myGetID(),!
   Write "SSN: ",student.getSSN(),!,!
   Write "Static method execute: "
   Write ##class(remote.test.Person).myStaticMethod(gateway),!,!
   Do ##class(remote.test.Person).setstaticProperty(gateway,89)
   Write "Static set/get: "
   Write ##class(remote.test.Person).getstaticProperty(gateway),!!
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Test() method (part 3) — hashtable example

   Set grades=##class(System.Collections.Hashtable).%New(gateway)
   Do grades.Add("Biology",3.8)
   Do grades.Add("French",3.75)
   Do grades.Add("Spanish",2.75)
   Do student.mySetGrades(grades)
   Set grades=student.myGetGrades()

   Write "Student has completed the following "
   Write grades.getuCount()," classes:",!
   Set keys=grades.getuKeys().GetEnumerator()
   Set values=grades.getuValues().GetEnumerator()
   while (keys.MoveNext())
   {
      If (values.MoveNext()) 
         Write "  ",keys.getuCurrent()," ",values.getuCurrent(),!
   }
   Write !,"Highest grade: ",student.myGetHighestGrade()

Test() method (part 4) — modify the hashtable.

   Write !,"Now taking: Calculus, Chemistry, English Comp",!,!
   Do student.setGrade("Calculus",3.5)
   Do student.setGrade("Chemistry",3.92)
   Do student.setGrade("English Comp",2.5)
   Write "English Comp Grade: ",student.getGrade("English Comp"),!
   Set grades=student.myGetGrades()
   Write !,"Student has completed the following "
   Write grades.getuCount()," classes:",!
   Set keys=grades.getuKeys().GetEnumerator()
   Set values=grades.getuValues().GetEnumerator()
   while (keys.MoveNext())
   {
      If (values.MoveNext()) 
         Write "  ",keys.getuCurrent()," ",values.getuCurrent(),!
   }
   Write !,"Highest grade now: "
   Write student.myGetHighestGrade()

Test() method (part 5) — ArrayList and List examples.

   Set sports=##class(System.Collections.ArrayList).%New(gateway)
   // Example of using Type.GetType; to use it, replace the above line with the 
   // following two lines: (also make sure to import System.Activator)
   // Set arrayListClass=
   //    ##class(System.Type).GetType(gateway,"System.Collections.ArrayList")
   // Set sports=##class(System.Activator).CreateInstance(gateway,arrayListClass)
   Do sports.Add("Basketball")
   Do sports.Add("Tennis")
   Do sports.Add("Running")
   Do sports.Add("Swiming")
   Do student.mySetFavoriteSports(sports)

    // set/get a list of Strings
   Set list=student.myGetFavoriteSports()
   Write !,"Student's favorite sports are: ",!
   For i=0:1:list.getuCount()-1 {
      Write "  "_list.getuItem(i),!
   }
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Test() method (part 6) — create and populate an Address object.

   // set an object
   Set home=##class(remote.test.Address).%New(gateway)
   Set street=##class(remote.test.Street).%New(gateway)
   Do street.setname("Memorial Drive")
   Do street.setnumber("One")
   Do home.mySetCity("San Diego")
   Do home.mySetStreet(street)
   Do home.mySetState("CA")
   Do home.mySetZip("20098")
   Do student.sethome(home)

   // get an object
   Write !,"Student's address: ",!
   Set home2=student.gethome()
   Write "  "_student.gethome().getstreet().getname(),!
   Write "  "_home2.myGetCity()_", "_home2.myGetState()_" "_home2.myGetZip(),!,!

Test() method (part 7) — change an Address.

   Write "Change address",!
   Set newHome=##class(remote.test.Address).%New(gateway)
   Set newStreet=##class(remote.test.Street).%New(gateway)
   Do newStreet.setnumber("456")
   Do newStreet.setname("Del Monte")
   Do newHome.mySetCity("Boston")
   Do newHome.mySetState("MA")
   Do newHome.mySetStreet(newStreet)
   Do newHome.mySetZip("40480")
   Set tempAddress=##class(remote.test.Address).%New(gateway)
   Do student.getAddressAsReference(.tempAddress)
   Write "City, before address change: "_tempAddress.myGetCity(),!
   Do student.changeAddress(home,newHome)
   Do student.getAddressAsReference(.tempAddress)
   Write "City, after address change: "_tempAddress.myGetCity(),!

Test() method (part 8) — get an array of Strings.

   Set list=student.getAddressAsCollection()
   Write !,"Student's new address is: ",!
   Write "  "_list.GetAt(4),!
   Write "  "_list.GetAt(1)_", "_list.GetAt(2)_" "_list.GetAt(3),!
   Write !,"Old addresses:",!
   Set oldAddresses=##class(%ListOfObjects).%New(gateway)
   Set newAdd=##class(remote.test.Address).%New(gateway)
   Set add2=student.getOldAddresses(home,.oldAddresses,.newAdd)
   For i=1:1:oldAddresses.Count() {
      Set oldAddress=oldAddresses.GetAt(i)
       Write !,"Address "_i_":",!
       Write oldAddress.getstreet().getnumber()
       Write " "_oldAddress.getstreet().getname(),!
       Write oldAddress.getcity()
       Write ", "_oldAddress.getstate()
       Write " "_oldAddress.getzip(),!
   }      
   Write !,"Most recent Address:",!
   Write add2.getstreet().getnumber()_" "_add2.getstreet().getname(),!
   Write add2.getcity()
   Write ", "_add2.getstate()
   Write " "_add2.getzip(),!
   Write !,"Least Recent Address: ",!
   Write newAdd.getstreet().getnumber()_" "_newAdd.getstreet().getname(),!
   Write newAdd.getcity()
   Write ", "_newAdd.getstate()
   Write " "_newAdd.getzip(),!

Test() method (part 9) — disconnect and catch errors.

   // Disconnect
   Do gateway.%Disconnect()
   Write !,"Test Successfully Completed"
   Quit
Error ; an error occurred
   Use 0
   If %objlasterror'="" 
      { Write $system.OBJ.DisplayError(%objlasterror) } 
   Else { Write $ze }
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5.2.2 The TestArrays() Method

The TestArrays() method demonstrates the use of .NET arrays.

ClassMethod TestArrays(port As %Integer, host As %String = "127.0.0.1") [ Final ] 
 { ///...
 }

For convenience, the code in this section has been divided into the following parts:

• part 1 — connect.

• part 2 — create test Person object and test string arrays.

• part 3 — create and populate Address objects.

• part 4 — insert array of Address objects.

• part 5 — use a binary stream.

• part 6 — disconnect and catch errors.

You can also examine this code by opening it in Atelier.

TestArrays() method (part 1) — connect.

   Set %objlasterror="",$ZT="Error",namespace=$Namespace,timeout=2
   Set classPath=##class(%ListOfDataTypes).%New()
   Set sampleDLL="dev/dotnet/bin/DotNetGatewaySamples.dll"
   Set samplePath=$SYSTEM.Util.InstallDirectory()_sampleDLL
   Do classPath.Insert(samplePath)
   Set gateway=##class(%Net.Remote.Gateway).%New()
   Set status=gateway.%Connect(host,port,namespace,timeout,classPath)
   If 'status Goto Error

TestArrays() method (part 2) — create test Person object and test string arrays.

   Set test=##class(remote.test.Person).%New(gateway)

   // test simple string arrays
   Set stringArray=##class(%ListOfDataTypes).%New()
   Do stringArray.Insert("test string one")
   Do stringArray.Insert("test string two")
   Do stringArray.Insert("test string three")
   Do stringArray.Insert("test string four")

   // test simple string arrays
   Do test.setStringArray(stringArray)
   Set outStringArray=test.getStringArray()

   For i=1:1:outStringArray.Count() {
       Write "String "_i_" : "_outStringArray.GetAt(i),!
   }

TestArrays() method (part 3) — create and populate Address objects.

   // test array of objects
   Set home=##class(remote.test.Address).%New(gateway)
   Set street=##class(remote.test.Street).%New(gateway)
   Do street.setname("Memorial Drive")
   Do street.setnumber("One")
   Do home.mySetCity("Cambridge")
   Do home.mySetStreet(street)
   Do home.mySetState("MA")
   Do home.mySetZip("02142")

   Set home2=##class(remote.test.Address).%New(gateway)
   Set street2=##class(remote.test.Street).%New(gateway)
   Do street2.setname("Santa Cruz Ave")
   Do street2.setnumber("4555")
   Do home2.mySetCity("San Diego")
   Do home2.mySetStreet(street2)
   Do home2.mySetState("CA")
   Do home2.mySetZip("92109")
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TestArrays() method (part 4) — insert array of Address objects.

   Set addressArray=##class(%ListOfObjects).%New()
   Do addressArray.Insert(home)
   Do addressArray.Insert(home2)

   Do test.setAddressArray(addressArray)
   Set addressArray=test.getAddressArray()
   For i=1:1:addressArray.Count() {
      Set home=addressArray.GetAt(i)
       Write !,"Address "_i_":",!
       Write home.getstreet().getnumber()_" "_home.getstreet().getname(),!
       Write home.getcity()
       Write ", "_home.getstate()
       Write " "_home.getzip(),!
   }

TestArrays() method (part 5) — use a binary stream.

   // byte[] is mapped as %GlobalBinaryStream
   Write !,"Byte array test:",!
   Set byteStream=##class(%GlobalBinaryStream).%New()
   Do byteStream.Write("Global binary stream")

   // Note that byteStream is passed in by value, so any changes on the DotNet
   // side will be ignored. The next example will pass the stream by reference
   // meaning changes on the DotNet side will be reflected here as well
   Do test.setByteArray(byteStream)

   Set result=test.getByteArray()
   Write result.Read(result.SizeGet()),!

   Set readStream=##class(%GlobalBinaryStream).%New()
   // we need to 'reserve' a number of bytes since we are passing the stream
   // by reference (DotNet's equivalent is byte[] ba = new byte[max];)
   For i=1:1:50 Do readStream.Write("0")

   Set bytesRead=test.read(.readStream,50)
   Write readStream.Read(bytesRead),!

TestArrays() method (part 6) — disconnect and catch errors.

   Do gateway.%Disconnect()
   Write !,"Test Successfully Completed"
   Quit
Error
   Use 0
   If %objlasterror'="" 
      { Write $system.OBJ.DisplayError(%objlasterror) } 
   Else { Write $ze }
 // end of method TestArrays()
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6
Mapping Specification

This chapter describes the mapping between .NET objects and the Caché proxy classes that represent the .NET objects.

Important: Only classes, methods, and fields marked as public are imported.

This chapter describes mappings of the following types:

• Assembly and Class Names

• Primitives

• Properties

• Methods

• Constructors

• Constants

• OUT and REF Parameters

• .NET Arrays

• Recasting

• .NET Standard Output Redirection

• Restrictions

6.1 Assembly and Class Names
Assembly and class names are preserved when imported, except that each underscore (_) in an original .NET class name
is replaced with the character u and each dollar sign ($) is replaced with the character d in the Caché proxy class name.
Both the u and the d are case-sensitive (lowercase).

6.2 Primitives
Primitive types and primitive wrappers map from .NET to Caché as shown in the following table.
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Caché.NET

%Library.Booleanbool

%Library.Integerbyte

%Library.Stringchar

%Library.Numericdouble

%Library.Floatfloat

%Library.Integerint

%Library.Integerlong

%Library.Integersbyte

%Library.SmallIntshort

%Library.Stringstring

%Library.BooleanSystem.Boolean

%Library.IntegerSystem.Byte

%Library.StringSystem.Char

%Library.TimeStampSystem.DateTime

%Library.NumericSystem.Double

%Library.SmallIntSystem.Int16

%Library.IntegerSystem.Int32

%Library.IntegerSystem.Int64

%Library.IntegerSystem.SByte

%Library.FloatSystem.Single

%Library.StringSystem.String

%Library.SmallIntSystem.UInt16

%Library.IntegerSystem.UInt32

%Library.IntegerSystem.UInt64

%Library.Integeruint

%Library.Integerulong

%Library.SmallIntushort

6.3 Properties
The result of importing a .NET class is an ObjectScript abstract class. For each .NET property that does not already have
corresponding getter and setter methods (imported as is), the .NET Gateway engine generates corresponding Object Script
getter and setter methods. It generates Setters as setXXX, and getters as getXXX, where XXX is the property name. For
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example, importing a .NET String property called Name results in a getter method getName() and a setter method
setName(%Library.String). The Gateway also generates set and get class methods for all static members.

6.4 Methods
After you perform the .NET Gateway import operation, all methods in the resulting Caché proxy class have the same name
as their .NET counterparts, subject to the limitations described in the Method Names section. They also have the same
number of arguments. The type for all the Caché proxy methods is %Library.ObjectHandle(). The .NET Gateway engine
resolves types at runtime.

For example, the .NET method test:

public boolean checkAddress(Person person, Address address)

is imported as:

Method checkAddress(p0 As %Library.ObjectHandle,
                    p1 As %Library.ObjectHandle) As %Library.ObjectHandle

6.4.1 Overloaded Methods

While Caché Basic and ObjectScript do not support overloading, you can still map overloaded .NET methods to Caché
proxy classes. This is supported through a combination of largest method cardinality and default arguments. For example,
if you are importing an overloaded .NET method whose different versions take two, four, and five arguments, there is only
one corresponding method on the Caché side; that method takes five arguments, all of %ObjectHandle type. You can then
invoke the method on the Caché side with two, four, or five arguments. The .NET Gateway engine then tries to dispatch
to the right version of the corresponding .NET method.

While this scheme works reasonably well, avoid using overloaded methods with the same number of arguments of similar
types. For example, the .NET Gateway has no problems resolving the following methods:

test(int i, string s, float f)
test(Person p)
test(Person p, string s, float f)
test(int i)

However, avoid the following:

test(int i)
test(float f)
test(boolean b)
test(object o)

Tip: For better results using the .NET Gateway, use overloaded .NET methods only when absolutely necessary.

6.4.2 Method Names

Caché has a limit of 31 characters for method names. Ensure your .NET method names are not longer than 31 characters.
If the name length is over the limit, the corresponding Caché proxy method name contains only the first 31 characters of
your .NET method name. For example, if you have the following methods in .NET:

thisDotNetMethodHasAVeryLongName(int i)       // 32 characters long
thisDotNetMethodHasAVeryLongNameLength(int i) // 38 characters long

Caché imports only one method with the following name:

thisDotNetMethodHasAVeryLongNam               // 31 characters long
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The .NET reflection engine imports the first one it encounters. To find out which method is imported, you can check the
Caché proxy class code. Better yet, ensure that logging is turned on before the import operation. The .NET Gateway log
file contains warnings of all method names that were truncated or not imported for any reason.

Each underscore (_) in an original method name is replaced with the character u and each dollar sign ($) is replaced with
the character d. Both the u and the d are case-sensitive (lowercase). If these conventions cause an unintended overlap with
another method name that already exists on the Caché side, the method is not imported.

Finally, Caché class code is not case-sensitive. So, if two .NET method names differ only in case, Caché only imports one
of the methods and writes the appropriate warnings in the log file.

6.4.3 Static Methods

Caché projects .NET static methods as class methods in the Caché proxy classes. To invoke them from ObjectScript, use
the following syntax:

  // calls static .NET method staticMethodName(par1,par2,...)
  Do ##class(className).staticMethodName(gateway,par1,par2,...)

6.5 Constructors
You invoke .NET constructors by calling %New(). The signature of %New() is exactly the same as the signature of the
corresponding .NET constructor, with the addition of one argument in position one: an instance of the .NET Gateway. The
first thing %New() does is to associate the proxy instance with the provided Gateway instance. It then calls the corresponding
.NET constructor. For example:

// calls Student(int id, String name) .NET constructor
Set Student=##class(gateway.Student).%New(Gateway,29,"John Doe")

6.6 Constants
The .NET Gateway projects and imports .NET static final variables (constants) as Final Parameters. It preserves the names
when imported, except that it replaces each underscore (_) with the character u and each dollar sign ($) with the character
d. Both the u and the d are case-sensitive (lowercase).

For example, the following static final variable:

public const int DOTNET_CONSTANT = 1;

is mapped in ObjectScript as:

Parameter DOTNETuCONSTANT As INTEGER = 1;

From ObjectScript, access the parameter as:

##class(MyDotNetClass).%GetParameter("DOTNETuCONSTANT"))

6.7 OUT and REF Parameters
The .NET Gateway supports passing parameters by reference, by supporting the .NET OUT and REF parameters. Only
objects may be used as OUT and REF parameters; scalar values are not supported. For this convention to work, you must
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preallocate a temporary object of the corresponding type. Then call the method and pass that object by reference. The fol-
lowing are some examples:

  public void getAddressAsReference(out Address address)

To call this method from ObjectScript, create a temporary object; there is no need to set its value. Then call the method
and pass the OUT parameter by reference, as follows:

  Set tempAddress=##class(remote.test.Address).%New(gateway)
  Do student.getAddressAsReference(.tempAddress)

The following example returns an array of Address objects as an OUT parameter:

  void getOldAddresses(out Address[] address)

To call the previous method from ObjectScript, use the following code:

  Set oldAddresses=##class(%ListOfObjects).%New(gateway)
  Do person.getOldAddresses(.oldAddresses)

6.8 .NET Arrays
Arrays of primitive types and wrappers are mapped as %Library.ListOfDataTypes. Arrays of object types are mapped as
%Library.ListOfObjects. Only one level of subscripts is supported.

The Gateway projects .NET byte arrays (byte[]) as %Library.GlobalBinaryStream. Similarly, it projects .NET char arrays
(char[]) as %Library.GlobalCharacterStream. This allows for a more efficient handling of byte and character arrays.

You can pass byte and stream arrays either by value or by reference. Passing by reference allows changes to the byte or
character stream on the .NET side visible on the Caché side as well. For example, using the following:

System.Net.Sockets.Stream.Read(byte[] buffer, int offset, int size)

in .NET:

byte[] buffer = new byte[maxLen];
int bytesRead = inputStream.Read(buffer,offset,maxLen);

The equivalent code in ObjectScript:

 Set readStream=##class(%GlobalBinaryStream).%New()
 // we need to 'reserve' a number of bytes since we are passing the stream
 // by reference (DotNet's equivalent is byte[] ba = new byte[max];)
 For i=1:1:50 Do readStream.Write("0")
 Set bytesRead=test.read(.readStream,50)
 Write readStream.Read(bytesRead)

The following example passes a character stream by value, meaning that any changes to the corresponding .NET char[] is
not reflected on the Caché side:

 Set charStream=##class(%GlobalCharacterStream).%New()
 Do charStream.Write("Global character stream")
 Do test.setCharArray(charStream)

6.9 Recasting
ObjectScript has limited support for recasting; namely, you can recast only at a point of a method invocation. However,
since all Caché proxies are abstract classes, this should be sufficient.
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6.10 .NET Standard Output Redirection
The .NET Gateway automatically redirects any standard .NET output in the corresponding .NET code to the calling Caché
session. It collects any calls to System.out in your .NET method calls and sends them to Caché to display in the same format
as you would expect to see if you ran your code from .NET. To disable this behavior and direct your output to the standard
output device as designated by your .NET code (in most cases that would be the console), set the following global reference
in the namespace where the session is running:

 Set ^%SYS("Gateway","Remote","DisableOutputRedirect") = 1

6.11 Restrictions
Important: Rather than aborting import, the .NET Gateway engine silently skips over all the members it is unable to

generate. If you repeat the import step with logging turned on, Caché records all skipped members (along
with the reason why they were skipped) in the WARNING section of the log file.

The .NET Gateway engine always makes an attempt to preserve assembly and method names, parameter types, etc. That
way, calling an Caché proxy method is almost identical to calling the corresponding method in .NET. It is therefore
important to keep in mind Caché Basic and ObjectScript restrictions and limits while writing your .NET code. In a vast
majority of cases, there should be no issues at all. You might run into some Caché Basic or ObjectScript limits. For example:

• .NET method names should not be longer than 30 characters.

• You should not have 100 or more arguments.

• You should not try to pass String objects longer than 32K.

• Do not rely on the fact that .NET is case-sensitive when you choose your method names.

• Do not try to import a static method that overrides an instance method.

• The .NET Gateway cannot generate proxy classes for .NET generic classes. It similarly cannot import .NET classes
with generic subclasses or subinterfaces.

• .NET Events are not supported — Caché code cannot be called from delegate notifications.

For details on Caché Basic and ObjectScript naming conventions, see Variables in Using Caché ObjectScript, Naming
Conventions in Using Caché Objects, Identifiers and Variables in Using Caché Basic, and Rules and Guidelines for Iden-
tifiers in the Caché Programming Orientation Guide.
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