
Using Caché with ODBC

Version 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Caché with ODBC
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 Overview .. 3
1.1 Installation .. 3
1.2 ODBC Driver Support .. 3
1.3 An Overview of ODBC .. 4

1.3.1 ODBC Connection Details ... 4

2 Using Caché as an ODBC Data Source on Windows .. 5
2.1 Performing a Stand-alone Installation .. 5
2.2 Creating a DSN by Using the Control Panel .. 5
2.3 Creating a File DSN ... 7

3 Using Caché as an ODBC Data Source on UNIX® ... 9
3.1 Performing a Stand-alone Installation .. 9
3.2 Key File Names .. 10
3.3 Troubleshooting for Shared Object Dependencies ... 11
3.4 Configuring the ODBC Initialization File .. 12

3.4.1 Introduction to the UNIX® ODBC Initialization File ... 12
3.4.2 Name and Location of the Initialization File ... 12
3.4.3 Details of the ODBC Initialization File ... 13

3.5 Custom Installation and Configuration for iODBC ... 14
3.5.1 Configuring PHP with iODBC .. 14

3.6 Testing the Caché ODBC Configuration .. 15
3.6.1 Using the Select Test Program ... 15

4 Using the Caché SQL Gateway with ODBC .. 17
4.1 Creating ODBC SQL Gateway Connections for External Sources .. 17

4.1.1 Creating an ODBC SQL Gateway Connection .. 17
4.1.2 Creating an ODBC Connection to Caché via the SQL Gateway 18
4.1.3 Implementation-specific Options ... 19
4.1.4 Using the UNIX® ODBC SQL Gateway Test Program .. 20

4.2 Using the ODBC SQL Gateway Programmatically ... 21
4.2.1 Creating and Using an External Data Set ... 21
4.2.2 Performing ODBC Programming .. 22

5 Logging .. 29
5.1 Enabling Logging for ODBC on Windows .. 29
5.2 Enabling Logging for ODBC on UNIX® .. 30

6 Caché ODBC Environment Variables ... 31
6.1 CACHEODBCDEFTIMEOUT .. 31
6.2 CACHEODBCPID ... 31
6.3 CACHEODBCTRACE (UNIX® Only) ... 31
6.4 CACHEODBCTRACEFILE .. 32

6.4.1 Special Steps for Windows 2003 .. 32
6.5 CACHEODBCTRACETHREADS .. 32

Using Caché with ODBC iii

List of Figures

Figure 2–1: Caché ODBC Data Source Setup Dialog Box ... 6

iv Using Caché with ODBC

List of Tables

Table 4–1: Calling ODBC Functions from %SQLGatewayConnection ... 25

Using Caché with ODBC v

About This Book

This book describes how to use Caché ODBC, which enables you to connect to Caché from an external application (such
as a development tool or report writer) via ODBC, and allows Caché to access external ODBC data sources.

Who This Book Is For
In order to use this book, you should be reasonably familiar with your operating system. If you are performing custom
configuration of the Caché ODBC driver on UNIX®, you should also be familiar with using UNIX®, compiling and linking
code, writing shell scripts, and other such tasks.

Organization of This Book
This book is organized as follows:

• The chapter “Overview” provides an overview of Caché ODBC.

• The chapter “Using Caché as an ODBC Data Source on Windows” describes how to use Caché as a ODBC data
source on Windows.

• The chapter “Using Caché as an ODBC Data Source on UNIX®” describes how to use Caché as a ODBC data source
on UNIX®.

• The chapter “Using the Caché SQL Gateway with ODBC” describes how to use ODBC and the SQL Gateway to link
to an external table or stored procedure, and how to migrate data from an external table.

• The chapter “Logging” describes how to enable logging for both Caché and ODBC.

• The chapter “ODBC Environment Variables” describes the environment variables that control the Caché ODBC client
driver.

Related Information
For more information, try the following sources:

• The book Using Caché with JDBC includes information on JDBC connectivity to Caché from external data sources
(the JDBC equivalent of what is described in this manual).

• The chapter on “Using the Caché SQL Gateway” in Using Caché SQL provides an overview of how the SQL Gateway
works with both ODBC and JDBC.

In addition, any technical bookstore offers a wide selection of books on SQL and ODBC.

Using Caché with ODBC 1

1
Overview

Caché ODBC provides ODBC drivers to enable you to access Caché via an ODBC connection. To use ODBC with Caché,
install and configure the Caché ODBC client driver, then define one or more DSNs (Data Source Names) to refer to Caché
databases. Your application can use the Caché DSN in the same way it would use any other DSN.

1.1 Installation
To use Caché as an ODBC data source, you must do the following:

• Install the Caché ODBC client driver if it isn't already present. The Caché standard installation installs ODBC driver
components by default (as described in the Caché Installation Guide).

• Define a DSN for a Caché database. Each Caché database can be represented by multiple DSNs, each of which can
support multiple connections.

• Use the DSN within your ODBC-aware applications (such as development tools or report writers).

See “Using Caché as an ODBC Data Source on Windows” or “Using Caché as an ODBC Data Source on UNIX®” for
OS-specific instructions on how to perform these tasks.

1.2 ODBC Driver Support
The Caché ODBC drivers are compliant with ODBC 3.5.

Caché ODBC supports the following ODBC driver managers:

• On Windows: the Microsoft Windows driver manager provided with the operating system.

• On UNIX®: the iODBC driver manager (for use with the Unicode and 8–bit ODBC APIs) and the unixODBC driver
manager (for use with the 8–bit ODBC API).

For questions about other driver managers, contact the InterSystems InterSystems WorldWide Response Center (WRC).

For more complete information, including specific supported databases, see the online InterSystems Supported Platforms
document for this release.

Using Caché with ODBC 3

http://www.intersystems.com/support/wrc.html
https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

1.3 An Overview of ODBC
An ODBC system has the following parts:

• The client application — An application makes calls according to the Microsoft ODBC API. ODBC calls establish a
connection from the client to a data source (see the section on “ODBC Connection Details”).

• The ODBC driver manager — The driver manager accepts calls from applications using the ODBC API and hands
them off to a registered ODBC client driver. The driver manager also performs any necessary tasks so that the client
application can communicate with the client driver and, ultimately, the database server.

• The ODBC client driver — A database-specific application that accepts calls from a client application through the
ODBC driver manager and provides communication to the database server. It also performs any ODBC-related data
conversions that the application requests.

• The database server — The actual database ultimately receiving the calls from the client application. It can be on the
same or a different machine than the client driver from which it is receiving calls.

• An initialization file — A set of configuration information for the driver manager; depending on the operating system,
it may also contain client driver information. On UNIX®, this is an actual file, frequently called odbc.ini. On Windows,
it is a registry entry.

Note: For a particular vendor database, that vendor may offer its own version of the ODBC client driver for that platform.
Oracle, for example, supplies its own ODBC driver for use with Oracle databases on Windows. This may be
preferred in some cases because the vendor driver may take advantage of its knowledge of how the database works
internally to optimize performance or enhance reliability.

1.3.1 ODBC Connection Details

For an application to connect to a database via ODBC, the application must generally provide the following connection
details:

• Information about the ODBC client driver to use.

• Information on locating and accessing the database. For example, this may include the server on which the database
resides and the port to use when connecting to it. The details needed depend upon the database technology.

• Login credentials to access the database, if the database is protected by a password.

In most cases, this information is stored within a DSN, which has a logical name for use within the client application. The
DSN may or may not include login credentials, which can also be stored in the database initialization file, or not stored at
all.

The DSNs must be registered with the ODBC driver manager.

In practice, a connection is established as follows:

1. A client application includes ODBC calls that attempt to connect to a particular DSN. A client application is linked to
an ODBC driver manager, which accepts the calls.

2. The ODBC driver manager reads the initialization file to obtain the location of the ODBC client driver and load the
client driver into memory.

3. Once loaded into memory, the ODBC client driver uses the ODBC initialization file to locate connection information
for the DSN, as well as other information. Using this information, the client driver connects to the specified database.

4. Having established the connection, the client driver maintains communications with the database server.

4 Using Caché with ODBC

Overview

2
Using Caché as an ODBC Data Source on
Windows

This chapter describes how to perform a stand-alone ODBC installation under Windows, and how to create a DSN for a
Caché database on Windows, which you can do either via the Control Panel or by creating a file DSN.

2.1 Performing a Stand-alone Installation
By default, Caché performs a full ODBC installation with a standard installation. If you perform a custom installation, you
can select the “SQL client only” option to install only the client access components (ODBC client driver). For information,
see the Caché Installation Guide.

In addition, however, Caché provides a simple stand-alone installer for Caché ODBC.

This installer is in the ODBC directory of the Caché DVD. This directory provides the following three files:

• ODBCDriver_x86.exe will install 32-bit ODBC driver on any version of Windows.

• ODBCDriver_ia64.exe can only be run on Windows 64-bit Itanium Edition and it will install 64-bit ODBC driver on
this platform.

• ODBCDriver_x64.exe can only be run on Windows x64 Edition and it will install 64-bit ODBC driver on this platform.

Run the installer that is appropriate for your platform and needs

2.2 Creating a DSN by Using the Control Panel
To create a DSN, you can use the Caché ODBC Data Source Setup dialog box. To access this dialog box, click the ODBC
Data Sources icon, either in Windows Control Panel or its Administrative Tools subpanel. On the User DSN tab, click the
Add... button, select Intersystems ODBC, and click the Finish button. The dialog box looks like the following
example:

Using Caché with ODBC 5

GCI

Figure 2–1: Caché ODBC Data Source Setup Dialog Box

Use this dialog box to specify the details for a specific Caché ODBC data source. The fields are listed below and are required
unless otherwise specified:

• Name — Specifies the name of the DSN.

• Description — Specifies an optional description of the DSN.

• Host IP Address — Specifies the IP address of the DSN in dotted decimal or dotted quad form, such as “127.0.0.1”.

• Host Port Number — Specifies the port for connecting to the DSN. The default for Caché is 1972.

• Caché Namespace — Specifies the namespace for the DSN.

• Authentication Method — Select either Password or Kerberos, depending on the security used for this database.

If you select Kerberos, also specify the following additional settings:

– Connection Security Level — Select Kerberos, Kerberos with Packet Integrity, or Kerberos with Encryption, as
appropriate.

– Service Principal Name — Specify the name of the service principal that represents Caché.

For more information on Kerberos, see the Caché Security Administration Guide.

• User Name — Optionally specifies the username for logging into the DSN. By default, this is “_SYSTEM” and is not
case-sensitive.

• Password — Optionally specifies the password for the account specified by the UID entry. For the SYSTEM username,
the password is “SYS” and is case-sensitive.

• ODBC Log — If selected, specifies the creation of a log file of ODBC client driver activities for all Caché DSNs. This
log is for troubleshooting; you should not turn logging on during normal operation as it will dramatically slow down
ODBC performance. See the chapter on “Logging” for more information.

• Static Cursors — If selected, enables the Caché ODBC client driver’s static cursor support. If this flag is off, then the
cursor support provided by the ODBC Cursor Library will be used. In general, this flag should be off unless you have
a specific reason for not using the ODBC Cursor Library.

6 Using Caché with ODBC

Using Caché as an ODBC Data Source on Windows

GCAS

• Disable Query Timeout — If selected, causes the ODBC client driver to ignore the value of the ODBC query timeout
setting.

The ODBC query timeout setting specifies how long a client should wait for a specific operation to finish. If an operation
does not finish within the specified time, it is automatically cancelled. The ODBC API provides functions to set this
timeout value programmatically. Some ODBC applications, however, hard-code this value. If you are using an ODBC
application that does not allow you to set the timeout value and the timeout value is too small, you can use the Disable
Query Timeout option to disable timeouts.

• Use Locale Decimal Symbol — When selected, specifies the use of the current locale's decimal separator; not checking
this sets the decimal separator in the process to a period (".") regardless of the locale. This value can have an affect
when the ODBC connection is interoperating with an application that uses the decimal separator as defined for the
current locale.

• Unicode SQL Types — If selected, turns on reporting of a Unicode SQL type (“SQL_WVARCHAR (-9) SQLType”)
for string data. This allows Microsoft Office 2000 and Visual Basic applications to allocate the properly sized buffers
to hold multibyte data. This functionality is only relevant if you are working with a multibyte character set, such as in
Chinese, Hebrew, Japanese, or Korean locales. If you are only using single-byte character set data, do not select this
check box.

If an application encounters a “SQL data type out of range” error from the Microsoft Driver Manager using
SQLBindParameter, it can be caused by having selected this check box.

After you have created the DSN, you can use the Test Connection button to see if your data source is working correctly.

On Windows 64-bit, use the Windows Control Panel ODBC Administrator to create user DSNs that function for both 32-
and 64-bit programs. To configure a system DSN for a 32-bit program, run %SystemRoot%\SysWow64\odbcad32.exe.

2.3 Creating a File DSN
Caché also supports file DSNs. A file DSN is a normal file that contains information to establish a connection via ODBC.
Additional information can be found on the Microsoft support site (search on "file DSN").

The connection specifies the file to use:

filedsn=<fully qualified path for the DSN>

A file DSN is invoked via SQLDriverConnect where you specify the file DSN. It can specify an existing DSN to use, for
example,

[ODBC]
DSN=CACHE Samples

or specify the full set of connection parameters

DRIVER=InterSystems ODBC
SERVER=127.0.0.1
PORT=1972
DATABASE=SAMPLES
AUTHENTICATION METHOD=0
QUERY TIMEOUT=1
UID=_system
PWD=SYS

If the user ID or password is not supplied as part of the connection parameters, the connection manager will prompt for
them.

Using Caché with ODBC 7

Creating a File DSN

https://support.microsoft.com/en-us

Note: Commonly used file DSNs are usually stored in the following directory:

%SystemRoot%\Program Files\Common Files\ODBC\Data Sources

8 Using Caché with ODBC

Using Caché as an ODBC Data Source on Windows

3
Using Caché as an ODBC Data Source on
UNIX®

An external application can use Caché as an ODBC data source. This chapter describes how to do this on UNIX®. It discusses
the following topics:

• Performing a Stand-alone Installation — installing the Caché ODBC client driver and supported driver manager on
UNIX®.

• Key File Names — specific file names of some of important installed components.

• Troubleshooting for Shared Object Dependencies — how to validate dependencies on shared objects.

• Configuring the ODBC Initialization File — creating DSNs for Caché on UNIX®.

• Custom Installation and Configuration for iODBC — installing and configuring the iODBC driver manager, and con-
figuring PHP for iODBC.

• Testing the Caché ODBC Configuration — making sure that the Caché ODBC driver and the driver manager have
been installed and configured correctly..

If you are performing custom configuration of the Caché ODBC driver on UNIX®, you should be familiar with using
UNIX®, compiling and linking code, writing shell scripts, and other such tasks.

Note: The sample ODBC initialization file and test files may include the _SYSTEM/SYS or _system/sys username-
password pair in unencrypted form. It is recommended that you remove this data before deployment; it is also
recommended that you remove the _SYSTEM account before deployment.

3.1 Performing a Stand-alone Installation
By default, Caché performs a full ODBC installation with a standard installation. If you perform a custom installation (as
described in Caché Installation Guide), you can select “SQL client only” option to install only the client access components
(ODBC client driver).

In addition, however, Caché provides a stand-alone installer for Caché ODBC. To use this installer:

1. Create the directory where you wish to install the client, such as /usr/cacheodbc/.

2. Copy the appropriate zipped tar file from the Caché DVD into the directory that you just created.

On the Caché DVD, the ./dist/ODBC/ directory contains zipped tar files with names like the following:

Using Caché with ODBC 9

ODBC-release-code-platform.tar.Z

where release-code is a release-specific code (that varies among Caché versions and releases) and platform specifies
the operating system that the ODBC client runs on.

3. Go to the directory you created and manually unpack the .tar file, as follows:

gunzip ODBC-release-code-platform.tar.Z
tar xvf ODBC-release-code-platform.tar

This creates bin and dev directories and installs a set of files.

4. Run the ODBCInstall program, which will be in the directory that you created. This program creates several sample
scripts and configures cacheodbc.ini under the mgr directory. For example:

pwd
/usr/cacheodbc
./ODBCInstall

Note: Identifying the correct platform name
In some releases, the ./dist/ODBC/ directory contains the following command to display the platform name that
identifies the file you need:

./cplatname identify

This command is not present in releases where it is not required.

3.2 Key File Names
Depending on your configuration needs, it may be useful to know the specific file names of some of the installed components.
In the following lists, install-dir is the Caché installation directory (the path that $SYSTEM.Util.InstallDirectory()
returns on your system).

ODBC driver managers
The install-dir/bin/ directory contains the following driver managers:

• libiodbc.so — The iODBC driver manager, which supports both 8-bit and Unicode ODBC APIs.

• libodbc.so — The unixODBC driver manager, for use with the 8-bit ODBC API.

Note: ODBC on 64-bit UNIX® platforms
Between releases of the ODBC specification, various data types such as SQLLen and SQLULen changed from
being 32-bit values to 64-bit values. While these values have always been 64-bit on iODBC, they have changed
from 32-bit to 64-bit on unixODBC. As of unixODBC version 2.2.14, the default build uses 64-bit integer values.
Caché drivers are available for both 32-bit and 64-bit versions of unixODBC.

Caché ODBC client drivers
Caché ODBC client drivers are provided for both ODBC 2.5 and ODBC 3.5. The ODBC 3.5 versions will convert 3.5
requests to the older 2.5 automatically, so in most cases either driver can be used. The install-dir/bin/ directory contains
the following versions (*.so or *.sl):

iODBC-compliant drivers

• libcacheodbc — default driver for 8-bit ODBC 2.5

10 Using Caché with ODBC

Using Caché as an ODBC Data Source on UNIX®

• libcacheodbc35 — supports 8-bit ODBC 3.5

• libcacheodbciw — supports Unicode ODBC 2.5 (also used with the C++ binding)

• libcacheodbciw35 — supports Unicode ODBC 3.5

• libcacheodbciw.dylib — supports Unicode ODBC for MAC OS (also used with the C++ binding)

unixODBC-compliant drivers

• libcacheodbcu. — default driver for 8-bit ODBC 2.5

• libcacheodbcu35 — supports 8-bit ODBC 3.5

• libcacheodbcur64 — supports 8-bit ODBC 2.5 for 64-bit unixODBC

• libcacheodbcur6435 — supports 8-bit ODBC 3.5 for 64-bit unixODBC

Caché SQL Gateway drivers
The install-dir/bin/ directory contains the following versions of the shared object used by the Caché SQL Gateway. This
enables you to connect from Caché to other ODBC client drivers. These files are not installed if you perform a stand-alone
installation.

linked against iODBC

• cgate.so — supports 8-bit ODBC.

• cgateiw.so — supports Unicode ODBC.

linked against unixODBC

• cgateu.so — supports 8-bit ODBC.

• cgateur64.so — supports 8-bit ODBC for 64-bit unixODBC

Other files
The install-dir/mgr/cacheodbc.ini file is a sample ODBC initialization file.

The files for the test programs are discussed in “Testing the Caché ODBC Configuration”.

3.3 Troubleshooting for Shared Object Dependencies
After installing, you should validate dependencies on other shared objects and correct any problems. The process is as follows:

1. Use the appropriate command to list the dynamic dependencies of the Caché ODBC driver.

For example, on Solaris and other platforms, the command is ldd:

ldd install-dir/bin/libcacheodbc.so

Here install-dir is the directory where Caché is installed. If no dependencies are found, you will see a message like
the following:

libstlport_gcc.so => not found

2. If there are no errors, then all dependencies are valid; if there are errors, run the following commands to force the
shared object loader to look in the current directory:

Using Caché with ODBC 11

Troubleshooting for Shared Object Dependencies

sh
cd install-dir/bin
LD_LIBRARY_PATH=`pwd`:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH

The sh command starts the Bourne shell; the cd command changes to the appropriate directory; and the export command
sets the path to look up shared objects.

Note that on AIX®, you would use LIBPATH instead of LD_LIBRARY_PATH.

3. Once you have added the current directory to the path, run ldd again and check for missing dependencies. If any shared
objects cannot be found, add them to the same directory as the ODBC client driver.

3.4 Configuring the ODBC Initialization File
This section describes how to create a DSN for a Caché database on UNIX®, which you do by editing the ODBC initial-
ization file. Caché provides a sample.

3.4.1 Introduction to the UNIX® ODBC Initialization File

The ODBC initialization file is used as follows:

• It provides information so that the driver manager can locate and connect to an available DSN, including the path of
the ODBC client driver required for that particular connection.

• It defines the DSNs (and optionally includes login credentials for them). The ODBC client drivers use this information.

3.4.2 Name and Location of the Initialization File

The initialization file can have any name, but, typically, it is called .odbc.ini when it is located in a user’s personal directory,
odbc.ini when located in an ODBC-specific directory. The Caché sample is called cacheodbc.ini and is located in the
install-dir/mgr directory.

To locate this file, the Caché ODBC client driver uses the same search order as iODBC. It looks for the file in the following
places, in this order:

1. The file specified by the ODBCINI environment variable, if this is defined. When defined, this variable specifies a
path and file, such as:

ODBCINI=/usr/cachesys/cacheodbc.ini
export ODBCINI

2. The .odbc.ini file in the directory specified by the user’s $HOME variable, if $HOME is defined and if .odbc.ini exists.

3. If $HOME is not defined, the .odbc.ini file in the “home” directory specified in the passwd file.

4. The file specified by the system-wide SYSODBCINI environment variable, if this is defined. When defined, this variable
specifies a path and file, such as:

SYSODBCINI=/usr/cachesys/cacheodbc.ini
export SYSODBCINI

5. The file odbc.ini file located in the default directory for building the iODBC driver manager (/etc/), so that the full path
and file name are /etc/odbc.ini.

To use a different odbc.ini file, delete or rename the Caché sample initialization file to allow the driver manager to search
the $HOME or /etc/odbc.ini paths. For example, go to <cache_sys>/bin and execute the following command:

12 Using Caché with ODBC

Using Caché as an ODBC Data Source on UNIX®

 mv libodbc.so libodbc.so.old

and then move your user-defined odbc.ini to etc/odbc, where the driver manager can find it.

3.4.3 Details of the ODBC Initialization File

The following is a sample initialization file for the Caché ODBC driver:

[ODBC Data Sources]
samples=samples

[samples]
Driver = /usr/cachesys/bin/libcacheodbc.so
Description = Cache ODBC driver
Host = localhost
Namespace = SAMPLES
UID = _SYSTEM
Password = SYS
Port = 1972
Protocol = TCP
Query Timeout = 1
Static Cursors = 0
Trace = off
TraceFile = iodbctrace.log
Authentication Method = 0
Security Level = 2
Service Principal Name = cache/localhost.domain.com

[Default]
Driver = /usr/cachesys/bin/libcacheodbc.so

This file includes the following variables:

• ODBC Data Sources — Lists all DSNs for the file. Each entry is of the form “DSNName=SectionHeading”, where
DSNName is the name specified by the client application and the SectionHeading specifies the heading under which
DSN information appears in this file.

• Driver — Specifies the location of the client driver file to use for this DSN. In this case this is the file libcacheodbc.so.

• Description — Contains an optional description of the DSN.

• Host — Specifies the IP address of the DSN in dotted decimal or dotted quad form, such as “127.0.0.1”.

• Namespace — Specifies the namespace for the DSN.

• UID — Specifies the username for logging into the DSN. By default, this is “_SYSTEM” and is not case-sensitive.

• Password — Specifies the password for the account specified by the UID entry. For the SYSTEM username, the
password is “SYS” and is case-sensitive.

Note: Because it is an ODBC standard to allow the storing of usernames and passwords in clear text, the sample
initialization file includes the username and password required to access the sample DSN. This is meant
merely as an example. A secure ODBC program prompts the user for this information and does not store it,
in which case it does not appear in the initialization file at all.

• Port — Specifies the port for connecting to the DSN. The default for Caché is 1972.

• Protocol — Specifies the protocol for connecting to the DSN. For Caché, this is always TCP.

• Query Timeout — If 1, causes the ODBC client driver to ignore the value of the ODBC query timeout setting.

The ODBC query timeout setting specifies how long a client should wait for a specific operation to finish. If an operation
does not finish within the specified time, it is automatically cancelled. The ODBC API provides functions to set this
timeout value programmatically. Some ODBC applications, however, hard-code this value. If you are using an ODBC
application that does not allow you to set the timeout value and the timeout value is too small, you can use the Disable
Query Timeout option to disable timeouts.

Using Caché with ODBC 13

Configuring the ODBC Initialization File

• Static Cursors — If 1, enables the Caché ODBC client driver’s static cursor support. If 0, then the cursor support provided
by the ODBC Cursor Library will be used. In general, this flag should be off (that is, set to 0) unless you have a specific
reason for not using the ODBC Cursor Library.

• Trace — Specifies whether the driver manager performs logging (“on”) or not (“off”); by default, logging is off (see
the chapter on “Logging” for more information).

• TraceFile — If logging is enabled by the Trace entry, specifies the location of the driver manager log file.

• Authentication Method — Specify 0 for password authentication or 1 for Kerberos.

• Security Level — Specify this if you use Kerberos for authentication. The allowed values are as follows:

– 1 = Kerberos

– 2 = Kerberos with packet integrity

– 3 = Kerberos with encryption

• Service Principal Name — Specify this if you use Kerberos for authentication. This should be the name of the service
principal that represents Caché.

For more information on Kerberos, see the Caché Security Administration Guide.

3.5 Custom Installation and Configuration for iODBC
If you want to build your own iODBC driver manager to operate under custom conditions, you can do so. The iODBC
executable and include files are in the directory install-dir/dev/odbc/redist/iodbc/. You need to set LD_LIBRARY_PATH
(LIBPATH on AIX®) and the include path in order to use these directories to build your applications.

If you want to customize the iODBC driver manager, you can also do that. Download the source from the iODBC Web
site (www.iodbc.org) and follow the instructions.

3.5.1 Configuring PHP with iODBC

You can use the ODBC functionality of Caché in conjunction with PHP (PHP: Hypertext Processor, which is a recursive
acronym). PHP is a scripting language that allows developers to create dynamically generated pages. The process is as
follows:

1. Get or have root privileges on the machine where you are performing the installation.

2. Install the iODBC driver manager. To do this:

a. Download the kit.

b. Perform a standard installation and configuration, as described earlier in this chapter.

c. Configure the driver manager for use with PHP as described in the iODBC+PHP HOWTO document on the
iODBC web site (www.iodbc.org).

Note that LD_LIBRARY_PATH (LIBPATH on AIX®) in the iODBC PHP example does not get set, due to security
protections in the default PHP configuration. Also, copy libiodbc.so to /usr/lib and run ldconfig to register it without
using LD_LIBRARY_PATH.

3. Download the PHP source kit from http://www.php.net and un-tar it.

4. Download the Apache HTTP server source kit from http://httpd.apache.org/ and un-tar it.

14 Using Caché with ODBC

Using Caché as an ODBC Data Source on UNIX®

http://www.iodbc.org
http://www.iodbc.org/dataspace/iodbc/wiki/iodbcWiki/IODBCPHPHOWTO
http://www.iodbc.org
http://www.php.net
http://httpd.apache.org/

5. Build PHP and install it.

6. Build the Apache HTTP server, install it, and start it.

7. Test PHP and the Web server using info.php in the Apache root directory, as specified in the Apache configuration file
(often httpd.conf). The URL for this is http://127.0.0.1/info.php.

8. Copy the Caché-specific initialization file, cacheodbc.ini to /etc/odbc.ini because this location functions better with the
Apache Web server if the $HOME environment variable is not defined.

9. Configure and test the libcacheodbc.so client driver file.

10. Copy the sample.php file from the Caché ODBC kit to Apache root directory (that is, the directory where info.php is
located), and tailor it to your machine for the location of Caché.

11. You can then run the sample.php program, which uses the Caché SAMPLES namespace, by pointing your browser to
http://127.0.0.1/sample.php

3.6 Testing the Caché ODBC Configuration
You should test the ODBC configuration to make sure that the Caché ODBC driver and the driver manager have been
installed and configured correctly.

To test the ODBC configuration, you can use the following tools:

• The select test program (described in the following section), which tests the Caché ODBC driver. You indicate a DSN
to use and a SELECT statement to execute.

• The gateway test program (see “Using the UNIX® Gateway Test Program” in the chapter on SQL Gateway), which
tests access to Caché via the Caché SQL Gateway.

• Tests provided with the unixODBC driver manager (these are not documented here).

3.6.1 Using the Select Test Program

The Caché select test program consists of files in the directory install-dir/dev/odbc/samples/select

• select.sh — The shell script that runs the test. This script defines the ODBCINI environment variable (so that the ODBC
initialization file can be found), sets up the search path to find the driver manager, and executes the following SELECT
statement:

select * from sample.person where ID < 11

It then executes the select program using a DSN named samples. This DSN is defined in the sample ODBC initial-
ization file and points to the Caché SAMPLES namespace.

• select — The executable built from select.c. This is a sample ODBC program already linked with the iODBC driver
manager.

• select.c — This is the source code for the select program. This source is provided in case you want to make change
and compile and link it yourself.

3.6.1.1 Modifying the Shell Script for the SELECT Test

You may need to modify the shell script (select.sh), depending on your configuration:

Using Caché with ODBC 15

Testing the Caché ODBC Configuration

• The shell script is designed to work with Caché login or unauthenticated modes and in Minimal or Normal security
installations. It may need modification in other cases.

• By default, the shell script sets up the search paths to find the iODBC driver manager. You would change this if you
use the unixODBC driver manager or if you install iODBC in a non-default way.

• The script also assumes that the ODBC initialization file is in the install-dir/mgr directory. You should adjust the script
as needed to find the ODBC initialization file on your system.

3.6.1.2 Using the SELECT Test

To use the test program:

1. Go to the directory install-dir/dev/odbc/samples/select.

2. Execute the test script by typing the following:

./select dsn

where dsn is the name of the DSN that you want to use in the test.

This test works as follows:

1. The shell script calls the select program.

2. The select program is linked to a driver manager, which reads the ODBC initialization file to get connection information
for the given DSN.

3. The driver manager determines the location of the Caché ODBC client driver and loads it into memory.

4. The client driver then establishes a TCP/IP connection to the port specified in the ODBC initialization file and is con-
nected to the given Caché namespace using the DSN definition from the ODBC initialization file.

5. Once the connection is established, the client application executes your SELECT statement against the Caché database.

16 Using Caché with ODBC

Using Caché as an ODBC Data Source on UNIX®

4
Using the Caché SQL Gateway with ODBC

The Caché SQL Gateway allows Caché to access external databases via both JDBC and ODBC. For a detailed description
of the SQL Gateway, see the chapter on Using the Caché SQL Gateway in Using Caché SQL.

This chapter discusses the following topics:

• Creating ODBC SQL Gateway Connections for External Sources — describes how to create an ODBC logical connection
definition for the SQL Gateway.

• Using the ODBC SQL Gateway Programmatically — discusses how to access an ODBC-compliant database program-
matically. This option provides more control over the connection than the setup provided by the standard SQL Gateway
wizards.

Note: Setting the Shared Library Path on UNIX® Systems
When using third-party shared libraries on a UNIX® system, LD_LIBRARY_PATH must be defined by setting
the Caché LibPath parameter (see “LibPath” in the Caché Parameter File Reference). This is a security measure
to prevent unprivileged users from changing the path.

4.1 Creating ODBC SQL Gateway Connections for External
Sources
Caché maintains a list of SQL Gateway connection definitions, which are logical names for connections to external data
sources. Each connection definition consists of a logical name (for use within Caché), information on connecting to the
data source, and a username and password to use when establishing the connection. These connections are stored in the
table %Library.sys_SQLConnection. You can export data from this table and import it into another Caché instance.

4.1.1 Creating an ODBC SQL Gateway Connection

To define a gateway connection for an ODBC-compliant data source, perform the following steps:

1. Define an ODBC data source name (DSN) for the external database. See the documentation for the external database
for information on how to do this.

2. In the Management Portal, go to the [System Administration] > [Configuration] > [Connectivity] > [SQL Gateway Connec-

tions] page (full menu path [System Administration] > [Configuration] > [Connectivity] > [SQL Gateway Connections]).

3. Click Create New Connection.

Using Caché with ODBC 17

GSQL_gateway
RCPF_libpath

4. On the Gateway Connection page, enter or choose values for the following fields:

• For Type, choose ODBC.

• Connection Name — Specify an identifier for the connection, for use within Caché.

• Select an existing DSN — Choose the DSN that you previously created. You must use a DSN, since the ODBC
SQL Gateway does not support connections without a DSN.

• User — Specify the name for the account to serve as the default for establishing connections, if needed.

• Password — Specify the password associated with the default account.

For example, a typical connection might use the following values:

ValueSetting

ODBCType

ConnectionODBC1Connection Name

MyAccessPlaygroundSelect an existing DSN

DBOwnerUser

DBPasswordPassword

For the other options, see “Implementation-specific Options.”

5. Optionally test if the values are valid. To do so, click the Test Connection button. The screen will display a message
indicating whether the values you have entered in the previous step allow for a valid connection.

6. To create the named connection, click Save.

7. Click Close.

4.1.2 Creating an ODBC Connection to Caché via the SQL Gateway

Caché provides ODBC drivers and thus can be used as an ODBC data source. That is, a Caché instance can connect to
itself or to another Caché instance via ODBC and the SQL Gateway. Specifically, the connection is from a namespace in
one Caché to a namespace in the other Caché. To connect in this way, you need the same information that you need for
any other external database: the connection details for the database driver that you want to use. This section provides the
basic information.

4.1.2.1 Connecting to Caché as an ODBC Data Source

To configure a Caché instance (Caché_A) to use another Caché instance (Caché_B) as an ODBC data source, do the fol-
lowing:

1. On the machine that is running Caché_A, create a DSN that represents the namespace in Caché_B that you want to
use. (See “Using Caché as an ODBC Data Source on Windows” or “Using Caché as an ODBC Data Source on
UNIX®” for OS-specific instructions on how to create a DSN.)

Tip: If Caché_B is installed on this machine, a suitable DSN might already be available, because when you install
Caché, the installer automatically creates DSNs.

2. Within Caché_A, use the SQL Gateway to create an ODBC connection that uses that DSN. Provide the following
details:

• For Type, choose ODBC.

18 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

• Connection Name — Specify an identifier for the connection, for use within Caché_A.

• Select an existing DSN — Choose the DSN that you previously created for Caché_B.

For example, a typical connection might use the following values:

ValueSetting

ODBCType

Cache2SamplesConnection Name

Cache2SamplesSelect an existing DSN

Tip: You do not need to specify User and Password because that information is part of the DSN itself.

3. Click Save.

4. Click Close.

4.1.3 Implementation-specific Options

Before you define an SQL gateway connection, you should make sure that you understand the requirements of the external
database and of the database driver, because these requirements affect how you define the connection. The following options
do not apply to all driver implementations.

Legacy Outer Join

The Enable legacy outer join syntax (Sybase) option controls whether the SQL gateway connection will enable
you use to use legacy outer joins. Legacy outer joins use SQL syntax that predates the SQL-92 standard. To find
out whether the external database supports such joins, consult the documentation for that database.

Needs Long Data Length

The Needs long data length option controls how the SQL gateway connection will bind data. The value of this
option should agree with the SQL_NEED_LONG_DATA_LEN setting of the database driver. To find the value of
this setting, use the ODBC SQLGetInfo function. If SQL_NEED_LONG_DATA_LEN equals Y, then select the
Needs long data length option; otherwise clear it.

Supports Unicode Streams

The Supports Unicode streams option controls whether the SQL gateway connection supports Unicode data in
streams, which are fields of type LONGVARCHAR or LONGVARBINARY.

• Clear this check box for Sybase. If you are using a Sybase database, all fields you access via the SQL gateway
should include only UTF-8 data.

• Select this check box for other databases.

Do Not Use Delimited Identifiers by Default

The Do not use delimited identifiers by default option controls the format of identifiers in the generated routines.

Select this check box if you are using a database that does not support delimited SQL identifiers. This currently
includes the following databases:

• Sybase

• Informix

Using Caché with ODBC 19

Creating ODBC SQL Gateway Connections for External Sources

• MS SQL Server

Clear the check box if you are using any other database. All SQL identifiers will be delimited.

Use COALESCE

The Use COALESCE option controls how a query is handled when it includes a parameter (?), and it has an effect
only when a query parameter equals null.

• If you do not select Use COALESCE and if a query parameter equals null, the query returns only records that
have null for the corresponding value. For example, consider a query of the following form:

SELECT ID, Name from LinkedTables.Table WHERE Name %STARTSWITH ?

If the provided parameter is null, the query would return only rows with null-valued names.

• If you select Use COALESCE, the query wraps each parameter within a COALESCE function call, which controls
how null values are handled.

Then, if a query parameter equals null, the query essentially treats the parameter as a wildcard. In the previous
example, if the provided parameter is null, this query returns all rows, which is consistent with the behavior
of typical ODBC clients.

Whether you select this option depends on your preferences and on whether the external database supports the
COALESCE function.

To find out whether the external database supports the COALESCE function, consult the documentation for that
database.

Conversion in Composite Row IDs

The Conversion in composite Row IDs option controls how non-character values are treated when forming a com-
posite ID. Choose an option that is supported by your database:

• Do not convert non-character values — This option performs no conversion. This option is suitable only if
your database supports concatenating non-character values to character values.

• Use CAST — This option uses CAST to convert non-character values to character values.

• Use {fn convert ...} — This option uses {fn convert ...} to convert non-character values to character
values.

In all cases, the IDs are concatenated with || between the IDs (or transformed IDs).

Consult the documentation for the external database to find out which option or options it supports.

4.1.4 Using the UNIX® ODBC SQL Gateway Test Program

Within a full UNIX® Caché installation, you can use a special program to test gateway access from Caché.

Note: The test program uses the default 8-bit iODBC–compliant drivers (libcacheodbc.so and cgate.so). See “Key File
Names” in the section on “Using Caché as an ODBC Data Source on UNIX®” for a complete list of the Caché
ODBC client drivers and Caché SQL Gateway drivers available for supported UNIX® platforms.

The gateway test program consists of files in the directory install-dir/dev/odbc/samples/sqlgateway

• gatewaytest.sh — The shell script that runs the test. This script defines the ODBCINI environment variable (so that
the ODBC initialization file can be found), sets up the search path to find the driver manager, and then accesses a DSN

20 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

named samples, and executes a routine. This DSN is defined in the sample ODBC initialization file and points to the
Caché SAMPLES namespace.

You may need to modify the shell script, depending on your configuration. See the section “Modifying the Shell Script
for the SELECT Test” for details.

• SQLGatewayTest.ro — A routine that makes the callout to the Caché SAMPLES namespace using iODBC and the
Caché ODBC client driver libcacheodbc.so.

To use the test program:

1. Go to install-dir/dev/odbc/samples/

2. Execute the test script by typing the following:

./sqlgateway/gatewaytest.sh

The gatewaytest.sh script does the following:

1. It starts a Caché session and runs the routine SQLGatewayTest in the SAMPLES namespace.

2. This application routine then loads the default Caché SQL Gateway driver, cgate.so, which is linked against the iODBC
driver manager.

3. The driver manager loads the client driver using information from the ODBC initialization file.

4. The client driver then establishes a TCP/IP connection to port 1972 and is connected to the Caché SAMPLES namespace
using the DSN definition from the ODBC initialization file.

5. The routine executes the following query:

SELECT * FROM SAMPLE.PERSON

6. The routine then fetches the first ten rows of the result set.

The difference between this example and the simple select test is that in gatewaytest.sh, the Caché process making the initial
call is the client application. Typically, a Gateway call from Caché calls the DSN of another vendor’s database.

4.2 Using the ODBC SQL Gateway Programmatically
If you require options that are not provided by the standard SQL Gateway wizards, you can use the %SQLGatewayConnection

class to access an ODBC-compliant database programmatically. You can either execute a dynamic query (obtaining a result
set) or you can perform low-level ODBC programming.

To use this section, you should have some experience with ODBC — this book does not provide details on the ODBC
functions. You should also have a basic familiarity with ObjectScript and the Atelier IDE.

If you encounter any problems, you can monitor the gateway by enabling logging for both Caché and ODBC (as described
in Logging).

4.2.1 Creating and Using an External Data Set

To create and use a data set that queries an external database, do the following:

1. Create an instance of %SQLGatewayConnection via the %New method.

2. Call the Connect method of that instance, passing arguments that specify the ODBC data source name, as well as the
username and password that are needed to log into that source, if necessary.

Using Caché with ODBC 21

Using the ODBC SQL Gateway Programmatically

The Connect method has the following signature:

method Connect(dsn, usr, pwd, timeout) returns %Status

Here dsn is the DSN for the data source, usr is a user who can log into that data source, pwd is the corresponding
password, and timeout specifies how long to wait for a connection.

For more information on connecting, see “Managing the Connection” in the section on Performing ODBC Programming.

3. Create an instance of %ResultSet via the %New method, providing the string argument "%DynamicQueryGW:SQLGW".

Note: Notice that this is slightly different from the argument that you use with a typical dynamic query
("%DynamicQuery:SQL").

4. Invoke the Prepare method of the data set. The first argument should be a string that consists of a SQL query, the
second argument should be omitted, and the third argument should be the instance of %SQLGatewayConnection.

This method returns a status, which should be checked.

5. Call the Execute method of the data set, optionally providing any arguments in the order expected by the query. This
method returns a status, which should be checked.

To use the data set, you generally examine it one row at a time. You use methods of %ResultSet to retrieve information
such as the value in a given column.

To advance to the next row, you use the Next method; typically you iterate through all the rows until you reach the end,
when Next returns 0. The Next method also returns 0 if an error occurs.

An example follows:

ClassMethod SelectAndWrite() as %Status
{
 Set conn=##class(%SQLGatewayConnection).%New()
 Set sc=conn.Connect("AccessPlayground","","")
 If $$$ISERR(sc) do $System.Status.DisplayError(sc) quit

 Set res=##class(%ResultSet).%New("%DynamicQueryGW:SQLGW")
 Set sc=res.Prepare("SELECT * FROM PEOPLE",,conn)
 If $$$ISERR(sc) do $System.Status.DisplayError(sc) quit

 Set sc=res.Execute()
 If $$$ISERR(sc) do $System.Status.DisplayError(sc) quit

 While res.Next()
 { Write !,res.GetData(1)," ",res.GetData(2)," ",res.GetData(3)
 }
 Set sc=conn.Disconnect()
 Quit sc
}

For more information on %ResultSet, see the chapter “Dynamic SQL” in Using Caché SQL. Also see the class documen-
tation for %ResultSet.

4.2.2 Performing ODBC Programming

If %ResultSet does not provide enough control, you can perform ODBC programming. The %SQLGatewayConnection class
provides a set of methods that correspond to ODBC functions, as well as other utility functions. With this class, you can
connect to and use an ODBC-compliant database and then perform low-level ODBC programming. The overall procedure
is as follows:

1. Create an instance of %SQLGatewayConnection via the %New method.

2. Call the Connect method of that instance, passing arguments that specify the ODBC data source name, as well as the
username and password that are needed to log into that source, if necessary.

For more information on connecting, see “Managing the Connection.”

22 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

GSQL_dynsql
GSQL

3. Call the AllocateStatement method and receive (by reference) a statement handle.

4. Call other methods of the gateway instance, using that statement handle as an argument. Most of these methods call
ODBC functions.

This section discusses the following:

• Null Values and Empty Strings — differences in how Caché and SQL represent null values and empty strings.

• Checking the Status — how to check the status of your activities

• Managing the Connection — properties and methods for managing the connection to the external data source.

• Basic Methods — the basic methods that this class provides as an interface for ODBC functions.

• Getting Information about the Shared Library — how to get information about the currently loaded shared library (for
the Caché ODBC SQL Gateway).

• Unloading the Shared Library — how to unload this shared library

• Other Methods — how to use some other methods of the %SQLGatewayConnection class.

• Example — a simple example that executes a query.

Note: It is assumed that you are familiar with ODBC programming.

4.2.2.1 Null Values and Empty Strings

When you use the methods described in this chapter, remember that Caché and SQL have the following important differences:

• In SQL, "" represents an empty string.

• In Caché, "" equals null.

• In Caché, $char(0) equals an empty string.

4.2.2.2 Checking the Status

Most of the methods of %SQLGatewayConnection return a status, which you should check. Status information is also
available via the following properties and methods:

sqlcode property (%Integer)

Contains the SQL code return by the last call (if any).

GatewayStatus property (%Integer)

Indicates the status of the last call. This is one of the following:

• 0 - success

• -1 - SQL error

• -1000 - critical error

GetLastSQLCode() method

method GetLastSQLCode() returns %Integer

Returns an SQL code for the last call if this call does not return an SQL code (for example, if you used
SQLGetData).

Using Caché with ODBC 23

Using the ODBC SQL Gateway Programmatically

GatewayStatusGet() method

method GatewayStatusGet() returns %Integer

Returns an error code for the last call. It does not initialize the error code and can be called multiple times. See
the previous notes for the GatewayStatus property.

4.2.2.3 Managing the Connection

The %SQLGatewayConnection class provides properties and methods that you can use to manage the connection to the
external data source.

DSN property (%String)

Data source name of the ODBC-compliant data source to which you want to connect.

User property (%String)

Username to log into the data source.

Password property (%String)

Associated password.

ConnectionHandle property (%Binary)

The current connection handle to the ODBC-compliant data source.

Connect() method

method Connect(dsn, usr, pwd, timeout) returns %Status

Establishes a connection to a DSN. If username and password are both empty, this method calls the ODBC function
SQLDriverConnect. If that call is unsuccessful or username/password are specified, the method calls the ODBC
function SQLConnect.

If the timeout parameter is not 0, SQLSetConnectAttr is first called to set SQL_ATTR_LOGIN_TIMEOUT.

GetConnection() method

method GetConnection(conn, timeout) returns %Status

Establishes a connection. This method uses an entry from the Caché configuration to determine the DSN, username,
and password.

SetConnectOption() method

method SetConnectOption(opt, val) returns %Status

Invokes the ODBC function SQLSetConnectAttr. Only integer values are supported. Integer values for the opt
argument may be taken from the sql.h and sqlext.h header files.

Disconnect() method

method Disconnect() returns %Status

Closes the connection.

24 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

4.2.2.4 Basic Methods

The following table lists the supported ODBC functions and indicates which methods access those functions. For details
on the method arguments, actions, and return values, see the class reference for %SQLGatewayConnection.

Table 4–1: Calling ODBC Functions from %SQLGatewayConnection

Method That Calls This FunctionODBC Function

AllocateStatement()SQLAllocHandle

BindParameter()SQLBindParameter

CloseCursor()SQLCloseCursor

DescribeCols()SQLColAttribute

Columns()SQLColumns

ColumnsW()SQLColumnsW

DescribeCols()SQLDescribeCols

DescribeParam()SQLDescribeParam

GetErrorList()SQLDiagRec

Transact()SQLEndTran

Execute()SQLExecute

Fetch()SQLFetch

DropStatement()SQLFreeHandle

UnbindParameters()SQLFreeStmt

GetData()SQLGetData

GetDataW()SQLGetDataW

GetInfo()SQLGetInfo

MoreResults()SQLMoreResults

DescribeParameters()SQLNumParams

ParamData()SQLParamData

Prepare()SQLPrepare

PrepareW()SQLPrepareW

PrimaryKeys()SQLPrimaryKeys

PrimaryKeysW()SQLPrimaryKeys

ProcedureColumns()SQLProcedureColumns

ProcedureColumnsW()SQLProcedureColumnsW

Procedures()SQLProcedures

PutData()SQLPutData

PutDataW()SQLPutDataW

RowCount()SQLRowCount

Using Caché with ODBC 25

Using the ODBC SQL Gateway Programmatically

Method That Calls This FunctionODBC Function

SetConnectOption()SQLSetConnectAttr

SetStmtOption()SQLSetStmtAttr

SpecialColumns()SQLSpecialColumns

SpecialColumnsW()SQLSpecialColumnsW

Tables()SQLTables

TablesW()SQLTablesW

4.2.2.5 Getting Information about the Shared Library

The %SQLGatewayConnection class provides properties and methods that you can call to get information about the shared
library used by the ODBC SQL Gateway.

Note: The phrase shared library refers in general to the file or library that comprises the ODBC SQL Gateway. On
Windows platforms, this is a file with the extension .dll, but the filename is different on other platforms (see “Key
File Names” in the section on “Using Caché as an ODBC Data Source on UNIX®” for a complete list of Caché
SQL Gateway shared objects available for supported UNIX® platforms). The properties and methods described
here apply in all cases.

DLLHandle property (%Binary)

Handle for the shared library, as currently in use. This is set when you connect.

DLLName property (%String)

Name of the shared library currently in use. This is set when you connect.

GetGTWVersion() method

method GetGTWVersion() returns %Integer

Returns the current version of the shared library.

GetUV() method

method GetUV(ByRef infoval) returns %Status

Returns (by reference) whether the shared library was built as Unicode. Note that this method always returns a
status of $$$OK.

4.2.2.6 Unloading the Shared Library

The %SQLGatewayConnection class provides a method that you can use to unload the shared library for the ODBC SQL
Gateway.

UnloadDLL() method

method UnloadDLL() returns %Status

Unloads the shared library from the process memory.

26 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

4.2.2.7 Other Methods

The %SQLGatewayConnection class provides other utility methods:

FetchRows()

method FetchRows(hstmt, Output rlist As %List, nrows As %Integer) returns %Status

Returns (by reference) a specified number of rows for the given connection handle. Here hstmt is the connection
handle, returned (by reference) from AllocateStatement(). Also, rlist is the returned list of rows; this is a Caché
$list. Each item in the list contains a row. If there is no data (SQL_CODE = 100), fetching is assumed to be suc-
cessful but the return list is empty.

CAUTION: This method is primarily useful for testing, and it truncates character fields up to 120 characters
so that more fields would fit in a row. Use GetData() instead when you need non-truncated data.

GetOneRow()

method GetOneRow(hstmt, ByRef row) returns %Status

Returns (by reference) the next row for the given connection handle. Here hstmt is the connection handle, returned
(by reference) from AllocateStatement(). Also, row is the returned row, a Caché $list. Each item in the list contains
a field. If there is no data (SQL_CODE = 100), fetching is assumed to be successful but the return list is empty.

CAUTION: This method is primarily useful for testing, and it truncates character fields up to 120 characters
so that more fields would fit in a row. Use GetData() instead when you need non-truncated data.

GetParameter()

method GetParameter(hstmt, pnbr, ByRef value) returns %Status

Returns (by reference) the current value of the indicated parameter. Here hstmt is the connection handle returned
(by reference) from AllocateStatement() and pnbr is the ordinal number of the parameter.

SetParameter()

method SetParameter(hstmt, pvalue, pnbr) returns %Status

Sets the value of a previously bound parameter. Here hstmt is the connection handle returned (by reference) from
AllocateStatement(), pvalue is the value to use, and pnbr is the ordinal number of the parameter. The parameters
are stored in $list format. If the allocated buffer is not sufficient, a new buffer will be allocated.

4.2.2.8 Example

The following shows a simple example that executes a query:

Using Caché with ODBC 27

Using the ODBC SQL Gateway Programmatically

ClassMethod ExecuteQuery(mTable As %String)
{
 set mDSN="DSNtest"
 set mUsrName="SYSDBA"
 set mUsrPwd="masterkey"

 set mx=##class(%SQLGatewayConnection).%New()
 set status=mx.Connect(mDSN,mUsrName,mUsrPwd)
 if $$$ISERR(status) do $System.Status.DisplayError(status) quit $$$ERROR()
 set hstmt=""
 set status=mx.AllocateStatement(.hstmt)
 if $$$ISERR(status) do $System.Status.DisplayError(status) quit $$$ERROR()
 set status=mx.Prepare(hstmt,"SELECT * FROM "_mTable)
 if $$$ISERR(status) do $System.Status.DisplayError(status) quit $$$ERROR()
 set status=mx.Execute(hstmt)
 if $$$ISERR(status) do $System.Status.DisplayError(status) quit $$$ERROR()
 quit mx.Disconnect()
}

28 Using Caché with ODBC

Using the Caché SQL Gateway with ODBC

5
Logging

This chapter describes how to enable logging when you need to perform troubleshooting. It discusses the following topics:

• Enabling logging for ODBC on Windows

• Enabling logging for ODBC on UNIX®

CAUTION: Enable logging only when you need to perform troubleshooting. You should not enable logging during
normal operation, because it will dramatically slow down performance.

When using the SQL Gateway (as discussed in “Using the Caché SQL Gateway with ODBC”), be sure
to consult the documentation for the remote database to which you are connecting.

5.1 Enabling Logging for ODBC on Windows
On Windows, to enable logging for an ODBC data source, you generally use the ODBC Data Source Administrator screen
(within the Windows Control Panel). To access this screen, open the Windows Control Panel, open the Administrative Tools

subpanel, and then double-click Data Sources (ODBC). Or open the Windows Control Panel and then double-click ODBC

Data Sources.

Then do the following:

• To enable logging for the client driver, find the definition of the DSN that you want to log. Different kinds of DSN
are on different tabs. Click the appropriate tab. Look for a check box labeled ODBC Log (or Log or variations) and
select it.

• To enable logging for the driver manager, click the Tracing tab and then click the Start Tracing Now button.

The Log File Path field determines the location of the trace file.

The details may vary depending on your version of Windows as well as the client driver that you use for this DSN.

Note: The default location of the CacheODBC.log file varies depending on the version of Windows. For Windows Vista
and higher, the log will be created in the Public folder under %PUBLIC%\Logs (default path C:\Users\Public\Logs).
This folder is accessible by all users and allows just one location for the log to be created. For earlier versions,
the log is under %WINDIR% (the C:\Windows or C:\WinNT folder, depending on your version of Windows).

You can change the name and location of the log file by setting the CACHEODBCTRACEFILE environment
variable (see “Caché ODBC Environment Variables”).

Using Caché with ODBC 29

5.2 Enabling Logging for ODBC on UNIX®
On UNIX®, enable logging for ODBC as follows:

• To enable logging for the client driver, use the CACHEODBCTRACE environment variable (as described in the
chapter “ODBC Environment Variables”). Also configure the ODBC initialization file.

• To enable logging for the driver manager, set the Trace entry in the ODBC initialization file. In the same file, the
TraceFile entry specifies the name of the log file to create. For information on the initialization file, see “Configuring
the ODBC Initialization File.”

Tip: If you enable logging but the log file is not updated, either you might not have privileges to write to the file or the
client application may have loaded the DLL before you enabled logging. In the latter case, stop and restart the client
application to force it to reload the DLL and get the logging flag.

30 Using Caché with ODBC

Logging

6
Caché ODBC Environment Variables

This chapter describes the environment variables that control the Caché ODBC client driver. Typically you use these only
for debugging or diagnostics.

• CACHEODBCDEFTIMEOUT

• CACHEODBCPID

• CACHEODBCTRACE (UNIX® only)

• CACHEODBCTRACEFILE

• CACHEODBCTRACETHREADS

6.1 CACHEODBCDEFTIMEOUT
This variable allows you to specify the duration of a timeout for a default login. Its value is in seconds.

6.2 CACHEODBCPID
This boolean variable enables the automatic appending of the process ID number to the log file name. A value of 1 enables
appending and a value of 0 disables it. By default, appending is off.

With CACHEODBCPID enabled, if the base log file is CacheODBC.log and is in your current directory, then the process
ID of 21933 generates a full log file name of “CacheODBC.log.21933”.

Both CACHEODBCPID and CACHEODBCTRACEFILE affect the file name. For example, on Windows if you use
CACHEODBCTRACEFILE to set the base file name of the log file (for instance, to C:/home/mylogs/mylog.txt and enable
CACHEODBCPID, then log file names will be of the form C:/home/mylogs/mylog.txt.21965.

6.3 CACHEODBCTRACE (UNIX® Only)
This boolean variable enables client driver logging. The default name for this file is CacheODBC.log.

For more information on logging, see the chapter “Logging.”

Using Caché with ODBC 31

6.4 CACHEODBCTRACEFILE
This variable specifies the location and name of the log file. This can be useful for placing the log file in a unique directory
or giving it a unique name. The default location of the log file is as follows:

• For UNIX®, the log is generated in the current directory by default.

• For Windows platforms other than Vista, the default location for the log file is %SYSTEMROOT%.

• For Vista, the default location for the log file is %PUBLIC%\Logs\CacheODBC.log. This directory is accessible by all
users and allows just one location for the log to be created.

6.4.1 Special Steps for Windows 2003

There are special requirements for setting up the trace file on Windows 2003, specifically for the situation where ODBC
is being run by the Web server process. In addition to ensuring that the ODBC client has permission to write to the appro-
priate logging directory, you need to perform the following procedure:

1. Specify CACHEODBCTRACEFILE as C:\ODBC_Logs\CacheODBC.log.

2. When specifying the log file information, you also have the option of defining the CACHEODBCPID environment
variable to include PID information. To do this, create another new variable with a name of CACHEODBCPID and a
value of 1.

3. Create the directory C:\ODBC_Logs and grant universal write access to this directory.

4. Activate ODBC logging by selecting the ODBC Log check box in the DSN setup screen.

6.5 CACHEODBCTRACETHREADS
This variable controls whether the log also includes threading information. If the variable is 1, threading information is
included; if it is 0, threading information is not included.

It can be useful to enable this additional kind of logging, if you need to debug a threaded application. However, it adds
many extra lines to the log for most ODBC applications.

32 Using Caché with ODBC

Caché ODBC Environment Variables

	Table of Contents
	About This Book
	1 Overview
	1.1 Installation
	1.2 ODBC Driver Support
	1.3 An Overview of ODBC
	1.3.1 ODBC Connection Details

	2 Using Caché as an ODBC Data Source on Windows
	2.1 Performing a Stand-alone Installation
	2.2 Creating a DSN by Using the Control Panel
	2.3 Creating a File DSN

	3 Using Caché as an ODBC Data Source on UNIX®
	3.1 Performing a Stand-alone Installation
	3.2 Key File Names
	3.3 Troubleshooting for Shared Object Dependencies
	3.4 Configuring the ODBC Initialization File
	3.4.1 Introduction to the UNIX® ODBC Initialization File
	3.4.2 Name and Location of the Initialization File
	3.4.3 Details of the ODBC Initialization File

	3.5 Custom Installation and Configuration for iODBC
	3.5.1 Configuring PHP with iODBC

	3.6 Testing the Caché ODBC Configuration
	3.6.1 Using the Select Test Program

	4 Using the Caché SQL Gateway with ODBC
	4.1 Creating ODBC SQL Gateway Connections for External Sources
	4.1.1 Creating an ODBC SQL Gateway Connection
	4.1.2 Creating an ODBC Connection to Caché via the SQL Gateway
	4.1.3 Implementation-specific Options
	4.1.4 Using the UNIX® ODBC SQL Gateway Test Program

	4.2 Using the ODBC SQL Gateway Programmatically
	4.2.1 Creating and Using an External Data Set
	4.2.2 Performing ODBC Programming

	5 Logging
	5.1 Enabling Logging for ODBC on Windows
	5.2 Enabling Logging for ODBC on UNIX®

	6 Caché ODBC Environment Variables
	6.1 CACHEODBCDEFTIMEOUT
	6.2 CACHEODBCPID
	6.3 CACHEODBCTRACE (UNIX® Only)
	6.4 CACHEODBCTRACEFILE
	6.4.1 Special Steps for Windows 2003

	6.5 CACHEODBCTRACETHREADS

	Index

