InterSystems-

Ensemble

Using the Object Gateway for
NET with Ensemble

\ersion 2017.2
2020-06-26

Using the Object Gateway for .NET with Ensemble
Ensemble Version 2017.2 2020-06-26
Copyright © 2020 InterSystems Corporation

All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
1 NET GateWway ArChITECIUIE ...oeiuieeeireeiereee ettt bbb 3
2 Using the .NET Gateway in @ ProducCtion ... seere e 5
2.1 Creating @ BUSINESS SEIVICE ...cuviiiiiiieiesiese s e seesteee e e se st sttt st st sae e enaeneeneens 5
2.1.1 Business Service Settings for the .NET GateWayccccevererrereieereereeiesieseseseseeseeseenns 6

2.2 Calling Business Service MEthOUScceciiieeiiiiee it e e aenreens 7
2.2.1 StartGateway() MEthOUccociriiiiiie e e 7

2.2.2 ConnectGateway () IMELNOMcviiiiiiiiieireis s 7

2.2.3 StopGateway() MENOUcciriiiriiirieiiet bbb 8

2.3 Creating a BUSINESS OPEIAtiONvvvieiierierierisesiesiesieeeseeeesesese e sreseesresreseeseesseseeseensenseseeneens 8

W Or: L T aTo AN o LY =11 g oo SN 8
2.4.1 %C0oNNECE() METNOUvieieceiee et sre e e e 9

2.4.2 %DISCONNECE() METNOMocviiviieiiiie e e e 9

2.4.3 %ShutdowWN() MELNOMcoiieiiiiieiiiie bbb 9

2.4.4 9%IMPOrt() MELNOMc.oiviiiiciiiieee bbbt 9

2.4.5 %EXPressIMport() Methodcccvcviiieiereeeeee e 10

2.4.6 Y%GEtAIICIASSES(Y)METNOMocvvcvreieiecee s s seens 10

2.5 Using the Command PrOMPLcouoiiiiiiiniiisise ettt nee e 10

2.6 Using the .NET GateWay WIZAITccccurireiiiineie et 11

2.7 EITON CRECKING ..vtteteiteititeeete sttt bttt b etk bbbt e 11

2.8 TrOUDIESNOOTING ...ttt bbbt b et b et eb et b ettt b e e ebe e 12

Using the Object Gateway for .NET with Ensemble

About This Book

This book explains how to enable easy interoperation between Ensemble and Microsoft .NET Framework components.
The Object Gateway for .NET can instantiate an external .NET object and manipulate it as if it were a native object within
Ensemble. This book uses the shorter term, .NET Gateway.

This book contains the following chapters:
* .NET Gateway Architecture
e Using the .NET Gateway in a Production

For a detailed outline, see the table of contents.
The following books provide related information:
« Ensemble Best Practices describes best practices for organizing and developing Ensemble productions.

» Developing Ensemble Productions explains how to perform the development tasks related to creating an Ensemble
production.

» Configuring Ensemble Productions describes how to configure the settings for Ensemble productions, business hosts,
and adapters. It provides details on settings not discussed in this book.

e Using the Caché Gateway for .NET explains how to instantiate an external .NET object and manipulate it as if it were
a native object within Caché.

For general information, see the InterSystems Documentation Guide.

Using the Object Gateway for .NET with Ensemble 1

NET Gateway Architecture

The Object Gateway for .NET provides an easy way for Ensemble to interoperate with Microsoft .NET Framework com-
ponents. The .NET Gateway can instantiate an external .NET object and manipulate it as if it were a native object within
Ensemble.

The external .NET object is represented within Ensemble by a “wrapper” or “proxy” class. The proxy object appears and
behaves just like any other Ensemble object, but it has the capability to issue method calls out to the Common Language
Runtime (CLR), either locally or remotely over a TCP/IP connection. Any method call on the proxy object triggers the
appropriate class method inside the CLR.

You can use the .NET Gateway to create proxy classes for custom .NET components. However, the most powerful feature
of the .NET Gateway is that it easily creates proxy mappings to entire .NET application interface specifications, such as
ADO, Remoting, ASP.Net, etc. Ensemble can then use these applications without having to generate new proxy classes.

Note: The generated proxy class is an Ensemble class. You can access it with code written in either Caché Basic or
ObjectScript. The examples in this document use ObjectScript.

In general, the best approach to using the .NET Gateway is to build a small wrapper class that exposes just the functionality
you want and then create a proxy for this wrapper. This makes the API between Ensemble and the .NET framework very
clean and eliminates potential issues dealing with how to map more esoteric features to a proxy object.

The Using the Caché Gateway for .NET guide provides complete technical details of using the .NET Gateway. The next
chapter shows how to specifically use the .NET Gateway in Ensemble.

Using the Object Gateway for .NET with Ensemble 3

Using the .NET Gateway in a Production

There are different ways to invoke the basic .NET Gateway Start, Connect, Import, Disconnect, and Stop commands.
Practical approaches to this functionality include:

e Creating a Business Service

» Calling Business Service Methods
» Creating a Business Operation

e Calling API Methods

* Using the Command Prompt

* Using the .NET Gateway Wizard

This chapter describes each approach and explains how to work with it. Related topics include:
e Error Checking

» Troubleshooting

2.1 Creating a Business Service

While it is possible to start the .NET Gateway server from the command prompt, the simplest way to use the .NET Gateway
with an Ensemble production is to configure the EnsLib.DotNetGateway.Service class as a business service within the pro-
duction. You can only do this if the .NET Gateway server is on the local machine where you are running Ensemble.

Otherwise, you need to start the .NET Gateway server from the command prompt. For details, see the Using the Command
Prompt section.

To configure the EnsLib.DotNetGateway.Service class as a business service:
1. From the Management Portal main menu, choose Productions.

Find your production in the list and click Configure beside its name.
Click Add Service to start the Business Service Wizard.

Click other and in the ServiceClass list, click EnsLib.DotNetGateway.Service.

a & w DN

Click oK to display the updated production diagram that now contains the .NET Gateway business service. Click the
EnsLib.DotNetGateway.Service box to configure it.

Using the Object Gateway for .NET with Ensemble 5

Using the .NET Gateway in a Production

The wizard fills in the associated .NET Gateway adapter class. The Business Service Settings for the .NET Gateway section
lists the configurable settings.

2.1.1 Business Service Settings for the .NET Gateway

Dot Net Server

IP address or name of the machine where the .NET Gateway server executable is located.

Port
TCP port number for communication between the .NET Gateway server and the proxy classes in Ensemble. The
default is 55000.

File Path

Location of the .NET Gateway server executable. It is used to find the target executable and assemble the command
to start the .NET Gateway on a local server. If you do not specify this setting, the service uses the default directory
...\Dev\dotnet\bin\ under the Ensemble installation directory.

Allowed IP Addresses
IP addresses allowed to connect to the .NET Gateway server. If this setting is 0. 0. 0. 0 (default) or" ", any system
(local or remote) may connect; otherwise any listed IP addresses are allowed to connect.

Exec64
If you select this check box, the business service uses the 64-bit version of the .NET Gateway executable. Otherwise,
it uses the 32-hit version of the executable. This setting is available only on Windows 64-bit platforms.

.NET Version
Select the .NET version to use: 2.0 or 4.0.

Log File

Full pathname of the file where the .NET Gateway logs messages. These messages include acknowledgment of
opening and closing connections to the server, and any difficulties encountered in mapping .NET classes to
Ensemble proxy classes.

Heartbeat Interval

Number of seconds between each communication with the .NET Gateway to check whether it is active. When
enabled, the minimum value is 5 seconds and the maximum value is 3600 seconds (1 hour). The default is 10
seconds. A value of 0 disables this feature.

Heartbeat Failure Timeout

Number of seconds without responding to the heartbeat, to consider that the .NET Gateway is in failure state. If
this value is smaller than the Heartbeatinterval property, the gateway is in failure state every time the .NET Gateway
communication check fails. The maximum value is 86400 seconds (1 day). The default is 30 seconds.

Heartbeat Failure Action

Action to take if the .NET Gateway goes into a failure state. Setting it to Restart (default) causes the .NET Gateway
to restart. Setting it to Alert generates an alert entry in the Event Log. This is independent of the Alert on Error
setting.

6 Using the Object Gateway for .NET with Ensemble

Calling Business Service Methods

Heartbeat Failure Retry

Time to wait before retrying the HeartbeatFailureAction if the .NET Gateway server goes into failure state, and
stays in failure state. The default is 300 seconds (5 minutes). A value of 0 disables this feature, meaning that once
there is a failure that cannot be immediately recovered, there are no attempts at automatic recovery.

See “Settings in All Business Services” in Configuring Ensemble Productions.

Once you have added and configured the .NET Gateway business service, it automatically manages the .NET Gateway as
follows:

» When the production starts, the .NET Gateway business service starts an instance of the .NET Gateway server, using
the settings that you specify on the configuration page.

« When the production receives a signal to stop, the .NET Gateway business service attaches to the .NET Gateway server
and instructs it to stop, as well.

For more information, see the EnsLib.DotNetGateway.Service entry in the Class Reference.

2.2 Calling Business Service Methods

The .NET Gateway business service provides methods that you can use to start, connect to, and stop the .NET Gateway
engine. You can call the following methods from Ensemble code after you have configured the .NET Gateway business
service as a member of the production:

» StartGateway()
» ConnectGateway()

e StopGateway()

See the EnsLib.DotNetGateway.Service entry in the Class Reference for details on these methods.

2.2.1 StartGateway() Method

EnsLi b. Dot Net Gat eway. Servi ce: Start Gat eway(pFil ePath As %Stri ng,
pPort As %String,
pAl | owedl PAddr esses As %St ring,
pLogfile As %Btring = ""
ByRef pDevice As O/Btl’l ng ="
pServer As ¥Gtring = "127.0. 0.1"
pCrdLi ne As %string = "")

This class method starts the .NET Gateway server using the specified arguments. If pLogFile specifies a valid file name,
then messages regarding gateway activities are written to this file. These messages include acknowledgment of opening
and closing connections to the server, and difficulties encountered (if any) in mapping .NET classes to Ensemble proxy
classes.

2.2.2 ConnectGateway() Method

EnsLi b. Dot Net Gat eway. Ser vi ce: Connect Gat eway(pEndpoi nt As %Stri ng,
ByRef pGateway As %\et.Renote. Gat eway,
pTi meout As % nteger = 5,
pAddi ti onal Paths As %String = "")

This class method connects to the .NET Gateway server at the specified pEndpoint (hostname:port:namespace).

Using the Object Gateway for .NET with Ensemble 7

Using the .NET Gateway in a Production

2.2.3 StopGateway() Method

EnsLi b. Dot Net Gat eway. SerV| ce: StopGat eway(pPort As UString,
pServer As ¥%Btring = 127 0. ,
pTi neout As % nteger = 5)

This class method connects to the .NET Gateway server and shuts it down.

2.3 Creating a Business Operation

An abstract business operation is available as a base for building .NET Gateway oriented business operations for Ensemble
productions. You can simply subclass the abstract class EnsLib.DotNetGateway.AbstractOperation and implement the
appropriate message handlers.

Call the GetConnection() method to verify there is a valid .NET Gateway connection. For example:

Set tSC = .. Get Connection(.tGateway)
If $3$$1 SOK(t SO {
/] Start using the .NET Gateway connection object tGateway

)
This method returns a private gateway connection object to be used with the proxy classes.

You can configure the .NET Gateway IP address and port in the business operation settings when you add the business
operation to the production. Note that the connection to the .NET Gateway instance is made during Onlnit() and closed in
OnTear Down(). You must override these methods in the business operation class to implement your own setup and tear
down procedures.

See the EnsLib.DotNetGateway.AbstractOperation entry in the Class Reference for details on these methods and also the
AdditionalPaths, ConnectTimeout, DotNetServer, and Port properties.

2.4 Calling API Methods

In addition to using connect, disconnect, and stop from the business service, the following methods are also available in
the %Net.Remote.Gateway class. You can use them when the business service model is not appropriate for your situation:

The %Net.Remote.Gateway class provides the following types of methods:

e API methods that let you %Connect to the .NET Gateway server, %Disconnect from it, and %Shutdown the .NET
Gateway server.

* The %Import method, which imports .NET classes or assemblies from the .NET and generates all the necessary proxy
classes for the Ensemble side.

* The %Expressimport method, which combines calls to % Connect, %I mport, and % Disconnect.

e The utility method %GetAllClasses.

8 Using the Object Gateway for .NET with Ensemble

Calling APl Methods

2.4.1 %Connect() Method

Met hod %Connect (host As %Stri ng,
port As % nteger,
namespace As ¥%string,
ti meout As %\uneric = 5,
addi ti onal Cl assPaths As %.i st Of Dat aTypes = "")
As %Btatus [Final]

The % Connect() method establishes a connection with the .NET Gateway engine. It accepts the following arguments:

Argument Description

host Identifies the machine on which the .NET Gateway server is running.

port Port number over which the proxy classes communicate with the .NET classes.
namespace Ensemble namespace.

timeout Number of seconds to wait before timing out, the default is 5.
additionalClassPaths Optional — use this argument to supply additional class paths, such as the

names of additional assembly DLLs that contain the classes you are importing
via the .NET Gateway. See the Import Arguments section for details using this
argument.

2.4.2 %Disconnect() Method

Met hod %Oi sconnect () As %Status [Final]

The % Disconnect() method closes a connection to the .NET Gateway engine.

2.4.3 %Shutdown() Method

Met hod %Bhut down() As %Status [Final]

The % Shutdown() method shuts down the .NET Gateway engine.

2.4.4 %Import() Method

Met hod % nport(class As %String,
ByRef inported As %.i st Of Dat aTypes,
addi ti onal G assPaths As 9%.i st O Dat aTypes = ""
excl usi ons As %.i st Of Dat aTypes = "")
As Ystatus [Final]

The % Import() method imports the given class and all its dependencies by creating and compiling all the necessary proxy
classes. The % Import() method returns, by reference, a list (in imported) of generated Ensemble proxy classes. For details
of how .NET class definitions are mapped to Ensemble proxy classes, see the “Mapping Specification” chapter in Using
the Caché Gateway for .NET guide.

% Import() is a onetime, startup operation. It only needs to be called the first time you wish to generate the Ensemble proxy
classes. It is necessary again only if you recompile your .NET code and wish to regenerate the proxies. The following sections
provide further details about the % Import() method:

* Import Arguments

» Import Dependencies and Exclusions

Using the Object Gateway for .NET with Ensemble 9

Using the .NET Gateway in a Production

2.4.4.1 Import Arguments

Before you invoke %I mport(), prepare the additionalClassPaths and exclusions arguments. That is, for each argument,
create a new %ListOfDataTypes object and call its | nsert() method to fill the list. The optional additionalClassPaths argument
can be used to supply additional path arguments, such as the names of additional assembly DLLSs that contain the classes
you are importing via the .NET Gateway. List elements should correspond to individual additional assembly DLL entries,
which require the following format:

" rootdir\...\nydll.dlI

You can try to load an assembly from a directory outside of where DotNetGatewaySS.exe is running, but you might expe-
rience a load error for your assembly when you try to use a class in the assembly. InterSystems recommends that you put
all local assemblies in the same directory as DotNetGatewaySS.exe. You can also specify assemblies in the GAC by using
partial names for them, Syst em Dat a, for example.

2.4.4.2 Import Dependencies and Exclusions

While mapping a .NET class into an Ensemble proxy class and importing it into Ensemble, the .NET Gateway loops over
all class dependencies discovered in the given .NET class, including all classes referenced as properties and in argument
lists. In other words, the .NET Gateway collects a list of all class dependencies needed for a successful import of the given
class, then walks that dependency list and generates all necessary proxy classes.

You can control this process by specifying a list of assembly and class name prefixes to exclude from this process. While
this situation would be rare, it does give you some flexibility to control what classes get imported. The .NET Gateway
automatically excludes a small subset of assemblies such as Microsoft.* assemblies.

2.4.5 %Expressimport() Method

Cl assMet hod %Expressl nport(name As %String,
port As % nteger,
host As ¥String = "127.0.0.1",
silent As 9Bool ean = 0,
addi ti onal Cl assPaths As %.i st Of DataTypes = ""
exclusions As %.i st Of Dat aTypes = "")
As Ystatus [Final]

% Expressimport() is a one-step convenience class method that combines calls to % Connect(), % Import(), and
% Disconnect(). It returns a list of generated proxies. It also logs that list, if the silent argument is set to 0. The name
argument is a semicolon-delimited list of classes or assembly DLLs.

2.4.6 %GetAllClasses()Method

%t Al l Ol asses(jarFileO D rectoryName As %String,
ByRef all Cl asses As 9%.i st Of Dat aTypes)
As Yst at us

This method returns, in the ByRef argument allClasses, a list of all public classes available in the assembly DLL specified
by the first argument, jarFileOrDirectoryName.

2.5 Using the Command Prompt

Usually you start and stop the .NET Gateway server automatically, by configuring the EnsLib.DotNetGateway.Service
business service as a member of the production. Once this is done, the .NET Gateway server starts and stops automatically
with the production. The StartGateway() class method is also available to manually start the .NET Gateway server.

10 Using the Object Gateway for .NET with Ensemble

Using the .NET Gateway Wizard

However, during development or debugging, or when Ensemble and the .NET Gateway server run on different machines,
you may find it useful to start the gateway server from a command prompt. Copy the file DotNetGatewaySS.exe to the
directory where you load an assembly. By default, DotNetGatewaySS.exe is shipped in the directory install-dir\dev\dotnet\bin.
Run DotNetGatewaySS.exe from install-dindev\dotnet\bin as follows:

Dot Net Gat ewaySS port listener logfile

Argument Description

port Port number on which to listen for the incoming requests.

listener Optional — Contains the local IP address on the local machine where the gateway listens.
Specify null, " ", or 0. 0. 0. 0 (the default) to listen on all IP addresses local to the machine

(127.0.0.1, VPN address, etc.) You can restrict the listener to one existing local IP address
or listen on all of them; you cannot enter a list of acceptable addresses. You must provide
a value for this argument if you are specifying a lodfile.

logfile Optional — If specified, the command procedure creates a log file of this name; you must
specify the full pathname in the string. The listener argument is required if you enter a
value for lodfile.

For example:

Dot Net Gat ewaySS 55000 "" ./ gatewaySS. | og

Note: When using classes in local side-by-side assemblies (assemblies are not installed into the GAC), run
DotNetGatewaySS.exe from the same directory as those assemblies to resolve their dependencies.

2.6 Using the .NET Gateway Wizard

You can import a DLL assembly file from .NET and create a set of corresponding classes using the .NET Gateway wizard
built into Studio. To start the wizard:

Start Studio.
From the Tools menu, point to and click Add-Ins.
Click .NET Gateway Wizard to start the .NET Gateway Wizard dialog.

1

2

3

4. Enter the path and name of a DLL assembly file; or click Browse to help navigate to one.

5. Enter the .NET Gateway server name / IP address and .NET Gateway server port for the .NET Gateway server.
6

You can also enter Additional paths\assemblies to be used in finding dependent classes and Exclude dependent classes
matching the following prefixes as instructed in the dialog.

7. Click Next to generate Ensemble proxy classes. The wizard displays the class name as it generates each proxy class.

8. When the import operation is complete, click Finish to exit the wizard.

2.7 Error Checking

The .NET Gateway provides error checking as follows:

Using the Object Gateway for .NET with Ensemble 11

Using the .NET Gateway in a Production

* When an error occurs while executing Ensemble proxy methods, the error is, in most cases, a .NET exception, coming
either from the original .NET method itself, or from the .NET Gateway engine. When this happens, an error is trapped.

* The .NET Gateway APl methods like % Import() or % Connect() return a typical Ensemble %Status variable.

In both cases, Ensemble records the last error value returned from a .NET class (which in many cases is the actual .NET
exception thrown) in the local variable %objlasterror.

You can retrieve the complete text of the error message by calling $system.OBJ.DisplayError (), as follows:

Do $system OBJ. Di spl ayError (%obj | asterror)

2.8 Troubleshooting

Should you encounter problems while using the .NET Gateway it is always a good idea to turn logging on. That might be
necessary for InterSystems staff to help you troubleshoot problems. To activate logging, simply identify a log file when
you start the .NET Gateway. You can do this whether you start from the command line or use the StartGateway() API
method.

Sometimes, while using the .NET Gateway in a debugging or test situation, you may encounter problems with a Terminal
session becoming unusable, or with write errors in the Terminal window. It is possible that a .NET Gateway connection
terminated without properly disconnecting. In this case, the port used for that connection may be left open.

If you suspect this is the case, to close the port, type the following command at the Terminal prompt:

Cl ose "| TCP| port"

Where port is the port number to close.

12 Using the Object Gateway for .NET with Ensemble

	Table of Contents
	About This Book
	1 .NET Gateway Architecture
	2 Using the .NET Gateway in a Production
	2.1 Creating a Business Service
	2.1.1 Business Service Settings for the .NET Gateway

	2.2 Calling Business Service Methods
	2.2.1 StartGateway() Method
	2.2.2 ConnectGateway() Method
	2.2.3 StopGateway() Method

	2.3 Creating a Business Operation
	2.4 Calling API Methods
	2.4.1 %Connect() Method
	2.4.2 %Disconnect() Method
	2.4.3 %Shutdown() Method
	2.4.4 %Import() Method
	2.4.5 %ExpressImport() Method
	2.4.6 %GetAllClasses()Method

	2.5 Using the Command Prompt
	2.6 Using the .NET Gateway Wizard
	2.7 Error Checking
	2.8 Troubleshooting

