
Caché MultiValue Commands
Reference

Version 2017.2
2020-06-26

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Caché MultiValue Commands Reference
Caché Version 2017.2 2020-06-26
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 MultiValue Commands .. 3
1.1 # (pound sign) ... 3
1.2 ; (semicolon) ... 4
1.3 [(left square bracket) ... 4
1.4 << ... >> (inline prompting) ... 5
1.5 Ctrl-X ... 6
1.6 ABORT ... 6
1.7 ASSIGN .. 7
1.8 ATTACH.ACCOUNTS .. 7
1.9 AUTOLOGOUT ... 7
1.10 BASIC .. 8
1.11 BLOCK.PRINT .. 9
1.12 BLOCK.TERM .. 9
1.13 BREAK .. 10
1.14 BSELECT ... 10
1.15 BUILD.INDEX .. 11
1.16 CATALOG .. 11
1.17 CEMU .. 13
1.18 CENTURY.PIVOT ... 13
1.19 CHECK.DICT .. 14
1.20 CHECK.PROC ... 14
1.21 CHOOSE.TERM .. 15
1.22 CLEAR.CMQL.CACHE .. 15
1.23 CLEAR.FILE ... 16
1.24 CLEAR.LOCKS ... 16
1.25 CLEARDATA ... 17
1.26 CLEARPROMPTS ... 17
1.27 CLEARSELECT .. 17
1.28 CLR .. 17
1.29 COMO .. 18
1.30 COMPILE.DICT .. 18
1.31 COMPILE.TERM .. 18
1.32 CONTROL.CHARS ... 19
1.33 COPY ... 19
1.34 COPY.FILE .. 20
1.35 COPY.LIST .. 21
1.36 COPYI .. 21
1.37 COPYP ... 21
1.38 COS .. 22
1.39 COUNT .. 22
1.40 CREATE.ACCOUNT ... 23
1.41 CREATE.BFILE ... 24
1.42 CREATE.FILE ... 24

1.42.1 Emulation ... 25
1.43 CREATE.INDEX ... 25
1.44 CREATE.TRIGGER .. 27

Caché MultiValue Commands Reference iii

1.45 CS ... 28
1.46 CT ... 28
1.47 DATE .. 29
1.48 DATE.FORMAT ... 29
1.49 DECATALOG .. 29
1.50 DELETE ... 30
1.51 DELETE.ACCOUNT ... 31
1.52 DELETE.FILE ... 31
1.53 DELETE.INDEX ... 32
1.54 DELETE.LIST ... 32
1.55 DELETE.TRIGGER .. 33
1.56 DISPLAY ... 33
1.57 DOS .. 33
1.58 ED ... 34
1.59 EDIT ... 36
1.60 EDIT.LIST .. 36
1.61 ENABLE.BREAK.KEY .. 36
1.62 FORM.LIST ... 37
1.63 GET.LIST ... 37
1.64 HUSH ... 37
1.65 ICOMP ... 38
1.66 ICOMP.ALL ... 38
1.67 JED ... 39
1.68 JOBS ... 39
1.69 KEYS ... 39
1.70 LIST ... 40
1.71 LIST.INDEX .. 41
1.72 LIST.ITEM ... 41
1.73 LIST.JOB .. 42
1.74 LIST.LABEL .. 43
1.75 LIST.LOCKS .. 44
1.76 LIST.TRIGGER ... 44
1.77 LISTDICT .. 45
1.78 LISTF ... 45
1.79 LISTME ... 46
1.80 LISTPA ... 46
1.81 LISTPEQS .. 47
1.82 LISTPH .. 48
1.83 LISTPTR .. 49
1.84 LISTS ... 49
1.85 LISTU ... 50
1.86 LOGOFF .. 50
1.87 LOGOUT ... 51
1.88 LOGTO .. 51
1.89 MESSAGE ... 52
1.90 MVI .. 52
1.91 MVIMPORT ... 52
1.92 NSELECT .. 52
1.93 OFF ... 53
1.94 P .. 53
1.95 PAGE.MESSAGE .. 53

iv Caché MultiValue Commands Reference

1.96 PHANTOM .. 54
1.97 PQ.SELECT ... 54
1.98 PQ.RESELECT .. 54
1.99 PRINT.CATALOG ... 55
1.100 PRINT.ERR .. 55
1.101 PTERM ... 56
1.102 Q ... 56
1.103 QSELECT .. 56
1.104 QUIT .. 57
1.105 REFORMAT ... 57
1.106 RUN .. 58
1.107 SAVE.LIST ... 58
1.108 SEARCH .. 59
1.109 SELECT ... 59
1.110 SET.FILE .. 60
1.111 SETPTR ... 61
1.112 SETPTR.DEFAULT ... 61
1.113 SH ... 61
1.114 SLEEP .. 62
1.115 SORT .. 62
1.116 SORT.ITEM ... 63
1.117 SORT.LABEL .. 63
1.118 SORT.LIST ... 63
1.119 SP.x Commands .. 64
1.120 SPOOL ... 64
1.121 SREFORMAT .. 64
1.122 SSELECT ... 65
1.123 STACK ... 65
1.124 STACKCOMMON ... 66
1.125 STAT ... 66
1.126 STATUS .. 67
1.127 SUM ... 67
1.128 TABS .. 68
1.129 TANDEM ... 68
1.130 TERM ... 69
1.131 TERM-TYPE .. 70
1.132 TIME .. 71
1.133 TRACE ... 71
1.134 TRAP-EXCEPTIONS .. 72
1.135 UNASSIGN .. 72
1.136 WHERE .. 72
1.137 WHO .. 73
1.138 Z ... 73
1.139 ZH ... 74

2 MVIMPORT ... 75
2.1 Arguments .. 75
2.2 Description ... 76

2.2.1 Letter Code Options ... 76
2.3 Determining the Account Name ... 77
2.4 Errors and Log Files ... 77

Caché MultiValue Commands Reference v

3 PROTOCLASS ... 79
3.1 Loading PROTOCLASS .. 80

3.1.1 Setting Attribute 5 .. 80
3.2 Package and Class Naming .. 81
3.3 Checking the Dictionary with CHECK.DICT .. 81
3.4 Running PROTOCLASS .. 81

3.4.1 Arguments .. 81
3.4.2 Run PROTOCLASS Example .. 82
3.4.3 Property Naming .. 84
3.4.4 MVAUTO Parameter .. 84
3.4.5 ItemId Property .. 84
3.4.6 MVSVASSOCIATION Parameters .. 85
3.4.7 dummyAttribute Property .. 85

4 MultiValue Command Stack Commands and Keystrokes ... 87
4.1 .A .. 87
4.2 .C .. 87
4.3 .D .. 88
4.4 .L .. 88
4.5 .U .. 88
4.6 .X .. 88
4.7 .? ... 89
4.8 Keystrokes .. 89

5 Error Messages ... 91
5.1 Error Codes and Error Messages .. 91
5.2 Numeric Error Codes ... 91
5.3 Alphanumeric String Error Codes .. 97

vi Caché MultiValue Commands Reference

About This Book

This book provides reference material for the command line commands of the Caché MultiValue implementation.

This book contains the following sections:

• MultiValue Commands

• The MVIMPORT Command

• The PROTOCLASS Command

• Command Stack Commands

• Error Messages

There is also a detailed Table of Contents.

Other related topics in the Caché documentation set are:

• Using the MultiValue Features of Caché

• Operational Differences between MultiValue and Caché

• Caché MultiValue Query Language (CMQL) Reference

• The Caché MultiValue Spooler

For general information, see Using InterSystems Documentation.

Caché MultiValue Commands Reference 1

1
MultiValue Commands

This chapter provides an alphabetical listing of the command line commands supported by the Caché MultiValue Shell. In
MultiValue database systems, these commands are also known as “verbs”. Several of these commands have an alternate
name that includes a .VERB suffix. These suffix forms are not listed here.

Most command names that contain punctuation exist in two variant forms: the hyphen form and the dot form. For example,
CREATE-ACCOUNT and CREATE.ACCOUNT. InterSystems supports these two forms for compatibility with different
vendor versions of MultiValue code. In most cases, these two forms are synonymous. When this is the case, only one of
the forms is listed in this chapter. The most notable exception is SP-EDIT and SP.EDIT, which provide different function-
ality.

Command names, command name keywords, letter code options, and many command arguments are not case-sensitive.
Account names and item ID values are case-sensitive.

Letter code options are provided for some command line commands. These letter codes are always optional. Some commands
can specify more than one letter code option. Multiple letter codes can be specified in any order. A letter code, or series of
letter codes, is preceded by an open parenthesis; the closing parenthesis is not required. The letter codes must be the final
item in the command syntax; keyword options, such as DET-SUPP, must appear before the letter codes.

Note: Some MultiValue flavors (D3, jBASE, and UniVerse) permit letter code options enclosed in parentheses before
the final item in the command syntax (for example, LIST VOC (P) 'BASIC'). Caché MultiValue emulation
of these flavors does not support this syntax; letter codes options must be the final item in the command syntax.

In most cases, only one MultiValue command can be specified on a MVShell command line. You can, however, specify
multiple ; commands on the same command line.

1.1 # (pound sign)
The # command causes the statement following it to be interpreted as an ObjectScript command.

commandline

A ObjectScript command line can consist of one or more ObjectScript statements, separated by blank spaces. This ObjectScript
command line is immediately executed and the results returned to the MultiValue prompt at the Terminal.

The # must be separated with or one or more spaces from the following ObjectScript command line.

If commandline changes the current namespace (for example, by issuing a ZNSPACE command), the Caché MultiValue
Shell restores the initial namespace upon exiting ObjectScript.

Caché MultiValue Commands Reference 3

The # should not be followed by the ObjectScript MV MultiValue Shell invocation command. Nested MultiValue Shell
invocations may cause unexpected problems.

The following is an example of the # command:

USER:# SET x="Hello World!" WRITE !,x

The #, [, and COS commands are synonyms.

See Also: COS

1.2 ; (semicolon)
The ; command causes the statement following it on the command line to be interpreted as an MVBasic statement.

; basicstatement

This MVBasic statement is immediately executed and the results returned to the terminal.

The ; can be immediately followed by an MVBasic statement, or one or more spaces can be placed between them. Unlike
most MultiValue Shell commands, you can specify multiple ; commands on the same command line. Each MVBasic
statement requires its own ; command.

Thus, the following is a valid use of the ; command:

USER: ; PRINT "hello" ;PRINT "world"

You can issue the ; command either from the MultiValue Shell prompt, as shown above, or from the MultiValue debug
prompt following an MVBasic DEBUG statement, as in the following example:

USER:;myvar="ABC"
USER:;DEBUG

<BREAK>+1^MVBASIC1048.mvi
Source Id: File: Line:0
USER 7d1>;CRT "my variable",myvar
my variable ABC
USER 7d1>

See Also: BASIC, RUN

1.3 [(left square bracket)
The [command causes the statement following it to be interpreted as an ObjectScript command.

[commandline

A ObjectScript command line can consist of one or more ObjectScript statements, separated by blank spaces. This ObjectScript
command line is immediately executed and the results returned to the MultiValue prompt at the Terminal.

The [can be immediately followed by an ObjectScript command line, or one or more spaces can be placed between them.

If commandline changes the current namespace (for example, by issuing a ZNSPACE command), the Caché MultiValue
Shell restores the initial namespace upon exiting ObjectScript.

The [should not be followed by the ObjectScript MV MultiValue Shell invocation command. Nested MultiValue Shell
invocations may cause unexpected problems.

4 Caché MultiValue Commands Reference

MultiValue Commands

The following is an example of the [command:

USER:[SET x="Hello World!" WRITE !,x

The [, #, and COS commands are synonyms.

See Also: COS

1.4 << ... >> (inline prompting)
The << . . . >> command causes the Caché MultiValue Shell to prompt for an input value.

<<[code,]prompt[,patcode]>>

The prompt is a text prompt that requests a user input value. It can include blanks spaces and any character except the
comma.

The optional code is separated from the prompt by a comma. You can specify multiple comma-separated code values. The
following code values are supported:

Prompt even when prompt was previously issued.A

Uses the nth word on the command line as an
argument in an inline prompt. This option allows the
user to enter responses to inline prompts at TCL on
the same line following the paragraph name.

Cn

Retrieves input from record in filename, and optionally
from att.num, value.num, and subvalue.num. Prompt
text is optional.

F(filename,record[,att.num, value.num,subvalue.num]

Uses the nth word on the command line as an
argument in an inline prompt. This is the same as Cn
when n is supplied. Else, prompts for n if n is not
specified.

In

Prompts repeatedly for multiple values. Prompt
repeats until the user responds to the prompt with the
Enter key. R(text) does the same thing, but inserts
text between the user input values.

R

Ring the bell.@(BELL)

Clear the screen.@(CLR)

Move cursor to top of form.@(TOF)

Move cursor to specified column and row. Rows and
columns are counted from 0.

@(col,row)

The optional patcode can take two kinds of values:

• A patcode without parentheses matches the input value with a pattern match code. For example 6A requires that the
input value consist of 6 alphabetic characters. If the input value does not match the patcode, an error message is displayed
and the user is prompted again until a valid input (or no input) is specified. The available patcode pattern match values
are listed in the MATCH pattern matching operator reference page in the Caché MVBasic Reference.

Caché MultiValue Commands Reference 5

<< ... >> (inline prompting)

• A patcode with parentheses matches the input value with an ICONV conversion type code. For example, (D) requires
that the input value be a valid date, such as 2/28/2009 or 2009–02–28. The input value is validated, but not converted.
If the input value does not pass patcode validation, an error message is displayed and the user is prompted again until
a valid input (or no input) is specified. The available patcode conversion validation values are listed in the ICONV
function reference page in the Caché MVBasic Reference.

Inline prompting can be used by itself or within another MV command or MVBasic statement. For example:

USER:<<input a command>>
input a command=

USER:SLEEP <<seconds>>
seconds=

The user input value can be a literal, or the name of a defined variable.

In the following MVBasic example, several << ... >> prompts are used:

USER:;PRINT "The quick <<color>> <<animal>> jumped over the <<adjective>> dog."
color=brown
animal=fox
adjective=lazy
The quick brown fox jumped over the lazy dog.

Note that a prompt value is requested once but can be used multiple times:

USER:;PRINT "The quick brown <<animal>> jumped over the lazy <<animal>>."
animal=fox
The quick brown fox jumped over the lazy fox.

To avoid this reuse of a prompt value, use the code value of A. This forces prompting of a previously defined prompt:

USER:;PRINT "A <<flower>> is a <<flower>> is a <<A,flower>>."
flower=rose
flower=tulip
A rose is a rose is a tulip.

See Also: CLEARPROMPTS

1.5 Ctrl-X
The Ctrl-X (Ctrl key + “X”) command clears the current command line, resetting the cursor to column 1. The letter X can
be uppercase or lowercase.

1.6 ABORT
The ABORT command terminates the current process and returns to either the MV Shell or the EXECUTE command that
invoked the process.

ABORT (expr (, expr))

ABORT runs the ON.ABORT paragraph, if present.

6 Caché MultiValue Commands Reference

MultiValue Commands

1.7 ASSIGN
The ASSIGN command assigns an I/O configuration setting. The following assignments are supported:

 ASSIGN form-queue TO LPTR n [-WAIT]

Assigns a form queue spool device to a LPTR device. The –WAIT keyword is a no-op. The form-queue can be specified
either by name or by number. The default form queue has the name STANDARD, and a form queue number of 0. It can
be specified as “STANDARD”, “0”, “F0”, “FN0”, or “FQ0”. The n device number variable can take an integer value
between 0 and 255 (inclusive).

ASSIGN n TO SYSTEM(5)

Assigns a page number n for page headers and footers. The page number displayed with a HEADING is n-1; the next time
HEADING is executed, the page number increments to n as the current page number. For further information, refer to the
SYSTEM function in Caché MVBasic Reference.

ASSIGN termname TO SYSTEM(7)

Assigns a terminal type termname to the current process. For further information, refer to the CHOOSE.TERM command
in this manual, and the SYSTEM function in Caché MVBasic Reference.

See Also: UNASSIGN

1.8 ATTACH.ACCOUNTS
The ATTACH.ACCOUNTS command searches all existing namespaces for MultiValue accounts and records them in the
table of MV accounts.

ATTACH.ACCOUNTS

Specifying ATTACH.ACCOUNTS does not overwrite any existing MultiValue account information; it only adds account
information for accounts that have not yet been recorded. It is run to make accounts copied or moved from a different system
or Caché instance visible in the SYSTEM file. For details on the relationship between accounts and namespaces, and the
naming conventions used for each, refer to “MV Accounts and Caché Namespaces” in Operational Differences between
MultiValue and Caché.

See Also: CREATE.ACCOUNT

1.9 AUTOLOGOUT
The AUTOLOGOUT command sets and displays the time setting for automatic logout.

AUTOLOGOUT [minutes]

Specifying AUTOLOGOUT with no operand returns the current autologout setting: either “Automatic logout is set for x
minutes” or “Automatic logout is disabled”. The default is “disabled”. AUTOLOGOUT with no operand returns the most
recent setting; it does not return the number of minutes remaining.

Caché MultiValue Commands Reference 7

ASSIGN

Use the optional minutes argument to set an automatic logout time. Automatic logout can be set to a positive integer number
of minutes. A fractional number of minutes is truncated to its integer portion. Setting minutes to 0, a fraction less than 1,
or a negative number disables automatic logout.

1.10 BASIC
The BASIC command compiles one or more MVBasic programs stored in a file.

BASIC filename [itemspec] [(SXZ]

The filename specifies a file created using CREATE.FILE. The itemspec specifies one or more existing MVBasic programs
within filename. (You can create an itemspec MVBasic program within filename using ED.) If the filename file doesn't
exist BASIC generates a [201] error message. If the specified itemspec item doesn't exist BASIC generates a [202] error
message.

When an itemspec item successfully compiles BASIC displays the item name and generates a [B0] message. When an
itemspec item fails to compile BASIC displays the source code line where the error occurred and generates a [B100] message.
If any compilation failed during the BASIC operation, BASIC generates a [258] error at the end of the compile with a
message indicating how many source file items failed to compile.

The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection].

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file; the default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the program
to be compiled is stored in a named data section.

The itemspec specifies the item ID of each program to be compiled. An itemspec can be specified using the following
syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all MVBasic programs
in the file should be compiled. If itemspec is omitted, BASIC uses the active select list as the source for the list of item
IDs. If there is no active select list, BASIC issues a “Item Id:” user prompt.

As each item is compiled, BASIC updates the @RECORD special variable, a dynamic array consisting of the lines of the
last itemspec successfully compiled.

The optional letter codes specify compilation options. You can specify one or more letter codes in any order. Letter codes
must be preceded by an open parenthesis; a closing parenthesis is not required. Following compilation, S produces an active
select list of all programs that failed to compile. The X and Z letter code options reduce the size of the compiled program;
they should only be used when a compiled program exceeds maxsize. X removes the variable names; this means that the
debugger cannot display variables, and the variable name is not reported if an <UNDEFINED> error occurs. Z removes
the line table; this table is used to derive the source line number when there is an error to report. Without the line table, an
error location cannot be determined.

After compiling a MVBasic program, you can execute it using the RUN command. You can catalog it in the VOC using
the CATALOG command, after which it can be executed simply by invoking it as a verb.

See Also: ; (semicolon), CATALOG, MVI, RUN

8 Caché MultiValue Commands Reference

MultiValue Commands

1.11 BLOCK.PRINT
The BLOCK.PRINT command prints a text as large-format letters.

BLOCK.PRINT text

You can specify any printable character(s) as text, including a text containing blank spaces; no enclosing quotes are required.
BLOCK.PRINT uses multiple “X” characters to print each character of text as a large block character. By default, it inserts
a line break each time it encounters a space character or a string of space characters. An error message is returned if a string
of characters is too long to print on one line.

A text does not require delimiters. The text, or a substring within text, can optionally be delimited by either single quotes
(') or double quotes ("). These delimiter characters do not print; they specify that the text within the delimiters is to be
printed exactly. Thus, to print a string containing one or more space characters as a single line, enclose the string in quote
characters. For example: "one line". To include one or more quote characters as literals in the printed string, enclose
the string with the other type of delimiter character. For example: "won't".

The BLOCK.PRINT command outputs to the current printer. The BLOCK.TERM command outputs to the current ter-
minal. These commands are otherwise identical.

See Also: BLOCK.TERM

1.12 BLOCK.TERM
The BLOCK.TERM command displays a text as large-format letters.

BLOCK.TERM text

You can specify any printable character(s) as text, including a text containing blank spaces; no enclosing quotes are required.
BLOCK.TERM uses multiple “X” characters to represent each character of text as a large block character. By default, it
inserts a line break each time it encounters a space character or a string of space characters. BLOCK.TERM returns an
error message if a string of characters is too long to display on one line; by default this maximum string length is 10 char-
acters. The text can be of any length, provided no substring not containing a space character is greater than 10 characters.

A text does not require delimiters. The text, or a substring within text, can optionally be delimited by either single quotes
(') or double quotes ("). These delimiter characters do not display; they specify that the text within the delimiters is to be
displayed exactly. Thus, to display a string containing one or more space characters as a single line, enclose the string in
quote characters. For example: "one line". To include one or more quote characters as literals in the displayed string,
enclose the string with the other type of delimiter character. For example: "won't".

The BLOCK.TERM command outputs to the current terminal. The BLOCK.PRINT command outputs to the current
printer. These commands are otherwise identical.

See Also: BLOCK.PRINT

Caché MultiValue Commands Reference 9

BLOCK.PRINT

1.13 BREAK
The BREAK command (and its variants) enable or disable terminal keys that can pause program execution.

BREAK [ON | OFF]
BREAK.KEY.ON
BREAK.KEY.OFF
BREAK.KEY.ENABLE
ENABLE.BREAK.KEY

When BREAK is enabled (ON), the Interrupt, Suspend, and Quit keys will cause program execution to be suspended.
When BREAK is disabled (OFF) these keys have no effect on program execution. BREAK is enabled by default. The
same operation is performed by the MVBasic BREAK statement.

Issuing any of these statements increments or decrements a counter. Thus multiple BREAK OFF statements (of any type)
must be reversed by an equal number of BREAK ON statements.

In jBASE emulation, these statements simply enable or disable (toggle) without maintaining a counter.

See Also: MVBasic BREAK statement.

1.14 BSELECT
The BSELECT command generates a select list of non-null items that satisfy the query criteria.

BSELECT [DICT] filename [field1 [field2 ...] [dict [dict2 ...] | ALL] [query] [TO
listnum] [(FPYZ]

BSELECT and SELECT are identical, except that BSELECT does not select null items; SELECT selects all items
including null items. BSELECT copies non-null items selected from filename to a select list. If filename is not an existing
file, BSELECT generates a [200] error. If filename is an empty file, BSELECT generates a [401] error and no select list
is returned.

The optional DICT keyword specifies that filename is accessing a dictionary file; otherwise, the filename is assumed to be
accessing a data file. If there are multiple defined data sections (data files), you can specify filename as
filename,datasection. BSELECT can specify any valid Caché MultiValue SQL (CMQL) query.

The optional field arguments permit you to specify which DICT entries to select. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. If you omit
the field argument, all DICT entries in filename are selected, or all DICT entries are selected that pass the condition tests
in query. If no items pass the query condition test, BSELECT generates a [401] error and no select list is returned.

The optional dict arguments permit you to specify which DICT entries to select for each field. You can specify one or more
dict entry names separated by blank spaces. DICT entry names are not enclosed with quote characters. If you omit the dict
argument, only the @ID (VOC) dictionary entry for each field is selected. If you specify ALL, all the dict attribute values
for each field are selected.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

You can use the TO clause to specify a numeric select list. Valid listnum values are 0 through 10. By default, BSELECT
uses select list 0. An invalid listnum generates a [819] error.

The following are supported letter code options:

10 Caché MultiValue Commands Reference

MultiValue Commands

• (F suppresses “not on file” message generation. Because select lists are implemented as SQL joins that only return
rows that are in both the select list and the file, Caché MultiValue compares each item in the list with the file; items
that don’t match are added to the error list, unless suppressed using this option.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the BSELECT operation.

Upon successful completion, BSELECT returns a message such as the following: 2 Items selected to list #0.
The first successful BSELECT to any select list sets the boolean flag $MVV(210) to 1. $MVV(210) remains set to 1 until
explicitly reset. The $MVV special variable is described in the Caché ObjectScript Reference.

See Also: CLEARSELECT, NSELECT, QSELECT, SEARCH, SELECT, SSELECT

1.15 BUILD.INDEX
The BUILD.INDEX command builds (populates) either an index for a specified file attribute, or indices for all of the
attributes of the file.

BUILD.INDEX filename attribute | ALL | *

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist
BUILD.INDEX returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the index to be built is stored in a named data section.

You can specify a single attribute, or a series of attributes, separated by blank spaces. You can use either the ALL keyword
or the asterisk (*) to build all indices.

If the attribute is not specified, BUILD.INDEX returns a [211] message. If attribute is invalid, or there are no indices
defined for this filename, BUILD.INDEX returns a [842] message. If the index has already been built, BUILD.INDEX
overwrites the previous index data.

Before you can build an index, you must create the index for filename using CREATE.INDEX.

See Also: CREATE.INDEX, LIST.INDEX

1.16 CATALOG
The CATALOG command catalogs one or more compiled MVBasic programs, storing a pointer to each in the VOC as a
verb.

CATALOG filename [itemspec] [(L | N | G | GA]

CATALOG catalogs one or more compiled MVBasic programs in the VOC so that they can be executed by specifying
just the item ID, the same as any other MultiValue command (verb). Before cataloging a program, you must compile it
using the BASIC command. You can execute a compiled MVBasic program without cataloging it by using the RUN com-

Caché MultiValue Commands Reference 11

BUILD.INDEX

mand. There are three ways to catalog a program: Local (L), Normal (N), or Global (G or GA). When you change a Local
or Global cataloged MVBasic program you must recompile it; you do not have to re-catalog it.

If you CATALOG a compiled MVBasic file, the filename is listed in the VOC as a file (F1=F) and can be displayed using
LISTF. The MVBasic itemspec programs are listed in the VOC as verbs (F1=V).

If the filename file doesn't exist CATALOG generates a [201] error message. If the specified itemspec item doesn't exist
CATALOG generates a [41] error message. If the specified itemspec item has not been compiled CATALOG generates
a [40] error message.

filename is the file to search for the itemspec MVBasic program(s). The filename is the name of an existing file, which is
created as VOC F1=F entry. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the program
is stored in a named data section of the file.

itemspec specifies one or more compiled MVBasic programs by item ID. An itemspec can be specified using the following
syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all compiled MVBasic
programs in the file should be cataloged. If itemspec is omitted, CATALOG uses the active select list as the source for the
list of item IDs. If there is no active select list, CATALOG issues a “Item Id:” user prompt.

If specified, a letter code option must be prefaced by an open parenthesis. Only one letter code option may be specified.
The available letter codes are: L = Local Catalog, N = Normal Catalog, G = Global Catalog, GA = Global Catalog with
Account Name. The default is Local Catalog.

• (L: Local Catalog adds an entry to the VOC and points to the program's object code. A Local Catalog operation will
fail if program has already been cataloged with Normal Catalog.

• (N: Normal Catalog adds an entry to the VOC and points to a copy of the program's object code. Normal Catalog
allows users to continue to run a copy of the original code while you edit and test the program code itself. Therefore,
changes made to the original code do not affect the cataloged copy until the object code is re-cataloged. Users can
continue to run the cataloged copy of the original compiled code by:

– Running it from the Terminal command line using the cataloged name reference to the copy of the code

– Running it from MVBasic, issuing an EXECUTE, PERFORM, or CHAIN of the cataloged name

You can use ED to edit and BASIC to compile the original program without affecting users of the Normal Catalog
version. You can use RUN to execute and debug the most recently compiled version.

You can edit, compile, and debug via Studio without affecting users of the Normal Catalog version. Note that although
compile via Studio does a Local Catalog by default, it does not replace the Normal Catalog VOC entry. Instead, it
provides the following message: WARNING : "PROG" already cataloged without L option - you
must recatalog it to use updated code. If you use #PRAGMA ROUTINENAME, that name is used for
the .mvi and .obj code, and that is what is used by Studio to run and debug. Studio does not debug the copy of the
original code created by a Normal Catalog. Thus one disadvantage of using Normal Catalog is that Studio does not
see the catalogued copy, and therefore cannot debug that code, unless you directly open the *.mvi routine in attribute
2 of the VOC entry for the program.

• (G: Global Catalog adds an entry to the global catalog (not the VOC) and points to a copy of the program's object code
in a location accessible for access from all accounts. Specifying Global Catalog removes all corresponding Local
Catalog and Normal Catalog entries from the VOC.

12 Caché MultiValue Commands Reference

MultiValue Commands

• (GA: Global Catalog with Account Name adds a global catalog entry prefaced with the account name delimited by
asterisks. Thus using (GA to catalog the program MYPROG while in account USER would create the global catalog
entry *USER*MYPROG. Using (GA does not delete any earlier global catalog entry created using (G, nor does it remove
Local Catalog and Normal Catalog entries from the VOC.

See Also: BASIC, DECATALOG, PRINT.CATALOG

1.17 CEMU
The CEMU command changes the emulation of the current account.

CEMU [emulation]

Specifying CEMU with no operand returns the current emulation. For example, “Emulation for account 'USER' is 'CACHE'.”

Specifying CEMU with an operand sets the current emulation for the current account, and returns a message. The available
emulation values are: Cache, D3, IN2, INFORMATION, jBASE, MVBase, PICK, PIOpen, Prime, R83, POWER95,
Reality, UDPICK (UniData running in PICK mode), Ultimate, UniData, and UniVerse. The emulation argument is not
case-sensitive. Both “Prime” and “Information” emulation values set an emulation of “INFORMATION.” An emulation
value of “Default” sets an emulation of “CACHE”. An invalid emulation value returns an 812 error.

CEMU sets emulation for the current account (namespace) only. CEMU cannot set emulation for the SYSPROG account.
This account is always in CACHE emulation. Attempting to change SYSPROG emulation returns an [815] error message.

All Caché accounts are initialized to an emulation of Cache. However, once you have set the emulation for an account, this
emulation is persistent. It is retained after the process that sets it terminates, and applies to all future processes accessing
that account until explicitly changed. Restarting Caché does not revert the emulation setting.

You can determine the current emulation from MVBasic as an integer value. You can return the integer value for the current
emulation using the SYSTEM(1001) and SYSTEM(1051) functions, as described in the Caché MultiValue Basic Reference.
You can also specify emulation within MVBasic by using the $OPTIONS command, as described in the Caché MultiValue
Basic Reference.

For further details, refer to the CEMU section of the Operational Differences between MultiValue and Caché manual.

See Also: CREATE.ACCOUNT, LOGTO

1.18 CENTURY.PIVOT
The CENTURY.PIVOT command specifies how two-digit year values are interpreted process-wide.

CENTURY.PIVOT [year]

Upon MV Shell initialization, the MV Shell displays a [150] message indicating the default two-digit year date range. By
default, a two-digit year is interpreted as being in the range 1900 to 1999. Specifying CENTURY.PIVOT with no operand
returns the current date range for two-digit years.

You can use CENTURY.PIVOT to set any hundred-year range for two-digit years. To set this date range, specify a four-
digit year as the beginning year of the century range. This four-digit year must be between 1841 and 9900, inclusive. A
[152] message is generated indicating the new two-digit year date range. An invalid year value generates an [801] error.
Once set, a two-digit year date range applies to the current process for the duration of the current process, or until set again.

Caché MultiValue Commands Reference 13

CEMU

It applies to all accounts (namespaces). It continues to apply for the current process across quitting and re-invoking of the
MultiValue Shell.

1.19 CHECK.DICT
The CHECK.DICT command checks for a field in a file's DICT file.

CHECK.DICT filename [itemspec]

CHECK.DICT checks one or more item names in the filename DICT file.

The filename can be specified using filespec syntax, as follows:

[accountname,]filename[,datasection]

CHECK.DICT always references the DICT file.

itemspec is DICT item, or a list of DICT items to be checked. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the DICT
file should be checked. If itemspec is omitted, CHECK.DICT uses the active select list as the source of DICT item names
to check.

As each item is accessed, CHECK.DICT updates the @RECORD special variable.

If all of the specified items are present, CHECK.DICT completes without a message. If specified items are not present,
CHECK.DICT returns a [202] message for each item not found in DICT.

If you omit the itemspec argument with no active select list, CHECK.DICT prompts you for it with the Item Id: prompt.
At this prompt you can specify multiple items separated by blank spaces.

You can use LIST DICT filename to list all of the fields in the DICT file.

See Also: COMPILE.DICT, LIST

1.20 CHECK.PROC
The CHECK.PROC command checks that a PROC can be successfully compiled.

CHECK.PROC filename [itemspec]

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist
CHECK.PROC returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the PROC to be checked is stored in a named data section.

itemspec is the name of a PROC, or a list of PROCs to be checked. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all PROCs in the file
should be checked. If itemspec is omitted, CHECK.PROC uses the active select list as the source of PROC names to check.

14 Caché MultiValue Commands Reference

MultiValue Commands

As each item is accessed, CHECK.PROC updates the @RECORD special variable.

CHECK.PROC checks one or more named PROCs in a file. If a named PROC can be compiled, CHECK.PROC compiles
it. If named PROC cannot be compiled, CHECK.PROC returns an error message.

1.21 CHOOSE.TERM
The CHOOSE.TERM command allows you to choose a terminal type. It displays a list of supported terminal types, then
prompts you to specify the desired terminal type.

CHOOSE.TERM

After listing all the supported terminal types, CHOOSE.TERM prompts you to select a terminal type by either specifying
its name (Term Name), its number in the listing, or (in some cases) a Short Name (a single uppercase letter). You can
specify a Term Name with any combination of letter case: if all letters are specified in lowercase the terminal type is set
as specified; if one or more letters are specified in uppercase the terminal type is set in all uppercase. To exit without
changing the current terminal type, press Enter at the prompt.

You can determine your current terminal type by calling the MVBasic SYSTEM(7) function or the TERM command. The
TERM command can also be used to choose a terminal type and/or to change certain terminal and printer parameters. For
further details, refer to the Terminal Output chapter of the Caché MV Terminal Independence manual, and the
CHOOSE.TERM section of the Operational Differences between MultiValue and Caché manual.

See Also: COMPILE.TERM, TERM

1.22 CLEAR.CMQL.CACHE
The CLEAR.CMQL.CACHE command clears the query cache for the current account.

CLEAR.CMQL.CACHE [(I]

This command should only be used during code analysis to ensure that the query cache has been cleared. It should not be
used as part of normal MultiValue execution. This command should never be executed when the current account is being
actively used.

Issuing CLEAR.CMQL.CACHE displays a warning message and an acceptance prompt. To execute
CLEAR.CMQL.CACHE, input “Y” at the prompt; to cancel CLEAR.CMQL.CACHE input “N” or just press Return.

The optional (I letter code causes CLEAR.CMQL.CACHE to clear the ITYPE cache as well. After using
CLEAR.CMQL.CACHE (I you must recompile classes for files with indices based on I-types. Failure to do so results in
index corruption.

Caché MultiValue Commands Reference 15

CHOOSE.TERM

1.23 CLEAR.FILE
The CLEAR.FILE command clears all data from a file.

CLEAR.FILE filename

The filename is the name of an existing file, which is created as a Caché global (^filename). The filename can be specified
using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if you wish to clear only the data stored in a named data section.

If the filename is not specified, CLEAR.FILE returns a [200] message. If the filename is not valid, CLEAR.FILE returns
a [201] message. If the filename is valid, CLEAR.FILE returns a [433] message indicating that the file has been cleared,
even if there was no data in the file. If the file was indexed, CLEAR.FILE also returns a [1] message “indexes purged”.

See Also: DELETE

1.24 CLEAR.LOCKS
The CLEAR.LOCKS command clears locks that are held by the current process.

CLEAR.LOCK [lock]

Use the optional lock argument to specify a specific lock. The default (with no argument) releases all locks held by the
process.

CLEAR.LOCKS releases process locks only. It does not release system locks, readu locks, file locks, or any other lock
type. Use the Management Portal to release all types of locks.

Locks are established using the MVBasic LOCK command or by opening a sequential file. When establishing a lock, you
can name it with a numeric value or with a quoted string name. List all current locks using LIST.LOCKS. Process locks
appear in the LIST.LOCKS output as LOCK name. When clearing a lock, lock must correspond to the lock name. Lock
names are case-sensitive. When specifying lock, quote characters are optional.

If the lock specified by lock is not a current lock, CLEAR.LOCKS performs no operation and completes without issuing
an error.

See Also: LIST.LOCKS, MVBasic LOCK, MVBasic UNLOCK

16 Caché MultiValue Commands Reference

MultiValue Commands

1.25 CLEARDATA
The CLEARDATA command clears the data stack.

CLEARDATA

1.26 CLEARPROMPTS
The CLEARPROMPTS command clears the value established for an inline prompt.

CLEARPROMPTS

Once a value has been input for an inline prompt, that value is used for every instance of that prompt, unless a
CLEARPROMPTS command is issued to clear the inline prompt value.

See Also: << ... >> (inline prompting)

1.27 CLEARSELECT
The CLEARSELECT command clears the contents of the specified select list.

CLEARSELECT {listnum | ALL}

CLEARSELECT clears the specified numbered select list, or clears all numbered select list by specifying the ALL keyword.
A select list is specified as an integer from 0 through 10. This command is identical to the CLEARSELECT Caché
MVBasic Command.

See Also: BSELECT, NSELECT, QSELECT, SEARCH, SELECT, SSELECT

1.28 CLR
The CLR command clears the screen and sets the cursor to the first line.

CLR

The CLR and CS commands are synonyms.

See Also: CS

Caché MultiValue Commands Reference 17

CLEARDATA

1.29 COMO
The COMO command copies terminal output to a record in the &COMO& file.

COMO ON record [HUSH]
COMO OFF COMO LIST
COMO DELETE record | *
COMO SPOOL record

If you specify COMO with no arguments, it returns a series of prompts requesting an option keyword and the record name.

COMO ON creates the specified record in the &COMO& file. Caché stores the &COMO& file using the ^COMO global.
The optional HUSH keyword suppresses terminal display. COMO DELETE deletes the specified &COMO& file record.
COMO DELETE * deletes all the &COMO& file records.

You can use LIST &COMO& to list the records in the &COMO& file.

See Also: LIST

1.30 COMPILE.DICT
The COMPILE.DICT command compiles I-descriptors in dictionary records.

COMPILE.DICT filename [itemspec]

The filename can be specified using filespec syntax, as follows:

[accountname,]filename[,datasection]

COMPILE.DICT always references the DICT file.

itemspec is DICT item, or a list of DICT items to be compiled. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the DICT
file should be compiled. If itemspec is omitted, COMPILE.DICT uses the active select list as the source of DICT item
names to compile.

As each item is accessed, COMPILE.DICT updates the @RECORD special variable.

See Also: CHECK.DICT, ICOMP

1.31 COMPILE.TERM
The COMPILE.TERM command compiles terminal definitions.

COMPILE.TERM [[filename [item-list] | *] [(TV]]

COMPILE.TERM, with no arguments, compiles all the items in the %MV.TERMDEFS file. COMPILE.TERM filename
compiles all the items in the filename file. COMPILE.TERM * compiles all the items in the %MV.TERMDEFS file and
adds/replaces the results in the %MV.TERMCMP file. It does not delete existing items from TERMCMP. If you want to

18 Caché MultiValue Commands Reference

MultiValue Commands

eliminate some entries from TERMCMP (for example, to eliminate them from the CHOOSE.TERM listing) you should
manually DELETE them from TERMCMP (and optionally from TERMDEFS).

The (T letter code option performs a tree search on filename; this assumes that filename is a directory in UNIX®/UniVerse
format. For example: COMPILE.TERM //C:/terminfo (T. Note the use of the // prefix to directly reference a directory.
The (V letter code option performs the compile in verbose mode.

For further details, refer to the Terminal Definition chapter of the Caché MV Terminal Independence manual.

See Also: CHOOSE.TERM, TERM

1.32 CONTROL.CHARS
The CONTROL.CHARS command sets input filtering of control characters.

CONTROL.CHARS [(F[S] | (N[S]]

CONTROL.CHARS with no option returns the current control character filtering setting (ON or OFF).

• The (F letter code option filters out control characters from the data received by the MVBasic INPUT statement. This
returns the status string “CONTROL filtering is ON”. CONTROL.CHARS (F activates input filtering for the process;
the MVBasic INPUTCTRL ON statement activates input filtering for the current program.

• The (N letter code option deactivates filtering of control characters. This returns the status string “CONTROL filtering
is OFF”. CONTROL.CHARS (N deactivates input filtering for the process; the MVBasic INPUTCTRL OFF statement
deactivates input filtering for the current program.

• The (S letter code option suppresses the status string display when activating or deactivating input filtering of control
characters.

1.33 COPY
The COPY command copies items from file to file. It has two distinct syntax forms: non-interactive and interactive:

Non-interactive format:

COPY FROM sourcefile [TO targetfile]
 {item1[,newname1] [item2[,newname2] [...]] | ALL}
 [DELETING | OVERWRITING | UPDATING | SQUAWK]

COPY copies the specified items from sourcefile to targetfile. You must specify one or more items, or specify the ALL
keyword, which copies all items in sourcefile. If you omit the TO clause, COPY copies the item(s) from sourcefile to
sourcefile. Both sourcefile and targetfile can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file. If
there are multiple defined data sections, you can specify sourcefile and/or targetfile as filename,datasection. File
names and item names are case-sensitive.

You can specify one or more items to copy, separating the items with a blank space. You can specify a new name for the
copied item, associating the original sourcefile name and the new targetfile name with a comma.

As each item is accessed, COPY updates the @RECORD special variable.

Caché MultiValue Commands Reference 19

CONTROL.CHARS

You can specify one or more of the following keyword options. Keywords must be specified in all uppercase letters. The
DELETING keyword specifies that the original item in sourcefile is deleted after it is copied. The OVERWRITING keyword
specifies that the copy occurs even if the named item exists in targetfile; the existing item with that name is overwritten.
The UPDATING keyword is the same as the OVERWRITING keyword. The SQUAWK keyword displays the names of
the files and the settings of the keyword options when performing the copy operation.

If the specified sourcefile or targetfile is not valid, COPY returns a [201] message. If the specified item is not valid, COPY
returns a [202] message. If the specified item already exists in file and OVERWRITING is not specified, COPY returns a
[415] message.

Interactive format:

COPY sourcefile [item1 [item2 [item-n]][(D | O | U | S]
TO:[(destinationfile]newname1[newname2[...]]

If you omit the item(s), COPY prompts you with Item ID:. It then prompts you for the destination file with TO:. You
can either:

1. Specify an item list,

2. Specify a destination file (preceded by an apostrophe (') and an item list, or

3. Press Enter to copy the items to the Terminal display.

The D, O, U, and S options correspond to the keywords DELETING, OVERWRITING, UPDATING, and SQUAWK. If
you specify a destinationfile but no item list, the original names are used. If you specify fewer destination names than source
names, COPY attempts to use the original names for the extra source items. If more destination item names than source
item names are specified, the extras are ignored.

See Also: COPY.FILE, COPYI, COPYP

1.34 COPY.FILE
The COPY.FILE command copies a file.

COPY.FILE [FROM] sourcefile [TO targetfile] [(D]

COPY.FILE creates a new file (targetfile) and copies the contents of sourcefile to targetfile.

• If you specify TO targetfile, COPY.FILE copies sourcefile to targetfile. COPY.FILE creates the targetfile, then
copies the contents of sourcefile to targetfile.

• If you specify TO and omit targetfile, COPY.FILE copies sourcefile to the VOC in the current account.

• If you omit both TO and targetfile, COPY.FILE prompts you to specify a targetfile with a TO: prompt. To copy
sourcefile and assign it a new name, specify targetfile at the prompt. To copy accountname,sourcefile from a different
account to the current account, retaining the same file name, press Enter at the TO: prompt.

For all invocations of COPY.FILE the targetfile must not be an existing file. Both sourcefile and targetfile can be specified
using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the file to be copied is stored in a named data section. Some emulations support single level files; if

20 Caché MultiValue Commands Reference

MultiValue Commands

sourcefile is a single level file, COPY.FILE copies both the dictionary and data information. See CREATE.FILE concerning
single level files.

COPY.FILE assigns the targetfile name to the targetfile @ID dictionary item, rather than copying the sourcefile @ID
value.

The FROM keyword is optional.

The (D letter code option deletes the sourcefile after performing the copy operation. This is used for renaming a file.

If sourcefile contains an index reference, COPY.FILE does not copy this index reference to targetfile.

By default, COPY.FILE creates a target file regardless of whether the Attribute 2 ̂ filename and Attribute 3 ̂ DICT.filename
globals are already in use. You can modify the COPY.FILE verb to prevent this. Edit COPY.FILE to add an Attribute 5
value of “m” (lowercase m). Now attempting to create a target file when one of these globals is already in use generates a
[448] error.

See Also: COPY

1.35 COPY.LIST
The COPY.LIST command copies a saved select list from the &SAVEDLISTS& file.

COPY.LIST [filename [listname]]

The optional filename is the destination file where the select list is to be copied. If you omit filename, COPY.LIST prompts
you for the destination file name. The optional listname is the name of an existing select list; the default is select list 0. The
listname select list is saved in the &SAVEDLISTS& file. Caché stores this file using the ^SAVEDLISTS global.

See Also: DELETE.LIST

1.36 COPYI
The COPYI command is the non-interactive form of the COPY command. The syntax is identical, except that the FROM
keyword is optional.

See Also: COPY

1.37 COPYP
The COPYP command is the interactive form of the COPY command.

See Also: COPY

Caché MultiValue Commands Reference 21

COPY.LIST

1.38 COS
The COS command causes the statement following it to be interpreted as an ObjectScript command.

COS commandline

COS issues an ObjectScript command without exiting the MultiValue Shell. The commandline can be any valid ObjectScript
command line. A commandline cannot be specified as a variable, nor can it be enclosed in quotation marks.

If commandline changes the current namespace (for example, by issuing a ZNSPACE command), the Caché MultiValue
Shell restores the initial namespace upon exiting ObjectScript.

COS should not be followed by the ObjectScript MV MultiValue Shell invocation command. Nested MultiValue Shell
invocations may cause unexpected problems.

You can use SH to issue an operating system command without exiting the MultiValue Shell.

The COS command is functionally identical to the #, and [commands.

See Also: #, [, SH

1.39 COUNT
The COUNT command counts the items that satisfy an SQL query.

COUNT [DICT] filename [field1 [field2 ...]] [query] [(PYZ]

COUNT returns an integer count of the field items found in filename, or the items selected from filename by query. The
optional DICT keyword causes the command to count the DICT entries in the filename dictionary file; otherwise, filename
is assumed to be a data file.

COUNT filename returns the total number of items in filename.

COUNT filename with field arguments returns the total number of specified field items that are found in filename. You
can specify one or more field arguments separated by blank spaces. If a field argument is an item ID it must be enclosed
with single quote characters. Only items that are found in filename are counted; items not found in filename are displayed
as a “not found” message.

COUNT filename query returns the number of items in filename that fulfill the specified criteria. For example, STAT VOC
WITH F1="V" returns the count of verbs (V) in the VOC file. The optional query component can contain one or more
Caché MultiValue SQL (CMQL) query clauses. These CMQL clauses can be specified in any order; the order of application
of CMQL clauses is independent of the specified order. For further details on CMQL clauses, refer to Caché MultiValue
Query Language (CMQL) Reference.

The following are supported letter code options:

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the COUNT operation.

22 Caché MultiValue Commands Reference

MultiValue Commands

COUNT provides part of the functionality of the STAT command. STAT can return results from an AVG or ENUM
CMQL clause; COUNT cannot return values for these CMQL clauses. The similar LIST command with the DET-SUPP
keyword also returns the total number of filename items.

See Also: LIST, SELECT, STAT

1.40 CREATE.ACCOUNT
The CREATE.ACCOUNT command creates an account (namespace).

CREATE.ACCOUNT account [emulation] [directory]

The account is the name to assign to the namespace and the account. An account name commonly consists of letters,
numbers, and the percent (%), hyphen (-), and underscore (_) characters. (Other punctuation characters are allowed, but
should be avoided.) Percent (%) should only be used as the first character; hyphen (-) and underscore (_) should not be
used as the first character. Underscore (_) cannot be used as the last character.

The system creates a corresponding namespace, as follows:

1. Caché namespace names cannot begin with a number as the first character. If the account name begins with a number,
Caché strips the leading number(s) from the account name to create the corresponding namespace name.

2. Caché reserves namespace names that begin with % . Therefore, if the account name begins with %, Caché strips the
% from the account name to create the corresponding namespace name.

3. Caché namespace names cannot contain punctuation characters other than the hyphen (-) and underscore(_). If the
account name contains other punctuation characters, Caché strips them from the account name to create the corresponding
namespace name.

4. Caché converts the resulting name to all uppercase characters. Namespace names are not case-sensitive, but account
names are case-sensitive.

If you have specified an account name with the same name as an existing namespace that has no corresponding account,
or if you have specified an account name that differs from an existing account name only in capitalization or in characters
removed during namespace conversion, the system creates a unique namespace name. It creates this unique namespace
name by appending an underscore and a sequential number, starting with the “_1” suffix.

Note that the SYSPROG account corresponds to the %SYS namespace.

For details on the relationship between accounts and namespaces, and the naming conventions used for each, refer to “MV
Accounts and Caché Namespaces” in Operational Differences between MultiValue and Caché.

If the specified account already exists, CREATE.ACCOUNT returns an [810] message. Upon successful completion,
CREATE.ACCOUNT returns an [814] message.

The optional emulation argument specifies the MultiValue emulation type. The default is Cache.

The optional directory argument specifies the location in which to create the account database. Specify a fully-qualified
pathname. The default is \Mgr\accountname in the Caché installation location.

Note: Account creation and deletion requires %Admin_Manage privileges. This is normally associated with the SYSPROG
account, which is the %SYS namespace. For information on the Caché security model, see the Caché Security
Administration Guide. For specific information on roles and privileges, please consult the chapters on Roles and
Privileges and Permissions.

See Also: ATTACH.ACCOUNTS, CEMU, DELETE.ACCOUNT, LOGTO

Caché MultiValue Commands Reference 23

CREATE.ACCOUNT

1.41 CREATE.BFILE
The CREATE.BFILE command creates a MultiValue Basic (MVBasic) source code file.

CREATE.BFILE [DATA | DICT] filename[,datasection] [ANODE | INODE]

The filename is the name of the Basic source code file, which is created as a Caché global (^filename). Caché global names
are case-sensitive. Creating a file also creates a VOC entry for the file.

By default, CREATE.BFILE creates both a data file and a dictionary file; that is, a file with a dictionary (DICT) and a
data section. The optional DICT and DATA keywords enable you to specify the creation of just a dictionary file or just a
data file. Creating a dictionary also places a default record @ID in the dictionary.

Creating a data file creates a default data section. You can specify datasection if you wish to create a named data section.
The datasection argument can only be specified for a data file; attempting to specify it for a dictionary file (DICT keyword)
returns a [424] message.

By default, CREATE.BFILE creates a file of type INODE (item node); both the data section and DICT are of type INODE.
You can override this default by specifying ANODE (attribute node). When you create both a data file and a dictionary
file, the ANODE keyword only applies to the data section; the DICT is still created as type INODE. To create a DICT of
type ANODE you must specify both the DICT and ANODE keywords.

CREATE.BFILE is a specific application of the more general CREATE.FILE command.

See Also: CREATE.FILE, DELETE.FILE

1.42 CREATE.FILE
The CREATE.FILE command creates a file.

CREATE.FILE [DATA | DICT] filename[,datasection] [ANODE | INODE] [DIR directory]
[(RUX]

The filename is the name of the file to create. CREATE.FILE creates the file as a Caché globals (^filename and
^DICT.filename). Caché global names are case-sensitive. Creating a file also creates a VOC entry for the file. If filename
already exists, CREATE.FILE generates a [413] error.

By default, CREATE.FILE creates both a data file and a dictionary file; that is, a file with a dictionary (DICT) and a data
section. The optional DICT and DATA keywords enable you to specify the creation of just a dictionary file or just a data
file. Creating a dictionary also places a default record @ID in the dictionary.

Creating a data file creates a default data section. You can specify datasection if you wish to create a named data section.
The datasection argument can only be specified for a data file; attempting to specify it for a dictionary file (DICT keyword)
returns a [424] message.

By default, CREATE.FILE creates a file of type INODE (item node); both the data section and DICT are of type INODE.
You can override this default by specifying ANODE (attribute node). When you create both a data file and a dictionary
file, the ANODE keyword only applies to the data section; the DICT is still created as type INODE. To create a DICT of
type ANODE you must specify both the DICT and ANODE keywords.

The DIR keyword specifies that the data section is set to use the specified directory.

The (R letter code option allows you to create the file in an account other than your current account. If you specify (R,
CREATE.FILE prompts you to specify an account name.

24 Caché MultiValue Commands Reference

MultiValue Commands

The (U letter code option specifies that item names added to the file are to be untranslated when recorded in the directory.
Name translation converts punctuation characters into hexadecimal codes (for example an _ (underscore) in a name is
represented by 5F). By default, item names are translated.

The (X letter code option specifies that item names added to the file will include the three-character extension .mvb. Item
names with this extension are parsed as MVBasic program files. A file created with this letter code option has a VOC entry
Attribute 6 value of "B" and "X".

You can create an &SAVELISTS& or &HOLD& file as an ANODE type file (attribute of an item node), as follows:

USER:DELETE.FILE &SAVEDLISTS&
USER:CREATE.FILE &SAVEDLISTS& ANODE

You can create an &SAVELISTS& file as a DIR type file in an account, as follows:

USER:DELETE.FILE &SAVEDLISTS&
USER:CREATE.FILE &SAVEDLISTS& DIR SAVEDLISTS

Caché stores the &SAVEDLISTS& file using the ^SAVEDLISTS global. If the specified filename already exists,
CREATE.FILE returns a [413] message.

By default, CREATE.FILE creates a file regardless of whether the Attribute 2 ^filename and Attribute 3 ^DICT.filename
globals are already in use. You can modify the CREATE.FILE verb to prevent this. Edit CREATE.FILE to add an
Attribute 5 value of “m” (lowercase m). Now attempting to create a file when one of these globals is already in use generates
a [448] error.

1.42.1 Emulation

In D3, IN2, jBASE, MVBase, Pick, Reality, R83, POWER95, and Ultimate emulations, the command CREATE.FILE
DICT filename creates a single level file. This is a file in which the dictionary section and the data section are the same.

You can delete a single level file using either DELETE.FILE filename or DELETE.FILE DICT filename. You
cannot delete a single level file using DELETE.FILE DATA filename.

See Also: CATALOG, CLEAR.FILE, CREATE.BFILE, DELETE.FILE

1.43 CREATE.INDEX
The CREATE.INDEX command creates an index on a file.

CREATE.INDEX filename indexfield [indexfield2 [...]]

The filename is the name of an existing file, which is created as a Caché global (^filename). The filename can be specified
using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the created index is to be stored in a named data section. The filename must be an INODE file; you
cannot create an index on a directory file or an ANODE file.

You can use indexfield parameters to specify one field or more than one field to index; If you specify multiple fields, a
separate index is created on each. When CREATE.INDEX creates an index it returns an [866] message. If indexfield does
not exist, it returns a [202] error. If indexfield cannot be indexed, it returns a [5] invalid format error. If indexfield has
already been indexed, an ERROR #5805: ID key not unique error is generated.

Caché MultiValue Commands Reference 25

CREATE.INDEX

The indexfield is the itemid of an item in the dictionary of filename. It can be any length up to the maximum subscript size
(because it is used as a subscript in the global). Creating the index creates both a class property and an index name entry
in the associated Caché class. The property is named by converting indexfield to a case-sensitive name by omitting punctu-
ation and using an uppercase letter to indicate where the punctuation was removed. For example, the indexfield START.DATE
would correspond to the property name StartDate. The index name is created by appending the string “index” to the
indexfield property name, then truncating the resulting name at 31 characters. Therefore, an indexfield name must be unique
within the first 26 characters.

CAUTION: When creating an index for a MultiValue file, it is strongly recommended that every unique attribute have
a corresponding class property. Any field/attribute that does not have a corresponding class property will
become empty when the %Save() method is invoked. (Attributes that are mere synonyms do not require
a corresponding class property.)

CREATE.INDEX assigns SqlString(150) collation to both the index and the created indexfield property. However, if the
property already exists, CREATE.INDEX assigns the index the same collation type as the indexfield property.

CREATE.INDEX creates a class with a property named ItemId, which describes the item id of the original MultiValue
file. You can change the names of other properties in the generated class (assuming that you also change the name anywhere
that the property is referenced by other properties, indices, or methods) but the ItemId property must be named ItemId.
Otherwise subsequent CREATE.INDEX commands will fail and leave the class in an uncompileable state.

All properties created using CREATE.INDEX contain an MVAUTO parameter which is assigned the “I” letter code. For
further MVAUTO details, refer to the PROTOCLASS chapter of this manual.

If the specified indexfield is composed entirely of virtual fields, CREATE.INDEX automatically creates an additional
property called dummyAttribute, so that the resulting class has at least one real (storage) attribute. If CREATE.INDEX
adds real attributes later, dummyAttribute is automatically deleted. If you manually add real attributes later, you must
manually delete dummyAttribute and associated storage.

You do not need to use CREATE.INDEX to add indices to a class. You can define indexes by either using CREATE.INDEX
or by manually defining indexes by editing the class definition for the file using Studio. But if you intend to use the indexes
with MVBasic statements and functions (for example INDICES(), SELECTINDEX, BSCAN, OPENINDEX, and SELECT
with the ATKEY clause) you must create them using the format that CREATE.INDEX generates. CREATE.INDEX does
not create a new index if there is already an index with the same MVNAME class property attribute as the specified DICT
item. If you manually define indexes in a class, it is preferable to avoid the use of CREATE.INDEX and DELETE.INDEX
on that file to avoid any unintended deletions.

When you create an index, the system creates a MultiValue index global with the following format:

^I.filename("indexD1"," ABC","NAME")="ABC"

The first node is the index name, here indexD1, created by appending the string “index” to the property name D1. The
result is truncated at 31 characters.

The second node is the index key, here with a prefixed space to maintain the SqlString collation that MultiValue expects.
This index key is truncated at 150 characters.

The third node is the itemid of the item being indexed. This node's data is a copy of the index key, without collation modi-
fication or truncation. This is the value that is returned by MVBasic indexing statements. This itemid can be any length up
to the maximum Caché global subscript size.

If you create an index on a file that contains data, you must populate the index using BUILD.INDEX. If you create an
index on a file that is currently open, you must close and reopen the file for MultiValue to be aware of the index. This
close/reopen is necessary to activate operations such as automatically updating the index when you perform a WRITE.
These index activation steps are required for Caché MultiValue, UniVerse emulation, and jBASE emulation.

For further details, refer to the CREATE.INDEX section of the Operational Differences between MultiValue and Caché
manual.

26 Caché MultiValue Commands Reference

MultiValue Commands

See Also: BUILD.INDEX, DELETE.INDEX, LIST.INDEX, the PROTOCLASS chapter of this manual.

1.44 CREATE.TRIGGER
The CREATE.TRIGGER command creates a trigger that calls a subroutine when an event of a specified type occurs.

CREATE.TRIGGER filename event subroutine [(AOT]

The filename is the name of an existing file. The trigger is specific to events occurring to this file. The event is the operation
that invokes (pulls) the trigger. The trigger can be designed to be invoked before or after the execution of a variety of
MVBasic commands. It can be one of the following: *, POSTOPEN, PREREAD, PREINSERT, PREUPDATE, PREWRITE,
PREDELETE, PRECLEAR (or PRECLEARFILE), POSTREAD, POSTINSERT, POSTUPDATE, POSTWRITE, POST-
DELETE, POSTCLEAR (or POSTCLEARFILE). To invoke the trigger upon any of the event types, specify an asterisk
(*) as the event value.

The trigger code that is executed when the trigger is pulled is located in subroutine, which is an MVBasic subroutine.

CREATE.TRIGGER supports the following letter code options:

• (A allows the trigger to alter the record created or updated by the event operation before the record is saved. This is a
trigger execution option.

• (O allows CREATE.TRIGGER to overwrite an existing definition of this trigger (if one exists). This option has no
effect on trigger execution.

• (T allows a pre-event trigger to terminate (abort) the event operation before it occurs. This is a trigger execution option.

Caché MultiValue also supports UNIX-style option syntax: a hyphen followed by the option as a lowercase letter, as shown
in the following example:

CREATE.TRIGGER -a TestFile POSTREAD TriggerSub

Specifying an invalid filename returns a [201] message. Specifying a subroutine that has not yet been cataloged returns a
[825] message.

The subroutine syntax is as follows:

SUBROUTINE triggersub(filename,eventnum,prerc,flags,recordkey,record,userrc)

Within the trigger handler subroutine the event value is passed as an integer code, not a keyword. The eventnum integer
codes that correspond to event keywords are as follows: POSTOPEN=1, PREREAD=2, POSTREAD=3, PREDELETE=4,
POSTDELETE=5, PRECLEAR=6, POSTCLEAR=7, PREWRITE=8, POSTWRITE=9, PREINSERT=10, POSTINSERT=11,
PREUPDATE=12, POSTUPDATE=13. Note that an INSERT or UPDATE event is also processed as a corresponding
WRITE event; thus the user can handle the event as an INSERT or UPDATE, as a WRITE, or both.

prerc is the status return code for the action performed by the subroutine. If the event is a PRE event, the prerc is always
0; if the event is a POST event, prerc is 0 if the action was successful, non-zero if the action failed. flags is a no-op. recordkey
is the item-id of the record being written or deleted; recordkey is null for an OPEN or CLEAR operation. record is the
record currently being written; record is null for OPEN, DELETE, and CLEAR operations; record is null for PREREAD,
assigned a value for POSTREAD. userrc is a user-defined status return code used only with the (T option. If (T is specified,
a non-zero value for userrc causes a PRE event trigger to terminate (abort) the event operation. A negative integer userrc
aborts the event operation without invoking the event handler; a positive integer userrc aborts the event operation and is
passed as an error code to the error handler.

When an MVBasic READV statement is executed on a file with a POSTREAD trigger, the entire contents of the file record
being read are passed to the trigger routine, not just the value of the field specified in READV.

Caché MultiValue Commands Reference 27

CREATE.TRIGGER

CREATE.TRIGGER creates a trigger wrapper routine, which it names MVTW followed by the file name. If the file name
is greater than 22 characters, CREATE.TRIGGER truncates it to 22 characters then adds the checksum integer for the
full file name (see the ObjectScript $ZCRC function).

Note that Caché MultiValue triggers are completely separate from Caché SQL triggers. An SQL update will not fire a
MultiValue trigger; a MultiValue update will not fire an SQL trigger.

Note: Caché stores pointers to trigger code in the data file header. When a file is opened, that information is stored in
the file pointer. If a trigger is added or deleted while the file is open, the system attempts to follow the trigger
definitions that existed when the file was opened. This could result in a new trigger not firing, or an attempt to
fire a deleted trigger failing and rejecting the WRITE. Therefore, triggers should not be maintained while the
corresponding data file is open.

See Also: DELETE.TRIGGER, LIST.TRIGGER

1.45 CS
The CS command clears the screen and sets the cursor to the first line.

CS

The CS and CLR commands are synonyms.

See Also: CLR

1.46 CT
The CT command displays one or more records on the terminal screen.

CT filename [itemspec] [(P]

The filename is the name of an existing file, which is created as a Caché global (^filename). The filename can be specified
using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file. If
there are multiple defined data sections, you can specify filename as filename,datasection.

itemspec is the name of a record, or a list of records, to display. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all records in the file
should be displayed. If itemspec is omitted, CT uses the active select list as the source of record names to display. If you
omit the itemspec argument and there is no active select list, CT prompts you for items with the Item Id: prompt. At
this prompt you can specify multiple field items, separated by blank spaces.

As each item is accessed, CT updates the @RECORD special variable.

The (P letter code option redirects all output to the STANDARD print queue. The LPTR clause performs the same operation.
You can use LISTPEQS to view the print queue.

See Also: LIST.ITEM

28 Caché MultiValue Commands Reference

MultiValue Commands

1.47 DATE
The DATE command returns the current local date and time.

DATE [(P]

For example: “Tuesday, October 23, 2007 02:55pm”, The actual date and time format is governed by the DATE.FORMAT
command.

Caché MultiValue determines local time and date as follows:

• It determines the current Coordinated Universal Time (UTC) from the system clock.

• It adjusts UTC to the local time zone by using the value of the Caché special variable $ZTIMEZONE.

• It applies local time variant settings (such as Daylight Saving Time) for that time zone from the host operating system.

The optional (P letter code option redirects output to the STANDARD print queue. You can use LISTPEQS to view the
print queue.

See Also: DATE.FORMAT

1.48 DATE.FORMAT
The DATE.FORMAT command specifies the format used for displaying dates.

DATE.FORMAT [ON | OFF] [(I | (D]
DATE.FORMAT INFORM

The optional ON keyword specifies international date order; for example: “Tuesday, 23 October 2007 02:55pm”, The
optional OFF keyword specifies USA date order; for example: “Tuesday, October 23, 2007 02:55pm”, The default is ON.
The (I and (D letter code options are equivalent to the ON and OFF arguments; the opening parenthesis is mandatory.
Specify either ON or OFF or (I or (D, not both.

The INFORM option sets @SYSTEM.RETURN.CODE to the current date format setting: 0 (USA date order) or 1 (inter-
national date order).

For further details, refer to the DATE.FORMAT section of the Operational Differences between MultiValue and Caché
manual.

See Also: DATE

1.49 DECATALOG
The DECATALOG command removes one or more cataloged programs from the VOC.

DECATALOG filename [itemspec] [(AGLNV]

DECATALOG may be run against the VOC or against a file of MVBasic source code. When run against the VOC, it
deletes the specified VOC item, as well as any copies generated for normal catalog. If run against a source file, it deletes

Caché MultiValue Commands Reference 29

DATE

any catalog pointers for the specified file, as well as normal and global catalog copies. If you specify the A option, it also
deletes the compilation object code.

filename is the file to search for the MVBasic program. The filename is the name of an existing file, which is created as a
Caché global (^filename). The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the cataloged
program is stored in a named data section of the file.

itemspec is the name of the program (or programs) to decatalog. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all programs in the file
should be decataloged. If itemspec is omitted, DECATALOG uses the active select list as the source of program names.
If there is no active select list, DECATALOG issues a “Item Id:” user prompt. Upon successful completion DECATALOG
lists the item IDs of the MVBasic programs decataloged.

If the filename file doesn't exist DECATALOG generates a [201] error message. If you specify an MVBasic file as filename
and the specified itemspec item doesn't exist in that file DECATALOG generates a [202] error message. If you specify
VOC as filename and the specified itemspec item isn’t currently catalogued in the VOC, DECATALOG generates a [202]
error message. However, if the specified itemspec item has already been decataloged from an MVBasic file, DECATALOG
completes without error.

If specified, a letter code option must be prefaced by an open parenthesis. The available letter codes are: (A = delete all,
(G = Global Catalog, (L = Local Catalog, (N = Normal Catalog, and (V = verbose mode. If you specify the (G letter code,
DECATALOG looks first in the global catalog for the specified itemspec programName, and deletes it if found. If not
found, DECATALOG then looks in the global catalog for *currentaccount*programName and deletes it. For further details
on G, L, and N letter code options, refer to the CATALOG command. The default is Local Catalog.

See Also: CATALOG

1.50 DELETE
The DELETE command deletes one or more items from a file.

DELETE filename [itemspec]

DELETE deletes the source code for one or more items. It does not delete the item’s compiled object code or remove the
item’s catalog listing. Therefore, it is possible to execute a MVBasic program after you have deleted it.

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist DELETE
returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the item to
be deleted is stored in a named data section.

itemspec specifies an item, or a list of items, to delete. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

30 Caché MultiValue Commands Reference

MultiValue Commands

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the file
should be deleted. If itemspec is omitted, DELETE uses the active select list as the source of item names to delete. If there
is no active select list, DELETE issues a “Item Id:” user prompt.

If item is not present in the file, DELETE generates a [202] error message. If no items are deleted [430] is returned. If one
item is deleted [431] is returned. If more than one item is deleted [432] is returned.

See Also: CLEAR.FILE, DELETE.FILE

1.51 DELETE.ACCOUNT
The DELETE.ACCOUNT command deletes an account (namespace) and all of the MultiValue files within it.

DELETE.ACCOUNT account

account is an existing MultiValue account name, which has been assigned to a corresponding Caché namespace.
DELETE.ACCOUNT deletes all of the MultiValue globals and routines found in account, and, if the namespace is empty,
deletes account. DELETE.ACCOUNT does not delete globals or routines in the namespace that were not created by
MultiValue operations. If the account is not associated with a namespace (for example, a synonym account) an error message
is returned.

This is a restricted command. You must be logged in to the SYSPROG account to delete an account; use the LOGTO
command to log in to SYSPROG. You cannot delete the SYSPROG account, which is the %SYS namespace. Attempting
to do so returns a [196] error message.

Note: Account creation and deletion requires %Admin_Manage privileges. This is normally associated with the SYSPROG
account (the %SYS namespace). For information on the Caché security model, see the Caché Security Adminis-
tration Guide. For specific information on roles and privileges, please consult the chapters on Roles and Privileges
and Permissions.

See Also: CREATE.ACCOUNT, LOGTO

1.52 DELETE.FILE
The DELETE.FILE command deletes a file and its VOC entry.

DELETE.FILE [DATA | DICT] [accountname,]filename[,datasection]

The filename is the name of an existing file, which was created as a Caché global (^filename) by CREATE.FILE or
CREATE.BFILE. The file may consist of a dictionary (DICT) and a data section, or be only a data file or only a dictionary
file. By default, DELETE.FILE deletes both the dictionary and the data section, and deletes the corresponding VOC entry.

The optional DICT and DATA keywords enable you delete just the dictionary (DICT) or just the data (DATA) section.
These keywords also update the corresponding VOC entry. Unlike most file commands, the default is to delete both DICT
and DATA.

By default, DELETE.FILE deletes the data section regardless of whether it is the default data section or a named data
section. If you specify the DATA keyword, you must specify datasection to delete a named data section. If you specify
datasection, DELETE.FILE only deletes the file if it has a corresponding named data section. Otherwise it returns a [206]
error. To explicitly delete a default data section, specify filename,filename. You cannot specify both the DICT keyword
and a datasection; doing so returns a [424] error.

Caché MultiValue Commands Reference 31

DELETE.ACCOUNT

You can use accountname to delete a file in an account other than the current account.

If filename is a single level file, you can delete it using either DELETE.FILE filename or DELETE.FILE DICT
filename. You cannot delete a single level file using DELETE.FILE DATA filename. Refer to CREATE.FILE for
further details.

See Also: CLEAR.FILE, CREATE.BFILE, CREATE.FILE, DELETE

1.53 DELETE.INDEX
The DELETE.INDEX command deletes one or more indexes on a file.

DELETE.INDEX filename {indexfield [indexfield2] [...] | * | ALL}

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist
DELETE.INDEX returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the index to be deleted is stored in a named data section.

The indexfield is the name of a field used as a secondary index key. Specifying indexfield deletes the index named
indexindexfield. DELETE.INDEX matches indexfield by searching the following (in this order): an index of that name;
a property having the MVNAME parameter of that name; a property of that name. If the indexfield field cannot be matched
or has not been indexed, DELETE.INDEX returns a [212] error message.

You can specify multiple indexfield indexes separated by blank spaces. You can delete all indexes for filename by specifying
either an asterisk (*) or the ALL keyword. If you do not specify either indexfield, *, or ALL, DELETE.INDEX returns a
[211] error message.

You can define indexes either by using CREATE.INDEX or by manually defining them in the class definition for the file.
DELETE.INDEX can delete indexes by indexfield name, MVNAME, or property name. However, if you manually define
indexes in a class, it is preferable to avoid the use of DELETE.INDEX on that file to avoid any unintended deletions.

If you delete an index on a file that is currently open, you must close and reopen the file for MultiValue to be aware of the
index deletion. This close/reopen is required for Caché MultiValue, UniVerse emulation, and jBASE emulation.

For further details, refer to the CREATE.INDEX section of the Operational Differences between MultiValue and Caché
manual.

See Also: CREATE.INDEX, LIST.INDEX

1.54 DELETE.LIST
The DELETE.LIST command deletes a select list from the &SAVEDLISTS& file.

DELETE.LIST listname | *

The listname is the name of an existing select list in &SAVEDLISTS&. The asterisk (*) argument deletes all select lists in
&SAVEDLISTS&. Caché stores the &SAVEDLISTS& file using the ^SAVEDLISTS global.

See Also: COPY.LIST

32 Caché MultiValue Commands Reference

MultiValue Commands

1.55 DELETE.TRIGGER
The DELETE.TRIGGER command deletes a specified type of trigger from a file. It removes the trigger specification,
not the trigger subroutine itself.

DELETE.TRIGGER filename event

The filename is the name of an existing file. The event is one of the following: *, POSTOPEN, PREREAD, PREINSERT,
PREUPDATE, PREWRITE, PREDELETE, PRECLEAR, POSTREAD, POSTINSERT, POSTUPDATE, POSTWRITE,
POSTDELETE, POSTCLEAR. To delete all triggers of any type, specify an asterisk (*) as the event value.

Specifying a valid filename and event returns a [828] message, indicating that the trigger has been deleted, even if the
specified trigger does not exist. Specifying an invalid filename returns a [201] message. Specifying an invalid event returns
a [824] message.

Note: Caché stores pointers to trigger code in the data file header. When a file is opened, that information is stored in
the file pointer. If a trigger is added or deleted while the file is open, the system attempts to follow the trigger
definitions that existed when the file was opened. This usually results in a new trigger not firing..

See Also: CREATE.TRIGGER

1.56 DISPLAY
The DISPLAY command displays a line of text on the terminal screen.

DISPLAY [text]

The text is displayed exactly as specified. If text is enclosed with delimiters, these delimiters are displayed as part of the
text. No parsing of expressions or conversion of numbers to canonical form is performed. If text is omitted, this command
displays the empty string (a blank line).

1.57 DOS
On Windows systems, the DOS command executes a Windows DOS command.

DOS [commandline]

DOS -c "commandline"

The DOS command enters the DOS command prompt environment without exiting the MultiValue Shell. Results are displayed
to the MultiValue Shell. No additional windows are opened.

DOS with no argument opens an interactive command prompt from which you can issue multiple DOS commands. To exit
this command prompt and return to the MultiValue Shell, issue the Windows EXIT command.

DOS commandline issues a Windows command as a background process. The commandline can be any valid Windows
command line. A commandline cannot be specified as a variable, nor can it be enclosed in quotation marks. A commandline
cannot exceed 248 characters in length. Upon completion it returns to the MultiValue Shell prompt.

Caché MultiValue Commands Reference 33

DELETE.TRIGGER

The DOS -c "commandline" alternate syntax is equivalent to DOS commandline. This syntax is provided for UniVerse
compatibility. The double quotes enclosing the commandline are mandatory.

The SH command is similar to DOS, but can also be issued in non-Windows environments. On Windows systems, the
DOS and SH commands are synonyms.

On Windows systems you can use DOS set (or SH set) to display a list of environment variables. To display individual
environment variables, you can use the MVBasic GETENV() function.

See Also: COS, SH

1.58 ED
The ED command allows you to edit a record in a file.

ED filename itemspec

ED is the MultiValue line editor. Caché MultiValue supports the ED and JED editors.

The filename is the name of the file to edit, which is created as a Caché global (^filename). If the specified filename is not
valid, ED returns a [201] message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the program to be edited is stored in a named data section of the file.

itemspec specifies a record, or a list of records, to edit. If you specify multiple records, ED starts with the first item you
specified. When you exit editing of that item, ED accesses the next item in the specified order. An itemspec can be specified
using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all records in the file
should be edited. If itemspec is omitted, ED uses the active select list as the source of record names to edit.

If item is an existing record, ED positions the current line pointer to the beginning of this record. If item is not an existing
record, ED creates the specified record.

When ED creates or accesses an item it updates the @RECORD special variable.

The ED command provides a prompt for editing the current record. You can issue a variety of subcommands at the ED
prompt. For a list of these subcommands, specify HELP at the ED prompt. For a list of the attributes of the specified record,
specify ? at the ED prompt.

The following is a list of the ED subcommands supported by Caché:

-nnn Decrement current line pointer.
+nnn Increment current line pointer.
? Display information about the record.
^ Toggle the up-arrow display mode.
< Set marker for the FROM lines.
> Set marker for the THROUGH lines.
! command Execute a MV shell command.
command Execute a COS shell command.
nnn Set current line pointer.
A text Append text to end of line.
B Set current line pointer to Bottom of record.
B string Break line at position of string.
BLOCK Toggle the BLOCK verification.
C Repeat change/replace.
C/from/to/[Gnn] Change string 'from' with 'to'.
COPY Copy a BLOCK of lines.
D[nn] Delete one or more lines of text.

34 Caché MultiValue Commands Reference

MultiValue Commands

DE[nn] Delete one or more lines of text.
DELETE Delete the record from the file.
DROP Drop (delete) a BLOCK of lines.
EX[KO] Exit editing this record.
FD[KO] Delete the record from the file.
F[[col] string] Find a string at a specified column.
FI[K] File record and exit editing this record.
FILE File record and exit editing this record.
FORMAT [n[m]] Format BASIC code, tab stop n , initial level m.
FS File record and continue editing this record.
G[nnn] Go to line nnn, or next line.
G< Go to beginning of the current BLOCK.
G> Go to end of the current BLOCK.
HELP Display help screen.
HEX Toggle HEX input/output mode.
I[string] Insert mode or insert string at current line pointer.
IB[string] Insert before mode or insert string before current line.
L Repeat locate (or list one line if no previous locate).
L string Locate next occurrence of string.
Lnnn List the next nnn lines.
Lnnn string Locate all strings in the next nnn lines.
LOAD [file] id Load lines of code from another item.
MOVE Move a BLOCK of lines.
OOPS Undo the previous command.
P[n] Execute prestore command n.
P[n] Cmd1[<ESC>Cmd2] Set prestore command n.
PP[nn] Page Print for nn lines.
Q Exit editing this record.
QUIT Exit editing this record.
R Repeat replace.
R newtext Replace entire line with 'newtext'.
R/from/to/[Gnn] Replace string 'from' with 'to'.
SIZE Display information about size of record.
TB n[,n...] Set tab stop position.
T Set current line pointer to Top of record.
U[nn] Move up nn lines.
UNDO Undo the previous command.
UNLOAD [file] id Save lines of code to another item.
X Exit editing this record and return to command line.
XEQ command Execute a MV shell command.

Additional notes on subcommands:

• DE: When you delete a line of code, the current line pointer moves upward. Following a line delete, ED displays the
current line. As this current line pointer behavior is not consistent across all MultiValue systems, exercise caution
when performing repeated line deletions.

• F: This subcommand finds the first instance of the specified string occurring at the specified col (column number).
Note that there is no space between F and the column number (for example, F4 bscan). If col is omitted, the default
is column number 1. If col and string are omitted, the previous F command is repeated.

• FIBCR: This subcommand performs a series of operations. It (FI) files the item, (B) compiles the Basic source, (C)
catalogs the object code, and finally (R) runs the command. If any one of these steps fails, the subsequent steps are not
attempted.

• HEX: A mode toggle to turn on or off display of text in hexadecimal. HEX mode only affects character display and
the I (insert) subcommand; it does not affect other subcommands.

• I: To insert a blank line, specify the I subcommand followed by a blank space. To insert a hexadecimal value, go into
HEX mode. To insert an @VM character (CHAR(253)) specify Ctrl-]. To insert an @SM character (CHAR(252))
specify Ctrl-\.

• I and R: You can use the ̂ (caret) code operator in an insert (I) or replace (R) subcommand to specify a single character
by its integer code (values 000 through 255). This is commonly used for non-printable control code characters. This
can be used to specify a MultiValue delimiter, such as ^253 for a value mark. However, you cannot specify a ^254,
because this specifies a field mark. This use of ^ is disabled by default, and must be enabled.

• P: The Prestore subcommand enables you to assign a single-digit integer to a series of one or more commands. The
format is P# command1<ESC>command2<ESC>command3 and so forth. The # is the assigned single-digit integer
value, followed by an associated command. Additional commands can be added by separating the commands with an
Escape character (<ESC>). This Escape character typed using ED is echoed (displayed) as "[".

Caché MultiValue Commands Reference 35

ED

An Escape character typed using ED is echoed (displayed) as "[".

You can use the Up and Down arrow keys to scroll through the ED subcommands history for the current editing session.

To abort ED and release all locks, use Ctrl-C. Any time you exit ED, it clears select list 0.

ED is a simple line editor, a subset of the line editors supplied with other MultiValue systems. For more complex editing,
the user should use the Studio.

The ED and EDIT commands are synonyms.

See Also: CREATE.FILE, EDIT, EDIT.LIST, JED

1.59 EDIT
The EDIT command allows you to edit a record in a file.

EDIT filename itemspec

The EDIT and ED commands are synonyms.

See Also: ED

1.60 EDIT.LIST
The EDIT.LIST command allows you to edit a select list in &SAVEDLISTS&.

EDIT.LIST [listname]

EDIT.LIST allows you to create or modify a select list, using the Caché MultiValue command line editor (ED) prompts.
EDIT.LIST is the same as ED &SAVEDLISTS& recID, where recID is the record ID of a saved list. If you do not
specify a listname, you are prompted to supply one. Caché stores the &SAVEDLISTS& file using the ̂ SAVEDLISTS global.

See Also: ED

1.61 ENABLE.BREAK.KEY
The ENABLE.BREAK.KEY and BREAK ON commands are functionally identical.

36 Caché MultiValue Commands Reference

MultiValue Commands

1.62 FORM.LIST
The FORM.LIST command allows you to create a select list from elements stored in a record.

FORM.LIST [filename] [recID] TO [listnum]

FORM.LIST take the record identified by recID from filename, and uses it to create a numbered select list listnum. If you
omit filename or recID you are prompted to supply one. Select lists are numbered 0 through 10; if the TO listnum argument
is omitted, it defaults to select list 0.

See Also: GET.LIST

1.63 GET.LIST
The GET.LIST command copies the specified named select list into a numbered select list.

GET.LIST listname [TO n]

The listname argument specifies a named select list. The optional TO n argument is a select list number in the range 0
through 10 (inclusive); if omitted, select list 0 is the default.

If n is out of range, GET.LIST returns a [209] message.

GET.LIST is the inverse of SAVE.LIST. When a select list is saved it becomes unavailable to the MVBasic READNEXT
command. To make a select list available again, use GET.LIST.

To copy Select List 0 to another numbered select list, use the PQ.SELECT command.

See Also: PQ.SELECT, SAVE.LIST

1.64 HUSH
The HUSH command suppresses terminal screen display. It suppresses all terminal display, including displaying the terminal
prompt.

HUSH [ON | OFF]

Specifying HUSH with no operand toggles display suppression. HUSH ON suppresses display. HUSH OFF re-enables
display.

The KEYS command temporarily overrides the HUSH. However, when KEYS times out, it returns to the prior HUSH
mode. This may be mistaken for a hang state.

The HUSH and P commands are synonyms.

See Also: DISPLAY, P

Caché MultiValue Commands Reference 37

FORM.LIST

1.65 ICOMP
The ICOMP command compiles the I-type dictionary definitions in the specified file.

ICOMP [DATA] filename [itemspec]

ICOMP compiles the I-type dictionary definitions in filename. The filename can be specified using filespec syntax, as
follows:

[DICT | DATA] [accountname,]filename[,datasection]

ICOMP by default references the DICT file. If you wish to compile I-types in the data portion of a file, specify the optional
DATA keyword. This is most commonly used when compiling the VOC. The default is to compile in the dictionary portion.

itemspec is the name of an I-type item, or a list of items, to compile. An itemspec can be specified using the following
syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all I-type items in the
file should be compiled. If itemspec is omitted, ICOMP uses the active select list as the source of I-type item names.

As each item is accessed, ICOMP updates the @RECORD special variable.

See Also: COMPILE.DICT, ICOMP.ALL

1.66 ICOMP.ALL
The ICOMP.ALL command compiles all the I-type dictionary definitions in one or more accounts.

ICOMP.ALL [accountname] [(AV]

ICOMP.ALL with no arguments compiles all the I-type dictionary definitions in the current account (namespace).
ICOMP.ALL with the optional accountname argument compiles all the I-type dictionary definitions in the specified
account (namespace). ICOMP.ALL with the (A letter code option compiles all the I-type dictionary definitions in all
accounts (namespaces). It lists the accounts as it performs the compile. If you specify both accountname and the (A option,
the accountname is ignored and all accounts are compiled. The (V letter code option returns verbose output while the
compile operation executes.

ICOMP.ALL continues to compile I-types despite errors; it reports successful compiles and errors as they occur. Upon
successful compile ICOMP.ALL generates a [7140] message specifying how many I-types compiled without error. If
errors occurred during the compile of an I-type file, it generates a [7141] error message, listing the number of I-types
compiled, the number of errors, and the file containing the I-types. If a dictionary item contains a syntax error, ICOMP.ALL
generates a [7107] error message.

See Also: ICOMP

38 Caché MultiValue Commands Reference

MultiValue Commands

1.67 JED
The JED command allows you to edit a record in a file.

JED filename [item]

The JED command provides a full-screen editor similar to the editor supplied with jBASE. Caché MultiValue supports
the ED and JED editors.

Note: ED is the preferred editor for Caché MultiValue. JED is provided for compatibility only.

The filename is the name of the file to edit, which is created as a Caché global (^filename). If the specified filename is not
valid, JED returns a [201] message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the program to be edited is stored in a named data section of the file.

If item is an existing record, JED positions the current line pointer to the beginning of this record. If item is not an existing
record, JED creates the specified record. If item is omitted, JED prompts you for the item name.

When JED creates or accesses an item it updates the @RECORD special variable.

See Also: ED

1.68 JOBS
The JOBS command list all running phantom processes initiated by the current process.

JOBS

JOBS lists all running processes initiated by the current process; LIST.JOB lists all running processes. You can use the
PHANTOM command to initiate a phantom process.

See Also: LIST.JOB, PHANTOM

1.69 KEYS
The KEYS command sets the terminal into a mode in which each keyboard input character is displayed, along with its
hexadecimal and ASCII base-10 equivalents. Compound keys (for example, the F1 key) return their component characters,
one line per character. The KEYS command is designed to display all characters, including those that would normally ter-
minate input. For this reason, the only way to exit KEYS mode is by timing out. This mode terminates automatically after
10 seconds of inactivity.

KEYS

The KEYS mode overrides the HUSH mode. However, when KEYS times out, it returns to the prior HUSH mode. This
may be mistaken for a hang state.

For further details, refer to the Terminal Input chapter of the Caché MV Terminal Independence manual.

Caché MultiValue Commands Reference 39

JED

1.70 LIST
The LIST command returns a list of items that satisfy the query criteria.

LIST [DICT] filename [field1 [field2 ...]] [dict [dict2 ...] | ALL] [query]
[(CDEFHINPYZ]

LIST returns a formatted display listing the items selected from a file. At the end of the listing the total number of items
listed is returned. LIST is a Caché MultiValue SQL (CMQL) query command.

The optional DICT keyword causes the command to access the DICT entries in the filename dictionary file; otherwise,
filename is assumed to be a data file. If there are multiple defined data sections (data files), you can specify filename as
filename,datasection. The DICT keyword and field arguments are mutually exclusive.

The optional field arguments permit you to specify which data fields to list. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. Item IDs
correspond to the @ID (VOC) dictionary entry value. If you omit the field argument, all fields in filename are listed. By
default, LIST lists field items in the order that you specify them. By default, the SORT command lists field items in
ascending collation sequence.

The optional dict arguments permit you to specify which DICT entries to list for each field. You can specify one or more
dict entry names separated by blank spaces. DICT entry names are not enclosed with quote characters. If you omit the dict
argument, only the @ID (VOC) dictionary entry for each field is listed.

If you specify ALL, all the dict attribute values for each field are listed; this is similar to LIST.ITEM. In all cases, the
@ID (VOC) dictionary entry is automatically listed by default.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-HDR-SUPP suppresses both the default page header and the column headers. COL.HDR.SUPP (note two
P’s) is a synonym for COL-HDR-SUPP.

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (E prevents the listing of data in vertical format when listing more than five dict items. Listing remains in horizontal
format, regardless of width. This is the opposite of VERT.

• (F suppresses “not on file” message generation. Because select lists are implemented as SQL joins that only return
rows that are in both the select list and the file, Caché MultiValue compares each item in the list with the file; items
that don’t match are added to the error list, unless suppressed using this option.

• (H or HDR-SUPP suppresses the default page header. It does not suppress a page header specified using the HEADING
clause. HDR.SUP and SUPP are synonyms for HDR-SUPP.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LIST operation.

40 Caché MultiValue Commands Reference

MultiValue Commands

• field COL.HDG name substitutes the specified name for the default field name. Delimit name with double quotes or
backslash characters. DISPLAY.NAME is a synonym for COL.HDG.

• COL-SUPP suppresses the column headers. COL.SUP is a synonym for COL-SUPP.

• DBL-SPC displays data listed in horizontal format as double-spaced. The default is single-spaced. DBL.SPC is a synonym
for DBL-SPC.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

• VERT displays listed data in vertical format. The default is to list data in horizontal format when listing five or fewer
dict items, and vertical format when listing more than five dict items. VERTICALLY is a synonym for VERT.

After listing each full page of items, LIST issues a prompt to the user to display the next page, unless you specified (N.
To terminate a listing before reaching its end, specify Q at the display prompt. At the end of the listing, LIST specifies the
total number of items listed, unless you specify NI-SUPP to suppress this total count.

See Also: COUNT, CT, LIST.ITEM, LIST.LABEL, LISTDICT LISTF, SELECT, SORT, STAT

1.71 LIST.INDEX
The LIST.INDEX command lists the indices defined for the specified file.

LIST.INDEX filename [index | ALL] (D

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist
LIST.INDEX returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the index to be listed is stored in a named data section.

If the specified filename has no defined indices, LIST.INDEX returns an [842] error message.

You can list a specific index, or list all indices defined for the specified file. Note that LIST.INDEX lists indices of all
types, including bitmapped indices. The Caché MVBasic index commands do not handle bitmapped indices.

The (D letter code option lists details about each index.

Note that LIST.INDEX has a VOC Attribute 3 value of "M", indicating that it is a Caché class method. See the
%MV.Verbs.ListIndex() method in the InterSystems Class Reference.

See Also: CREATE.INDEX

1.72 LIST.ITEM
The LIST.ITEM command lists fields with their attributes.

LIST.ITEM [DICT] filename [field1 [field2 ...]] [query] [(DFHNPYZ]

LIST.ITEM can return field attributes from all of the fields of a file, for one or more specified fields, or for fields selected
by a query. You can specify one or more field arguments separated by blank spaces. If a field argument is an item ID it

Caché MultiValue Commands Reference 41

LIST.INDEX

must be enclosed with single quote characters. The attributes of an item are presented as numbered lines. If the field is an
MVBasic program, the attributes are the numbered lines of the program.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order.

The following are supported letter code and keyword options:

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (F suppresses “not on file” message generation. Because select lists are implemented as SQL joins that only return
rows that are in both the select list and the file, Caché MultiValue compares each item in the list with the file; items
that don’t match are added to the error list, unless suppressed using this option.

• (H or HDR-SUPP suppresses the default page header. It does not suppress a page header specified using the HEADING
clause. HDR.SUP and SUPP are synonyms for HDR-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LIST.ITEM operation.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

After listing each full page of items, LIST.ITEM issues a prompt to the user to input a character to display the next page,
unless you specified (N. This prompted character is not echoed on the list display, regardless of the MultiValue emulation.
To terminate a listing before reaching its end, specify Q at the display prompt. At the end of the listing, LIST.ITEM
specifies the total number of items listed, unless you specify NI-SUPP to suppress this total count.

LIST.ITEM returns fields and their attributes in the order presented. To return fields in alphabetical order, use SORT.ITEM.

See Also: LIST, SELECT, SORT.ITEM

1.73 LIST.JOB
The LIST.JOB command displays a table listing all running phantom processes.

LIST.JOB

LIST.JOB lists all running processes; JOBS lists all running processes initiated by the current process.

See Also: JOBS

42 Caché MultiValue Commands Reference

MultiValue Commands

1.74 LIST.LABEL
The LIST.LABEL command list values returned from a file in a display format that you specify. One use of this command
is to format data for mailing labels.

LIST.LABEL [DICT] filename [field1 [field2 ...]] [query] [(DFNPYZ]

LIST.LABEL can either format all fields in the file, the specified fields from the file, or the fields from a file selected
using a Caché MultiValue SQL (CMQL) query. LIST.LABEL prompts you to specify a display format with the following
prompt: COUNT, ROWS, SKIP, INDENT, SIZE, SPACE {,C}?. You respond to this prompt with a comma-separated
series of integers that describe the display format. The simplest prompt response is 1,1, which means one item per line
(COUNT), and one line space per line (ROWS). Format 1,1 is the same format as the LIST command. More complex
display formats are described below.

By default, LIST.LABEL does not display a page header or footer. You can specify a page header using the HEADING
clause. You can specify a page footer using the FOOTING clause.

The optional DICT keyword causes the command to access the DICT entries in the filename dictionary file; otherwise,
filename is assumed to be a data file. If there are multiple defined data sections (data files), you can specify filename as
filename,datasection.

The optional field arguments permit you to specify which fields to list. You can specify one or more field arguments separated
by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. If you omit the field
argument all fields in the file are listed.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (F suppresses “not on file” message generation. Because select lists are implemented as SQL joins that only return
rows that are in both the select list and the file, Caché MultiValue compares each item in the list with the file; items
that don’t match are added to the error list, unless suppressed using this option.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LIST.LABEL operation.

After listing each full page of items, LIST.LABEL issues a prompt to the user to input a character to display the next page,
unless you specified (N. This prompted character is not echoed on the list display, regardless of the MultiValue emulation.
To terminate a listing before reaching its end, specify Q at the display prompt.

The following are the prompt values used to specify display format:

Caché MultiValue Commands Reference 43

LIST.LABEL

Number of fields per row, specified as an integer. This value is mandatory, the minimum
value is 1.

COUNT

Number of rows per “label” specified as an integer. This value is mandatory, the minimum
value is 1. Commonly this is equivalent to vertical line spacing.

ROWS

Optional — Number of blank lines between “labels” specified as an integer. Commonly
this is equivalent to vertical line spacing. The default is 0.

SKIP

Optional — Left indent, in character spaces, specified as an integer. The default is 0.INDENT

Optional — If COUNT>1, specifies how many character spaces to allocate for each item
on the line, specified as an integer. If SIZE is larger than an actual field value, blank spaces
are appended to comprise the total SIZE; if SIZE is smaller than an actual field value,
fields are concatenated and no blank spaces are appended. The default is 0.

SIZE

Optional — If COUNT>1, specifies how many character spaces to allocate for each item
on the line, specified as an integer. If SPACE is larger than an actual field value, blank
spaces are appended to comprise the total SPACE; if SPACE is smaller than an actual
field value, fields are concatenated and no blank spaces are appended. SIZE and SPACE
are added together. The default is 0.

SPACE

Optional — The letter C code character. If COUNT>1, specifies do not print empty fields.
The default is to print an empty field as SIZE+SPACE blank spaces.

C

See Also: LIST, SORT.LABEL

1.75 LIST.LOCKS
The LIST.LOCKS command displays a table listing the current locks. It list both system locks and locks established by
the current process.

LIST.LOCKS

For all locks, LIST.LOCKS lists the process ID of the process holding the lock and the lock type (X (exclusive) or S
(shared)). Locks established using the MVBasic LOCK command are displayed as LOCK nnn. Locks established by
opening a sequential file are displayed as FILE filename. Other locks display the lock global variable and its complete
pathname.

See Also: CLEAR.LOCKS

1.76 LIST.TRIGGER
The LIST.TRIGGER command lists the triggers defined for the specified file.

LIST.TRIGGER filename

It lists each trigger in the following format: event = file subroutine. For example: PREREAD = BP TRTN.

See Also: CREATE.TRIGGER

44 Caché MultiValue Commands Reference

MultiValue Commands

1.77 LISTDICT
The LISTDICT command displays a table listing the file’s dictionary entries.

LISTDICT filename

LISTDICT displays the DICT entries in the filename dictionary file as a table. This is similar to LIST DICT filename,
but differs in presentation format.

Note that LISTDICT has a VOC Attribute 3 value of "M", indicating that it is a Caché class method. See the
%MV.Verbs.ListDict() method in the InterSystems Class Reference.

See Also: LIST

1.78 LISTF
The LISTF command lists the MultiValue files in the VOC.

LISTF [field [field2 ...]] [ALL] [query] [(CDEHNPYZ]

For each file in the VOC, LISTF lists the file name, the file type (F or Q), the corresponding data file global, and the cor-
responding dictionary file global. By default, LISTF begins its listing with the current date and time, and ends its listing
with the total number of files listed.

If you CATALOG a compiled MVBasic file, that file appears in the LISTF listing as file type F. Note that file names are
case-sensitive and listed in ASCII order (uppercase letters are listed before lowercase letters).

The optional field arguments permit you to specify which file fields to list. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. By default,
fields are listed in ascending collation order. If you omit the field argument all file fields are listed. If you specify ALL, all
the attribute values for each field are listed; this is similar to LIST.ITEM.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. Note that the first
conditional clause cannot be specified as a WITH clause; it must be specified either as a WHEN clause, or with no conditional
clause keyword. These CMQL clauses can be specified in any order; the order of application of CMQL clauses is independent
of the specified order. For further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-HDR-SUPP suppresses both the default page header and the column headers. COL.HDR.SUPP (note two
P’s) is a synonym for COL-HDR-SUPP.

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (E prevents the listing of data in vertical format. Listing remains in horizontal format, regardless of width. This is the
opposite of VERT.

• (H or HDR-SUPP suppresses the default page header. It does not suppress a page header specified using the HEADING
clause. HDR.SUP and SUPP are synonyms for HDR-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

Caché MultiValue Commands Reference 45

LISTDICT

• (Z displays the CMQL Query Execution Plan before performing the LISTF operation.

• field COL.HDG name substitutes the specified name for the default field name. Delimit name with double quotes or
backslash characters. DISPLAY.NAME is a synonym for COL.HDG.

• COL-SUPP suppresses the column headers. COL.SUP is a synonym for COL-SUPP.

• DBL-SPC displays data listed in horizontal format as double-spaced. The default is single-spaced. DBL.SPC is a synonym
for DBL-SPC.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

• VERT displays listed data in vertical format. The default is to list data in horizontal format when listing five or fewer
dict items, and vertical format when listing more than five dict items. VERTICALLY is a synonym for VERT.

After listing each full page of items, LISTF issues a prompt to the user to input a character to display the next page, unless
you specified (N. This prompted character is not echoed on the list display, regardless of the MultiValue emulation. To
terminate a listing before reaching its end, specify Q at the display prompt.

You can use SET.FILE to create a Q-type file.

See Also: LIST

1.79 LISTME
The LISTME command displays a table listing the current MultiValue user processes.

LISTME

For each user process, LISTME lists the process ID (pid), the port number, the date and time of initialization of the MV
Shell, and the username. The current process is indicated by an asterisk preceding the pid number.

This listing is initiated by displaying a header, and concludes with a count of the number of items listed.

After listing each full page of items, LISTME issues a prompt to the user to input a character to display the next page. To
terminate listing, input the letter Q at the display prompt. This prompted character is not echoed on the list display,
regardless of the MultiValue emulation.

The LISTME command returns the same information as the LISTU and STATUS commands. However, LISTME can
only list processes when invoked from the USER account. LISTU and STATUS list all active processes when invoked
from any account.

See Also: LISTU, LOGOFF, STATUS, WHERE

1.80 LISTPA
The LISTPA command lists the paragraphs in the VOC.

LISTPA [field [field2 ...]] [ALL] [query] [(CDEINPYZ]

LISTPA is supported for the D3, IN2, jBASE, MVBase, PICK, R83, POWER95, Reality, and Ultimate emulations. Caché
MultiValue and the INFORMATION, PIOpen, Prime, UniData, and UniVerse emulations return no data from this command.

46 Caché MultiValue Commands Reference

MultiValue Commands

For each paragraph field in the VOC, LISTPA lists @ID, F1, and F2. F1 is always “PA”. If no paragraphs exist (or this
command is not supported in the current emulation), it returns a [401] message.

The optional field arguments permit you to specify which paragraph fields to list. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. By default,
fields are listed in ascending collation order. If you omit the field argument all paragraph fields are listed. If field does not
exist, or is not a paragraph field, a “not found” message is returned for that item.

If you specify ALL, all the attribute values for each field are listed. This is similar to LIST.ITEM.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. Note that the first
conditional clause cannot be specified as a WITH clause; it must be specified either as a WHEN clause, or with no conditional
clause keyword. These CMQL clauses can be specified in any order; the order of application of CMQL clauses is independent
of the specified order. For further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-SUPP suppresses the column headers. COL.SUP is a synonym for COL-SUPP.

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (E prevents the listing of data in vertical format. Listing remains in horizontal format, regardless of width. This is the
opposite of VERT.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LISTPA operation.

• field COL.HDG name substitutes the specified name for the default field name. Delimit name with double quotes or
backslash characters. DISPLAY.NAME is a synonym for COL.HDG.

• DBL-SPC displays data listed in horizontal format as double-spaced. The default is single-spaced. DBL.SPC is a synonym
for DBL-SPC.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

• VERT displays listed data in vertical format. The default is to list data in horizontal format when listing five or fewer
dict items, and vertical format when listing more than five dict items. VERTICALLY is a synonym for VERT.

See Also: LISTPH, LISTS

1.81 LISTPEQS
The LISTPEQS command displays a table listing the printer queue elements and their status.

LISTPEQS ["account"] [jobno[-jobno]] [(ACF]

The optional account argument allows you limit display to only the elements assigned to a specific account. account is
case-sensitive, and must be specified as a quoted string. The optional jobno argument allows you to specify a single print
job number, or a range of print jobs.

Caché MultiValue Commands Reference 47

LISTPEQS

The (ACF options consist of one or more of these letter codes in any order, preceded by an open parenthesis. The letter
codes have the following meaning: A=display only jobs created by the current account. C=do not display detailed information,
just return the total number of queue elements and pages in use. F=sort the display by form queue number.

See Also: LISTPTR, SPOOL, SP.DELETE, SP-EDIT

1.82 LISTPH
The LISTPH command lists the phrases in the VOC.

LISTPH [field [field2 ...]] [ALL] [query] [(CDEINPYZ]

LISTPH is supported for the D3, IN2, jBASE, MVBase, PICK, R83, POWER95, Reality, and Ultimate emulations. Caché
MultiValue and the INFORMATION, PIOpen, Prime, UniData, and UniVerse emulations return no data from this command.

For each phrase field in the VOC, LISTPH lists @ID, F1, and F2. F1 is always “PH”. If no phrases exist (or this command
is not supported in the current emulation), it returns a [401] message.

The optional field arguments permit you to specify which phrase fields to list. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. By default,
fields are listed in ascending collation order. If you omit the field argument all phrase fields are listed. If field does not
exist, or is not a phrase field, a “not found” message is returned for that item.

If you specify ALL, all the attribute values for each field are listed. This is similar to LIST.ITEM.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. Note that the first
conditional clause cannot be specified as a WITH clause; it must be specified either as a WHEN clause, or with no conditional
clause keyword. These CMQL clauses can be specified in any order; the order of application of CMQL clauses is independent
of the specified order. For further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-SUPP suppresses the column headers. COL.SUP is a synonym for COL-SUPP.

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (E prevents the listing of data in vertical format. Listing remains in horizontal format, regardless of width. This is the
opposite of VERT.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LISTPH operation.

• field COL.HDG name substitutes the specified name for the default field name. Delimit name with double quotes or
backslash characters. DISPLAY.NAME is a synonym for COL.HDG.

• DBL-SPC displays data listed in horizontal format as double-spaced. The default is single-spaced. DBL.SPC is a synonym
for DBL-SPC.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

48 Caché MultiValue Commands Reference

MultiValue Commands

• VERT displays listed data in vertical format. The default is to list data in horizontal format when listing five or fewer
dict items, and vertical format when listing more than five dict items. VERTICALLY is a synonym for VERT.

See Also: LISTPA, LISTS

1.83 LISTPTR
The LISTPTR command displays a table listing the current printer assignments.

LISTPTR [jobno[-jobno]]

The optional jobno argument allows you to specify a single print job number, or a range of print jobs.

See Also: LISTPEQS

1.84 LISTS
The LISTS command lists the sentences in the VOC.

LISTS [field [field2 ...]] [ALL] [query] [(CDEINPYZ]

LISTS is supported for the D3, IN2, jBASE, MVBase, PICK, R83, POWER95, Reality, and Ultimate emulations. Caché
MultiValue and the INFORMATION, PIOpen, Prime, UniData, and UniVerse emulations return no data from this command.

For each sentence field in the VOC, LISTS lists @ID, F1, and F2. F1 is always “S”. If no sentences exist (or this command
is not supported in the current emulation), it returns a [401] message.

The optional field arguments permit you to specify which sentence fields to list. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. By default,
fields are listed in ascending collation order. If you omit the field argument all sentence fields are listed. If field does not
exist, or is not a sentence field, a “not found” message is returned for that item.

If you specify ALL, all the attribute values for each field are listed. This is similar to LIST.ITEM.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. Note that the first
conditional clause cannot be specified as a WITH clause; it must be specified either as a WHEN clause, or with no conditional
clause keyword. These CMQL clauses can be specified in any order; the order of application of CMQL clauses is independent
of the specified order. For further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-SUPP suppresses the column headers. COL.SUP is a synonym for COL-SUPP.

• (D or DET-SUPP suppresses detail listings. DET.SUP is a synonym for DET-SUPP.

• (E prevents the listing of data in vertical format. Listing remains in horizontal format, regardless of width. This is the
opposite of VERT.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

Caché MultiValue Commands Reference 49

LISTPTR

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LISTS operation.

• field COL.HDG name substitutes the specified name for the default field name. Delimit name with double quotes or
backslash characters. DISPLAY.NAME is a synonym for COL.HDG.

• DBL-SPC displays data listed in horizontal format as double-spaced. The default is single-spaced. DBL.SPC is a synonym
for DBL-SPC.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

• VERT displays listed data in vertical format. The default is to list data in horizontal format when listing five or fewer
dict items, and vertical format when listing more than five dict items. VERTICALLY is a synonym for VERT.

See Also: LISTPA, LISTPH

1.85 LISTU
The LISTU command lists the current MultiValue user processes.

LISTU

LISTU lists the current MultiValue user processes in port number order. For each user process, LISTU lists the process
ID (pid), the port number, the date and time of initialization of the MV Shell, and the username. The current process is
indicated by an asterisk preceding the pid number.

This listing is initiated by displaying a header, and concludes with a count of the number of items listed.

After listing each full page of items, LISTU issues a prompt to the user to input a character to display the next page. To
terminate listing, input the letter Q at the display prompt. This prompted character is not echoed on the list display,
regardless of the MultiValue emulation.

The LISTU and STATUS commands are functionally identical.

See Also: LISTME, LOGOFF, STATUS, WHERE

1.86 LOGOFF
The LOGOFF command logs off a current MultiValue user process. You can log off your own current process, or another
active process.

LOGOFF portno

Specifying LOGOFF with a port number logs off the MV Shell on the specified user terminal process. When you issue a
log off, the terminal process immediately exits the MV Shell and returns to the Caché mode prompt. If you specify an
invalid portno, the LOGOFF command completes successfully, performing no operation.

To determine the portno of current user processes, use the WHO command, or the @PORTNO MVBasic system variable.

The LOGOFF and LOGOUT commands are similar.

See Also: LOGOUT, Q, QUIT, WHO

50 Caché MultiValue Commands Reference

MultiValue Commands

1.87 LOGOUT
The LOGOUT command logs off a current MultiValue user process. You can log off your own current process, or another
active process.

LOGOUT [pid]

Specifying LOGOUT with no operand logs off the MV Shell on the current terminal process. (You can use the Q or QUIT
command to perform the same operation.) Specifying LOGOUT pid logs off the MV Shell on the specified user terminal
process. Specifying LOGOUT ALL logs off the MV Shell on all user terminal processes except the current terminal process.

When you issue a log off, the terminal process immediately exits the MV Shell and returns to the Caché mode prompt. If
you specify an invalid pid, the LOGOUT command completes successfully, performing no operation.

To determine the pid of current user processes, use the LISTME command.

The LOGOUT and LOGOFF commands are similar.

See Also: LISTME, LOGOFF, Q, QUIT

1.88 LOGTO
The LOGTO command changes your MV Shell login to another account (namespace).

LOGTO account

LOGTO changes your current environment to a different account environment. The account must be an existing
account/namespace. Each account has its own files, local variables, and emulation setting. The current account is shown
as the command line prompt.

If the specified account is not valid (does not exist), LOGTO generates a [229] error. An account may be a Caché namespace;
it does not have to be an account created using CREATE.ACCOUNT. The SYSPROG account corresponds to the %SYS
namespace. If you are already in the specified account, no operation is performed.

LOGTO causes the MultiValue Shell to search the target account VOC in the following order: an item with the same name
as the user, an item with the same name as account, or an item named “LOGIN”. The MultiValue Shell runs the first of
these items that it encounters.

Changing to an account means entering the emulation environment established for that account. Refer to CEMU for details.
If a &HOLD& file has been created in the old account, LOGTO create a &HOLD& file in the new account. For details on
the relationship between accounts and namespaces, and the naming conventions used for each, refer to “MV Accounts and
Caché Namespaces” in Operational Differences between MultiValue and Caché.

See Also: CEMU, CREATE.ACCOUNT, WHO

Caché MultiValue Commands Reference 51

LOGOUT

1.89 MESSAGE
The MESSAGE command sends a message text to the specified users or processes.

MESSAGE username [username]
MESSAGE pid [pid]

Specify one or more usernames or process IDs (pid). Multiple arguments are separated by blank spaces. The MESSAGE
command prompts you for a message text. Type the text then press ENTER.

MESSAGE sends the message to all specified users that are currently logged on. It displays “message sent” with username
and pid for each valid recipient. It displays “not logged on” for each invalid recipient. usernames are not case-sensitive.
Duplicate values are ignored.

See Also: LISTME, LISTU, STATUS, WHO

1.90 MVI
The MVI command locates the source code for a MVBasic routine.

MVI [MVB.]routine[.MVI] [linenumber]

MVI allows you to cross reference line numbers from MVBasic intermediate source code (MVI code) to the original
MVBasic source code (MVB code). MVI searches for MVB.routine, where routine is a hexadecimal module number
assigned to the MVBasic routine when it is compiled. The MVB. prefix and .MVI suffix are both optional. The linenumber
corresponds to a line in the MVI code; if you omit linenumber it defaults to line 1. If the specified routine is not located,
you may be searching in the wrong account. For further details, refer to the MVI: MVI-To-MVB Cross-Reference section
of the Operational Differences between MultiValue and Caché manual.

See Also: BASIC

1.91 MVIMPORT
The MVIMPORT command imports accounts from other MultiValue implementations to Caché MultiValue. This command
is described in the MVIMPORT chapter of this manual.

1.92 NSELECT
The NSELECT command generates a select list of items in the supplied (or default) select list that are not in the file.

NSELECT filename [FROM n] [TO n]

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist NSELECT
returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

52 Caché MultiValue Commands Reference

MultiValue Commands

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the select list is to be compared with the contents of a named data section.

You can use the FROM clause to specify an existing numeric select list. By combining the FROM and TO clauses you can
specify a range of numbered select lists. By default, NSELECT uses select list 0. If there is no active select list, NSELECT
returns a [240] message.

See Also: BSELECT, CLEARSELECT, QSELECT, SEARCH, SELECT, SSELECT

1.93 OFF
The OFF command logs off your current MultiValue user process.

OFF

Specifying OFF logs off the MV Shell on your user terminal process. When you issue an OFF, the terminal process
immediately exits the MV Shell and returns to the Caché mode prompt.

The QUIT, and Q commands are synonyms. The OFF command is functionally identical.

See Also: LOGOFF, LOGOUT, Q, QUIT, WHO

1.94 P
The P command suppresses terminal screen display. It suppresses all terminal display, including displaying the terminal
prompt.

P [ON | OFF]

Specifying P with no operand toggles display suppression. P ON suppresses display. P OFF re-enables display.

The KEYS command temporarily overrides the P. However, when KEYS times out, it returns to the prior P mode. This
may be mistaken for a hang state.

The P and HUSH commands are synonyms.

See Also: DISPLAY, HUSH

1.95 PAGE.MESSAGE
The PAGE.MESSAGE command displays an end-of-page message on the screen when displaying multi-page output.

PAGE.MESSAGE [ON | OFF]

Specifying PAGE.MESSAGE with no operand returns the current setting. PAGE.MESSAGE ON displays the message
“Press any key to continue” at the end of the page and pauses awaiting user response. PAGE.MESSAGE OFF does not
display a message; it simply pauses at the end of the page awaiting user response. PAGE.MESSAGE ON is the Caché
default. The default may differ in other MultiValue emulations.

Caché MultiValue Commands Reference 53

OFF

1.96 PHANTOM
The PHANTOM command starts a phantom process in which to run the specified MultiValue command.

PHANTOM [BRIEF | SQUAWK] command

PHANTOM initiates a phantom (background) process. It does not validate the user-specified command. PHANTOM
returns the process ID (pid) assigned to the phantom process. Normal terminal output does not appear on the screen. By
default, command output is stored as a record in the &PH& file for the current account. In D3, IN2, jBASE, MVBase, R83,
POWER95, Reality, and Ultimate emulations, this output is instead directed to the Spooler file.

The optional SQUAWK keyword causes PHANTOM to also display the record number of the record created in the &PH&

file. In D3, IN2, jBASE, MVBase, R83, POWER95, Reality, and Ultimate emulations, SQUAWK returns the spooler job
number.

The optional BRIEF keyword starts a background process and returns the process ID (pid), but causes no output to be
generated.

PHANTOM is similar to the ZH and Z commands. Unlike PHANTOM, Z and ZH prompt for the account, password,
and command to execute. Like PHANTOM, ZH directs command output to either the &PH& file or the Spooler file,
depending on emulation. Z does not retain command output.

See Also: JOBS, LIST.JOB, Z, ZH

1.97 PQ.SELECT
The PQ.SELECT command copies the default select list (select list 0) into the specified numbered select list.

PQ.SELECT n

The n argument is a select list number in the range 1 through 10 (inclusive). If n is out of range, PQ.SELECT returns a
[819] message. If the default select list is not active, PQ.SELECT returns a [240] message.

PQ.SELECT is used to make the contents of the default select list available to a MultiValue PROC, which can only reference
numbered select lists. For further details refer to Caché MultiValue PROC Reference.

1.98 PQ.RESELECT
The PQ.RESELECT and PQ.SELECT commands are functionally identical.

54 Caché MultiValue Commands Reference

MultiValue Commands

1.99 PRINT.CATALOG
The PRINT.CATALOG command displays details of catalog pointers and their program references.

PRINT.CATALOG filename [itemspec]

The filename argument can be a compiled and catalogued MVBasic program file, or the VOC. The filename is the name
of an existing file, which is created as a Caché global (^filename). If the file doesn't exist PRINT.CATALOG returns a
[201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the catalog
information is stored in a named data section.

itemspec is the name of a item, or a list of items to display. An itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the file
should be displayed. If itemspec is omitted, PRINT.CATALOG uses the active select list as the source of item names. If
there is no active select list, PRINT.CATALOG issues a “Item Id:” user prompt.

PRINT.CATALOG displays a message for each item cataloged. A local catalog item generates a [232] message. A global
catalog item generates a [233] message. If an item does not exist in the file or is not catalogued, PRINT.CATALOG returns
without issuing an error message.

See Also: CATALOG, DECATALOG

1.100 PRINT.ERR
The PRINT.ERR command displays specified items from the ERRMSG file.

PRINT.ERR ERRMSG [itemspec]

PRINT.ERR returns the specified messages from the ERRMSG file. For example, PRINT.ERR ERRMSG 201 210
returns the message texts for errors [201] and [210], one message per line.

itemspec specifies one or more numeric error codes used to retrieve and display the corresponding error messages. An
itemspec can be specified using the following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all messages in the
ERRMSG file should be displayed. If itemspec is omitted, PRINT.ERR uses the active select list as the source of error
codes. If you do not specify a msg and there is no active select list, PRINT.ERR prompts you for an item ID. If msg is not
found in ERRMSG, PRINT.ERR returns a [202] “not on file” error.

As each item is accessed, PRINT.ERR updates the @RECORD special variable with the retrieved error message.

Caché MultiValue Commands Reference 55

PRINT.CATALOG

1.101 PTERM
The PTERM command sets and displays terminal options.

PTERM [LPTR channel] [DEVICE name] [DISPLAY] [option value]

By default, the terminal is the user terminal. The option argument is the name of an option; the value argument is a keyword
setting for that option. Available option value pairs are CASE INVERT and CASE NOINVERT, CRMODE INLCR and
CRMODE NOINLCR.

1.102 Q
The Q command quits the MultiValue Shell.

Q

Specifying Q causes the current terminal process to immediately exit the MV Shell and returns to the Caché mode prompt.
To perform the same operation on other terminal processes, use the LOGOFF or LOGOUT commands.

The Q and QUIT commands are synonyms.

See Also: LOGOFF, LOGOUT, OFF, QUIT

1.103 QSELECT
The QSELECT command generates a select list of the specified items.

QSELECT filename [itemspec] [slist]

The filename is the name of an existing file which is used as the source for the select list data. If the file doesn't exist
QSELECT returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the items to be selected are stored in a named data section.

itemspec is the name of a item, or a list of items to copy to the select list. An itemspec can be specified using the following
syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the file
should be copied to the select list. If itemspec is omitted, QSELECT uses the active select list as the source of item names.

As each item is accessed, QSELECT updates the @RECORD special variable.

The slist argument allows you to specify a numeric select list. By default, QSELECT outputs to select list 0.

See Also: BSELECT, CLEARSELECT, NSELECT, SEARCH, SELECT, SSELECT

56 Caché MultiValue Commands Reference

MultiValue Commands

1.104 QUIT
The QUIT command quits the MultiValue Shell.

QUIT

Specifying QUIT causes the current terminal process to immediately exit the MV Shell and returns to the Caché mode
prompt. To perform the same operation on other terminal processes, use the LOGOFF or LOGOUT commands.

The QUIT and Q commands are synonyms.

See Also: LOGOFF, LOGOUT, OFF, Q

1.105 REFORMAT
The REFORMAT command copies one or more DICT entries from a file and reformats them into an inverted file.

REFORMAT [USING dictname | DICT] filename field1 [field2 [...]] [query] [(PYZ]

REFORMAT takes an input filename and prompts you to specify an output file. You must specify the name of an existing
file at the File Name= prompt. If the specified input filename is not an existing file, it generates a [200] error. If the
specified output file is not an existing file, it generates a [201] error.

The optional DICT keyword specifies that filename is accessing a dictionary file; otherwise, the filename is assumed to be
accessing a data file. If there are multiple defined data sections (data files), you can specify filename as
filename,datasection.

The field arguments permit you to specify which DICT entries to reformat to the output file. You must specify at least one
field. You can specify multiple field arguments separated by blank spaces. If a field argument is an item ID it must be
enclosed with single quote characters. If any one of the field items is not a defined DICT entry, REFORMAT generates
a [7011] error for each invalid entry and no DICT entries are processed. Upon successful completion, REFORMAT gen-
erates a [180] message specifying the number of items processed.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the REFORMAT operation.

See Also: CREATE.FILE SREFORMAT

Caché MultiValue Commands Reference 57

QUIT

1.106 RUN
The RUN command runs an MVBasic program.

RUN filename item

The RUN command can execute an MVBasic program that has been compiled using the BASIC command. The MVBasic
program does not need to be cataloged. Once an MVBasic program has been cataloged using CATALOG, it may be executed
either by issuing a RUN command, or by simply invoking the item as a verb.

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist RUN
returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify accountname if the file is located in an account other than the current account. Specify datasection if the program
to be run is stored in a named data section of the file.

Before you can run an MVBasic program, you must first compile it using the BASIC command. If the specified item doesn't
exist RUN generates a [41] error message. If the specified item has not been compiled RUN generates a [40] error message.
If no item is specified RUN generates a [203] error message.

See Also: ; (semicolon), BASIC, MVI

1.107 SAVE.LIST
The SAVE.LIST command copies the specified numbered select list into a named select list.

SAVE.LIST [listname] [FROM n]

Use the optional listname argument to specify a named select list; if omitted, the select list name is taken from the process
ID (pid) or the UDT_SAVEDLIST environment variable. The optional FROM n argument is a select list number in the
range 0 through 10 (inclusive); if omitted, select list 0 is the default. Upon successful completion, SAVE.LIST returns a
message such as the following: [247] 478 Items saved to list 'MYLIST'.

When a select list is saved it becomes unavailable to the MVBasic READNEXT command. To make a select list available
again, use GET.LIST.

If n is not an active select list, SAVE.LIST returns a [240] error message. If n is out of range, SAVE.LIST returns a [209]
error message.

SAVE.LIST is the inverse of GET.LIST. To copy Select List 0 to another numbered select list, use the PQ.SELECT
command.

See Also: GET.LIST, PQ.SELECT

58 Caché MultiValue Commands Reference

MultiValue Commands

1.108 SEARCH
The SEARCH command searches item(s) for string(s) and copies those that match to a select list.

SEARCH filename [itemspec]

SEARCH searches an item or multiple items for one or more strings. When it finds a match, it copies the item to select
list 0.

The filename is the name of an existing file, which is created as a Caché global (^filename). If the file doesn't exist SEARCH
returns a [201] error message. The filename can be specified using filespec syntax, as follows:

[DICT | DATA] [accountname,]filename[,datasection]

The optional DICT and DATA keywords enable you to specify a dictionary file or a data file. The default is a data file.
Specify datasection if the items to be searched are stored in a named data section.

itemspec is the name of a item, or a list of items to search for a specified string. An itemspec can be specified using the
following syntax:

item [item2 [...]] | *

You may specify a single item or multiple items separated by spaces. An asterisk (*) specifies that all items in the file
should be searched. If itemspec is omitted, SEARCH uses the active select list as the source of one or more items to search.
If itemspec is omitted and there is no active select list, SEARCH prompts you for an item value. If a specified item is not
valid, SEARCH returns a [202] message for that item.

As each item is accessed, SEARCH updates the @RECORD special variable.

SEARCH prompts you for strings to search for. You can specify one or more strings at successive prompts, then press
Enter at a prompt to conclude string input.

See Also: BSELECT, CLEARSELECT, NSELECT, QSELECT, SELECT, SSELECT

1.109 SELECT
The SELECT command generates a select list of items that satisfy the query criteria.

SELECT [DICT] filename [field1 [field2 ...] [dict [dict2 ...] | ALL] [query] [TO
listnum] [(FPYZ]

SELECT copies items selected from filename to a select list. If filename is not an existing file, SELECT generates a [200]
error. If filename is an empty file, SELECT generates a [401] error and no select list is returned.

The optional DICT keyword specifies that filename is accessing a dictionary file; otherwise, the filename is assumed to be
accessing a data file. If there are multiple defined data sections (data files), you can specify filename as
filename,datasection. SELECT can specify any valid Caché MultiValue SQL (CMQL) query.

The optional field arguments permit you to specify which DICT entries to select. You can specify one or more field arguments
separated by blank spaces. If a field argument is an item ID it must be enclosed with single quote characters. If you omit
the field argument, all DICT entries in filename are selected, or all DICT entries are selected that pass the condition tests
in query. If no items pass the query condition test, SELECT generates a [401] error and no select list is returned.

The optional dict arguments permit you to specify which DICT entries to select for each field. You can specify one or more
dict entry names separated by blank spaces. DICT entry names are not enclosed with quote characters. If you omit the dict

Caché MultiValue Commands Reference 59

SEARCH

argument, only the @ID (VOC) dictionary entry for each field is selected. If you specify ALL, all the dict attribute values
for each field are selected.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

You can use the TO clause to specify a numeric select list. Valid listnum values are 0 through 10. By default, SELECT
uses select list 0.

The following are supported letter code options:

• (F suppresses “not on file” message generation. Because select lists are implemented as SQL joins that only return
rows that are in both the select list and the file, Caché MultiValue compares each item in the list with the file; items
that don’t match are added to the error list, unless suppressed using this option.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the SELECT operation.

Upon successful completion, SELECT returns a message such as the following: 2 Items selected to list #0.
The first successful SELECT to any select list sets the boolean flag $MVV(210) to 1. $MVV(210) remains set to 1 until
explicitly reset. The $MVV special variable is described in the Caché ObjectScript Reference.

See Also: BSELECT, CLEARSELECT, LIST, NSELECT, QSELECT, SEARCH, SSELECT

1.110 SET.FILE
The SET.FILE command creates a type Q file.

SET.FILE [account [filename [qname]]

SET.FILE with no arguments creates a Q-pointer file in the VOC in the current account. By default, it leaves Line 2 of
the Q-pointer blank, which indicates the current account. You can create multiple Q-pointer files in the VOC. To specify
a Q-pointer file other than the default QFILE, you must specify the account and filename, as shown in the following
example:

SET.FILE "USER" "VOC" "QFILETWO"

The optional account argument permits you to specify the name of an account (Line 2); the default is the current account.
The optional filename argument permits you to specify the name of a file in account (Line 3); the default is VOC. The
optional qname argument permits you to specify the name of the Q-pointer in filename; the default is QFILE.

You can use LISTF to list files with their file type (F or Q), the corresponding data file and dictionary file.

See Also: LISTF

60 Caché MultiValue Commands Reference

MultiValue Commands

1.111 SETPTR
The SETPTR command lists or sets the current printer settings.

SETPTR [chan,width,depth,topmargin,botmargin,mode,option[,option]]

SETPTR with no arguments lists the current printer settings. SETPTR with a comma-separated list of positional arguments
is used to change one or more printer settings.

For further details, refer to SETPTR in the “Spooler Commands” chapter of The Caché MultiValue Spooler.

1.112 SETPTR.DEFAULT
The SETPTR.DEFAULT command takes the current print channel 0 settings and establishes them as the print channel 0
default settings.

SETPTR.DEFAULT [LIST] [DELETE] [(LD]

SETPTR.DEFAULT must be run from the SYSPROG account. Before issuing SETPTR.DEFAULT you define the print
channel 0 settings using SETPTR. SETPTR.DEFAULT makes these settings the print channel 0 defaults for all future
SETPTR commands systemwide. If any printer settings have not been set, SETPTR.DEFAULT establishes a default
SETPTR characteristic for that setting. SETPTR.DEFAULT has no effect on print channels other than print channel 0.

The LIST keyword or the (L letter code option displays the current defaults that have been set. You can run
SETPTR.DEFAULT LIST or SETPTR.DEFAULT (L from any account.

The SETPTR.DEFAULT settings remain in effect across system reboots until you issue a SETPTR.DEFAULT DELETE
or SETPTR.DEFAULT (D command. The DELETE keyword or the (D letter code option reverts all settings to the initial
printer default settings.

For further details, refer to SETPTR in the “Spooler Commands” chapter of The Caché MultiValue Spooler.

1.113 SH
The SH command issues an operating system command.

SH [commandline]

SH -c "commandline"

The SH command issues an operating system command without exiting the MultiValue Shell. Results are displayed to the
MultiValue Shell. No additional windows are opened.

SH with no argument opens an interactive command prompt from which you can issue multiple operating system commands.
To exit this command prompt, specify the quit command for the operating system. On Windows systems, this is EXIT.

SH commandline issues an operating system command as a background process. The commandline can be any valid
command line for the current operating system. A commandline cannot exceed 248 characters in length. Upon completion
it returns to the MultiValue Shell prompt.

Caché MultiValue Commands Reference 61

SETPTR

The SH -c "commandline" alternate syntax is equivalent to SH commandline. This syntax is provided for UniVerse
compatibility. The double quotes enclosing the commandline are mandatory.

You can use COS to issue an ObjectScript command without exiting the MultiValue Shell.

The SH command is supported on multiple operating system platforms. The DOS command is specific to Windows platforms.
On Windows systems, the DOS and SH commands are synonyms.

On Windows systems you can use SH set (or DOS set) to display a list of environment variables. To display individual
environment variables, you can use the MVBasic GETENV() function.

See Also: COS, DOS

1.114 SLEEP
The SLEEP command suspends the process for the specified number of seconds, or until the specified time. It then returns
to the MultiValue Shell prompt.

SLEEP seconds
SLEEP time

You can specify seconds as an integer or a fraction.

You can specify time as local time in either 24-hour or 12-hour format. A 24-hour time is specified as hh:mm[:ss]. A 12-
hour time is specified as hh:mm[:ss]{AM | PM}. In both formats, spaces are not permitted, leading zeros may be omitted,
and the seconds component of the time is optional. The following are all valid 24-hour format time values: 02:34, 2:34:00,
14:34, 14:34:00. The following are all valid 12-hour format time values: 2:34PM, 02:34PM, 2:34:00PM. 2:34AM. Midnight
can be represented by 24:00, 00:00, 12:00PM, 00:00PM, or 00:00AM. An invalid time argument generates a [6193] error.

Caché MultiValue determines local time as follows:

• It determines the current Coordinated Universal Time (UTC) from the system clock.

• It adjusts UTC to the local time zone by using the value of the Caché special variable $ZTIMEZONE.

• It applies local time variant settings (such as Daylight Saving Time) for that time zone from the host operating system.

1.115 SORT
The SORT command generates a sorted list of fields that satisfy the query criteria.

SORT [DICT] filename [field1 [field2 ...]] [dict [dict2 ...] | ALL] [query]
 [BY field | BY-DSND field | BY-EXP field | BY-EXP-DSND field] [(CDEFHINPYZ]

SORT returns a sorted display of the fields specified in field and/or selected by query. SORT is otherwise identical to the
LIST command. Refer to the LIST command for further details.

Caché MultiValue defaults to sorting using BY logic: sorting items by their @ID values as single-valued elements in
ascending collation sequence. Other MultiValue emulations default to BY-EXP logic.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

62 Caché MultiValue Commands Reference

MultiValue Commands

You can use the CMQL BY clause to sort by a field other than @ID, and/or sort in descending order, rather than ascending
order. The BY keyword sorts the field values in ascending order (the default). The BY-DSND keyword sorts the field values
in descending order. The BY-EXP keyword explodes the multivalue levels of field into a data row and sorting these values
in ascending order. The BY-EXP-DSND keyword explodes the multivalue levels of field and sorts the values in descending
order.

See Also: COUNT, LIST, SELECT

1.116 SORT.ITEM
The SORT.ITEM command generates a sorted list of fields that satisfy the query criteria and lists their items.

LIST.ITEM [DICT] filename [field1 [field2 ...]] [query] [(DFHNPYZ]

SORT.ITEM is the same as LIST.ITEM, except that it sorts the field names as single values in ascending collation
sequence before listing them. Caché MultiValue defaults to sorting using BY logic: sorting fields by their @ID values as
single-valued elements in ascending collation sequence. Other MultiValue emulations default to BY-EXP logic. You can
specify a different sort order using the CMQL BY clause. See LIST.ITEM for additional details.

See Also: LIST.ITEM

1.117 SORT.LABEL
The SORT.LABEL command list values returned from a file, sorted in alphabetical order, presented in a display format
that you specify.

SORT.LABEL [DICT] filename [field1 [field2 ...]] [query] [(DFNPYZ]

SORT.LABEL is the same as LIST.LABEL, except that it sorts the values in ascending collation sequence before formatting
them for display. See LIST.LABEL for details.

See Also: LIST.LABEL

1.118 SORT.LIST
The SORT.LIST command sorts a saved select list in the &SAVEDLISTS& file.

SORT.LIST [filename [listname]]

The optional filename is the destination file where the sorted select list is to be stored. If you omit filename, SORT.LIST
prompts you for the list ID. The optional listname is the name of an existing select list in &SAVEDLISTS&; the default is
select list 0. Caché stores the &SAVEDLISTS& file using the ^SAVEDLISTS global.

See Also: COPY.LIST, EDIT.LIST

Caché MultiValue Commands Reference 63

SORT.ITEM

1.119 SP.x Commands
Caché MultiValue supports 39 commands that control the Spooler. The names of these commands begin with either “SP-
” or “SP.” Caché supports both variant forms: the hyphen form and the dot form. For example, SP-ASSIGN and SP.ASSIGN
are different names for the same command. In most cases, these two forms are synonymous. The one exception is SP-EDIT
and SP.EDIT, which provide different syntax options.

The following spooler commands are supported: SP.ASSIGN, SP.AUX, SP.CLEAR, SP.CLOSE, SP.CONDUCT,
SP.CONTROL, SP.COPIES, SP.COPY, SP.CREATE, SP.DELETE, SP.DEVICE, SP.DISPLAY, SP-EDIT, SP.EDIT,
SP.EJECT, SP.FORM, SP.FQDELETE, SP.GLOBAL, SP.JOBS, SP.KILL, SP.LOOK, SP.MOVEQ, SP.NEWTAB,
SP.OPEN, SP.OPTS, SP.PAGESIZE, SP.POSTAMBLE, SP.PREAMBLE, SP.PURGEQ, SP.RESUME, SP.SHOW,
SP.SKIP, SP.START, SP.STATUS, SP.STOP, SP.SUSPEND, SP.SWITCH, SP.TESTPAGE, SP.VERBOSE.

For further information on these commands, refer to the “Spooler Commands” chapter of The Caché MultiValue Spooler.

1.120 SPOOL
The SPOOL command controls the spooling of files for printing. It has three forms: send a file to the spooler for printing;
list the files pending on the spooler queue; delete a print job from the spooler queue.

SPOOL filename itemID [-NOHEAD] [-O]
SPOOL -LIST [formname]
SPOOL -CANCEL joblist

SPOOL filename itemID takes a MultiValue item and prints it to the currently assigned printer (the default is print
queue 0). The optional –NOHEAD keyword suppresses banners defined by SETPTR for the currently assigned printer.

SPOOL -LIST lists all the jobs on the spooler table. The optional formname argument allows you to filter to a single form
queue name. The form queue can be specified either by name or by number. The default form queue has the name STAN-
DARD, and a form queue number of 0. It can be specified as “STANDARD”, “0”, “F0”, “FN0”, or “FQ0”.

SPOOL -CANCEL deletes one or more pending print jobs. The joblist argument allows you to specify any number of indi-
vidual print job numbers (separated by blank spaces), as shown in the following example: SPOOL -CANCEL 66 68 71.
You can also delete a range of print jobs, as shown in the following example: SPOOL -CANCEL 66-70.

The -O option performs no operation and is ignored. It is accepted in syntax for compatibility with UniData code.

For further details and examples, refer to The Caché MV Spooler manual.

See Also: SP.DELETE

1.121 SREFORMAT
The SREFORMAT command copies one or more fields from a file and reformats them into a sorted inverted file.

SREFORMAT [USING dictname | DICT] filename field1 [field2 [...]] [query] [(PYZ]

The SREFORMAT sorts the records returned in ascending collation sequence. In all other respects it is identical to the
REFORMAT command.

See Also: REFORMAT

64 Caché MultiValue Commands Reference

MultiValue Commands

1.122 SSELECT
The SSELECT command generates a sorted select list of items that satisfy the query criteria.

SSELECT [DICT] filename [field1 [field2 ...] [dict [dict2 ...] | ALL] [query] [TO
listnum] [(FPYZ]

The SSELECT sorts the records selected in ascending collation sequence. In all other respects it is identical to the SELECT
command.

See Also: SELECT

1.123 STACK
The STACK command changes the behavior of the MultiValue Shell command line recall stack.

STACK [option [option]]

STACK with no argument returns the current MV Shell recall stack settings.

The following STACK options are supported. You can specify multiple options in any order, separating options with
spaces.

MAX nn — Sets the maximum number of entries in the recall stack to nn. The default is 99.

DUP ON | OFF — Allows duplicate commands in the recall stack. The default is DUP OFF.

CLEAR — Clears the current recall stack in the current MV Shell.

RECALL START | END — Positions the cursor to either the start or the end of a recalled command. The default is RECALL
END.

BY type — Specifies how the MV Shell provides persistence of command recall during logon, logoff, and logto. The
available type values are AUTHORIZATION, COS, IP, LOGNAME, NAME, NONE, PORT, USER, and ROUTINE name.
The default is BY COS.

When STACK BY AUTHORIZATION is specified, the commands are stored in the terminal command line stack indexed
by the Caché username. This is the same value contained in the @AUTHORIZATION system variable. When STACK
BY USER is specified, the commands are stored in the terminal command line stack indexed by the operating system
username. This is the same value contained in the @USER system variable. STACK BY LOGNAME is a synonym for
STACK BY USER.

When STACK BY ROUTINE name is specified, an ObjectScript routine or a MV subroutine is invoked at MV Shell
logon and logoff. It is up to that routine to save and restore the stack in whatever way it sees fit. The syntax of name
determines whether an ObjectScript routine or a MV subroutine is invoked. If name contains a ^ character, Caché assumes
the routine is a standard ObjectScript routine. For example, SHELL^MYFUNCS would be procedure SHELL in the ObjectScript
module MYFUNCS. If name does not contain a ^ character, Caché assumes the routine is a MV subroutine. For example
MYSHELL indicates that Caché should call the MV subroutine MYSHELL.

Caché MultiValue Commands Reference 65

SSELECT

1.124 STACKCOMMON
The STACKCOMMON command specifies whether the MVBasic PERFORM statement stacks unnamed COMMON
variable areas.

STACKCOMMON
STACKCOMMON ON
STACKCOMMON OFF

STACKCOMMON with no argument returns the current setting. STACKCOMMON ON causes each PERFORM to
NEW the unnamed COMMON variables area before calling a routine. STACKCOMMON OFF (the default) causes the
unnamed COMMON variables area to be preserved across multiple PERFORM routine calls.

See Also: The MVBasic COMMON and PERFORM statements.

1.125 STAT
The STAT command returns the total, average, and count for a numeric attribute.

STAT [DICT] filename [dict [dict2 ...] | ALL] [query] [(CHINPYZ]

STAT with a dict argument returns the total of the values for that attribute, the average value for that attribute, and the
count of values that fulfill the query criteria.

The optional DICT keyword causes the command to total, average, and count the specified DICT entries in the filename
dictionary file; otherwise, filename is assumed to be a data file.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-HDR-SUPP suppresses both the default page header and the column headers. COL.HDR.SUPP (note two
P’s) is a synonym for COL-HDR-SUPP.

• (H or HDR-SUPP suppresses the default page header. It does not suppress a page header specified using the HEADING
clause. HDR.SUP and SUPP are synonyms for HDR-SUPP.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• NI-SUPP suppresses the total item count at the end of the listing. NI.SUP and COUNT.SUP are synonyms for NI-
SUPP.

• (N or NOPAGE suppresses the page break prompt. NO.PAGE is a synonym for NOPAGE.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the STAT operation.

The following example returns the total, average, and count (ENUM) for the specified attribute:

STAT VOC F5

66 Caché MultiValue Commands Reference

MultiValue Commands

The VOC contains 26 F5 values that begin with the number 2. STAT returns a F5 total of 52 (26 x 2), an AVG F5 of
.108786611 (52 / 478), and an ENUM F5 of 478.

The following example returns the same statistics on F5 values that fulfill thequery criteria, in this case, the criteria that
every F5 has a non-null value:

STAT VOC F5 WITH F5

STAT returns a F5 total of 52 (26 x 2), an AVG F5 of 1.06122449 (52 / 49), and an ENUM F5 of 49.

STAT results can be returned individually using the COUNT and SUM commands or the AVG, ENUM, and TOTAL
CMQL clauses.

See Also: COUNT, SUM

1.126 STATUS
The STATUS command displays a table listing the current MultiValue user processes.

STATUS

For each user process, STATUS lists the process ID (pid), the port number, the date and time of initialization of the MV
Shell, and the username. The current process is indicated by an asterisk preceding the pid number. If a current terminal
process is not running the MultiValue Shell, STATUS does not displayed it.

This listing is initiated by displaying a header, and concludes with a count of the number of items listed.

After listing each full page of items, STATUS issues a prompt to the user to input a character to display the next page. To
terminate listing, input the letter Q at the display prompt. This prompted character is not echoed on the list display,
regardless of the MultiValue emulation.

The STATUS and LISTU commands are functionally identical. The LISTME command returns identical information,
but only lists processes when in the USER account. To list the current account name and currently executing command for
each terminal process, use the WHERE command.

See Also: LISTME, LISTU, LOGOFF, WHERE

1.127 SUM
The SUM command sums the values of items that satisfy an SQL query.

SUM [DICT] filename {field1 [field2 ...] | ALL} [query] [(CHIPYZ]

SUM returns a sum for each specified field item in filename, or the items selected from filename by query. It returns a [423]
message for each field: Total of field is : n. After returning one or more [423] messages, it returns a [438] message
giving the count of the items summed. This is shown in the following example:

USER:SUM VOC F1 F5
[423] Total of F1 is : 0
[423] Total of F5 is : 54
[438] 366 Items summed.

You must either specify one or more field arguments separated by blank spaces, or specify ALL to return totals for all
fields.

Caché MultiValue Commands Reference 67

STATUS

The optional DICT keyword causes the command to sum the DICT entries in the filename dictionary file; otherwise, filename
is assumed to be a data file.

The optional query component can contain one or more Caché MultiValue SQL (CMQL) query clauses. These CMQL
clauses can be specified in any order; the order of application of CMQL clauses is independent of the specified order. For
further details on CMQL clauses, refer to Caché MultiValue Query Language (CMQL) Reference.

The following are supported letter code and keyword options:

• (C or COL-HDR-SUPP suppresses both the default page header and the column headers. COL.HDR.SUPP (note two
P’s) is a synonym for COL-HDR-SUPP.

• COUNT.SUP suppresses the [438] x Items summed message.

• (H or HDR-SUPP suppresses the default page header. It does not suppress a page header specified using the HEADING
clause. HDR.SUP and SUPP are synonyms for HDR-SUPP.

• (I or ID-SUPP suppresses listing the @ID field. ID-SUP and ID.SUP are synonyms for ID-SUPP.

• NI.SUP suppresses the [438] x Items summed message.

• (P redirects all output to the STANDARD print queue. The LPTR clause performs the same operation. You can use
LISTPEQS to view the print queue.

• (Y displays query metadata.

• (Z displays the CMQL Query Execution Plan before performing the LIST operation.

When adding field values, SUM uses the leading numeric portion of a string; for example, 2CPM is processed as 2. If a field
value does not begin with a number, it is treated as 0. SUM does not check for duplicate names; if you specify a field item
twice, it will be summed twice.

See Also: COUNT, LIST, SELECT, STAT

1.128 TABS
The TABS command sets tab stops.

TABS n[,n[,n]]

TABS can be used to set any number of tab stops at specified character positions. Multiple n arguments can be separated
by commas or spaces. TABS overwrites any previous tabs settings. To remove all tabs, specify TABS with no arguments.
If no tabs are set, the tab key advances by a single space.

1.129 TANDEM
The TANDEM command allows one MultiValue user to connect to the terminal of another MultiValue user, sharing ter-
minal input and output.

TANDEM [ON | OFF | SYSPROG] [(N | (F | (S]
TANDEM port

A tandem session consists of a master and a slave terminal. A tandem session begins with the slave terminal.

68 Caché MultiValue Commands Reference

MultiValue Commands

The slave terminal uses the ON keyword to specify availability to receive a tandem slave request. The slave terminal uses
the OFF keyword to end availability to receive a tandem slave request or to end the current tandem session. The (N and
(F letter code options are synonyms for ON and OFF; specify either ON or OFF or (N or (F, not both.

Once the slave terminal has specified TANDEM ON (or TANDEM (N), the master terminal can use the port argument
to specify the terminal they wish to establish as a tandem slave. (You can use the LISTME or LISTU commands to list
the port numbers of current terminal sessions.)

Once established, the tandem session initiates when the slave terminal next presses the ENTER key.

By default, the master terminal and slave terminal can be running in any MV account. You can, however, restrict use of
TANDEM to a master terminal running in the %SYS namespace (the SYSPROG account). To do so, the slave terminal
must specify its availability using either TANDEM ON (S or TANDEM SYSPROG. This restrict tandem requests to
master terminal running in the SYSPROG account.

The master terminal initially enters the tandem session in view-only mode. To quit the session in view-only mode, type
“Q”. To change the mode, type one of the following: Esc-F puts the master in feed mode; Esc-V puts the master in view-
only mode; Esc-M puts both master and slave in message mode; Esc-X causes the master to exit the tandem session.

For further details, refer to the TANDEM section of the Operational Differences between MultiValue and Caché manual.

See Also: LISTME, LISTU

1.130 TERM
The TERM command displays and sets terminal and printer display characteristics.

TERM [name]
TERM [#1, #2, #3, #4, #5, #6, #7, #8, #9, #10]

TERM with no argument returns the current terminal and printer settings.

TERM name sets the terminal type to name. The default terminal type is CACHE. You can display the current terminal
type using the MVBasic SYSTEM (7) function. You can display the available terminal types using the CHOOSE.TERM
command. CHOOSE.TERM can also be used to set the terminal type. You can specify name with any combination of
letter case: if all letters are specified in lowercase the terminal type is set as specified; if one or more letters are specified
in uppercase the terminal type is set in all uppercase. You can optionally specify name using a Short Name (a single
uppercase letter), as shown in the CHOOSE.TERM listing. When setting just the name value, it may be preceded or followed
by any number of commas; thus TERM name and TERM ,,,,,,,,name are synonymous.

TERM with one or more numeric arguments sets terminal and printer display characteristics using positional argument
values. You many specify any subset of settings by including leading commas for unspecified values. Trailing commas are
not required. For example, TERM ,,,,,,100 sets the seventh argument: Printer page width. The unspecified arguments
retain their previous values.

The ten positional arguments are as follows:

Caché MultiValue Commands Reference 69

TERM

Maximum line length displayed on the terminal screen. Available
values range from 11 to 32767; the default is 79.

Terminal page width1

Maximum number of lines displayed on the terminal screen. Available
values range from 1 to 32767; the default is 24.

Terminal page depth2

Number of lines skipped at the bottom of the terminal screen. The
default is 0.

Terminal line skip3

Number of seconds to delay following a line feed. Available values
range from 0 to 7. Default is no delay.

Line feed delay4

For terminal: Number of seconds to delay following a form feed.
Available values range from 0 to 7. Default is no delay. For printer:
character sequence used to paginate to the next page: 0 = use CR/LF
to pad to the printer; 1 or above = use FF to pad to the printer. Default
is 1.

Form feed delay5

ASCII decimal code value corresponding to the backspace character.
The default is 8.

Alternate backspace6

Maximum number of characters per line for printer output. Available
values range from 1 to 32767; the default is 132.

Printer page width7

Maximum number lines per page for printer output. Available values
range from 1 to 32767; the default is 66.

Printer page depth8

The terminal type. The default is CACHE.Terminal type9

Number of lines skipped at the bottom of the printer page.The default
is 0.

Printer line skip10

Note that positional arguments 3, 4, 6, and 10 are currently not modifiable.

If you specify an out-of-range value, TERM returns a [290] message. If you specify an illegal value, TERM returns a
[202] message.

For further details, refer to the Terminal Output chapter of the Caché MV Terminal Independence manual.

See Also: CHOOSE.TERM, COMPILE.TERM, SETPTR

1.131 TERM-TYPE
The TERM-TYPE and TERM commands are synonyms. Note that only the hyphen form (TERM-TYPE) is valid; the dot
form cannot be used for this command.

See Also: TERM

70 Caché MultiValue Commands Reference

MultiValue Commands

1.132 TIME
The TIME command returns the current time and date, or returns the elapsed execution time for a MultiValue command.

TIME [command]

TIME with no argument returns the current local time and date. For example: “13:23:26 24 MAR 2008”. This date and
time format is not affected by the DATE.FORMAT command. You can use the DATE command to return the current
date and time.

Caché MultiValue determines local time and date as follows:

• It determines the current Coordinated Universal Time (UTC) from the system clock.

• It adjusts UTC to the local time zone by using the value of the Caché special variable $ZTIMEZONE.

• It applies local time variant settings (such as Daylight Saving Time) for that time zone from the host operating system.

TIME command returns the elapsed execution time (in fractional seconds) for the specified MultiValue command. This
is particularly valuable for timing CMQL queries. TIME command does not include time spent waiting for an inline
prompt (<<...>>). TIME command does include time spent waiting for user response to display the next page, regardless
of whether PAGE.MESSAGE is set to display or omit the “Press any key to continue” page prompt.

For further details, refer to the TIME section of the Operational Differences between MultiValue and Caché manual.

See Also: DATE

1.133 TRACE
The TRACE command establishes a trace mode that times the execution of each subsequent command.

TRACE [ON | OFF]

When TRACE is on, the invocation of a MultiValue command or a MVBasic statement returns the START date/time (in
internal format) before execution and the END date/time upon completion, along with the elapsed execution time in fractional
seconds.

To activate this debug behavior for subsequent commands, invoke TRACE ON. To inactivate this behavior, invoke TRACE
OFF. TRACE with no argument returns the current trace status (on or off).

You can use TIME command to return the elapsed execution time (in fractional seconds) for a single specified MultiValue
command.

See Also: TIME

Caché MultiValue Commands Reference 71

TIME

1.134 TRAP-EXCEPTIONS
The TRAP-EXCEPTIONS command enables or disables writing of exceptions to the mv.log file.

TRAP-EXCEPTIONS [ON | OFF]

When TRAP-EXCEPTIONS is on, it causes uncaught exceptions to be written to the MultiValue log file, located at
Cache/mgr/mv.log. Then the program ends with an MV [EXCEPTION] error message. If the mv.log file grows larger than
5MB (or the size limit of cconsole.log) Caché automatically renames it with the current date suffix as mv.old_YYYYMMDD

and initiates a new mv.log file. If mv.old_YYYYMMDD for the current date already exists, Caché appends an integer count
suffix mv.old_YYYYMMDD_n to create a unique file name. Refer to the %SYS.Task.PurgeErrorsAndLogs() method.

When TRAP-EXCEPTIONS is off (the default), an uncaught error writes a Caché error message and terminates the
MultiValue execution stack.

TRAP-EXCEPTIONS with no argument returns its current status (on or off).

You can also use the %SYS.System.WriteToMVLog() method to write to the mv.log file.

1.135 UNASSIGN
The UNASSIGN command deletes the assignment of a form queue spool device to a LPTR device.

 UNASSIGN form-queue

The form-queue can be specified either by name or by number. The default form queue has the name STANDARD, and a
form queue number of 0. It can be specified as “STANDARD”, “0”, “F0”, “FN0”, or “FQ0”.

See Also: ASSIGN

1.136 WHERE
The WHERE command displays a table listing the current MultiValue user processes, with their current account locations,
and currently executing command.

WHERE [startval[-endval]] [(DV]

By default, WHERE lists all running MultiValue processes, including phantom processes. By using the optional startval
and endval arguments you can restrict the list of processes returned to a single process or a specified range of processes
(inclusive). No spaces are permitted in the startval-endval range; for example, WHERE 1872-2049 is valid, but WHERE
1872 - 2049 is not valid.

By default, WHERE sorts the list of running MultiValue processes by port number, using startval and endval to specify
a range of port numbers. The (D letter code option specifies sorting by Caché process ID (pid) number, using startval and
endval to specify a range of pid numbers.

The (V letter code option specifies verbose mode, supplying more information about each process. You can specify either
or both letter code option in any order.

72 Caché MultiValue Commands Reference

MultiValue Commands

For each terminal process running the MultiValue Shell, WHERE lists the port number, the device ID (including the pid),
the current account name and current namespace name (these are often the same), and the currently executing MultiValue
command. The SYSPROG account corresponds to the %SYS namespace.

The active process is indicated by an asterisk preceding the port number. Its current command is always “WHERE”. Other
terminal processes indicate the currently executing command (for example, KEYS or SLEEP); if no MultiValue command
is executing, they return “MVShell” as the current command. If a current terminal process is not running the MultiValue
Shell, WHERE does not displayed it.

See Also: LISTU, STATUS

1.137 WHO
The WHO command displays the terminal port number, the account name, and the username.

WHO [portnum]

WHO with no argument returns the string portnum account from name for the current process. WHO portnum
returns the same string for the process corresponding to the specified port number. If no active MultiValue process corresponds
to portnum, WHO returns the empty string. You can use LISTU to list all active MultiValue processes with their port and
process ID (pid) numbers.

You can use STATUS to find the process ID (pid) corresponding to the terminal port number. The account name usually
identical to the Caché namespace name. However, note that namespace names are not case-sensitive, but account names
are case-sensitive. The SYSPROG account corresponds to the %SYS namespace. An account is created using the
CREATE.ACCOUNT command.

See Also: LISTU, LOGTO, STATUS, WHERE

1.138 Z
The Z command prompts for a MultiValue command, then starts a phantom process in which to run the command, not
retaining command output.

Z [command]

If you specify Z with no argument, it prompts you for account name, password, and command to execute. The account
name is usually the same as the Caché namespace name. The password is ignored. The command is any valid MultiValue
command.

The Z command does not retain output from the invoked MultiValue command.

Z initiates a phantom (background) process. It does not validate the user-specified command. Z returns to the MultiValue
Shell with a message specifying the process ID (pid) used for the phantom process.

The PHANTOM and ZH commands perform similar operations. Both, however, retain and direct command output.
PHANTOM is not interactive; it does not prompt for the command to execute. ZH prompts for account name, password,
and command to execute.

See Also: PHANTOM, ZH

Caché MultiValue Commands Reference 73

WHO

1.139 ZH
The ZH command prompts for a MultiValue command, then starts a phantom process in which to run the command,
directing command output to a file.

ZH [command]

If you specify ZH with no argument, it prompts you for account name, password, and command to execute. The account
name is usually the same as the Caché namespace name. The password is ignored. The command is any valid MultiValue
command.

Normal terminal output does not appear on the screen. By default, command output is stored as a record in the &PH& file.
In PICK and some other emulations, this output is instead directed to the Spooler file.

ZH initiates a phantom (background) process. It does not validate the user-specified command. If, for example, output
from a CEMU command is directed to &PH&, ZH displays a message such as: CEMU_39690_15409 record has
been created in the '&PH&' file. If ZH is unable to open the &PH& file (usually because the account name is
invalid), it returns a [201] error, and no phantom process is initiated. If the current emulation directs output to Spooler, ZH
displays the message Output to spooler. In all emulations, successful execution of ZH then displays the process ID
(pid) assigned to the phantom process.

The PHANTOM and Z commands perform similar operations. PHANTOM is not interactive; it does not prompt for the
command to execute. Z prompts for account name, password, and command to execute, but does not retain command output.

See Also: PHANTOM, Z

74 Caché MultiValue Commands Reference

MultiValue Commands

2
MVIMPORT

Imports accounts from other MultiValue implementations to Caché MultiValue.

MVIMPORT backupfile [dirpath [targetpath]] [(code)]

2.1 Arguments

The file containing the information to restore. This is assumed to be in the
native “save” format of the originating system (for example, a UniVerse
BACKUP). It can contain data for one or more accounts (namespaces).

backupfile

Optional — The location in which to restore certain directory files from a
jBASE or UniVerse backup (other MultiValue implementations do not have
“stray files”). This path is used to store any directories and files that are
otherwise skipped because they do not directly relate to a VOC (“stray
files”). MVIMPORT examines the backup and determines the lowest point
in the tree of directories (the root) for each group of files. MVIMPORT then
imports these subtrees into dirpath. If this argument is omitted, the default
location for these stray files is platform-dependent. On Windows,
MVIMPORT attempts to restore to the original path, so if the backup
contains a file K:\stray, MVIMPORT restores them into K:\stray; if there is
no K drive, the file goes nowhere and no error is issued. Restoring on a
OSX, the file goes into ./~/stray On Windows, when dirpath is included, if
the original drive exists, MVIMPORT will use it and ignore the dirpath.

dirpath

Optional — The location to import the account to. If this argument is omitted,
import into the MGR directory.

targetpath

Optional — A letter code governing the operation of MVIMPORT. Available
values are A, C, L, M, O, and R.

code

MVIMPORT ignores any command line arguments it does not understand and is not prepared to handle.

Caché MultiValue Commands Reference 75

2.2 Description
The MVIMPORT command used to move accounts from other MultiValue implementations to Caché. It does this by
taking a backup file created by another MultiValue implementation and restoring it to Caché MultiValue. MVIMPORT
supports backups created by UniVerse, jBASE, D3, Reality, MVBase, OpenQM and Power95. The features of MVIMPORT
vary according to the type of backup being restored.

• When importing a D3 backup, MVIMPORT uses the D3 file definition to determine the formatting for the @ID record
created. This formatting determines whether files are listed left justified or right justified, and defines columnar widths.

• If an imported file is a single level file, MVIMPORT always imports it as a single level file, regardless of the emulation
setting. See CREATE.FILE for information on single level files.

• Caché MultiValue does not support OpenQM. When importing an OpenQM backup, the Caché MultiValue emulation
is automatically changed to UniVerse.

MVIMPORT is designed to be a restoration utility for migrating legacy MultiValue accounts to Caché. Users should
become familiar with Caché administrator facilities for backup, restore, and other administrative functions.

Because MVIMPORT is designed as a migration aid, it only recognizes programs and data when performing its task. Any
indices present in backupfile are ignored. Native Caché facilities for indexing need to be used to recreate indices after the
import. Caché classes are not created. It is the responsibility of the application developer to create and use Caché classes
as needed. You can use PROTOCLASS to create Caché classes corresponding to MultiValue data dictionary definitions.

Note: MultiValue account manipulation requires %Admin_Manage privileges. This is normally associated with the
SYSPROG account. For information on the Caché security model, see the Caché Security Administration Guide.
For specific information on roles and privileges, please consult the chapter on Roles and the chapter on Privileges
and Permissions in the Caché Security Administration Guide.

2.2.1 Letter Code Options

The following code values are supported:

• A: (Alternate account name) Prompts for an alternate account name for restoration instead of using the account name
that was originally backed up. This takes precedence over the R option.

• C: (Case) Forces the account name to upper case. D3 is not case-sensitive; all other MultiValue emulations are case-
sensitive. For D3 backups, file names are also forced to upper case.

• Lnn: (Label) Specifies the tape label size as nn bytes. This may be needed when the original backup was to tape which
was then copied to an operating system file. Usually this value is “L80”.

• M: (Merge) If the account exists in Caché, and the file exists in the account, MVIMPORT overwrites existing records
if they are in backupfile, and leaves alone existing records that are not in backupfile. Any new records and files in
backupfile are also imported.

• O: (Overwrite) If the account exists in Caché, MVIMPORT replaces it. The old account will be deleted, then recreated,
and its records imported from backupfile.

• R: (Rename) If the account exists in Caché, MVIMPORT does not replaces it. Instead, MVIMPORT imports a new
account with a new name. The new name will be ExistingName_nn where nn is a sequence counter.

76 Caché MultiValue Commands Reference

MVIMPORT

2.3 Determining the Account Name
The account name is found on the backup from D3, Reality, MVBase, OpenQM and Power95. For a UniVerse backup, the
account name is the last directory name in the file path. jBASE does not provide the account name, so the user will be
prompted for an account name at the start of the import.

If the account exists, and the M, O, or R options were not specified on the command line, MVIMPORT prompts for a
response. You can respond with the M, O, or R letter code, which have the same effects as the (M), (O), or (R) command
line code options. For example:

Account 'DBIHELPDESK' already exists.
Enter 'M'erge,'O'verwrite,'R'ename or 'Q'uit:?

MVIMPORT creates a new account, namespace, and database for each account in the backup that does not already exist
in Caché. All hash files (for example, database files) are restored to Caché globals in the created account. All non-hash
files (for example, OS files in a directory) are restored to the home directory of the account, or as specified by the dirpath
argument. MVIMPORT imports all valid directories by default, including empty directories. For details on the relationship
between accounts and namespaces, and the naming conventions used for each, refer to “MV Accounts and Caché Names-
paces” in Operational Differences between MultiValue and Caché.

If MVIMPORT is merging accounts using the M option, when duplicate record keys exist in Caché and on the import data
stream, the Caché values are overwritten.

MVIMPORT always creates a new account in the default location, as a sub-directory of the Intersystems\Cache\Mgr

directory. If you want to create the account in any other location (for example, on another disk), then the procedure is as
follows:

1. Prior to the MVIMPORT, create a blank MultiValue account with CREATE-ACCOUNT, specifying an alternate
location. For example:

SYSPROG: CREATE-ACCOUNT MYACCOUNT UV E:\data\MYACCOUNT

2. Run MVIMPORT with the (M) option. This enables you to merge the account on the backup with the already created
account.

2.4 Errors and Log Files
At the conclusion of a MVIMPORT operation (for all backups except UniVerse):

• Caché displays a summary of the number of errors and warnings. MVIMPORT saves the details of these errors and
warnings and general restore statistics to an external file. It displays the filename of this error log file to the user.

• When MVIMPORT fails to create a namespace and/or a database, it displays an informative error message.

• All items found in backupfile are restored to the VOC, unless they already existed in the VOC.

• The file IMPORTED.VOC contains all the original VOC contents, regardless of whether or not MVIMPORT restored
the items to the VOC. This allows you to see what the VOC looked like before MVIMPORT made decisions on
whether or not to apply items to the VOC.

• MVIMPORT looks for object code in D3 backups. While this is discarded on Caché because it cannot be used, its
presence indicates which files contain compiled code. This fact is used to mark the file as BASIC source for use with
Studio.

Caché MultiValue Commands Reference 77

Determining the Account Name

3
PROTOCLASS

The PROTOCLASS command maps MultiValue dictionary definitions to corresponding Caché class definitions. It is used
to import a MultiValue file’s data dictionary to Caché. PROTOCLASS creates a Caché class for the file, providing the
corresponding object representation. PROTOCLASS creates and compiles the class definition, It generate both SQL and
Object projections of MultiValue data. The dictionary items (or a specified subset of them) are mapped to corresponding
Caché class properties.

CAUTION: When creating a Caché class definition for a MultiValue file, it is strongly recommended that every unique
attribute have a corresponding class property. Any field/attribute that does not have a corresponding class
property will become empty when the %Save() method is invoked. (Attributes that are mere synonyms
do not require a corresponding class property.)

Caché MVBasic object syntax can be used with an imported MultiValue file after the PROTOCLASS utility has been run
on its dictionary.

PROTOCLASS provides the following types of access to MultiValue data:

• Server access through Caché object syntax: MVBasic, ObjectScript, and Caché Basic.

• Server access through Caché SQL via either Embedded SQL or Dynamic SQL.

• Client access through projections: Java, .NET, C++, Perl, Python, and others.

• Client access through JDBC and ODBC: standard tools, applications.

Note: The name PROTOCLASS is meant to emphasize that typically the resulting class definition is a prototype or
starting point. Frequently, you will have to run the utility repeatedly, each time making adjustments to the MV
dictionaries, until you get your desired result. In addition, you may have to edit the class definition manually.
You are free to make copies of PROTOCLASS (an MVBasic program) and modify it to suit your own application
requirements.

In order to use PROTOCLASS you must perform the following steps:

1. Load PROTOCLASS into the desired account (namespace).

2. Configure PROTOCLASS to specify how the classes should be named.

3. Check the data dictionary with CHECK.DICT.

4. Run PROTOCLASS against the data dictionary.

Caché MultiValue Commands Reference 79

3.1 Loading PROTOCLASS
The source code for PROTOCLASS is located in <cachesys>\Dev\mv\samples. (In a standard Windows Caché installation,
<cachesys> is C:\InterSystems\Cache.) The code is fully customizable and contains extensive documentation describing
how to customize it.

Use the Caché MultiValue shell to load PROTOCLASS into the current account (namespace).

The following Windows example uses the MV Shell to load PROTOCLASS into the USER account.

USER:;file = "C:\InterSystems\Cache\dev\mv\samples\PROTOCLASS.xml"
USER:;stat = "%SYSTEM.OBJ"->Load(file,"c")

Load started on 03/03/2011 12:51:06
Loading file C:\InterSystems\Cache\dev\mv\samples\PROTOCLASS.xml as xml
Creating file BP
Imported document: PROTOCLASS.mvb
Compiling BP PROTOCLASS

Load finished successfully.
USER:

After loading, PROTOCLASS appears as a verb in the VOC for the account.

USER:LIST.ITEM VOC "PROTOCLASS"

LIST.ITEM VOC "PROTOCLASS" 01:00:18pm 03 Mar 2011 PAGE 1

 PROTOCLASS
0001 V
0002 PROTOCLASSýUSER
0003 B
0004
0005
0006
0007 L
0008 PROTOCLASS
0009 BP
0010 USER

 One item listed.
USER:

3.1.1 Setting Attribute 5

Before using PROTOCLASS, you must set the PROTOCLASS verb attribute 5 to “2D”. You can use the MultiValue ED
line editor to set attribute 5, as shown in the following example:

USER:ED VOC PROTOCLASS
PROTOCLASS
10 lines long.
----:5
0005:
----:R 2D
0005: 2D
----:FI
"PROTOCLASS" filed in file "VOC".

When completed, the VOC entry for PROTOCLASS should look like this:

80 Caché MultiValue Commands Reference

PROTOCLASS

 PROTOCLASS
0001 V
0002 PROTOCLASSýUSER
0003 B
0004
0005 2D
0006
0007 L
0008 PROTOCLASS
0009 BP
0010 USER

3.2 Package and Class Naming
Before using PROTOCLASS, you must specify how it is to handle package and class name assignment. The default package
and class is MVFILE.dictfilename. Using this default, PROTOCLASS creates classes in package MVFILE and assigns the
MultiValue dictionary file name as the class name. For example, MVFILE.PERSON.

You can override this default by setting the dictionary file attribute 5 setting. When setting a package and class, a name to
the left of a period is treated as a package name. A name without a period, or a name to the right of a period is treated as a
class name. If either the package name or the class name is not specified, PROTOCLASS uses the default for that name.

3.3 Checking the Dictionary with CHECK.DICT
Before running PROTOCLASS on your file’s dictionary, use the CHECK.DICT command to validate the dictionary entries
that you intend to represent in your Caché class. CHECK.DICT verifies the following:

• The validity of conversion and correlative codes. Caché is somewhat stricter than many MultiValue platforms with
regard to validity of correlative and conversion codes. In addition, there may be some codes that are not supported by
Caché. Any such codes that CHECK.DICT finds invalid need to be removed or fixed prior to running PROTOCLASS.

• The existence of dictionary items referenced by itypes and correlatives in your dictionary. If such items do not exist,
then PROTOCLASS cannot generate a valid Caché class.

3.4 Running PROTOCLASS
You run PROTOCLASS against a MultiValue file using the following syntax:

PROTOCLASS filename {item1 [item2 [itemn]] | *} [(D]

3.4.1 Arguments

The MultiValue dictionary file to be mapped to a corresponding class.filename

One or more dictionary items to be mapped to class properties. Multiple
items are separated by blank spaces.

item

A wildcard specifying that all dictionary items be mapped to class properties.*

The optional (D letter code causes PROTOCLASS to delete an existing
class. The default is to update an existing class.

(D

Caché MultiValue Commands Reference 81

Package and Class Naming

By default, PROTOCLASS creates a class named MVFILE.filename, then creates a class property for each specified item.
If you specified asterisk (*), PROTOCLASS creates a class property for each of the items in filename. PROTOCLASS
then compiles the class it has just created. Only in the case of extremely clean dictionaries will PROTOCLASS generate
properties for all items. Ensuring the dictionary entries are properly marked as Single or Multivalued prevents extraneous
“list of” properties.

The resulting class definition includes parameter, property, and index declarations. The property definitions correspond to
the attributes defined in the original MultiValue file. Single-value attributes are commonly assigned the Caché %String
data type and MultiValue attributes are commonly assigned a list of %String data type strings. A property may be assigned
a %MV.Date, %Time, or %MV.Numeric data type, based on the conversion codes in the attribute definition.

3.4.2 Run PROTOCLASS Example

The generation of Caché class definitions using PROTOCLASS is best done as an iterative process, rather than as a single
bulk conversion of the entire MultiValue file. First run PROTOCLASS on the simple attributes (D-type attributes or A
and S types without A or F correlatives) that you want represented in Caché. Use Studio to view the resulting Caché property
declarations and make any needed modifications. Then run PROTOCLASS on a few of the complex attributes. View and
modify the results. Repeat until you are done.

The following example runs PROTOCLASS against simple attributes of the PERSON file:

MyAccount:PROTOCLASS PERSON NAME AGE HAIR PHONE

Processing simple attribute definitions
Creating property called Name from NAME
Creating property called Age from AGE
Creating property called Hair from HAIR
Creating property called Phone from PHONE
Processing computed attribute definitions
Saving the generated class...
Compiling the generated class...

Compilation started on 11/11/2011 09:38:47 with qualifiers 'cfvko3'
Compiling class MVFILE.PERSON
Compiling table MVFILE.PERSON
Compiling routine MVFILE.PERSON.1
Processing MV projection...
MV file name is 'PERSON'
MVREPOPULATE is False, skipping DICT update

Compilation finished successfully in 1.228s.
Class generation and compilation was successful!

Which yields the following class definition:

 Class MVFILE.PERSON Extends (%Persistent, %MV.Adaptor, %XML.Adaptor)
 [ClassType = persistent, Inheritance = right, ProcedureBlock, SqlRowIdPrivate]
 {
 Parameter MVAUTOLOCK = 0;
 Parameter MVCLEARDICT = 0;
 Parameter MVCREATE As BOOLEAN = 0;
 Parameter MVFILENAME As STRING = "PERSON";
 Parameter MVREPOPULATE = 0;

 Property Age As %String(COLLATION = "MVR", MVATTRIBUTE = 1, MVAUTO ="P", MVNAME = "AGE",
 MVPROJECTED = 0, MVTYPE = "D");
 Property Hair As %String(COLLATION = "Space", MVATTRIBUTE = 2,MVAUTO = "P", MVNAME = "HAIR",
 MVPROJECTED = 0, MVTYPE = "D");
 Property ItemId As %String;
 Property Name As %String(COLLATION = "Space", MVATTRIBUTE = 3,MVAUTO = "P", MVNAME = "NAME",
 MVPROJECTED = 0, MVTYPE = "D");
 Property Phone As list Of %String(COLLATION = "Space", MVATTRIBUTE = 4, MVAUTO = "P", MVNAME = "PHONE",

 MVPROJECTED = 0, MVTYPE = "D");

 Index indexItemId On ItemId [IdKey, PrimaryKey];
 }

82 Caché MultiValue Commands Reference

PROTOCLASS

Once your Caché class contains properties that adequately represent your simple attributes, you can continue by running
PROTOCLASS on your complex attributes (I-types and A or S types with A or F correlatives in attribute 8). For a complex
attribute, PROTOCLASS generates two different Caché class members:

• A calculated property. Properties of this type have no stored or in-memory values. Their values are calculated based
on the values of other properties. One of the parameters of the property declaration is SqlComputeCode. This parameter
identifies code (a Caché method) which calculates the value for the property.

• A method containing the code that calculates a value for the property.

In the following example, PERSON contains an I-type property named ITEST. To add a property to your Caché class to
represent ITEST invoke the following command:

MyAccount: PROTOCLASS PERSON ITEST

PROTOCLASS adds the following property declaration to the class definition. Note that the MVITYPE parameter contains
the actual MultiValue code that defines the property. Note also the SqlComputeCode parameter. This parameter contains
code that invokes a Caché method that calculates the value of the property.

Property Itest As %String(COLLATION = "Space", MVAUTO = "P",MVHEADING = "TYPE-I",MVITYPE = "TYPE;
@1[1,1];
IF @2=""F"" THEN ""FILE""
ELSE IF @2=""V"" THEN ""VERB""
ELSE IF @2=""K"" THEN ""KEYWORD""
ELSE IF @2=""S"" THEN ""MACRO""
ELSE IF @1=""PA"" THEN ""PARAGRAPH""
ELSE IF @1=""PH"" THEN ""PHRASE""
ELSE ""OTHER"";
TYPE:'-':@3",MVNAME = "ITEST", MVPROJECTED = 0, MVTYPE= "I", MVWIDTH = 20)
[Calculated, SqlComputeCode = {Set {Itest}=##class(MVFILE.PERSON).calcItest({%%ID},{%RECORD})},
 SqlComputed];

Here is the method that PROTOCLASS generates to calculate the property's value:

/// Calculates property Itest from the raw ref, using the itype routine
/// IMPORTANT!!! This routine should be recoded to use explicit properties rather than @Record.
ClassMethod calcItest(ItemID As %String, Item As %String) As %String
[Language = mvbasic]
 {
 @ID =ItemID
 @RECORD=Item
 MV$ITYPE$1 = @RECORD<1>
 MV$ITYPE$2 = MV$ITYPE$1[1,1]
 MV$ITYPE$3 = IF MV$ITYPE$2 = "F" THEN "FILE"
 ELSE IF MV$ITYPE$2 = "V" THEN "VERB"
 ELSE IF MV$ITYPE$2 = "K" THEN "KEYWORD"
 ELSE IF MV$ITYPE$2 = "S" THEN "MACRO"
 ELSE IF MV$ITYPE$1 = "PA" THEN "PARAGRAPH"
 ELSE IF MV$ITYPE$1 = "PH" THEN "PHRASE"
 ELSE "OTHER"
 MV$ITYPE$4 = @RECORD<1>:'-': MV$ITYPE$3
 RETURN MV$ITYPE$4
 }

@RECORD is a system variable. In the above method, it contains the current record as a delimited string. Notice that the
automatically generated comments that precede the method definition suggest that you recode the method to use actual
property names rather than the @RECORD syntax. This can dramatically simplify the method. In the example, the I-type
property ITEST is calculated based on the value of TYPE. The method can be recoded as follows:

ClassMethod calcItest(TYPE As %String) As %String
[Language = mvbasic]
 {
 IF TYPE = "F" THEN RETURN "FILE"
 ELSE IF TYPE = "V" THEN RETURN "VERB"
 ELSE IF TYPE = "K" THEN RETURN "KEYWORD"
 ELSE IF TYPE = "S" THEN RETURN "MACRO"
 ELSE IF TYPE = "PA" THEN RETURN "PARAGRAPH"
 ELSE IF TYPE = "PH" THEN RETURN "PHRASE"
 ELSE "OTHER"
 }

Caché MultiValue Commands Reference 83

Running PROTOCLASS

You would then also need to change the SqlComputeCode in the property declaration to the following:

SqlComputeCode = {Set {Itest}=##class(MVFILE.PERSON).calcItest({TYPE})}

3.4.3 Property Naming

PROTOCLASS creates a class property that corresponds to each specified item. Because of the different naming conventions
in MultiValue and Caché, the following naming conversions are performed:

• If the first character of item is a number, prefix the property name with the letter “P”.

• If the first character of item is a letter, capitalize that letter.

• If the first character of item is a non-alphanumeric character, delete that character, then follow the naming rules above.

• If item contains a non-alphanumeric character, delete that character and capitalize the letter that follows it. Lowercase
all other letters except the first letter.

• If item does not contains non-alphanumeric characters, retain the letter case as specified in item.

3.4.4 MVAUTO Parameter

Each resulting class property contains an MVAUTO parameter. MVAUTO contains a string of one or more letter codes
indicating the source of the property definition and whether another property relies on it. MVAUTO prevents PROTOCLASS
or CREATE.INDEX from overwriting any manual modifications that you may have made to a class.

PROTOCLASS sets MVAUTO to one or more of the following letter codes:

MeaningValue

Property defined by PROTOCLASS.P

Property is defined by or is being used by an index.I

Another property references this property.R

The property has been defined through manual
intervention. None of the automatic tools will modify
it.You must add the M manually.

M

For further details on index properties, refer to the CREATE.INDEX command.

3.4.5 ItemId Property

The ItemId property of the generated Caché class represents the original MultiValue file’s item-id field. The ItemId property
has an index defined on it. This index gives ItemId the following characteristics:

• ItemId is an IDKEY and serves as the Caché objects ObjectID. Use ItemId to open objects. When you create a new
object, you must assign a unique value to its ItemId property before saving the object.

• ItemId is also the SQL primary key, so each record must have a unique value. Note that the SQL representation also
includes the RowID field (named ID). Its values are always identical to the ItemID values.

PROTOCLASS creates a class with a property named ItemId, which describes the item id of the original MultiValue file.
You can change the names of other properties in the generated class (assuming that you also change the name anywhere
that the property is referenced by other properties, indices, or methods) but the ItemId property must be named ItemId.
Otherwise subsequent CREATE.INDEX commands will fail and leave the class in an uncompileable state.

84 Caché MultiValue Commands Reference

PROTOCLASS

3.4.6 MVSVASSOCIATION Parameters

If the MultiValue dictionary definition contains at least 10 lines, PROTOCLASS generates MVSVASSOCIATION
parameters for the properties when the controlling/dependent attribute is multivalued. This permits subvalue selection. For
further details refer to Subvalue Considerations.

3.4.7 dummyAttribute Property

If the dictionary items to be mapped to a class consist entirely of virtual fields, PROTOCLASS automatically creates an
additional property called dummyAttribute. Virtual fields include calculated fields and transient fields.

The dummyAttribute property is not created if the class contains one or more real (storage) attributes. If PROTOCLASS
later adds a real attribute to the class, the dummyAttribute is automatically deleted. If you manually add a real attribute to a
class that contains the dummyAttribute property, you should manually delete the dummyAttribute property and associated
storage.

Caché MultiValue Commands Reference 85

Running PROTOCLASS

4
MultiValue Command Stack Commands
and Keystrokes

This chapter provides an alphabetical listing of the command stack commands supported by the Caché MultiValue Shell.
Command stack commands begin with a period (.) character. These allow you to edit and execute the command lines on
the command line stack. These command names are not case-sensitive.

This chapter also describes the keyboard keystrokes supported by the Caché MultiValue Shell.

4.1 .A
The .A command appends text to a command line.

.A[n] text

The command .A (or .A1) appends text to the current command line. The command .An appends text to a command line
earlier in the command stack, with the integer n specifying how many previous line to count back. Thus, .A4 appends text
to the command line issued four lines ago.

The text is appended exactly as specified. Thus a quoted string is appended with the quote characters.

4.2 .C
The .C command changes command line text.

.C[n] /oldtext/newtext

The command .C (or .C1) replaces the first instance of oldtext with newtext in the current command line. The command
.Cn replaces text in a command line earlier in the command stack, with the integer n specifying how many previous line
to count back. Thus, .C4 replaces oldtext with newtext in the command line issued four lines ago.

Text search is case-sensitive. To delete oldtext, specify .C /oldtext/. To replace oldtext with a blank space, specify
.C /oldtext/ /.

Caché MultiValue Commands Reference 87

4.3 .D
The .D command deletes one or more command lines from the command stack.

.D[n[-m]]

The command .D (or .D1) deletes the most recent command line from the command stack. The command .Dn, with n
specified as an integer, deletes the n most recent command line from the command stack. The command .Dn-m, with n
and m specified as integers, deletes the range of lines between n and m (inclusive).

4.4 .L
The .L command lists one or more lines from the command line stack.

.L[n]

The command .L lists all of the command lines in the command line stack. The command .L1 lists the most recent command
line in the command line stack. The command .Ln, with n specified as an integer, lists the n most recent command lines
in the command line stack. If n is larger than the number of lines on the stack, all lines on the stack are returned.

4.5 .U
The .U command converts one or more command lines to uppercase letters.

.U[n[-m]]

The command .U (or .U1) converts the most recent command line to uppercase letters. The command .Un, with n specified
as an integer, converts the n most recent command line to uppercase. The command .Un-m, with n and m specified as
integers, converts the range of lines between n and m (inclusive) to uppercase letters. This range begins with the n command
line and ends with the m command line. Therefore, to convert the last three command line commands and return them in
the original order, you would specify .U3–1.

4.6 .X
The .X command executes one or more command lines.

.X[n[-m]]

The command .X (or .X1) retrieves and executes the most recent command line. The command .Xn retrieves and executes
a command line earlier in the command stack, with the integer n specifying how many previous line to count back. Thus,
.X4 executes the command line issued four lines ago. Note that issuing .X or .X1 does not increment the command line
count, whereas issuing .Xn (where n is >= 2) does increment the command line count by 1. The command .Xn-m, with n
and m specified as integers, executes the range of lines between n and m (inclusive), beginning with the n command line
and ending with the m command line. Therefore, to execute the last three command line commands in the original order,
you would specify .X3–1.

88 Caché MultiValue Commands Reference

MultiValue Command Stack Commands and Keystrokes

4.7 .?
The .? command displays help text for the command stack commands.

.?

4.8 Keystrokes
The Caché MultiValue Shell supports the following terminal keystrokes:

• Left Arrow / Right Arrow keys: enable you to move left or right in the current command line.

• Home / End keys: enable you to move to the beginning or the end of the current command line.

• Up Arrow / Down Arrow keys: enable you to move backwards and forwards through the command line history in the
command line stack.

• Page Up / Page Down keys: same as Up Arrow / Down Arrow keys.

• Insert key / Ctrl-O: enable you to toggle between text insert mode (the default) and text overwrite mode in the current
command line. You can use either the Insert key or Ctrl-O to toggle between these modes within a command line. The
MultiValue Shell defaults to insert mode for each new command line.

• Tab key: inserts a single space.

• Escape characters are not included in a command line.

Caché MultiValue Commands Reference 89

.?

5
Error Messages

This chapter lists the error messages supported by Caché MultiValue.

5.1 Error Codes and Error Messages
Caché MultiValue supports error codes and corresponding error messages. Most error codes are positive integer values,
but there are also a small number of alphanumeric string error codes. Error codes are usually displayed enclosed in square
brackets. You can use the MVBasic ERRMSG command to display the error message for a given error code. The MVBasic
ABORTE and STOPE commands also return these error messages. Square brackets are not used when specifying an error
code to these functions.

5.2 Numeric Error Codes
Error messages 1 through 99:

[1] Indexes purged.
[2] Missing a terminating string delimiter (' " \).
[3] '' is not a verb.
[5] The dictionary entry for "" has an invalid format.
[11] No Dictionary Attributes Specified.
[12] File '' is update protected.
[16] Syntax error in statement ''.
[19] Value without an attribute name is illegal.
[20] Maximum number of new context levels exceeded.
[24] The word "" cannot be identified.
[27] Item id '' is illegal.
[30] Format error in VOC entry defining verb.
[31] Basic program pointer '' missing target routine name.
[32] The keyword definition '' is recursive.
[39] An item '' already exists in the VOC.
[40] Program '' has not been compiled.
[41] Program '' cannot be found (Source or bytecode).
[64] Only one item id is permitted in a "WITHIN" type statement.
[71] An illegal connective modifies the word ''.
[82] Your system privilege level is not sufficient for this statement.
[86] File reference attempted on file not previously opened.
[87] File i/o via PROC file buffer failed: file not previously opened.
[88] PROC statement has attempted a divide by zero.
[89] File i/o via PROC file buffer failed: binary item encountered.
[93] TAPE NOT ATTACHED!
[94] End of file.
[96] Bot.
[97] Eot.
[99] '' Tape records written.

Caché MultiValue Commands Reference 91

Error messages 100 through 199:

[117] A delete statement must contain either item-ids or selection criteria.
[120] '' negative balance not permitted.
[150] Two digit years default to the years 1900 to 1999.
[151] Two digit years are set at the system level to the
 dates between: '' and ''.
[152] Two digit years are set in this process to apply to
 dates between: '' and ''.
[154] The options specified, '' serve no purpose alone.
[155] The options specified, '' express conflicting intent.
[156] Invalid mask specification.
[157] Account '' will be imported into namespace '' due to
 existing use of default namespace.
[158] An illegal connective of the form '' modifies ''.
[159] Account '' will be imported into existing empty namespace ''.
[160] Account '' will be restored into namespace '' which will be created.
[161] Account '' already exists and will not be imported.
[163] Attribute for sort-key missing.
[166] Illegal attribute name ''.
[167] Non-numeric amc.
[169] Invalid syntax.
[170] Missing left parenthesis.
[171] Missing right parenthesis.
[172] Missing THEN.
[173] Missing semicolon.
[174] Missing comma.
[175] The Itype code in '' has not been compiled.
[176] EVAL must be followed by an expression enclosed in double quotes.
[177] AS must be followed by a new column name.
[178] The EVAL expression " failed to compile.
[179] The keyword " must be followed by an integer.
[180] '' Items processed.
[181] '' Message(s) sent.
[183] Expected a file path.
[184] Unable to open filepath ''
[185] Expected a number.
[186] The DICT item referenced in the N() clause is invalid.
[187] The DICT item referenced by N() not found.
[195] '' is not a list.
[196] The SYSPROG account cannot be deleted.
[197] Full file retrieval cannot be specified when using this verb.
[198] Account name?

Error messages 200 through 299:

[200] File name missing.
[201] Unable to open file ''.
[202] '' not on file.
[203] Item name?
[204] File definition '' is missing.
[206] Data section '' not found.
[207] FROM or TO clause missing listnumber.
[208] Account '' deleted.
[209] List number must be between 0 and 10.
[210] File '' is access protected.
[211] Index name missing.
[212] There is no index on ''
[213] Backup format not recognized.
[214] MVIMPORT is already running on another port.
[215] Account '' not deleted because multiple namespaces are mapped
 into database '':
[220] '' exited from file ''.
[221] '' filed in file ''.
[222] '' deleted from file ''.
[223] '' exists on file.
[227] The catalog entry points to object from a different file.
 Account: , File: , Item:
[228] The target routine '' in account '' is missing.
[229] '' is not a valid account name.
[231] Program '' is a Normal catalog entry.
[232] Program '' is a Local catalog Entry.
[233] Program '' is Globally cataloged.
[234] The routine '' is defined as being in namespace ''
 but there is no account associated with it.
[235] The target routine '' is missing.
[238] File '' is update protected.
[240] No select list active.
[241] '' Cataloged.
[242] '' decataloged.
[243] '' Cataloged Local.
[244] '' Cataloged Global.
[247] Items saved to list ''.

92 Caché MultiValue Commands Reference

Error Messages

[256] Execution time Seconds.
[258] source files failed to compile.
[267] PROC transfer to '' cannot be completed.
[268] PROC error, destination of GO not found, at
 line: offset: in the statement:
[269] Invalid operand or value used in the PROC statement:
[270] PROC format error at line: offset: in the statement:
[271] PROC error, No target for GO command,
 at line: offset: in the statement:
[272] [Account: File: Proc:] PROC compile failed.
[273] PROC error, Invalid operator for pattern match (), at
 line: offset: in the statement:
[274] PROC Unsupported command at line: offset: in the statement:
[275] PROC error, Unknown user exit, at line: offset: in the statement:
[276] PROC error, too many labels, at line: offset: in the statement:
[277] PROC error, Duplicate label, at line: offset: in the statement:
[278] PROC Error: Failed to open file containing PROC.
 Account: File: Item:
[279] PROC Error: Item containing PROC not found.
 Account: File: Item:
[290] The value "" of parameter number "" is not acceptable.
[298] Format error in specifications.

Error messages 300 through 399:

[310] Item is locked by port .
[351] Multiple using clauses in the query.
[352] Multiple using clauses within the macro '' in the file ''
[353] USING keyword must be followed by a valid filename.
[354] Error in Phrase or Macro ''

Error messages 400 through 499:

[401] No items present.
[402] File-definition item '' cannot be deleted or overwritten.
[409] The data section '' already exists.
[410] A synonym (Q type) file cannot be specified in this statement.
[413] The file name already exists in the master dictionary.
[414] Data section '' set to use directory ''.
[415] '' exists on file.
[417] CreateFile Completed.
[418] Default data section for file '' created. Type =
[419] The specified file cannot be cleared or deleted!
[420] Dictionary file deletion cannot be done without
 deletion of data first.
[421] DICT for file '' created. Type =
[422] Data section '' created. Type =
[423] Total of is :
[424] DICT with a data section name is illegal.
[425] USING must be followed by DICT <filename>.
[426] DICT of file '' set to use DICT of file ''.
[427] Unable to create directory '' for file ''.
[428] DICT '' set to use directory ''.
[429] Default Data Section of '' set to use directory ''.
[430] No items deleted.
[431] One item deleted.
[432] Items deleted.
[433] File '' has been cleared.
[434] Expected a path to a directory in the host file system.
[435] The account '' in namespace '' cannot be opened.
[436] The file '' in account '' in namespace '' cannot be opened.
[437] Added default record '@ID' to 'DICT '.
[438] Items summed.
[440] DICT '' Deleted.
[441] Default Data Section '' deleted.
[442] Data section '' deleted.
[443] VOC entry for file '' deleted.
[444] VOC entry for file '' updated.
[445] Catalog pointer '' needs to be modified to use TCL2.
 Edit the VOC item and add '2' to attribute 5.
[446] Class cannot be generated for system file ''.
[447] Single Level File '' cannot delete the DATA section.
[448] The global '' is already in use, operation failed.

Error messages 500 through 699:

None.

Error messages 700 through 799:

Caché MultiValue Commands Reference 93

Numeric Error Codes

[701] Invalid function correlative definition.
[702] missing right bracket (]).
[703] Invalid C conversion/correlative definition :
[704] Invalid P conversion definition :
[706] The file specified in the translate '' does not exist.
[707] Unable to open target file of translate conversion.
[708] Value '' Cannot be translated.
[713] Function correlative data stack empty.
[714] Function correlative data stack overflow.
[723] Format mask exceeds maximum length of 256 characters.
[724] Length conversion exceeds maximum value of 32767.
[725] F correlative exceeds maximum of 200 opcodes.
[726] Invalid substitute code.
[727] Invalid character position in text extract.
[728] Invalid code in format.
[729] Too many ranges.
[730] Trailing characters not recognized as valid in the conversion code.
[731] Attempted to compile A correlative but the DICT was not opened.
[732] Error in conversion code on attribute 7 or 3 of ''.
[733] Error in conversion code on attribute 8 of ''.

Error messages 800 through 899:

94 Caché MultiValue Commands Reference

Error Messages

[800] Conversion code exceeds size of internal buffer.
[801] Invalid year digits field.
[804] Missing separator character.
[806] Conversion Feature '' is not currently implemented.
[807] Parameters missing.
[808] Invalid Translate code.
[809] Error in conversion code ''
[810] Account '' already exists.
[811] Create account '' failed.
[812] Invalid emulation specified.
[814] Account '' created.
[815] Changing the emulation setting of account SYSPROG is forbidden.
[819] SELECT list number out of range (0-10).
[820] Invalid key , SELECTINFO().
[821] SELECT list parameter is invalid.
[822] Account '' in namespace '' attached.
[823] Long Strings Not Enabled

To run MV applications you must enable long strings.
 In the Management Portal:
 Select Configuration, Memory and Startup
 Check the "Enable Long Strings" box
 Apply the changes and RESTART your session.
[824] Trigger event '' is not a valid event name.

Valid event names are:
 POSTOPEN, and PRE|POST: READ,INSERT,UPDATE,WRITE,DELETE,CLEAR
[825] Warning - Trigger subroutine '' is not yet CATALOGed.
[826] Trigger routine already installed for event '' on file ''
 Use (O option to override existing routine.
[827] Trigger routine '' success.
 Installed on file '' for event ''.
[828] event trigger removed from file ''.
[829] No port number specified.
[830] Port is not logged on.
[831] You do not have the authorization to perform this operation.
[832] Port logged off.
[833] A correlative 'N()' failed.
[834] @FILENAME null.
[835] Create of Directory '' failed with error code .
[836] Invalid package name ''.
[837] Invalid class name ''.
[838] Date segment widths are limited to 15 chars.
[839] Date segment text strings are limited to 15 chars.
[840] Open transaction(s) were rolled back.
[841] The DICT does not contain any attribute definitions.
[842] No class or indexes defined for this file.
[843] You do not have the required permission to access the MV shell.
[844] You do not have the permissions needed to access SYSPROG
 Use of resource:%Admin_Manage.
[845] You do not have '' permission for required resource ''
 to perform this operation.
[846] You do not have the required database access privileges to logon to .
[847] F pointer item '' not copied.
[848] Invalid routine name ''.
[849] Unknown User Exit ''.
[850] Error in conversion code '' at line of .
[851] Source Id: File: Line:
[852] Source Id: File: Line: Account:
[855] Conversion Feature '' is not currently implemented.
[856] Class '' has multiple properties with the MVNAME parameter ''.
[857] Index '' already exists.
[858] CREATE.INDEX is not supported on directory or anode file types.
[859] Index '' is already defined for ''.
[860] Index '' deleted.
[861] No indexes deleted.
[862] The attribute number in property '' does not match
 the attribute number in dictionary ''.
[863] The Itype code in property '' does not match the code in dictionary ''.
[864] The data type in property '' does not match the type in dictionary ''.
[865] The correlative code in property '' does not match the code in dictionary ''.
[866] Index(es) created.
[867] Index Build Completed.
[868] Build Index Failed:
[869] The multivalue indicator in property '' does not match
 the indicator in dictionary ''.
[870] The multivalue indicator in property '' does not match
 the indicator in dictionary ''.
[871] There is no class associated with file ''.
[872] Unable to open compiled class ''.
[873] Index has unknown collation type.
[874] Index type not supported by MVBasic.
[875] The property name '' is already in use.
[876] Itype '' contains system delimiters.
[877] Printer assignment for channel '' cleared.
[878] All printer assignments cleared.

Caché MultiValue Commands Reference 95

Numeric Error Codes

[879] Class '' has the MVAUTOLOCK parameter set.
This prevents this verb from modifying the class.

[880] Printer channel number '' is out of range.

Error messages 900 through 4999:

None.

Error messages 5000 through 5029:

[5000] Item '' in file '' Locked.
[5001] <MVFIO> Directory/File permission error or failure.
 Account: File: Item:
[5002] <MVFIO> Failed to open file.
 Account: File: Item:
[5003] <MVFIO> Invalid file reference object.
[5004] <MVFIO> Bad VOC entry.
 Account: File: Item:
[5005] <MVFIO> End of Select List.
[5006] <MVFIO> Buffer Realloc.
 Account: File: Item:
[5007] <MVFIO> Buffer Alloc.
 Account: File: Item:
[5008] <MVFIO> Unable to allocate buffer space for item.
 Account: File: Item:
[5009] <MVFIO> Item already exists in file.
 Account: File: Item:
[5010] <MVFIO> Item not found
 Account: File: Item:
[5013] <MVFIO> Unable to access S.ACCOUNT or an entry in it.
[5014] <MVFIO> Unable to create object reference.
[5015] <MVFIO> Attr/Value/Subval not found.
 Account: File: Item:
[5016] <MVFIO> Format error in Qpointer.
 Account: File: Item:
[5017] <MVFIO> Global for file is missing or corrupted.
 Account: File: Item:
[5018] <MVFIO> The file type is not supported.
 Account: File: Item:
[5019] <MVFIO> Object is not a selectlist object.
[5020] <MVFIO> Item to be updated not found
 Account: File: Item:
[5021] <MVFIO> Global for file has no organization indicator
 in the default subscript.
[5022] <MVFIO> Qpointers form an endless loop.
 Account: File: Item:
[5025] <MVFIO> Index routine not found
[5026] <MVFIO> SQL error while updating indices
[5028] <MVFIO> Current namespace is not MV enabled
[5029] <MVFIO> Trigger routine not found

Error messages 6000 through 6219 correspond to ObjectScript error codes. See General System Error Messages in Caché
Error Reference for descriptions of these errors.

Error messages 7000 through 7017:

[7000] The dynamic library '' failed to load with error:
[7001] Failed to resolve function ''. Error:
[7002] CMQL: Internal Error, contact Intersystems support
 with the following info:
[7003] CMQL: Premature end of command or syntax error at command end:
[7004] CMQL: Syntax error near '' :
[7005] CMQL: Syntax error at end of command, while looking for '' :
[7006] CMQL: Syntax error near '', while looking for '' :
[7007] CMQL: Syntax error near command end
[7008] CMQL: Malformed query near '' :
[7009] CMQL: Malformed query at command end
[7010] CMQL: Syntax error near '' while looking for one of :
[7011] CMQL: The DICT entry is not defined.
[7012] CMQL: Fatal internal error - invalid query tree.
 Please prepare the following information and contact Intersystems support:
 o As much detail as possible regarding the CMQL statement
 o As much detail as possible regarding the DICT of the file(s) in question
 o Provide the information between the == lines below
 ==
 Exception message :
 Recognizer line :

Tree line :
 Node description :
 ==

96 Caché MultiValue Commands Reference

Error Messages

[7013] CMQL: Query specified REQUIRE.SELECT but no SELECT list was active.
[7014] CMQL: The query:
 Caused an internal code generation error.
 Please report this error, providing as much detail as possible,
 to Intersystems Support.
[7015] CMQL: Cannot default WITH clause to AND or OR. Use AND WITH or OR WITH.
[7016] CMQL: Keyword '' defined in VOC but not valid in CMQL:
[7017] CMQL Internal error: Unknown type code.
 Column '' Routine type code =

Error messages 7100 through 7140:

[7100] Internal error in Itype tree parser. ''
 Please report details to Intersystems.
[7103] Unexpected '' in itype ''.
[7106] Itype syntax error in Dictionary item ''
[7107] Itype syntax error in Dictionary item ''
[7114] Unexpected '' in itype ''.
[7115] Missing '' in itype ''.
[7120] Itype reference to invalid function '' in item ''.
[7121] Itype incorrect number of parameters to function '' in dict item ''.
[7122] Reference to undefined attribute '' in itype ''.
[7123] Recursive loop in itype definitions:
[7124] Class reference '' needs to be in quotes in itype ''.
[7125] Self reference in itype ''.
[7130] Unable to open Dict of TRANS target file ''.
[7131] Dict item '' not found in TRANS file ''.
[7140] itypes compiled.

5.3 Alphanumeric String Error Codes
These error codes must be specified as delimited strings. They are case-sensitive.

[417NS] CreateFile Completed in namespace ''.
[B0] Compilation completed.
[B100] Compilation failed.
[I1] I-type compilation failed.
[I2] I-types failed to compile in file .
[I3] Referencing compound I-type that has not yet been compiled in I-type
[I4] Unable to open VOC
[I5] No source for I-type
[I6] I-type function too large
[I7] TOTAL() not yet implemented: used in I-type
[MVENOIQPTR] CREATE-INDEX on Q pointer to account '' unsupported.
 Use CREATE-INDEX in target account.
[NYI] The feature '' in subsystem '' is not yet implemented.

Caché MultiValue Commands Reference 97

Alphanumeric String Error Codes

	Table of Contents
	About This Book
	1 MultiValue Commands
	1.1 # (pound sign)
	1.2 ; (semicolon)
	1.3 [(left square bracket)
	1.4 << ... >> (inline prompting)
	1.5 Ctrl-X
	1.6 ABORT
	1.7 ASSIGN
	1.8 ATTACH.ACCOUNTS
	1.9 AUTOLOGOUT
	1.10 BASIC
	1.11 BLOCK.PRINT
	1.12 BLOCK.TERM
	1.13 BREAK
	1.14 BSELECT
	1.15 BUILD.INDEX
	1.16 CATALOG
	1.17 CEMU
	1.18 CENTURY.PIVOT
	1.19 CHECK.DICT
	1.20 CHECK.PROC
	1.21 CHOOSE.TERM
	1.22 CLEAR.CMQL.CACHE
	1.23 CLEAR.FILE
	1.24 CLEAR.LOCKS
	1.25 CLEARDATA
	1.26 CLEARPROMPTS
	1.27 CLEARSELECT
	1.28 CLR
	1.29 COMO
	1.30 COMPILE.DICT
	1.31 COMPILE.TERM
	1.32 CONTROL.CHARS
	1.33 COPY
	1.34 COPY.FILE
	1.35 COPY.LIST
	1.36 COPYI
	1.37 COPYP
	1.38 COS
	1.39 COUNT
	1.40 CREATE.ACCOUNT
	1.41 CREATE.BFILE
	1.42 CREATE.FILE
	1.42.1 Emulation

	1.43 CREATE.INDEX
	1.44 CREATE.TRIGGER
	1.45 CS
	1.46 CT
	1.47 DATE
	1.48 DATE.FORMAT
	1.49 DECATALOG
	1.50 DELETE
	1.51 DELETE.ACCOUNT
	1.52 DELETE.FILE
	1.53 DELETE.INDEX
	1.54 DELETE.LIST
	1.55 DELETE.TRIGGER
	1.56 DISPLAY
	1.57 DOS
	1.58 ED
	1.59 EDIT
	1.60 EDIT.LIST
	1.61 ENABLE.BREAK.KEY
	1.62 FORM.LIST
	1.63 GET.LIST
	1.64 HUSH
	1.65 ICOMP
	1.66 ICOMP.ALL
	1.67 JED
	1.68 JOBS
	1.69 KEYS
	1.70 LIST
	1.71 LIST.INDEX
	1.72 LIST.ITEM
	1.73 LIST.JOB
	1.74 LIST.LABEL
	1.75 LIST.LOCKS
	1.76 LIST.TRIGGER
	1.77 LISTDICT
	1.78 LISTF
	1.79 LISTME
	1.80 LISTPA
	1.81 LISTPEQS
	1.82 LISTPH
	1.83 LISTPTR
	1.84 LISTS
	1.85 LISTU
	1.86 LOGOFF
	1.87 LOGOUT
	1.88 LOGTO
	1.89 MESSAGE
	1.90 MVI
	1.91 MVIMPORT
	1.92 NSELECT
	1.93 OFF
	1.94 P
	1.95 PAGE.MESSAGE
	1.96 PHANTOM
	1.97 PQ.SELECT
	1.98 PQ.RESELECT
	1.99 PRINT.CATALOG
	1.100 PRINT.ERR
	1.101 PTERM
	1.102 Q
	1.103 QSELECT
	1.104 QUIT
	1.105 REFORMAT
	1.106 RUN
	1.107 SAVE.LIST
	1.108 SEARCH
	1.109 SELECT
	1.110 SET.FILE
	1.111 SETPTR
	1.112 SETPTR.DEFAULT
	1.113 SH
	1.114 SLEEP
	1.115 SORT
	1.116 SORT.ITEM
	1.117 SORT.LABEL
	1.118 SORT.LIST
	1.119 SP.x Commands
	1.120 SPOOL
	1.121 SREFORMAT
	1.122 SSELECT
	1.123 STACK
	1.124 STACKCOMMON
	1.125 STAT
	1.126 STATUS
	1.127 SUM
	1.128 TABS
	1.129 TANDEM
	1.130 TERM
	1.131 TERM-TYPE
	1.132 TIME
	1.133 TRACE
	1.134 TRAP-EXCEPTIONS
	1.135 UNASSIGN
	1.136 WHERE
	1.137 WHO
	1.138 Z
	1.139 ZH

	2 MVIMPORT
	2.1 Arguments
	2.2 Description
	2.2.1 Letter Code Options

	2.3 Determining the Account Name
	2.4 Errors and Log Files

	3 PROTOCLASS
	3.1 Loading PROTOCLASS
	3.1.1 Setting Attribute 5

	3.2 Package and Class Naming
	3.3 Checking the Dictionary with CHECK.DICT
	3.4 Running PROTOCLASS
	3.4.1 Arguments
	3.4.2 Run PROTOCLASS Example
	3.4.3 Property Naming
	3.4.4 MVAUTO Parameter
	3.4.5 ItemId Property
	3.4.6 MVSVASSOCIATION Parameters
	3.4.7 dummyAttribute Property

	4 MultiValue Command Stack Commands and Keystrokes
	4.1 .A
	4.2 .C
	4.3 .D
	4.4 .L
	4.5 .U
	4.6 .X
	4.7 .?
	4.8 Keystrokes

	5 Error Messages
	5.1 Error Codes and Error Messages
	5.2 Numeric Error Codes
	5.3 Alphanumeric String Error Codes

