InterSystems:

Caché

Using Java with Caché
eXTreme

\ersion 2017.2
2020-06-25

Using Java with Caché eXTreme

Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
I o1 oo [T f o ISR 3
IS O T VTSRS 3
1.2 Installation and CONfIQUIALIONccviiiiieiereeeee e re e sresrenne s 3
1.2.1 REQUITEMENES ...cvveveeereuieiesiesiestesiestestesteseesses e seeseeseesessessessessessesteseeseeseeseeseessenseseesessensensenns 3
1.2.2 INSTAITALION .. bbbt ettt b bbb e 4
1.2.3 Required Environment Variables ..ot 4
1.2.4 REQUITEA FIIES «..eieeieiece ettt et 4
1.2.5 Configuration fOr WINGOWScccoviiriiiniieniee et s 4
1.2.6 Configuration for UNIX® and Related Operating SyStemscccccoevvevvivrienereereerverennnnns 4
1.2.7 Configuration fOr Mac OS Xciiccieiiiieieiese s sre s 5

1.3 eXTreme Sample APPHCALIONScc.oiiiiiiiiie e et 5
1.3.1 XEP SAMPIES ..ottt ettt b e bt bbb bbb e et neens 5

2 USING XEP EVENT PO SISLENCEoviuiieieiieieteeetese sttt sttt sttt s b e s ebe e b snenesnene 7
2.1 Introduction t0 EVENE PEISISTENCEivvirierierieieieieeeeeieseseeste e see st seeseeae e seeneenaeeeneesessessesnens 7
2.1.1 Simple Applications to Store and Query Persistent EVENLSccocvvevvivvenieninrenenennenes 8

2.2 Creating and Connecting an EVENPEISISIENccccviceiierieiienire e seesiesee s e e e 11
2.3 IMPOIING @ SCRBMA ..oviiiieiieit e ettt b bbb b b sre e 11
2.4 Storing and MOdifying EVENESooiiiiiiieecee e 12
2.4.1 Creating and StOrNG EVENTScooiiriiiiiieiniecs e 13
2.4.2 ACCESSING STOTEA EVENLESoeiiiiiiiiiiieiite ettt ettt 14
2.4.3 Controlling INdexX UPdatiNngccccvverirereieericieeeiees e st ne e sre e 15

2.5 USING QUETIES ..veuveiiieieiteiesieeesteteesesseesessestestestesteseessestesaessessessessesseseesesseasessessessessessessessensenes 16
2.5.1 Creating and EXeCUting @ QUETYccveiuieiiie e sie e ee et eeie st eaesneenne e 16
2.5.2 Processing QUENY DAccuervirierieriinieiie ettt sttt ss et sbe e 17
2.5.3 Defining the FELCh LEVEI ..o e 19

2.6 Calling Caché Methods from XEPcccoiiiiiiiieiee e 19
2.7 Schema Customization and MapPINgccceeererereereerieieeieee e e s seeseeneeseeneens 20
2.7.1 Schema IMPOrt MOUEIScvcveiiiiece et enen 20
A O L [0 N 010 - LA o] SR 21
2.7.3 USING TAKEBYS ...ttt ettt b e b e bbb bbb et et s b b sbe e 24
2.7.4 Implementing an INterfaCeRESOIVENccooeiriiiiiicice e 25
2.7.5 Schema Mapping RUIEScviiiiiiiie bbb 27

3 Quick Referencefor EXTIraME ClASIESciiciiiieeciecreeete ettt ee e ste e ste st besaeesbesasesbeenneereennas 31
3.1 XEP QUICK RETEIENCE ..ivviiiiiiieiiesiisieiie ittt ettt st sttt neenestesresnesnenns 31
3. L1 LiSt Of XEP METNOUSueouieiiiiiieeietcrie sttt s s 31
3.1.2 ClaSS PErISISLEIFACIONYcceiiiuiriirieitisiesie ettt sttt st s sa e nne 33

3. 1.3 ClaSS EVENTPEISISIEN . .eveuieieeiieiieiesiesie sttt sttt sttt sttt sbe b e et e b e e e eneas 34

3 L4 ClIASS EVENL ...ttt sttt sttt et e e e e e s e nreaneerenes 41
3.1.5 Class EVENTQUEIYSS ...viiieiirieriesiereereeseeesseesestese e stestestesse e ssensessesassessessessessessessessens 43
3.1.6 Class EVENTQUETYITErAtOr<>cccccveieieeieisesesesese e ste e ste s e e sae e esaesaeneesessesnesnens 45
3.1.7 Interface INtErfaCERESOIVELcc.iiiiiiiieiiiiceeee e 46
3.1.8 Class XEPEXCEPLIONeiuiruiiiiriiriiieiieieieeieeie ettt sttt sttt st sbesbesbe b e 46

Using Java with Caché eXTreme

About This Book

Caché eXTreme is a set of Java technologies that enable Caché to be leveraged as a high performance persistence storage
engine in XTP (Extreme Transaction Processing) applications.

The following topics are discussed in this book:

* Introduction — provides an overview of the eXTreme platform architecture, and describes common installation proce-
dures.

» Using eXTreme Event Persistence — describes the XEP API, which provides a high-performance Java persistence
technology for simple to medium complexity object hierarchies.

* Quick Reference for eXTreme Classes — Provides a quick reference for methods of the eXTreme API classes.

There is also a detailed Table of Contents.

Related Documents
The following documents also contain related material:

» JavaDoc for the InterSystems Java Connectivity API is located in <install-dir>/dev/java/doc/index.html (where <install-
dir> is the directory in which your instance of Caché is installed).

e Using Caché with JDBC — describes how to connect to Caché from an external application using the Caché JDBC
driver, and how to access external JDBC data sources from Caché.

» Caché Java Binding and JDBC QuickStart Tutorial — provides a quick introduction to working with the Java binding.
It includes a complete sample Java binding application.

For general information, see Using InterSystems Documentation.

Using Java with Caché eXTreme 1

TJAV_Preface
GDOC

Introduction

Caché eXTreme is a set of technologies that enable Caché to be leveraged as a high performance persistence storage engine
optimized for XTP (Extreme Transaction Processing) applications.

1.1 Overview

Caché eXTreme components include:

» eXTreme Event Persistence (XEP) — allows simple Java objects to be projected as persistent events for rapid storage
and processing. This is a lightweight API for low latency object and event stream data access (see “Using eXTreme
Event Persistence™).

The eXTreme APIs are designed for integration with Java platforms such as the following:

e 0OSGi for Event SOA and Dynamic Modules.

» CEP (Complex Event Processing) engines such as Esper.

» Messaging integration (JMS, AMQP, etc.).

1.2 Installation and Configuration

This section provides specifies requirements and provides instructions for installing Caché and configuring your environment
to use the eXTreme APIs.

1.2.1 Requirements

» AJava JDK supported by this release of Caché (see “Supported Java Technologies™ in InterSystems Supported Plat-
forms).

» Caché 2010.2 or higher.

» The Caché User namespace must exist and must be writable if your application uses XEP (see “Using eXTreme Event
Persistence”).

Using Java with Caché eXTreme 3

https://docs.intersystems.com/ens20172/csp/docbook/platforms/index.html
https://docs.intersystems.com/ens20172/csp/docbook/platforms/index.html

Introduction

1.2.2 Installation

When installing Caché, select the Development environment:
— InWindows, select the Set up Type: Devel opnent option during installation.

— In UNIX® and related operating systems, select the 1) Devel opnent - Install Cache server and
al | | anguage bi ndi ngs option during installation (see “Run the Installation Script” in the UNIX® and
Linux section of the Caché Installation Guide).

If Caché has been installed with security level 2, open the Management Portal and go to [System Administration] >
[Security] > [Services], select %Ser vi ce_Cal | | n, and make sure the Ser vi ce Enabl ed box is checked.

If you installed Caché with security level 1 (minimal) it should already be checked.

1.2.3 Required Environment Variables

In order to run eXTreme applications, the following environment variables must be properly set on all platforms:

Your Path must include dynamic library load path <install-dir>/bin:

— InWindows, add it to your PATH environment variable.

— In UNIX® and related operating systems, add it to your LD_LIBRARY_PATH environment variable.
— InMac OS X, add it to your DYLD_LIBRARY_PATH environment variable.

If your Path variable includes more than one <install-dir>/bin path (for example, if you have installed more than one
instance of Caché) only the first one will be used, and any others will be ignored.

1.2.4 Required Files

All eXTreme applications require JAR files cache-jdbc-2.0.0.jar, cache-db-2.0.0.jar, and cache-extreme-2.0.0.jar. There are
separate versions of these files for each supported version of Java, located in subdirectories of <install-dir>/dev/java/lib (for
example, <install-dir>/dev/java/lib/JDK18 contains the files for Java 1.8.

Your CLASSPATH environment variable must include the full paths to these files. Alternately, they can be specified in the
Java command line classpath argument.

1.2.5 Configuration for Windows

The default stack size of the Java Virtual Machine on Windows is too small for running eXTreme applications (running
them with the default stack size causes Java to report EXCEPTI ON_STACK OVERFLOW. To optimize performance,
heap size should also be increased. To temporarily modify the stack size and heap size when running an eXTreme
application, add the following command line arguments:

- Xss1024k
- Xnms2500m - Xmx2500m

1.2.6 Configuration for UNIX® and Related Operating Systems

Make sure that you have permissions on the Cache binaries (add the user to the cacheusr group).

Set the environment variable LD_PRELOAD to the path of libjsig.so (a library which enables Java to resolve signal
handling anomalies) within your Java installation. For example (depending on which shell you are using) :

Using Java with Caché eXTreme

GCI_unix_install_run

eXTreme Sample Applications

setenv LD PRELOAD /ny_j dk_path/jre/lib/anmd64/1ibjsig.so

or

set LD _PRELOAD=/ny_j dk_path/jre/lib/anmd64/1ibjsig.so

The path of libjsig.so under the root of a Java installation may vary from platform to platform, or from one Java release
to another. You can locate it on your system with the following command:

find $JAVA HOME -nane |ibjsig.so -print
where JAVA_HOME is set to the root directory of your Java installation.

Note: The LD_PRELOAD variable setting is important if your eXTreme application also uses other third party
components that set up signal handlers. It enables Java to chain signal handlers set by Caché with its own
signal handlers, so that they do not interfere with each other. Failure to set this variable may result in a system
crash.

1.2.7 Configuration for Mac OS X

* Make sure that you have permissions on the Cache binaries (add the user to the cacheusr group).

1.3 eXTreme Sample Applications

Sample applications are available for all eXTreme APIs. Run the samples with command line argument - h for a list of
available command line options. In the following sections, <install-dir> is the full path of your Caché installation directory
(see “Default Caché Installation Directory” for the location of <install-dir> on your system).

1.3.1 XEP Samples

XEP sample files are in <install-dir>/dev/java/samples/extreme/xep/test/. For convenience, these files are also compiled into
extremesamples.jar, located in <install-dir>/dev/java/samples. The following sample programs are available:

* RunAll.java — is a program that runs all of the other sample programs in sequence.

* Coverage.java — tests basic functionality such as connecting, importing a schema, storing, querying, updating and
deleting XEP events. It also exercises most of the supported data types.

* SingleString.java — is the most basic XEP test program. It connects to the database, imports a simple class containing
only one string field, then stores and loads a number of events corresponding to that class.

* FlightLog.java — is an example that demonstrates the XEP full inheritance model. It tracks airline flight information
such as times, locations, personnel, and passengers.

* Benchmark.java — is a performance test for the XEP API.
* IdKeys.java — extends the Benchmark test by adding the composite 1dKey feature.
» Threads.java — is a multithreaded XEP test program. It extends the Java Thread class, and uses the Basic.java test

suite to test XEP using multiple threads.

See the Caché JavaDoc (<install-dir>/dev/java/samples/doc/index.html) for detailed documentation of these programs. Sup-
porting files located in <install-dir>/dev/java/samples/extreme/xep/samples/ provide test data for the sample programs.

Using Java with Caché eXTreme 5

GCI_intro_defaultdir

Using XEP Event Persistence

XEP provides extremely rapid storage and retrieval of Java structured data, communicating with the Caché database over
a TCP/IP connection. It provides ways to control schema generation for optimal mapping of complex data structures, but
schemas for simpler data structures can often be generated and used without modification.

The following topics are discussed in this chapter:

» Introduction to Event Persistence — introduces persistent event concepts and terminology, and provides a simple
example of code that uses the XEP API.

» Creating and Connecting an EventPersister — describes how to create an instance of the EventPersister class and use
it to open, test, and close a TCP/IP database connection.

» Importing a Schema — describes the methods and annotations used to analyze a Java class and generate a schema for
the corresponding persistent event.

» Storing and Modifying Events — describes methods of the Event class used to store, modify, and delete persistent
events.

» Using Queries — describes methods of the XEP classes that create and process query resultsets.

e Calling Caché Methods from XEP — describes EventPersister methods that can call ObjectScript methods, functions,
and procedures from an XEP application.

» Schema Customization and Mapping — provides a detailed description of how Java classes are mapped to event
schemas, and how to generate customized schemas for optimal performance.

2.1 Introduction to Event Persistence

A persistent event is a Caché database object that stores a persistent copy of the data fields in a Java object. By default,
XEP stores each event as a standard %Persistent object. Storage is automatically configured so that the data will be acces-
sible to Caché by other means, such as objects, SQL, or direct global access.

Before a persistent event can be created and stored, XEP must analyze the corresponding Java class and import a schema,
which defines how the data structure of a Java object is projected to a persistent event. A schema can use either of the fol-
lowing two object projection models:

e The default model is the flat schema, where all referenced objects are serialized and stored as part of the imported
class, and all fields inherited from superclasses are stored as if they were native fields of the imported class. This is
the fastest and most efficient model, but does not preserve any information about the original Java class structure.

Using Java with Caché eXTreme 7

Using XEP Event Persistence

e If structural information must be preserved, the full schema model may be used. This preserves the full Java inheritance
structure by creating a one-to-one relationship between Java source classes and Caché projected classes, but may
impose a slight performance penalty.

See “Schema Import Models” for a detailed discussion of both models, and “Schema Mapping Rules” for detailed
information about how various datatypes are projected.

When importing a schema, XEP acquires basic information by analyzing the Java class. You can supply additional infor-
mation that allows XEP to generate indexes (see “Using IdKeys™) and override the default rules for importing fields (see
“Using Annotations™ and “Implementing an InterfaceResolver”).

Once a schema has been imported, XEP can be used to store, query, update and delete data at very high rates. Stored events
are immediately available for querying, or for full object or global access. The EventPersister, Event, and EventQuery<>
classes provide the main features of the XEP API. They are used in the following sequence:

» The EventPersister class provides methods to establish and control a TCP/IP database connection (see “Creating and
Connecting an EventPersister™).

« Once the connection has been established, other EventPersister methods can be used to import a schema (see
“Importing a Schema”).

» The Event class provides methods to store, update, or delete events, create queries, and control index updating (see
“Storing and Modifying Events”).

» The EventQuery<> class is used to execute simple SQL queries that retrieve sets of events from the database. It provides

methods to iterate through the resultset and update or delete individual events (see “Using Queries™).

The following section describes two very short applications that demonstrate all of these features.

2.1.1 Simple Applications to Store and Query Persistent Events

This section describes two very simple applications that use XEP to create and access persistent events:

» The StoreEvents program — opens a TCP/IP connection to a Caché database, creates a schema for the events to be
stored, uses an instance of Event to store the array of objects as persistent events, then closes the connection and termi-
nates.

e The QueryEvents program — opens a new connection accessing the same namespace as StoreEvents, creates an instance
of EventQuery<> to read and delete the previously stored events, then closes the connection and terminates.

Note: It is assumed that these applications have exclusive use of the system, and run in two consecutive processes.

Both programs use instances of xep.samples.SingleStringSample, which is one of the classes defined in the XEP
sample programs (see “XEP Samples” for details about the sample programs).

2.1.1.1The StoreEvents Program

In StoreEvents, a new instance of EventPersister is created and connected to a specific Caché namespace. A schema is
imported for the SingleStringSample class, and the test database is initialized by deleting all existing events from the extent
of the class. An instance of Event is created and used to store an array of SingleStringSample objects as persistent events.
The connection is then terminated. The new events will persist in the Caché database, and will be accessed by the QueryEvents
program (described in the next section).

The StoreEvents Program: Creating a schema and storing events

import comintersys. xep. *;
i mport xep. sanpl es. Si ngl eSt ri ngSanpl e;

8 Using Java with Caché eXTreme

Introduction to Event Persistence

public class StoreEvents {

}

private static String classNane = "xep. sanpl es. Si ngl eStri ngSanpl e";
private static SingleStringSanple[] eventltens = SingleStringSanple. generateSanpl eData(12);

public static void main(String[] args) {

for (int i=0; i < eventltens.length; i++) {
eventltens[i].name = "String event " + i;

}

try {

System out. println("Connecting and i nporting schema for " + classNane);

Event Persi ster myPersister = PersisterFactory. createPersister();

nmyPer si st er. connect ("127.0.0.1", 1972, "User"," SYSTEM', "SYS") ;

try { // delete any existing SingleStringSanple events, then inport new ones
myPer si st er. del et eExt ent (cl assNane) ;
myPer si ster.inport Schema(cl assNane) ;

catch (XEPException e) { Systemout.println("inmport failed:\n" + €e); }
Event newEvent = myPersister. get Event (cl assNane);
long[] item Ds = newEvent.store(eventltens); // store array of events
Systemout.println("Stored " + item Ds.length + " of "

+ eventltens.length + " objects. C osing connection...");
newkEvent . cl ose();
myPer si ster.close();

}

catch (XEPException e) {Systemout.println("Event storage failed:\n" + e);}
} /1 end Main()
/'l end class StoreEvents

Before StoreEvents.main() is called, the xep.samples.SingleStringSample.gener ateSampleData() method is called
to generate sample data array eventltems (see “XEP Sample Applications” for information on sample classes).

In this example, XEP methods perform the following actions:

PersisterFactory.cr eatePer sister () creates myPersister, a new instance of EventPersister.
EventPersister.connect() establishes a TCP/IP connection to the User namespace.
EventPersister.importSchema() analyzes the SingleStringSample class and imports a schema for it.

EventPersister.deleteExtent() is called to clean up the database by deleting any previously existing test data
from the SingleStringSample extent.

EventPersister.getEvent() creates newEvent, a new instance of Event that will be used to process
SingleStringSample events.

Event.store() accepts the eventltems array as input, and creates a new persistent event for each object in the
array. (Alternately, the code could have looped through the eventltems array and called store() for each indi-
vidual object, but there is no need to do so in this example.)

Event.close() and EventPersister.close() are called for newEvent and myPersister after the events have been
stored. This is always necessary to release native code resources and prevent memory leaks.

All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister” for
information on opening, testing, and closing a connection. See *“Importing a Schema” for details about schema creation.
See “Storing and Modifying Events” for details about using the Event class and deleting an extent.

2.1.1.2 The QueryEvents Program

This example assumes that QueryEvents runs immediately after the StoreEvents process terminates (see “The StoreEvents
Program™). QueryEvents establishes a new TCP/IP database connection that accesses the same namespace as StoreEvents.
An instance of EventQuery<> is created to iterate through the previously stored events, print their data, and delete them.

The QueryEvents Program: Fetching and processing persistent events

i mport comintersys. xep.*;
i mport xep. sanpl es. Si ngl eSt ri ngSanpl €;

public class QueryEvents {

public static void main(String[] args) {
Event Persi ster nyPersister = null;

Using Java with Caché eXTreme 9

Using XEP Event Persistence

Event Quer y<Si ngl eStri ngSanpl e> nyQuery = nul | ;
try {
/1 Open a connection, then set up and execute an SQ. query
System out. println("Connecting to query SingleStringSanple events");
myPersi ster = PersisterFactory. createPersister();
myPer si st er. connect ("127.0.0.1", 1972, "User","_SYSTEM', "SYS") ;

try {
Event newEvent = mnyPersister. get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");
String sql =" SELECT * FROM xep_sanpl es. Si ngl eSt ri ngSanpl e WHERE % D BETVWEEN 3 AND ",

myQuery = newEvent.createQery(sql);

newEvent . cl ose();

nyQuery. set Paraneter (1,12); // assign value 12 to SQL paraneter 1
myQuery. execute();

}
catch (XEPException e) {Systemout.println("createQuery failed:\n" + e);}

/1 Iterate through the returned data set, printing and del eting each event
Si ngl eStri ngSanpl e current Event;
current Event = nyQuery.getNext(null); // get first item
while (currentEvent !'= null) {
Systemout.printin("Retrieved " + currentEvent. nane);
myQuery. del eteCurrent();
current Event = nyQuery. get Next (currentEvent); // get next item

}
myQuery. cl ose();
nmyPer si ster.close();

}
catch (XEPException e) {Systemout.println("QueryEvents failed:\n" + e);}
} /1 end Main()
} /1 end class QueryEvents

In this example, XEP methods perform the following actions:

* EventPersister.createPer sister () and EventPersister.connect() are called again (just as they were in StoreEvents)
and a new connection to the User namespace is established.

* EventPersister.getEvent() creates newEvent, an instance of Event that will be used to create a query on the
SingleStringSample extent. After the query is created, newEvent will be discarded by calling its close() method.

* Event.createQuery() creates myQuery, an instance of EventQuery<> for SingleStringSample events. The SQL
statement defines a query that will retrieve all persistent SingleStringSample events with object 1Ds between
3 and a variable parameter value.

e EventQuery<>.setParameter () assigns value 12 to the SQL parameter.

* EventQuery<>.execute() executes the query. If the query is successful, myQuery will now contain a resultset
that lists the object IDs of all SingleStringSample events that match the query.

* EventQuery<>.getNext() is called with nul | as the argument, which specifies that the first item in the
resultset is to be fetched and assigned to variable currentEvent.

e Inthe whi | e loop:
— The name field of currentEvent is printed
— EventQuery<>.deleteCurrent() deletes the most recently fetched event from the database.
— EventQuery<>.getNext() is called again with the most recently fetched event as the argument, specifying
that the method should fetch the next event after that one.
If there are no more items, getNext() will return nul | and the loop will terminate.
* EventQuery<>.close() and EventPersister.close() are called for myQuery and myPersister after all events have

been printed and deleted.

All of these methods are discussed in detail later in this chapter. See “Creating and Connecting an EventPersister” for
information on opening, testing, and closing a connection. See “Using Queries” for details about creating and using an
instance of EventQuery<>.

10 Using Java with Caché eXTreme

Creating and Connecting an EventPersister

2.2 Creating and Connecting an EventPersister

The EventPersister class is the main entry point for the XEP API. It provides the methods for opening a TCP/IP connection
to the database, importing schemas, handling transactions, and creating instances of Event to access events in the database.

An instance of EventPersister is created and destroyed by the following methods:
* PersisterFactory.createPersister () — returns a new instance of EventPersister.

» EventPersister.close() — closes this EventPersister instance and releases the native code resources associated with it.

The following method is used to create a TCP/IP connection:

* EventPersister.connect() — takes arguments for host, port, namespace, username, password, and establishes a TCP/IP
connection to the specified Caché namespace.

The following example establishes a connection:

Creating and Connecting an EventPersister: Creating a TCP/IP connection

/1 Open a TCP/IP connection
String host = "127.0.0.1";
int port = 1972;
String nanespace = "USER';
String username = "_SYSTEM';
String password = "SYS';
Event Persi ster nyPersister = PersisterFactory.createPersister();
myPer si st er. connect (host, port, namespace, user nane, password) ;
/'l perform event processing here .
nmyPer si ster. cl ose();

The PersisterFactory.createPer sister () method creates a new instance of EventPersister. Only one instance is
required in a process.

The EventPersister.connect() method establishes a TCP/IP connection to the specified port and namespace of the
host machine. If no connection exists in the current process, a new connection is created. If a connection already
exists, the method returns a reference to the existing connection object.

When the application is ready to exit, the EventPersister.close() method must always be called to release resources
used by the underlying native code.

Note: Always call close() to release resources

Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.3 Importing a Schema

Before an instance of a Java class can be stored as a persistent event, a schema must be imported for the class. The schema
defines the database structure in which the event will be stored. XEP provides two different schema import models: flat
schema and full schema. The main difference between these models is the way in which Java objects are projected to Caché
events. A flat schema is the optimal choice if performance is essential and the event schema is fairly simple. A full schema
offers a richer set of features for more complex schemas, but may have an impact on performance. See “Schema Customiza-
tion and Mapping” for a detailed discussion of schema models and related subjects.

The following methods are used to analyze a Java class and import a schema of the desired type:

Using Java with Caché eXTreme 11

Using XEP Event Persistence

* EventPersisterimportSchema() — imports a flat schema. Takes an argument specifying a .jar file name, a fully qual-
ified class name, or an array of class names, and imports all classes and any dependencies found in the specified locations.
Returns a String array containing the names of all successfully imported classes.

* EventPersisterimportSchemakull() — imports a full schema. Takes the same arguments and returns the same class
list as importSchema(). A class imported by this method must declare a user-generated IdKey (see “Using IdKeys™).

» EventisEvent() — is a static Event method that takes a Java object or class name of any type as an argument, tests to
see if the specified object can be projected as a valid XEP event (see “Requirements for Imported Classes™), and
throws an appropriate error if it is not valid.

The import methods are identical except for the schema model used. The following example imports a simple test class
and its dependent class:

Importing a Schema: Importing a class and its dependencies
The following classes from package test are to be imported:

public class Miind ass {
public Maindass() {}
public String nyString;
public test.Address nyAddress;

public class Address {
public String street;
public String city;
public String state;

The following code uses importSchema() to import the main class, test.MainClass, after calling isEvent() to make
sure it can be projected. Dependent class test.Address is also imported automatically when test.MainClass is
imported:

try {
Event.isEvent("test. MainC ass"); // throw an exception if class is not projectable

myPer si ster.inportSchema("test. Mai nCl ass");
catch (XEPException e) {Systemout.printin("lnmport failed:\n" + €e);}

In this example, instances of dependent class test.Address will be serialized and embedded in the same Caché object as
other fields of test.MainClass. If importSchemakull() had been used instead, stored instances of test.MainClass would
contain references to instances of test.Address stored in a separate Caché class extent.

2.4 Storing and Modifying Events

Once the schema for a class has been imported (see “Importing a Schema™), an instance of Event can be created to store
and access events of that class. The Event class provides methods to store, update, or delete persistent events, create queries
on the class extent, and control index updating. This section discusses the following topics:

» Creating and Storing Events — describes how to create an instance of Event and use it to store persistent events of the
specified class.

e Accessing Stored Events — describes Event methods for fetching, changing, and deleting persistent events of the
specified class.

» Controlling Index Updating — describes Event methods that can increase processing efficiency by controlling when
index entries are updated.

12 Using Java with Caché eXTreme

Storing and Modifying Events

2.4.1 Creating and Storing Events

Instances of the Event class are created and destroyed by the following methods:

EventPersister.getEvent() — takes a className String argument and returns an instance of Event that can store and
access events of the specified class. Optionally takes an indexMode argument that specifies the default way to update
index entries (see “Controlling Index Updating” for details).

Note: Target Class

An instance of Event can only store, access, or query events of the class specified by the className argument
in the call to getEvent(). In this chapter, class className is referred to as the target class.

Event.close() — closes the Event instance and releases the native code resources associated with it.

The following Event method stores Java objects of the target class as persistent events:

store() — adds one or more instances of the target class to the database. Takes either an event or an array of events as
an argument, and returns a long database ID (or O if the database id could not be returned) for each stored event.

Important: When an event is stored, it is not tested in any way, and it will never change or overwrite existing
data. Each event is appended to the extent at the highest possible speed, or silently ignored if an event
with the specified key already exists in the database.

The following example creates an instance of Event with SingleStringSample as the target class, and uses it to project an
array of Java SingleStringSample objects as persistent events. The example assumes that myPersister has already been
created and connected, and that a schema has been imported for the SingleStringSample class. See “Simple Applications
to Store and Query Persistent Events” for an example of how this is done. See *“XEP Sample Applications” for information
on SingleStringSample and the sample programs that define and use it.

Storing and Modifying Events: Storing an array of objects

Singl eStringSanpl e[] eventltens = SingleStringSanpl e. gener at eSanpl eDat a(12) ;

try {
Event newEvent = nyPersister.get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");
long[] item dList = newkvent.store(eventltens); // store all events
int 1tenCount = O;
for (int i=0; i < itenmdList.length; i++) {
if (itemdList[i]>0) itenCount++;

Systemout.printin("Stored " + itenCount + " of " + eventltens.length + " events");
newkEvent . cl ose();

}
catch (XEPException e) {Systemout.println("Event storage failed:\n" + e);}

» The generateSampleData() method of SingleStringSample generates twelve SingleStringSample objects and
stores them in an array named eventltems.

» The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample
as the target class.

» The Event.store() method is called to project each object in the eventltems array as a persistent event in the
database.

The method returns an array named itemldList, which contains a long object ID for each successfully stored
event, or 0 for an object that could not be stored. Variable itemCount is incremented once for each ID greater
than 0 in itemldList, and the total is printed.

* When the loop terminates, the Event.close() method is called to release resources used by the underlying
native code.

Using Java with Caché eXTreme 13

Using XEP Event Persistence

Note: Always call close() to release resources

Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.4.2 Accessing Stored Events

Once a persistent event has been stored, an Event instance of that target class provides the following methods for reading,
updating, deleting the event:

» deleteObject() — takes a database object ID or IdKey as an argument and deletes the specified event from the database.
e getObject() — takes a database object ID or IdKey as an argument and returns the specified event.

e updateObject() — takes a database object ID or IdKey and an Object of the target class as arguments, and updates
the specified event.

If the target class uses a standard object ID, it is specified as a long value (as returned by the store() method described in
the previous section). If the target class uses an IdKey, it is specified as an array of Object where each item in the array is
a value for one of the fields that make up the IdKey (see “Using IdKeys”).

In the following example, array itemldList contains a list of object ID values for some previously stored SingleStringSample
events. The example arbitrarily updates the first six persistent events in the list and deletes the rest.

Note: See “Creating and Storing Events” for the example that created the itemldList array. This example also assumes
that an EventPersister instance named myPersister has already been created and connected to the database.

Storing and Modifying Events: Fetching, updating, and deleting events

/1 itemdList is a previously created array of SingleStringSanple event |Ds

try {
Event newEvent = nyPersister.get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");

int itenCount = 0;
for (int i=0; i < itemdList.length; i++) {
try { // arbitrarily update events for first 6 IDs and del ete the rest
Si ngl eStri ngSanpl e event Obj ect = (Si ngl eStringSanpl e) newEvent. get Cbj ect (i tem dList[i]);
if (i<6) {
event Obj ect. nane = event Obj ect.name + " (id=" + itemdList[i] + ")" + " updated!";
newEvent . updat eObj ect (i tem dList[i], eventObject);
i temCount ++;

} else {
newEvent . del eteCbj ect (item dList[i]);
}

}
catch (XEPException e) {Systemout.println("Failed to process event:\n" + e);}

}
Systemout.println("Updated " + itemCount + " of " + itemdList.length + " events");
newEvent . cl ose();

}
catch (XEPException e) {Systemout.println("Event processing failed:\n" + e);}
» The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample
as the target class.

» Array itemldList contains a list of object ID values for some previously stored SingleStringSample events (see
“Creating and Storing Events” for the example that created itemldList).

In the loop, each item in itemldList is processed. The first six items are changed and updated, and the rest of
the items are deleted. The following operations are performed:

— The Event.getObject() method fetches the SingleStringSample object with the object ID specified in
item dList[i],and assigns it to variable eventObject.

— The value of the eventObject name field is changed.

14 Using Java with Caché eXTreme

Storing and Modifying Events

— If the eventObject is one of the first six items in the list, Event.updateObject() is called to update it in
the database. Otherwise, Event.deleteObject() is called to delete the object from the database.

» Afterall of the IDs in itemldList have been processed, the loop terminates and a message displays the number
of events updated.

» The Event.close() method is called to release resources used by the underlying native code.

See “XEP Sample Applications™ for information on the sample programs that define and use the SingleStringSample class.
See “Using Queries” for a description of how to access and modify persistent events fetched by a simple SQL query.

Deleting Test Data

When initializing a test database, it is frequently convenient to delete an entire class, or delete all events in a specified
extent. The following EventPersister methods delete classes and extents from the Caché database:

» deleteClass() — takes a className string as an argument and deletes the specified Caché class.
» deleteExtent() — takes a className string as an argument and deletes all events in the extent of the specified class.

These methods are intended primarily for testing, and should be avoided in production code. See “Classes and Extents”
in the Caché Programming Orientation Guide for a detailed definition of these terms.

2.4.3 Controlling Index Updating

By default, indexes are not updated when a call is made to one of the Event methods that act on an event in the database
(see “Accessing Stored Events™). Indexes are updated asynchronously, and updating is only performed after all transactions
have been completed and the Event instance is closed. No uniqueness check is performed for unique indexes.

Note: This section only applies to classes that use standard object IDs or generated IdKeys (see “Using IdKeys™).
Classes with user-assigned 1dKeys can only be updated synchronously.

There are a number of ways to change this default indexing behavior. When an Event instance is created by
EventPersister.getEvent() (see “Creating and Storing Events™), the optional indexMode parameter can be set to specify a
default indexing behavior. The following options are available:

* Event.| NDEX_MODE_ASYNC ON— enables asynchronous indexing. This is the default when the indexMode parameter
is not specified.

e Event.| NDEX_MODE_ASYNC_OFF — no indexing will be performed unless the startlndexing() method is called.

» Event.| NDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be inefficient
for large numbers of transactions. This index mode must be specified if the class has a user-assigned IdKey.

The following Event methods can be used to control asynchronous index updating for the extent of the target class:

» startIndexing() — starts asynchronous index building for the extent of the target class. Throws an exception if the
index mode is Event.| NDEX_MODE_SYNC.

» stoplndexing() — stops asynchronous index building for the extent. If you do not want the index to be updated when
the Event instance is closed, call this method before calling Event.close().

» waitForIndexing() — takes an int timeout value as an argument and waits for asynchronous indexing to be completed.
The timeout value specifies the number of seconds to wait (wait forever if - 1, return immediately if 0). It returnst r ue
if indexing has been completed, or f al se if the wait timed out before indexing was completed. Throws an exception
if the index mode is Event.| NDEX_MODE_SYNC.

Using Java with Caché eXTreme 15

GORIENT_persistence_sql_projection_extents

Using XEP Event Persistence

2.5 Using Queries

The Event class provides a way to create an instance of EventQuery<>, which can execute a limited SQL query on the extent
of the target class. EventQuery<> methods are used to execute the SQL query, and to retrieve, update, or delete individual
items in the query resultset.

The following topics are discussed:
» Creating and Executing a Query — describes how use methods of the EventQuery<> class to execute queries.
* Processing Query Data — describes how to access and modify items in an EventQuery<> resultset.

» Defining the Fetch Level — describes how to control the amount of data returned by a query.

Note: The examples in this section assume that EventPersister object myPersister has already been created and connected,
and that a schema has been imported for the SingleStringSample class. See “Simple Applications to Store and
Query Persistent Events” for an example of how this is done.

2.5.1 Creating and Executing a Query

The following methods create and destroy an instance of EventQuery<>:

» Event.createQuery() — takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<E>, where parameter E is the target class of the parent Event.

* EventQuery<>.close() — closes this EventQuery<> instance and releases the native code resources associated with it.
Queries submitted by an instance of EventQuery<E> will return Java objects of the specified generic type E (the target class

of the Event instance that created the query object). Queries supported by the EventQuery<> class are a subset of SQL select
statements, as follows:

* Queries must consist of a SELECT clause, a FROMclause, and (optionally) standard SQL clauses such as WHERE and
ORDER BY.

» The SELECT and FROMclauses must be syntactically legal, but they are actually ignored during query execution. All
fields that have been mapped are always fetched from the extent of target class E.

» SQL expressions may not refer to arrays of any type, nor to embedded objects or fields of embedded objects.

* The Caché system-generated object ID may be referred to as %ID. Due to the leading %, this will not conflict with
any field called id in a Java class.

The following EventQuery<> methods define and execute the query:

» setParameter () — binds a parameter for the SQL query associated with this EventQuery<>. Takes int index and Object
value as arguments, where index specifies the parameter to be set, and value is the value to bind to the specified
parameter.

* execute() — executes the SQL query associated with this EventQuery<>. If the query is successful, this EventQuery<>
will contain a resultset that can be accessed by the methods described later (see “Processing Query Data™).

The following example executes a simple query on events in the xep.samples.SingleStringSample extent (see “XEP Sample
Applications” for information on the sample programs that define and use the SingleStringSample class.).

16 Using Java with Caché eXTreme

Using Queries

Using Queries: Creating and executing a query

Event newEvent = mnyPersister. get Event ("xep. sanpl es. Si ngl eStri ngSanpl e");
String sql =
"SELECT * FROM xep_sanpl es. Si ngl eStri ngSanpl e WHERE % D BETWEEN ? AND ?";

Event Quer y<Si ngl eStri ngSanpl e> nyQuery = newEvent. creat eQuery(sql);
myQuery. set Parameter(1,3); // assign value 3 to first SQ paraneter
nmyQuery. set Paraneter (2,12); // assign value 12 to second SQ paraneter
myQuery. execute(); /1 get resultset for IDs between 3 and 12

The EventPersister.getEvent() method creates an Event instance named newEvent with SingleStringSample as the
target class.

The Event.createQuery() method creates an instance of EventQuery<> named myQuery, which will execute the
SQL query and hold the resultset. The sql variable contains an SQL statement that selects all events in the target
class with IDs between two parameter values.

The EventQuery<>.setPar ameter () method is called twice to assign values to the two parameters.

When the EventQuery<>.execute() method is called, the specified query is executed for the extent of the target
class, and the resultset is stored in myQuery.

By default, all data is fetched for each object in the resultset, and each object is fully initialized. See “Defining the Fetch
Level” for options that limit the amount and type of data fetched with each object.

2.5.2 Processing Query Data

After a query has been executed, the methods described here can be used to access items in the query resultset, and update
or delete the corresponding persistent events in the database. The EventQuerylterator<> class implements java.util.lterator<E>
(where E is the target class of the parent EventQuery<E> instance). The following EventQuery<> method creates an instance
of EventQuerylterator<g>:

» getlterator () — returns an EventQuerylterator<E> iterator for the current resultset.

EventQuerylterator<> implements java.util.lterator<E> methods hasNext (), next(), and remove(), plus the following method:

» set() — takes an object of the target class and uses it to update the persistent event most recently fetched by next().
The following example creates an instance of EventQuerylterator<> and uses it to update each item in the resultset:

Using Queries: Iteration with EventQuerylterator<>

myQuery. execute(); // get resultset
Event Queryl t er at or <xep. sanpl es. Si ngl eStri ngSanpl e> nylter = nmyQuery.getlterator();
while (nylter.hasNext()) {

current Event = nylter.next();

current Event.nane = "in process: " + currentEvent. nang;

nmylter.set(current Event);

The call to EventQuery<>.execute() runs the query described in the previous example (see “Creating and Executing
a Query™), and the resultset is stored in myQuery. Each item in the resultset is a SingleStringSample object.

The call to getlterator () creates iterator mylter for the resultset currently stored in myQuery.

In the whi | e loop, hasNext() returns t r ue until all items in the resultset have been processed:

» The call to next() returns the next SingleStringSample object from the resultset and assigns it to currentEvent.
e The currentEvent.name property is changed.

e The set() method is called, storing the updated currentEvent object in the database.

Using Java with Caché eXTreme 17

Using XEP Event Persistence

2.5.2.1 Alternate Query Iteration Methods

The EventQuery<> class also provides methods that can be used to process a resultset without using EventQuerylterator<>.
(This is an alternative for developers who prefer iteration methods similar to those provided by ObjectScript). After a query
has been executed, the following EventQuery<> methods can be used to access items in the query resultset, and update or
delete the corresponding persistent events in the database:

getNext() — returns the next object of the target class from the resultset. Returns nul | if there are no more items in
the resultset. It requires nul | or an object of the target class as an argument. (In this release, the argument is a placeholder
that has no effect on the query).

updateCurrent() — takes an object of the target class as an argument and uses it to update the persistent event most
recently returned by getNext().

deleteCurrent() — deletes the persistent event most recently returned by getNext() from the database.

getAll() — uses getNext() to get all items from the resultset, and returns them in a List. Cannot be used for updating
or deleting. getAll() and getNext() cannot access the same resultset — once either method has been called, the other
method cannot be used until execute() is called again.

See “Accessing Stored Events” for a description of how to access and modify persistent events identified by Id or 1dKey.

Important: Never use EventQuery<>and EventQuerylterator<> iteration methods together

Although query results can be accessed either by direct calls to EventQuery<> methods or by getting an
instance of EventQuerylterator<> and using its methods, these access methods must never be used at the
same time. Getting an iterator and calling its methods while also making direct calls to the EventQuery<>
methods can lead to unpredictable results.

Using Queries: Updating and Deleting Query Data

nyQuery. execut e(); /1 get resultset
Si ngl eStringSanpl e current Event = nyQuery. get Next (null);
while (currentEvent != null) {

if (currentEvent.nanme.startsWth("finished")) {
nyQuery. del eteCurrent (); /1 Delete if already processed

} else {
current Event.nane = "in process: " + currentEvent. nang;
nmyQuery. updat eCurrent (current Event); /1 Update if unprocessed

current Event = nyQuery. get Next (current Event);

myQuery. cl ose();

In this example, the call to EventQuery<>.execute() is assumed to execute the query described in the previous
example (see “Creating and Executing a Query™), and the resultset is stored in myQuery. Each item in the
resultset is a SingleStringSample object.

The first call to getNext() gets the first item from the resultset and assigns it to currentEvent.

In the whi | e loop, the following process is applied to each item in the resultset:

If currentEvent.name starts with the string " f i ni shed" , deleteCurrent() deletes the corresponding persistent
event from the database.

Otherwise, the value of currentEvent.name is changed, and updateCurrent() is called. It takes currentEvent
as its argument and uses it to update the persistent event in the database.

The call to getNext() returns the next SingleStringSample object from the resultset and assigns it to currentEvent.

After the loop terminates, close() is called to release the native code resources associated with myQuery.

18

Using Java with Caché eXTreme

Calling Caché Methods from XEP

Note: Always call close() to release resources

Always call close() on an instance of EventPersister before it goes out of scope to ensure that all locks, licenses,
and other resources associated with the connection are released.

2.5.3 Defining the Fetch Level

The fetch level is an Event property that can be used to control the amount of data returned when running a query. This is

particularly useful when the underlying event is complex and only a small subset of event data is required.

The following EventQuery<> methods set and return the current fetch level:

e getFetchLevel() — returns an int indicating the current fetch level of the Event.

» setFetchL evel () — takes one of the values in the Event fetch level enumeration as an argument and sets the fetch level
for the Event.

The following fetch level values are supported:

e Event.OPTI ON_FETCH LEVEL_ALL — This s the default. All data is fetched, and the returned event is fully initialized.

* Event.OPTI ON_FETCH LEVEL_DATATYPES ONLY — Only datatype fields are fetched. This includes all primitive
types, all primitive wrappers, java.lang.String, java.math.BigDecimal, java.util. Date, java.sgl.Date, java.sgl.Time,
java.sgl.Timestamp and enum types. All other fields are set to null.

e Event.OPTI ON_FETCH LEVEL NO ARRAY_TYPES — All types are fetched except arrays. All fields of array types,
regardless of dimension, are set to null. All datatypes, object types (including serialized types) and collections are
fetched.

e Event.OPTI ON_FETCH LEVEL_NO COLLECTI ONS — All types are fetched except implementations of java.util.List,
java.util.Map, and java.util.Set.

e Event.OPTI ON_FETCH LEVEL_NO OBJECT_ TYPES — All types are fetched except object types. Serialized types
are also considered object types and are not fetched. All datatypes, array types and collections are fetched.

2.6 Calling Caché Methods from XEP

The following EventPersister methods call Caché class methods:

» callClassMethod() — calls the specified ObjectScript class method. Takes String arguments for className and
methodName, plus O or more arguments that will be passed to the class method. Returns an Object that may be of type
int, long, double, or String.

» callBytesClassM ethod() — identical to callClassM ethod() except that string values are returned as instances of byte[].
o callListClassM ethod() — identical to call ClassM ethod() except that string values are returned as instances of ValueList.
» callVoidClassM ethod() — identical to callClassM ethod() except that nothing is returned.

The following EventPersister methods call Caché functions and procedures (see “User-defined Code™ in Using Caché
ObjectScript):

» callFunction() — calls the specified ObjectScript function. Takes String arguments for functionName and routineName,
plus 0 or more arguments that will be passed to the function. Returns an Object that may be of type int, long, double,
or String.

» callBytesFunction() — identical to callFunction() except that string values are returned as instances of byte[].

Using Java with Caché eXTreme 19

GCOS_usercode

Using XEP Event Persistence

» callListFunction() — identical to callFunction() except that string values are returned as instances of ValueList.

» callProcedure() — calls the specified ObjectScript procedure. Takes String arguments for procedureName and
routineName, plus O or more arguments that will be passed to the procedure.

2.7 Schema Customization and Mapping

This section provides details about how a Java class is mapped to a Caché event schema, and how a schema can be customized
for optimal performance. In many cases, a schema can be imported for a simple class without providing any meta-information.
In other cases, it may be necessary or desirable to customize the way in which the schema is imported. The following sections
provide information on customized schemas and how to generate them:

» Schema Import Models — describes the two schema import models supported by XEP.

» Using Annotations — XEP annotations can be added to a Java class to specify the indexes that should be created. They
can also be added to optimize performance by specifying fields that should not be imported or fields that should be
serialized.

» Using IdKeys — Annotations can be used to specify IdKeys (index values used in place of the default object 1D),
which are required when importing a full schema.

* Implementing an InterfaceResolver — By default, a flat schema does not import fields declared as interfaces. Imple-
mentations of the InterfaceResolver interface can be used to during schema import to specify the actual class of a field
declared as an interface.

e Schema Mapping Rules — provides a detailed description of how Java classes are mapped to Caché event schemas.

2.7.1 Schema Import Models

XEP provides two different schema import models: flat schema and full schema. The main difference between these models
is the way in which Java objects are projected to Caché events.

e The Embedded Object Projection Model (Flat Schema) — imports a flat schema where all objects referenced by the
imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. All data for an instance of the class is stored as a single Caché
9%Library.Persistent object, and information about the original Java class structure is not preserved.

» The Full Object Projection Model (Full Schema) — imports a full schema where all objects referenced by the imported
class are projected as separate Caché %Persistent objects. Inherited fields are projected as references to fields in the
ancestor classes, which are also imported as Caché %Persistent classes. There is a one-to-one correspondence between
Java source classes and Caché projected classes, so the Java class inheritance structure is preserved.

Full object projection preserves the inheritance structure of the original Java classes, but may have an impact on performance.
Flat object projection is the optimal choice if performance is essential and the event schema is fairly simple. Full object
projection can be used for a richer set of features and more complex schemas if the performance penalty is acceptable.

2.7.1.1 The Embedded Object Projection Model (Flat Schema)

By default, XEP imports a schema that projects referenced objects by flattening. In other words, all objects referenced by
the imported class are serialized and embedded, and all fields declared in all ancestor classes are collected and projected
as if they were declared in the imported class itself. The corresponding Caché event extends %Library.Persistent, and contains
embedded serialized objects where the original Java object contained references to external objects.

20 Using Java with Caché eXTreme

Schema Customization and Mapping

This means that a flat schema does not preserve inheritance in the strict sense on the Caché side. For example, consider
these three Java classes:

class A {
String a;

}
class B extends class A {
String b;

class C extends class B {
String c;

Importing class C results in the following Caché class:

Class C Extends %ersistent ... {
Property a As %tring;
Property b As ¥string;
Property ¢ As ¥string;

No corresponding Caché events will be generated for the A or B classes unless they are specifically imported. Event C on
the Caché side does not extend either A or B. If imported, A and B would have the following structures:

Class A Extends %Persistent ... {
Property a As ¥%string;

}

Class B Extends %Persistent ... {
Property a As ¥string;
Property b As ¥string;

All operations will be performed only on the corresponding Caché event. For example, calling store() on objects of type
C will only store the corresponding C Caché events.

If a Java child class hides a field of the same name that is also declared in its superclass, the XEP engine always uses the
value of the child field.

2.7.1.2 The Full Object Projection Model (Full Schema)

The full object model imports a schema that preserves the Java inheritance model by creating a matching inheritance
structure in Caché. Rather than serializing all object fields and storing all data in a single Caché object, the schema establishes
a one-to-one relationship between the Java source classes and Caché projected classes. The full object projection model
stores each referenced class separately, and projects fields of a specified class as references to objects of the corresponding
Caché class.

Referenced classes must include an annotation that creates a user-defined IdKey (either @1d or @Index — see *“Using
IdKeys™). When an object is stored, all referenced objects are stored first, and the resulting IdKeys are stored in the parent
object. As with the rest of XEP, there are no uniqueness checks, and no attempts to change or overwrite existing data. The
data is simply appended at the highest possible speed. If an IdKey value references an event that already exists, it will
simply be skipped, without any attempt to overwrite the existing event.

The @Embedded class level annotation can be used to optimize a full schema by embedding instances of the annotated
class as serialized objects rather than storing them separately.

Note: See the FlightLog sample program (listed in *“XEP Sample Applications™) for a demonstration of how to use the
full object model.

2.7.2 Using Annotations

The XEP engine infers XEP event metadata by examining a Java class. Additional information can be specified in the Java
class via annotations, which can be found in the com.intersys.xep.annotations package. As long a Java object conforms to

Using Java with Caché eXTreme 21

Using XEP Event Persistence

the definition of an XEP persistent event (see “Requirements for Imported Classes™), it is projected as a Caché event, and
there is no need to customize it.

Some annotations are applied to individual fields in the class to be projected, while others are applied to the entire class:
» Field Annotations — are applied to a field in the class to be imported:

— @Id — specifies that the field will act as an IdKey.

— @Serialized — indicates that the field should be stored and retrieved in its serialized form.

— @Transient — indicates that the field should be excluded from import.

» Class Annotations — are applied to the entire class to be imported:

— @Embedded — indicates that a field of this class in a full schema should be embedded (as in a flat schema) rather
than referenced.

— @Index — declares an index for the class.

— @Indices — declares multiple indexes for the same class.

@1Id (field level annotation)

The value of a field marked with @ d will be used as an 1dKey that replaces the standard object ID (see “Using
IdKeys™). Only one field per class can use this annotation, and the field must be a String, int, or long (double is
permitted but not recommended). To create a compound IdKey, use the @ Index annotation instead. A class marked
with @ d cannot also declare a compound primary key with @ ndex. An exception will be thrown if both anno-
tations are used on the same class.

The following parameter must be specified:
* gener at ed — a boolean specifying whether or not XEP should generate key values.

— generated = true— (the default setting) key value will be generated by Caché and the field marked
as @ d must beLong. This field is expected to be null prior to insert/store and will be filled automatically
by XEP upon completion of such an operation.

— gener at ed=f al se — the user-assigned value of the marked field will be used as the IdKey value.
Fields can be String, int, Integer, long or Long.

In the following example, the user-assigned value of the ssn field will be used as the object ID:

import comintersys. xep.annotati ons. |d;
public class Person {

@ d(gener at ed=f al se)

Public String ssn;

public String nane;

Public String dob;
}

@Serialized (field level annotation)
The @eri al i zed annotation indicates that the field should be stored and retrieved in its serialized form.

This annotation optimizes storage of fields that implement the java.io.Serializable interface (including arrays, which
are implicitly serializable). The XEP engine will call the relevant read or write method for the serial object, rather
than using the default mechanism for storing or retrieving data. An exception will be thrown if the marked field
is not serializable. See “Type Mapping” for more details on the projection of serialized fields.

Example:

22 Using Java with Caché eXTreme

Schema Customization and Mapping

import com i ntersys. xep.annotations. Seri al i zed;
public class MO ass {

@perialized

public xep.sanples. Serialized serialized;
@erialized

public int[][][]1[] quadl nt Array;
@verialized

public String[][] doubl eStringArray;
}

/'l xep.sanples. Serialized:

public class Serialized inplenents java.io.Serializable {
public String nane;
public int val ue;

@Transient (field level annotation)

The @' ansi ent annotation indicates that the field should be excluded from import. The annotated field will
not be projected to Caché, and will be ignored when events are stored or loaded.

Example:

import comintersys. xep.annot ati ons. Transi ent;
public class Md ass {

/1 this field will NOT be projected:

@r ansi ent

public String transientField;

/1 this field WLL be projected:
public String projectedField;
}

@Embedded (class level annotation)

The @nbedded annotation can be used when a full schema is to be generated (see “Schema Import Models™).
It indicates that a field of this class should be serialized and embedded (as in a flat schema) rather than referenced
when projected to Caché.

Examples:

import comintersys. xep.annot ati ons. Enbedded,;
@nbedded
public class Address {

String street;

String city;

String zip;

String state;

import comintersys. xep.annot ati ons. Enbedded,;
public class MyQuterd ass {
@:nbedded
public static class MyInnerd ass {
public String i nner Fi el d;

}
@Index (class level annotation)
The @ ndex annotation can be used to declare an index.
Arguments must be specified for the following parameters:
* nane — a String containing the name of the composite index
» fiel ds —anarray of String containing the names of the fields that comprise the composite index
* type —the index type. The xep.annotations.IndexType enumeration includes the following possible types:
— IndexType.none — default value, indicating that there are no indexes.

— IndexType.bi t map — a bitmap index (see “Bitmap Indices” in Using Caché SQL).

Using Java with Caché eXTreme 23

GSQLOPT_indices_bitmap

Using XEP Event Persistence

— IndexType.bi t sl i ce — a bitslice index (see “Overview” in Using Caché SQL).
— IndexType.si npl e — a standard index on one or more fields.

— IndexType.i dkey — an index that will be used in place of the standard ID (see *“Using IdKeys™).

Example:

i mport comintersys. xep. annot ati ons. | ndex;
import comintersys. xep. annot ati ons. | ndexType;

@ ndex(name="i ndexOne", fi el ds={"ssn", "dob"}, t ype=I ndexType. i dkey)
public class Person {

public String nane;

public Date dob;

public String ssn;

@Indices (class level annotation)

The @ ndi ces annotation allows you to specify an array of different indexes for one class. Each element in the
array is an @Index tag.

Example:

i mport comintersys. xep. annot ati ons. | ndex;
i nport com i ntersys. xep.annotations. | ndexType;
i nport com i ntersys. xep. annotations. | ndi ces;

@ ndi ces({
@ ndex(nane="i ndexOne

fields={"nylnt","nyString"}, type=l ndexType. si npl e),
@ ndex(name="i ndexTwo", fi el

ds={"nmyShort", "nyByte", "nylnt"}, type=l ndexType. si npl e)

public class MyTwol ndi ces {
public int nylnt;
public Byte nyByte;

public short nyShort;
public String nyString;

2.7.3 Using IdKeys

IdKeys are index values that are used in place of the default object ID. Both simple and composite 1dKeys are supported
by XEP, and a user-generated IdKey is required for a Java class that is imported with a full schema (see “Importing a
Schema™). IdKeys on a single field can be created with the @Id annotation. To create a composite IdKey, add an @ Index
annotation with IndexType i dkey. For example, given the following class:

cl ass Person {
String nane;
I nteger id;
Dat e dob;

}

the default storage structure uses the standard object ID as a subscript:

~PersonD(1) =$LB("John", 12, "1976- 11-11")

The following annotation uses the name and id fields to create a composite IdKey named newldKey that will replace the
standard object ID:

@ ndex(name="new dKey", fi el ds={"nanme","id"}, type=l ndexType. i dkey)

This would result in the following global structure:

~personD(" John", 12) =$LB(" 1976- 11- 11")

24 Using Java with Caché eXTreme

GSQLOPT_indices_overview

Schema Customization and Mapping

XEP will also honor 1dKeys added by other means, such as SQL commands (see “Using the Unique, PrimaryKey, and
IDKey Keywords with Indices” in Using Caché SQL). The XEP engine will automatically determine whether the underlying
class contains an 1dKey, and generate the appropriate global structure.

There are a number of limitations on IdKey usage:

» AnldKey value must be unique. If the IdKey is user-generated, uniqueness is the responsibility of the calling application,
and is not enforced by XEP. If the application attempts to add an event with a key value that already exists in the
database, the attempt will be silently ignored and the existing event will not be changed.

» Aclass that declares an 1dKey cannot be indexed asynchronously if it also declares other indexes.

» There is no limit of the number of fields in a composite 1dKey, but the fields must be String, int, Integer, long or Long.
Although double can also be used, it is not recommended.

* There may be a performance penalty in certain rare situations requiring extremely high and sustained insert rates.

See “Accessing Stored Events” for a discussion of Event methods that allow retrieval, updating and deletion of events
based on their 1dKeys.

See “SQL and Object Use of Multidimensional Storage” in Using Caché Globals for information on IdKeys and the
standard Caché storage model. See “Defining and Building Indices” in Using Caché SQL for information on IdKeys in
SQL.

Sample programs IdKeyTest and FlightLog provide demonstrations of IdKey usage (see “XEP Sample Applications™ for
details about the sample programs).

2.7.4 Implementing an InterfaceResolver

When a flat schema is imported, information on the inheritance hierarchy is not preserved (see “Schema Import Models™).
This creates a problem when processing fields whose types are declared as interfaces, since the XEP engine must know
the actual class of the field. By default, such fields are not imported into a flat schema. This behavior can be changed by
creating implementations of com.intersys.xep.InterfaceResolver to resolve specific interface types during processing.

Note: InterfaceResolver is only relevant for the flat schema import model, which does not preserve the Java class
inheritance structure. The full schema import model establishes a one-to-one relationship between Java and Caché
classes, thus preserving the information needed to resolve an interface.

An implementation of InterfaceResolver is passed to EventPersister before calling the flat schema import method,
importSchema() (see “Importing a Schema™). This provides the XEP engine with a way to resolve interface types during
processing. The following EventPersister method specifies the implementation that will be used:

* EventPersister.setl nter faceResolver () — takes an instance of InterfaceResolver as an argument. When impor tSchemay()
is called, it will use the specified instance to resolve fields declared as interfaces.

The following example imports two different classes, calling a different, customized implementation of InterfaceResolver
for each class:

Schema Customization: Applying an InterfaceResolver

try {
myPersi ster.setlnterfaceResol ver(new test. MFirstlnterfaceResolver());
nmyPer si ster.inportSchema("test. MyMai nd ass");

myPersi ster.setlnterfaceResol ver(new test. MGt herl nterfaceResol ver());
nmyPer si ster.inportSchema("test. MyQt herC ass");

}
catch (XEPException e) {Systemout.println("lnmport failed:\n" + e);}

Using Java with Caché eXTreme 25

GSQLOPT_indices_std_unique
GSQLOPT_indices_std_unique
GGBL_sqlobj
GSQLOPT_indices

Using XEP Event Persistence

The first call to setlnterfaceResolver () sets a new instance of MyFirstinterfaceResolver (described in the next
example) as the implementation to be used during calls to the import methods. This implementation will be used
in all calls to importSchema() until setl nterfaceResolver () is called again to specify a different implementation.

The first call to importSchema() imports class test.MyMainClass, which contains a field declared as interface
test.MyFirstinterface. The instance of MyFirstinterfaceResolver will be used by the import method to resolve the
actual class of this field.

The second call to setl nterfaceResolver () sets an instance of a different InterfaceResolver class as the new
implementation to be used when importSchema() is called again.

All implementations of InterfaceResolver must define the following method:

InterfaceResolver.getl mplementationClass() returns the actual type of a field declared as an interface. This method
has the following parameters:

interfaceClass — the interface to be resolved.
declaringClass — class that contains a field declared as interfaceClass.

fieldName — string containing the name of the field in declaringClass that has been declared as an interface.

The following example defines an interface, an implementation of that interface, and an implementation of InterfaceResolver
that resolves instances of the interface.

Schema Customization: Implementing an InterfaceResolver

In this example, the interface to be resolved is test.MyFirstinterface:

package test;
public interface MyFirstinterface{ }

The test.MyFirstimpl class is the implementation of test.MyFirstinterface that should be returned by the
InterfaceResolver:

package test;

public class MyFirstlnpl inplenents M/Firstinterface {
public MyFirstlimpl () {};
public MyFirstlnmpl (String s) { fieldOne = s; };
public String fieldOne;

The following implementation of InterfaceResolver returns class test.MyFirstimpl if the interface is
test.MyFirstinterface, or nul | otherwise:
package test;
I mport comintersys. xep. *;
public class M/FirstlnterfaceResol ver inplenents InterfaceResolver {

public MyFirstlnterfaceResolver() {}

public C ass<?> getlnpl enentati onCl ass(Cl ass decl ari ngd ass,

String fieldName, Cass<?> interfaced ass) {

if (interfaceC ass == xepdeno. MyFirstinterface. class) {
return xepdeno. MyFi rstlnpl . cl ass;

return null;
}
}
When an instance of MyFirstinterfaceResolver is specified by setlnterfaceResolver (), subsequent calls to
importSchema() will automatically use that instance to resolve any field declared as test.MyFirstinterface. For
such each field, the getl mplementationClass() method will be called with parameter declaringClass set to the

class that contains the field, fieldName set to the name of the field, and interfaceClass set to test.MyFirstinterface.
The method will resolve the interface and return either test.MyFirstimpl or nul | .

26

Using Java with Caché eXTreme

Schema Customization and Mapping

2.7.5 Schema Mapping Rules

This section provides details about how an XEP schema is structured. The following topics are discussed:

» Requirements for Imported Classes — describes the structural rules that a Java class must satisfy to produce objects
that can be projected as persistent events.

» Naming Conventions — describes how Java class and field names are translated to conform to Caché naming rules.

e Type Mapping — lists the Java data types that can be used, and describes how they are mapped to corresponding Caché
types.

2.7.5.1 Requirements for Imported Classes
The XEP schema import methods cannot produce a valid schema for a Java class unless it satisfies the following requirements:
« If the imported Caché class or any derived class will be used to execute queries and access stored events, the Java

source class must explicitly declare an argumentless public constructor.

» The Java source class cannot contain fields declared as java.lang.Object, or arrays, lists, sets or maps that use
java.lang.Object as part of their declaration. An exception will be thrown if the XEP engine encounters such fields. Use
the @' ansi ent annotation (see “Using Annotations”) to prevent them from being imported.

The Event.isEvent() method can be used to analyze a Java class or object and determine if it can produce a valid event in
the XEP sense. In addition to the conditions described above, this method throws an XEPException if any of the following
conditions are detected:

* acircular dependency

e anuntyped List or Map

* aMap key value that is not a String, primitive, or primitive wrapper

Fields of a persistent event can be primitives and their wrappers, temporal types, objects (projected as embedded/serial

objects), enumerations, and types derived from java.util.List, java.util. Set and java.util. Map. These types can also be contained
in arrays, nested collections, and collections of arrays.

By default, projected fields may not retain all features of the Java class. Certain fields are changed in the following ways:

» Although the Java class may contain static fields, they are excluded from the projection by default. There will be no
corresponding Caché properties. Additional fields can be excluded by using the @ ansi ent annotation (see “Using
Annotations”).

* Inaflat schema (see “Schema Import Models™), all object types, including inner (nested) Java classes, are projected
as %SerialObject classes in Caché. The fields within the objects are not projected as separate Caché properties, and the
objects are opaque from the viewpoint of ObjectScript.

» Aflat schema projects all inherited fields as if they were declared in the child class.

See “Type Mapping” for more details on how various datatypes are projected.

2.7.5.2 Naming Conventions

Corresponding Caché class and property names are identical to those in Java, with the exception of two special characters
allowed in Java but not Caché:

* $ (dollar sign) is projected as a single " d" character on the Caché side.

* _ (underscore) is projected as a single " u" character on the Caché side.

Using Java with Caché eXTreme 27

Using XEP Event Persistence

Class names are limited to 255 characters, which should be sufficient for most applications. However, the corresponding
global names have a limit of 31 characters. Since this is typically not sufficient for a one-to-one mapping, the XEP engine
transparently generates unique global names for class names longer than 31 characters. Although the generated global
names are not identical to the originals, they should still be easy to recognize. For example, the
xep.samples.SingleStringSample class will receive global name xep. sanpl es. Si ngl eSt ri nASBFD.

2.7.5.3Type Mapping

Fields of a persistent event can be any of the following types:

e primitive types, primitive wrappers and java.lang.String

» temporal types (java.sql.Time, java.sgl.Date, java.sqgl.Timestamp and java.util.Date)

e object types (projected as embedded/serial objects in a flat schema)

e Java enum types

e any types derived from java.util.List, java.util.Set and java.util.Map.

» nested collections (for example, a list of maps), and collections of arrays

» arrays of any of the above

The following sections list the currently supported Java types, and their corresponding Caché types:

Primitives and Primitive Wrappers

The following Java primitives and wrappers are mapped as Caché %String:

char, java.lang.Character, java.lang.String

The following Java primitives and wrappers are mapped as Caché %iInteger:

boolean, java.lang.Boolean
byte, java.lang.Byte
int, java.lang.Integer
long, java.lang.Long

short, java.lang.Short

The following Java primitives and wrappers are mapped as Caché %Float:

double, java.lang.Double

float, java.lang.Float

Temporal Types

The following Java temporal types are mapped as Caché %String

java.sql.Date
java.sgl.Time
java.sgl.Timestamp

java.util.Date

28

Using Java with Caché eXTreme

Schema Customization and Mapping

Object Types

Imported Java classes (the target classes specified in calls to importSchema() or importFull Schema()) are projected
as Caché %Persistent classes. Necessary information is also imported from superclasses and dependent classes,
but the schema import model (see “Schema Import Models™) determines how Caché stores this information:

In a flat schema, a class that appears as a field type in the imported class is projected as a %SerialObject Caché
class, and is embedded in the parent %Persistent class. Superclasses of the imported class are not projected.
Instead, all fields inherited from superclasses are projected as if they were native fields of the imported class.

In a full schema, superclasses and dependent classes are projected as separate %Persistent Caché classes, and
the imported class will contain references to those classes.

The java.lang.Object class is not a supported type. An exception will be thrown if the XEP engine encounters fields
declared as java.lang.Object, or arrays, lists, sets or maps that use it.

Seralized

All fields marked with the @Serialized annotation (see “Using Annotations™) will be projected in their serialized
form as %Binary.

Arrays

The following rules apply to arrays:

With the exception of byte and character arrays, all one-dimensional arrays of primitives, primitive wrappers
and temporal types are mapped as a list of the underlying base type.

One-dimensional byte arrays (byte[] and java.lang.Byte[]) are mapped as %Binary.

One-dimensional character arrays (char[] and java.lang.Character[]) are mapped as %String.
One-dimensional arrays of objects are mapped as lists of objects.

All multi-dimensional arrays are mapped as %Binary and are opaque from the viewpoint of ObjectScript.

Arrays are implicitly serializable, and can be annotated with @Serialized.

Enumerations

Java enumtypes are projected as Caché %String, and only the names are stored. When retrieved from Caché, an
entire Java enumobject will be reconstituted. Arrays, Lists, and other collections of enums are also supported.

Collections

Classes derived from java.util.List and java.util.Set are projected as Caché lists. Classes derived from java.util.Map
are projected as Caché arrays. Untyped Java lists, sets and maps are not supported (type parameters must be used).
Nested lists, sets and maps, lists, sets and maps of arrays, as well as arrays of lists, sets or maps are all projected
as %Binary and are considered opaque as far as Caché is concerned.

Using Java with Caché eXTreme 29

Quick Reference for eXTreme Classes

This chapter is a quick reference for the classes that are most important to an understanding of the Caché eXTreme APIs:
e XEP Quick Reference

The com.intersys.xep package contains the public API described in Using eXTreme Event Persistence.

Note: This is not the definitive reference for these APIs. For the most complete and up-to-date information, see the
JavaDoc for the InterSystems Java Connectivity API, located in <install-dir>/dev/java/doc/index.html.

3.1 XEP Quick Reference

This section is a reference for the XEP API (eXTreme Event Persistence — namespace com.intersys.xep). See Using
eXTreme Event Persistence for a details on how to use the API. It contains the following classes and interfaces:

» Class PersisterFactory — provides a factory method to create EventPersister objects.

e Class EventPersister — encapsulates an XEP database connection. It provides methods that set XEP options, establish
an XEP connection or get an existing connection object, import schema, produce XEP event objects, call Caché functions
and methods on the server, and control transactions.

» Class Event— encapsulates a reference to an XEP persistent event. It provides methods to store or delete events, create
a query, and start or stop index creation.

» Class EventQuery<> — encapsulates a query that retrieves individual events of a specific type from the database for
update or deletion.

» Class EventQuerylterator<> — provides an alternative to EventQuery<> for retrieving, updating and deleting XEP
events, using methods similar to those in Java Iterator.

» Interface InterfaceResolver — resolves the actual type of a field during flat schema importation if the field was declared
as an interface.

» Class XEPException — is the exception thrown by most XEP methods.

3.1.1 List of XEP Methods

The following classes and methods of the XEP API are described in this reference:

Using Java with Caché eXTreme 31

Quick Reference for eXTreme Classes

PersisterFactory

createPer sister () — creates a new EventPersister object.

EventPersister

callBytesClassM ethod() — calls a Caché class method, returning strings as byte[].
callBytesFunction() — calls a Caché function, returning strings as byte[].

callClassM ethod() — calls a Caché class method.

callFunction() — calls a Caché function.

callListClassM ethod() — calls a Caché class method, returning strings as ValueList.
callListFunction() — calls a Caché function, returning strings as ValueList.
callProcedure() — calls a Caché procedure.

callVoidClassM ethod() — calls a Caché class method with no return value.

close() — releases all resources held by this instance.

commit() — commits one level of transaction.

connect() — connects to Caché using the arguments specified.

deleteClass() — deletes a Caché class.

deleteExtent() — deletes all objects in the given extent.

getConnection() — Returns an underlying Globals connection object.

getEvent() — returns an event object that corresponds to the class name supplied.

getl nterfaceResolver () — returns the currently specified instance of InterfaceResolver.
getJDBCConnection() — returns a JDBC connection object.

getTransactionL evel () — returns the current transaction level (or 0 if not in a transaction).
importSchema() — imports a flat schema.

importSchemaFull() — imports a full schema.

rollback() — rolls back the specified number of transaction levels, or all levels if no level is specified.
setl nter faceResolver () — specifies the InterfaceResolver object to be used.

startTransaction() — starts a transaction (which may be a nested transaction).

Event
e close() — releases all resources held by this instance.
e createQuery() — creates a EventQuery<> instance.
o deleteObject() — deletes an event given its database Id or 1dKey.
e getObject() — returns an event given its database Id or 1dKey.
e isEvent() — checks whether an object (or class) is an event in the XEP sense.
» startIndexing() — starts index building for the underlying class.
» stoplndexing() — stops index building for the underlying class.
» store() — stores the specified object or array of objects.
32 Using Java with Caché eXTreme

XEP Quick Reference

updateObject() — updates an event given its database Id or 1dKey.

waitFor I ndexing() — waits for asynchronous indexing to be completed for this class.

EventQuery<>

close() — releases all resources held by this instance.

deleteCurrent() — deletes the event most recently fetched by getNext().

execute() — executes this XEP query.

getAll() — fetches all events in the resultset as an array.

getFetchL evel () — returns the current fetch level.

getlterator () — returns an EventQueryliterator<> that can be used to iterate over query results.
getNext() — fetches the next event in the resultset.

setFetchL evel () — controls the amount of data returned.

setParameter () — binds a parameter for this query.

updateCurrent() — updates the event most recently fetched by getNext()

EventQuerylterator<>

hasNext() — returns t r ue if the query resultset has more items.
next() — fetches the next event in the resultset.
remove() — deletes the event most recently fetched by next().

set() — assigns a new value to the event most recently fetched by next().

InterfaceResolver

getlmplementationClass() — if a field was declared as an interface, an implementation of this method can
be used to resolve the actual field type during schema importation.

3.1.2 Class PersisterFactory

Class com.intersys.xep.PersisterFactory creates a new EventPersister object.

PersisterFactory() Constructor

Creates a new instance of PersisterFactory.

Per si st er Factory()

createPersister()

PersisterFactory.cr eatePer sister () returns an instance of EventPersister.

static EventPersister createPersister() [inline, static]

see also:

Creating and Connecting an EventPersister

Using Java with Caché eXTreme 33

Quick Reference for eXTreme Classes

3.1.3 Class EventPersister

Class com.intersys.xep.EventPersister is the main entry point for the XEP module. It provides methods that can be used to
control XEP options, establish an XEP connection, import schema, and produce XEP Event objects. It also provides
methods to control transactions and perform other tasks.

In most applications, instances of EventPersister should be created by PersisterFactory.createPer sister (). The constructor
should only be used to extend the class.

EventPersister() Constructor

Creates a new instance of EventPersister.

Event Persi ster ()

callBytesClassMethod()

EventPersister.cal|BytesClassM ethod() — calls an ObjectScript class method and returns an Object that may be
of type int, long, double, or byte[].

This method is identical to callClassM ethod() except that it returns string values as instances of byte[] rather than
String.

Obj ect cal | Byt esd assMet hod(String classNanme, String net hodName, Object... args)

parameters:

» cl assNane — fully qualified name of the Caché class to which the called method belongs.
* et hodNanme — name of the Caché class method.

e args —alist of 0 or more arguments to pass to the class method.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callBytesFunction()

EventPersister.call BytesFunction() calls an ObjectScript function (see “User-defined Code™ in Using Caché
ObijectScript) and returns an Object that may be of type int, long, double, or byte[].

This method is identical to callFunction() except that it returns string values as instances of byte[] rather than
String.

Obj ect cal | BytesFunction(String functionNane, String routineNane, bject... args)

parameters:

» functi onNane — name of the function.

* routi neName — name of the routine containing the function.
» args —alist of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

34

Using Java with Caché eXTreme

GCOS_usercode

XEP Quick Reference

callClassMethod()

EventPersister.callClassM ethod() — calls an ObjectScript class method and returns an Object that may be of type
int, long, double, or String. Use callVoidClassM ethod() to call a method that doesn’t return a value,
callBytesClassM ethod() to return string values as byte[], or callListClassM ethod() to return string values as
ValuelList.

Obj ect cal |l d assMethod(String classNane, String nmethodNane, bject... args)

parameters:

» cl assNane — fully qualified name of the Caché class to which the called method belongs.
* et hodName — name of the Caché class method.

e args —alist of 0 or more arguments to pass to the class method.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callFunction()

EventPersister.callFunction() — calls an ObjectScript function (see “User-defined Code” in Using Caché
ObjectScript) and returns an Object that may be of type int, long, double, or String. Use callBytesFunction() to
return string values as byte[], or callListFunction() to return string values as ValueList.

Obj ect cal | Function(String functionNane, String routineNane, bject... args)

parameters:

o functi onName — name of the function.

* routi neName — name of the routine containing the function.
e args —alist of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callListClassMethod()

EventPersister.callListClassM ethod() — calls an ObjectScript class method and returns an Object that may be of
type int, long, double, or ValueList.

This method is identical to callClassM ethod() except that it returns string values as instances of ValueList rather
than String.

Obj ect Cal | Li std assMet hod(string className, string nethodName, parans Object[] args)

Throws an exception if the return value is a string but is not in valid ValueList format.
parameters:

e cl assNane — fully qualified name of the Caché class to which the called method belongs.
* et hodNanme — name of the Caché class method.

» args —alist of 0 or more arguments to pass to the class method.

Using Java with Caché eXTreme 35

GCOS_usercode

Quick Reference for eXTreme Classes

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callListFunction()

EventPersister.call L istFunction() calls an ObjectScript function (see “User-defined Code™ in Using Caché
ObjectScript) and returns an Object that may be of type int, long, double, or ValueList.

This method is identical to callFunction() except that it returns string values as instances of ValueList rather than
String.

Obj ect Cal | Li st Function(string functionName, string routineName, parans Object[] args)

Throws an exception if the return value is a string but is not in valid ValueList format.
parameters:

« functi onName — name of the function.

e routi neName — name of the routine containing the function.

» args —alist of 0 or more arguments to pass to the function.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callProcedure()

EventPersister.call Procedure() calls an ObjectScript procedure (see “User-defined Code” in Using Caché
ObijectScript).

void cal | Procedure(String procedureNanme, String routineName, Cbject... args)

parameters:

* procedur eNane — name of the procedure.

* routi neName — name of the routine containing the procedure.
» args —alist of 0 or more arguments to pass to the procedure.

Arguments may be of type int, long, double, String, byte[], ValueList, or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing nul | for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

callVoidClassMethod()

EventPersister.callVoidClassM ethod() — calls an ObjectScript class method with no return value, passing O or
more arguments. This method may be used to call any Caché class method (regardless of whether it normally
returns a value) when the caller does not need the return value. Use callClassM ethod() to call a method that returns
a value.

voi d cal | Voi dd assMet hod(String classNane, String met hodNane, Cbject... args)

parameters:

36

Using Java with Caché eXTreme

GCOS_usercode
GCOS_usercode

XEP Quick Reference

» cl assNanme — fully qualified name of the Caché class to which the called method belongs.
* met hodNanme — name of the Caché class method.
» args —alist of 0 or more arguments to pass to the class method.

» Arguments may be of any of the types String, int, long, double, byte[], or globals.ByteArrayRegion. Trailing
arguments may be omitted, causing default values to be used for those arguments, either by passing fewer
than the full number of arguments, or by passing null for trailing arguments. Throws an exception if a non-
null argument is passed to the right of a null argument.

close()
EventPersister.close() releases all resources held by this instance.

voi d cl ose()

It is important to always call close() on an instance of EventPersister before it goes out of scope. Failing to close
it can cause serious memory leaks because Java garbage collection cannot release resources allocated by native
code.

commit()

EventPersister.commit() commits one level of transaction

void commt()

connect()
EventPersister.connect() establishes a TCP/IP connection to Caché.

voi d connect(String host, int port, String nanespace, String usernane, String password)

parameters:

* host — host address for TCP/IP connection.
e port — port number for TCP/IP connection.
* nanespace — hamespace to be accessed.

* user name — username for this connection.

e passwor d — password for this connection.

see also:

Creating and Connecting an EventPersister

connect() Deprecated in-process connection

EventPersister.connect() uses a Globals API in-process connection if only the namespace, username, and password
arguments are specified.

voi d connect (String nanmespace, String usernane, String password)

This overload is deprecated. For XEP applications, the TCP/IP connection (described in the previous entry) is
preferable in all respects, including bulk insert/load speed.

Using Java with Caché eXTreme 37

Quick Reference for eXTreme Classes

deleteClass()

EventPersister.deleteClass() deletes a Caché class definition. It does not delete objects associated with the extent
(since objects can belong to more than one extent), and does not delete any dependencies (for example, inner or
embedded classes).

voi d del eted ass(String cl assNane)

parameter:

e cl assNanme — name of the class to be deleted.

If the specified class does not exist, the call silently fails (no error is thrown).
see also:

“Deleting Test Data” in Accessing Stored Events

deleteExtent()

EventPersister.deleteExtent() deletes the extent definition associated with a Java event, but does not destroy
associated data (since objects can belong to more than one extent). See “Extents” in Using Caché Objects for
more information on managing extents.

voi d del eteExtent (String cl assNane)

» ¢l assName — name of the extent.

Do not confuse this method with the deprecated Event.deleteExtent(), which destroys all extent data as well as
with the extent definition.

see also:

“Deleting Test Data” in Accessing Stored Events

getConnection()

EventPersister.getConnection() — returns the instance of com.intersys.globals.Connection underlying an
EventPersister in-process connection. Throws an exception if the EventPersister has a TCP/IP connection.

The in-process connection is deprecated.

com i ntersys. gl obal s. Connecti on get Connecti on()

getEvent()

EventPersister.getEvent() returns an Event object that corresponds to the class name supplied, and optionally
specifies the indexing mode to be used.

Event getEvent (String cl assNane)
Event getEvent (String classNanme, int indexMode)

parameter:
* ¢l assNane — class name of the object to be returned.

* i ndexMde — indexing mode to be used.

The following indexMode options are available:

» Event.| NDEX_MODE_ASYNC_ ON— enables asynchronous indexing. This is the default when the indexMode
parameter is not specified.

38

Using Java with Caché eXTreme

GOBJ_model_inheritance_extents

XEP Quick Reference

e Event.| NDEX_MODE_ASYNC_OFF — no indexing will be performed unless the startindexing() method is
called.

e Event.| NDEX_MODE_SYNC — indexing will be performed each time the extent is changed, which can be
inefficient for large numbers of transactions. This index mode must be specified if the class has a user-assigned
IdKey.

The same instance of Event can be used to store or retrieve all instances of a class, so a process should only call
the getEvent() method once per class. Avoid instantiating multiple Event objects for a single class, since this can
affect performance and may cause memory leaks.

see also:

Creating Event Instances and Storing Persistent Events, Controlling Index Updating

getinterfaceResolver()

EventPersister.getl nter faceResolver () — returns the currently set instance of InterfaceResolver that will be used
by importSchema() (see “Implementing an InterfaceResolver™). Returns nul | if no instance has been set.

I nterfaceResol ver getlnterfaceResol ver()

see also:

setl nter faceResolver (), importSchema()

getJDBCConnection()
EventPersister.getJDBCConnection() returns the JDBC Connection object underlying an EventPersister connection.

j ava. sqgl . Connecti on get JDBCConnecti on()

see also:

Creating and Connecting an EventPersister

getTransactionLevel()
EventPersister.get TransactionL evel() returns the current transaction level (0 if not in a transaction)

int getTransactionLevel ()

importSchema()

EventPersister.impor tSchema() produces a flat schema (see “ Schema Import Models™) that embeds all referenced
objects as serialized objects. The method imports the schema of each event declared in the class or a .jar file
specified (including dependencies), and returns an array of class hames for the imported events.

String[] inportSchema(String classOrJarFil eNane)
String[] inportSchema(String[] classes)

parameters:
* cl asses — an array containing the names of the classes to be imported.

* classO JarFi | eName — a class name or the name of a .jar file containing the classes to be imported. If
a .jar file is specified, all classes in the file will be imported.

Using Java with Caché eXTreme 39

Quick Reference for eXTreme Classes

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .jar file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the Java schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

importSchemaFull()

EventPersister.importSchemaFull() — produces a full schema (see “Schema Import Models™) that preserves
the object hierarchy of the source classes. The method imports the schema of each event declared in the class or
Jjar file specified (including dependencies), and returns an array of class names for the imported events.

String[] inportSchemaFul | (String classO JarFil eNane)
String[] inportSchemaFull (String[] classes)

parameters:

* cl asses — an array containing the names of the classes to be imported.

* classO JarFi | eName — a class name or the name of a .jar file containing the classes to be imported. If
a .jar file is specified, all classes in the file will be imported.

If the argument is a class name, the corresponding class and any dependencies will be imported. If the argument
is a .jar file, all classes in the file and any dependencies will be imported. If such schema already exists, and it
appears to be in sync with the Java schema, import will be skipped. Should a schema already exist, but it appears
different, a check will be performed to see if there is any data. If there is no data, a new schema will be generated.
If there is existing data, an exception will be thrown.

see also:

Importing a Schema

rollback()

EventPersister.rolIback() rolls back the specified number of levels of transaction, where level is a positive integer,
or roll back all levels of transaction if no level is specified.

voi d rol | back()
voi d roll back(int |evel)

parameter:

* | evel — optional number of levels to roll back.

This method does nothing if level is less than 0, and stops rolling back once the transaction level reaches 0 if level
is greater than the initial transaction level.

setinterfaceResolver()

EventPersister.setl nter faceResolver () — sets the instance of InterfaceResolver to be used by importSchema()
(see “Implementing an InterfaceResolver™). All instances of Event created by this EventPersiser will share the
specified InterfaceResolver (which defaults to nul | if this method is not called).

voi d setlnterfaceResol ver(InterfaceResol ver interfaceResol ver)

parameters:

40

Using Java with Caché eXTreme

XEP Quick Reference

* interfaceResol ver — an implementation of InterfaceResolver that will be used by importSchema() to
determine the actual type of fields declared as interfaces. This argument can be nul | .
see also:

getl nter faceResolver (), impor tSchema()

startTransaction()
EventPersister.startTransaction() starts a transaction (which may be a nested transaction)

voi d startTransaction()

3.1.4 Class Event

Class com.intersys.xep.Event provides methods that operate on XEP events (storing events, creating a query, indexing etc.).
It is created by the EventPersister.getEvent() method.
close()

Event.close() releases all resources held by this instance.

voi d cl ose()

It is important to always call close() on an instance of Event before it goes out of scope. Failing to close it can
cause serious memory leaks because Java garbage collection cannot release resources allocated by native code.
createQuery()

Event.createQuery() takes a String argument containing the text of the SQL query and returns an instance of
EventQuery<E>, where parameter E is the target class of the parent Event.

<E> Event Query<E> createQuery (String sql Text)

parameter:

* sgl Text — text of the SQL query.

see also:

Creating and Executing a Query

deleteObject()
Event.deleteObject() deletes an event identified by its database object ID or 1dKey.

voi d del etehject(long id)
voi d del eteCbj ect (Qbj ect[] idkeys)

parameter:
* i d— database object ID

» i dkeys — an array of objects that make up the IdKey (see “Using IdKeys™). An XEPException will be
thrown if the underlying class has no 1dKeys or if any of the keys supplied is equal to null or of an invalid

type.

see also:

Accessing Stored Events

Using Java with Caché eXTreme 41

Quick Reference for eXTreme Classes

getObject()

Event.getODbj ect() fetches an event identified by its database object ID or IdKey. Returns nul | if the specified
object does not exist.

Obj ect get Obj ect(long id)
Obj ect get Obj ect (Obj ect[] idkeys)

parameter:
* i d— database object ID

* i dkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid

type.

see also:

Accessing Stored Events

isEvent()

Event.isEvent() throws an XEPException if the object (or class) is not an event in the XEP sense (see “Requirements
forImported Classes™). The exception message will explain why the object is not an XEP event.

static void i sEvent (bj ect objectOrd ass)

parameter:

* obj ect O d ass — the object to be tested.

startindexing()

Event.startlndexing() starts asynchronous index building for the extent of the target class. Throws an exception
if the index mode is Event.] NDEX_MODE_SYNC (see “Controlling Index Updating™).

voi d startl ndexing()

stoplndexing()

store()

Event.stopl ndexing() stops asynchronous index building for the extent. If you do not want the index to be updated
when the Event instance is closed, call this method before calling Event.close().

voi d stopl ndexi ng()

see also:

Controlling Index Updating

Event.stor&() stores a Java object or array of objects as persistent events. There is no significant performance dif-
ference between passing an array and passing individual objects in a loop, but all objects in the array must be of
the same type. Returns a long database ID for each newly inserted object, or 0 if the ID could not be returned or
the event uses an IdKey.

| ong store(Object object)
long[] store(Object[] objects)

parameters:

e obj ect — Java object to be added to the database.

42

Using Java with Caché eXTreme

XEP Quick Reference

* obj ect s — array of Java objects to be added to the database. All objects must be of the same type.

updateObject()
Event.updateObject() updates an event identified by its database 1D or IdKey.

voi d updateCbject(long id, Object object)
voi d updat eCbj ect (Cbj ect[] idkeys, Onbject object)

parameter:
* i d— database object ID

* i dkeys — an array of objects that make up the IdKey (see “Using IdKeys”). An XEPException will be
thrown if the underlying class has no IdKeys or if any of the keys supplied is equal to null or of an invalid

type.

* obj ect — new object that will replace the specified event.

see also:

Accessing Stored Events

waitForindexing()

Event.waitFor I ndexing() waits for asynchronous indexing to be completed, returning t r ue if indexing has been
completed, or f al se if the wait timed out before indexing was completed. Throws an exception if the index mode
is Event.| NDEX_MODE_SYNC.

bool ean wai t For | ndexi ng(int tineout)
parameter:

e timeout — number of seconds to wait before timing out (wait forever if - 1, return immediately if 0).

see also:

Controlling Index Updating

3.1.5 Class EventQuery<>

Class com.intersys.xep.EventQuery<> can be used to retrieve, update and delete individual events from the database.

close()
EventQuery<>.close() releases all resources held by this instance.

voi d cl ose()

It is important to always call close() on an instance of EventQuery<> before it goes out of scope. Failing to close
it can cause serious memory leaks because Java garbage collection cannot release resources allocated by native
code.

deleteCurrent()
EventQuery<>.deleteCurrent() deletes the event most recently fetched by getNext().

voi d del eteCurrent()

see also:

Using Java with Caché eXTreme 43

Quick Reference for eXTreme Classes

Processing Query Data

execute()

EventQuery<>.execute() executes the SQL query associated with this EventQuery<>. If the query is successful,
this EventQuery<> will contain a resultset that can be accessed by other EventQuery<> or EventQuerylterator<>
methods.

voi d execute()

see also:

Creating and Executing a Query

getAll()
EventQuery<>.getAll() returns objects of target class E from all rows in the resultset as a single list.

java.util.List<E> getAll ()

Uses getNext() to get all target class E objects in the resultset, and returns them in a List. The list cannot be used
for updating or deleting (although Event methods updateObject() and deleteObject() can be used if you have
some way of obtaining the Id or IdKey of each object). getAll() and getNext() cannot access the same resultset
— once either method has been called, the other method cannot be used until execute() is called again.

see also:

Processing Query Data, Event.updateObject(), Event.deleteObject()

getFetchLevel()
EventQuery<>.getFetchL evel() returns the current fetch level (see “Defining the Fetch Level”).

int getFetchLevel ()

getlterator()

EventQuery<>.getlterator () returns an EventQuerylterator<> that can be used to iterate over query results (see
“Using EventQuerylterator<>").

Event Querylterator<E> getlterator()

getNext()

EventQuery<>.getNext() returns an object of target class E from the resultset. It returns the first item in the
resultset if the argument is nul | , or takes the object returned by the previous call to getNext() as an argument
and returns the next item in the resultset. Returns nul | if there are no more items in the resultset.

E get Next (E obj)

parameter:

» obj — the object returned by the previous call to getNext() (or nul | to return the first item in the resultset).

see also:

Processing Query Data

setFetchLevel()

EventQuery<>.setFetchL evel () controls the amount of data returned by setting a fetch level (see *Defining the
Fetch Level”).

44 Using Java with Caché eXTreme

XEP Quick Reference

For example, by setting the fetch level to Event . FETCH_LEVEL_DATATYPES_ONLY, objects returned by this
query will only have their datatype fields set, and any object type, array, or collection fields will not get populated.
Using this option can dramatically improve query performance.

voi d set FetchLevel (int |evel)

parameter:

» | evel — fetch level constant (defined in the Event class).

Supported fetch levels are:

 Event.FETCH LEVEL_ALL —default, all fields populated

* Event.FETCH_LEVEL_DATATYPES_ONLY —only datatype fields filled in

* Event.FETCH _LEVEL_NO ARRAY_TYPES —all arrays will be skipped

e Event.FETCH LEVEL_NO OBJECT_TYPES —all object types will be skipped
e Event.FETCH LEVEL_NO COLLECTI ONS —all collections will be skipped

setParameter()
EventQuery<>.setParameter () binds a parameter for the SQL query associated with this EventQuery<>.

voi d set Paraneter(int index, java.lang.Object value)

parameters:
* i ndex — the index of this parameter within the query statement.

e val ue — the value to be used for this query.

see also:

Creating and Executing a Query

updateCurrent()
EventQuery<>.updateCurrent() updates the event most recently fetched by getNext().

voi d updat eCurrent (E obj)

parameter:

* obj — the Java object that will replace the current event.

see also:

Processing Query Data

3.1.6 Class EventQuerylterator<>

Class com.intersys.xep.EventQuerylterator<> is an alternative way of retrieving, updating and deleting XEP events (the
same task can be also achieved by direct use of EventQuery<> methods).

hasNext()
EventQuerylterator<>.hasNext() returns t r ue if the query resultset has more items.

bool ean hasNext ()

Using Java with Caché eXTreme 45

Quick Reference for eXTreme Classes

next()
EventQuerylterator<>.next() fetches the next event in the query resultset.

E next ()

remove()
EventQuerylterator<>.remove() deletes the last event fetched by next().

voi d renove()

set()
EventQuerylterator<>.set() replaces the last event fetched by next().

voi d set (E obj)

parameter:

* obj — an object of the target class that will replace the last event fetched by next(). .

3.1.7 Interface InterfaceResolver

By default, fields declared as interfaces are ignored during schema generation. To change this behavior, an implementation
of InterfaceResolver can be passed to the importSchema() method, providing it with information that allows it to replace
an interface type with the correct concrete type.

getimplementationClass()

InterfaceResolver.getl mplementationClass() returns the actual type of a field declared as an interface. See
“Implementing an InterfaceResolver” for details.

A ass<?> getlnplenentati ond ass (d ass decl aringd ass, String fiel dNane, O ass<?> interfaced ass)

parameters:
» decl ari ngd ass — class where fieldName is declared as interfaceClass.
» fiel dName — name of the field in declaringClass that has been declared as an interface.

 interfaced ass — the interface to be resolved.

3.1.8 Class XEPException

Class com.intersys.xep.XEPException implements the exception thrown by most methods of Event, EventPersister, and
EventQuery<>. This class inherits from java.lang.RuntimeException.

Constructors
XEPException (String nessage)
XEPException (Throwabl e x, String nessage)
XEPException (Throwabl e x)

46 Using Java with Caché eXTreme

	Table of Contents
	About This Book
	1 Introduction
	1.1 Overview
	1.2 Installation and Configuration
	1.2.1 Requirements
	1.2.2 Installation
	1.2.3 Required Environment Variables
	1.2.4 Required Files
	1.2.5 Configuration for Windows
	1.2.6 Configuration for UNIX® and Related Operating Systems
	1.2.7 Configuration for Mac OS X

	1.3 eXTreme Sample Applications
	1.3.1 XEP Samples

	2 Using XEP Event Persistence
	2.1 Introduction to Event Persistence
	2.1.1 Simple Applications to Store and Query Persistent Events

	2.2 Creating and Connecting an EventPersister
	2.3 Importing a Schema
	2.4 Storing and Modifying Events
	2.4.1 Creating and Storing Events
	2.4.2 Accessing Stored Events
	2.4.3 Controlling Index Updating

	2.5 Using Queries
	2.5.1 Creating and Executing a Query
	2.5.2 Processing Query Data
	2.5.3 Defining the Fetch Level

	2.6 Calling Caché Methods from XEP
	2.7 Schema Customization and Mapping
	2.7.1 Schema Import Models
	2.7.2 Using Annotations
	2.7.3 Using IdKeys
	2.7.4 Implementing an InterfaceResolver
	2.7.5 Schema Mapping Rules

	3 Quick Reference for eXTreme Classes
	3.1 XEP Quick Reference
	3.1.1 List of XEP Methods
	3.1.2 Class PersisterFactory
	3.1.3 Class EventPersister
	3.1.4 Class Event
	3.1.5 Class EventQuery<>
	3.1.6 Class EventQueryIterator<>
	3.1.7 Interface InterfaceResolver
	3.1.8 Class XEPException

