InterSystems:

Caché

Using Zen Reports

\ersion 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Zen Reports

Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
Zen Reports AriDULE DAta TYPES ...c.eovevirieeirieierieiesie sttt 1
L1 INtrodUCING ZEN REPOITS ..cviiiiiiitereeteseete ettt sttt st e be e bbb se st et st e e e b e e ebeseebenea 3
1.1 Background REAUINGcvevevereeeresestesiestesiesestestesesseseeseesessessessesseseessesteseessesseseessessesensessessenses 4
) (T = (=Y 1o A V(04 - | SRS 5
2 Gathering Zen REPOM Dalacoeiuirerieieeieeeeeeeee ettt sttt st sbe b sae e 11
2.1 XData RepOrtDEFINITIONcciiiiiiirie et b e e 12
2.2 The %oVal Variableooi ittt ae e 15
2.2.1 Where %Val iS SUPPOITEAcueiveiiiiiiiieiiieeie et 276
2.2.2 Multidimensional Values of Y0Valooeviiiiinns s 276

2.3 <IEPOIT> AN SYFOUPS ovveieeeriiteieesiesie e seestesaeseeseeseeseeseesessesseasessessessesaestesaessessessessensesensesssasenses 17
2.3.1 <report> and <group> ALLIDULEScceriririie e e 17
2.3.2 Building the <report> or <group> QUETYccccureruiruirierieieeieiees e 20
2.3.3 Break On Field OF EXPIeSSIONccocirieririeeirieinieiesieiesieesi e seens 25
2.3.4 INESLEA GIOUDS ...vvevireetirietisteiesteie sttt ettt ettt sttt bbb bbb bt na e neens 28
2.3.5 SIDIING GrOUPS ..ocvviieieiciesie sttt ettt besbeseesae e e snenseneeeeneenens 29
2.3.6 Conditionally Generated GrOUPScoeveeereeeeesiesesiesessestesseseeseessesessessssesessessessenes 276

2.4 NVAlUE NOUES ...ttt b et nn et r bt an s an e an e n e ene e 31
2.4.1 Handling WHItE SPACEcviuieiirieiieiieiese sttt 276
2.4.2 Value NOAe ALIDULES ..ooviiiiiirieieie e sne 32
B - 11 0 1= o 35
2.4.4 <ALIMDULES ..o 38
I 10 0T L >SS 40

2.5 DATASOURGCE ...ttt bbbt bbbt bbb bbbt 46
2.6 InCluding an XML Data SOUICEcccceiireriiriinienie ettt sbe b bbb e e 47
2.6.1 Writing XML Statements From a Class Methodc.ccoeorriniiniiiiseseeees 47
2.6.2 KCAIIS ottt et 48
2.6.3 <CAIIBIEMENTS ..ot 51
2.6.4 SINCIUAES ..ot 53
2.6.5 SMACTOUETS ..o et 54
2.6.6 SOBE> .ottt bttt e bt e e bR b e b e e R bRt e bt bt e b ne e b e nre e 55

2.7 Generating a Report from a Class QUENYcovcuireireiiieiieeeie ettt 55
2.8 Restructuring the ReportDefinition XMLccoiiiiiniiiiineeeese s 57
2.9 Gathering Data in the ReportDisplay BIOCKccccoeieriiieinisiesese e 57
3 Formatting Zen REPOIt PAQEScccivviirieieiiriesieneeieeeee ettt s a e e e e e e e eneesessesnesrenseses 59
3.1 XData REPOIDISPIAY ...ccveiueitirtiriiitinieite sttt bbbttt ebe e 60
3.2 Finding Data with XPath EXPrESSIONScc.civeirieireie sttt 60
3.3 THE T ALIDULE et ettt ettt be bbb eas 64
3.4 DIMENSION QN0 SIZE ...vvvieeieiesie ettt sttt te st st esteste st e e seeaeee e e e eneeseaneens 64
3.5 International NUMDEr FOMMALScvoviviririirsrereiresereee s 65
3.6 Default FOrmat and SEYIEcoi i 65
3.7 Pagination @and LAYOULccceiiiieiieiesiieieste et se et s st te st e ste e s e s teensesneensesneensesneeneas 65
3.7.1 The <document> element and Page LayOuULccccceeiririeniiinenenese e 65
3.7.2 Conditional Page Margins and REJIONSecureiriiriiiniiisesees s 72
3.7.3 Resetting the Page Count for Each Element of @ Groupcocvvevvvveinvnneneiereeee 74
3.7.4 Multiple DiSplay LAYOULSccviviieireseesesieseesiesie e seesseres e e sresse e e sse e sse e seessenseneens 75

Using Zen Reports

3.7.5 Keeping Display Components TOGELNErvccviiveiiiiee e 77

3.7.6 Conditionally Including @ Group’s EIBMENtSccooeiiririeniiiiie e 78
377 WITING MOE ..ottt bbb et eb e 80

3.8 Supported Fonts for COMPIEX SCIIPLSveviveiierieieriee ettt 80
BLBLL ATADIC 1ottt bbbttt 276
3.8.2 DEVANAGANT «vevververeerreresiestesrestestestestestessessessessesseseeseessasessessessessessessessessessessensessessessesennes 276

3.9 Conditional Expressions for Displaying EIEMENTScccevviieevieiii i 82
3.0, L ITEXPIESSION ..ttt sttt b et b e eb e b bbb et sbe b e e e e e e e eneeseeneenea 83
3L9.2 TEXPALIN et bbbt 83
3.9.3 INCIUAECOITEXPIESSIONoeviiiiiiiitiieteiete ettt 84
3.9.4 InCludeColUNIESSEXPIESSION ...eveiereerriieieiesierieeeseesestessesresae e sresseseeseensesseseensessesessenns 84
3.9.5 INCIUAECOIHTXPALNvieiiiece bbb 84
3.9.6 INClUdECOIUNIESSXPALN ...t 84
3.0.7 UNIESSEXPIESSION ..veeiiuiatirieite st s et st see st e ettt e b b e s be b e sbesbesbesb et e b et e b eseeneeneebeneas 85
3.10 Conditional Expressions for Displaying ValUEScccccoereirieneiineiencseeseeseese e 85
T I (0o S 86
BLL2 NS ottt et bbb R bbbttt 88
BLLB KXSIE> ittt bR bbbt b et ettt nrere e 89
3.13.1 <XSIt> and itS ALLFIDULESeoueeeiciieeiceer e s e 89
3.13.2 XData BIOCKS TOF SXSIT>uoieiiiiiiiiicee et e 90
3.13.3 Setting XSLT Global Variables With <XSIt>ccccooiiiiiiiinieeee e 91

BT Yo 1 o] 1 P 92
315 SPAGEMASTIEI™ ...uiiiiieeeiieiee st etee st e et e e st e et e sae e te s e e stesreesaeeseesteenteateenteeseenteeneenreeneenreeneenreeneas 92
3.16 <MASTEITETEIENCEScveiiiiiei ettt b e bt bbb bt sn et e n e ns 92
317 AOCUMENES ..ttt ettt b bbbt bt b sb e sb e b e b et et et e s b e ne e 92
BLL7.1 KCIASS™ et bbbttt bbb bbb bbb e bt e e 99
3.17.2 KCSSINCIUAES ...t et ettt ettt sb e bt sbe e 101
3.17.3 XSHNCIUAE™S ...ttt sttt s e s e e eneerenne e 101
BTN o o [T g ot To [S 102
BTN I 0T T =) {00 (=T SR 103
3.20 <PAgESTArtSIAEDAISiiieiiciecie ettt r e ra et e e nnes 104
3.21 <PageeNUSIABDAISoviiiiii et b bbb e 104
3.22 KDOAY> bbb ettt n e r et be bbb b e ee 105
KT o | | T 107
B.22.2 SEO> it ettt ettt 110
3.22.3 KFODIOCKS ..o bbb 110
B.22.4 KNIMID Lottt et ettt st sttt nre e 111
BL22.5 QUITIEES . ettt b e bt bbb b bbbt et ne b e 111

A Displaying Zen REPOIT DELAcceeeieiiirieriereeeiereeeerese sttt se e e e e e esesse s sbesbesaeseensenes 113
4.1 Report Display ALIIDULEScociiiiieeiieieesie ettt e eb e e sbe e 114
4.2 Conditionally Applying CSS StYIES ...ccuiiviicieeeeeeees e 116
4.3 KDAICOUES ..ottt ettt sttt bbbt e b et e be et ne et e 117
S o L0010 [T 0] 1SS 118
I o] (o1 OOV PR PR 119
4.6 <DIAIOVEITIAES ...o.viiiiesieie ettt ettt ettt sttt b et et e et et eneeneeneas 119
BT KOT> ettt ettt ettt be e beehe et e ebe e beeateebeeneeebeeeesteeren 121
4.8 SCONTAINEI™ ..ottt ettt b bbbt b e bt e bbbt s e bbbttt b et ebentens 121
4.9 KAIV> ot E e bR bbb bRt b et bbb 123
L0 | (00 o USRS OPRTSRI 125
4.11 <header> and <FOOLEI™>coiiiiiiieie e e et sbe e 127

Using Zen Reports

.12 SUMG> eoeeevevveeeeeeeeeeeeeseseseeeseeese e esssesss s e s s e e s s e s ee e s s st eeeen e eeeseseees 128

A.13 KINTINES oottt b bttt b e bt bt s bt s b e b e sb e b et e b e e et ebeabeaneebe s 129
4.14 <INKINECONTAINEI™itiieiieieeie ettt sttt sttt sttt e e et et e s e e s e e st ebesbesaesbesbeseesnens 130
ST |] DS PS 131
A.15.1 FIEIA oo 136
7 0T - | SRS 136
4.15.3 SUPPIESSDUPIICALESoveeeiieiieiieiieieeiee sttt ettt sb e s 137
4.15.4 Page Numbering in Multi-SeCtion REPOISccueiververieiieieiieierereee e 137
418 SHNE> .ottt bbbkt b b e bbbk b et e bkt bbbt bbbt s 137
O 101 SRR 138
418 KEISE> et 139
419 KP> et R et R s 140
4.20 <PAGEIIEAKS ...t bbb bbb et ene 141
4.21 <SMAl-MUITIPIES ..o ettt sb e sbe 142
4,22 EBDIE> Lot b et bbbttt b bt 144
4.22.1 The orderby Attribute in ReportDISPIAYcooveriiiniiniieeree e 149
4.22.2 Centering a <table> for PDF OULIPULccevviieierececeese e 150
4.22.3 Displaying Elements in @ <table> ... 150
4.22.4 KCAPLION ...ttt b e sb bbb b bbb e e et a b e bt bt b e bbb b e 153
4.22.5 SSUMIMAIY™ ..oiitiiiiiiti ettt ettt te e te e e s bt ebeesbeesbesbees b e ebees b e sbeeabeaaeebesaeenbesneesbesseesbessnens 154
4.22.6 Using Complex Headers for a <table> ... 156
4.22.7 Embedding a <table> within a <table> ... 157
4.22.8 Zen Reports Cross Tab Tablescccvveeieieicieese e e 276
4.22.9 Creating Type 2 Cross Tab Tablesccccoveveieieieniecccese e 157
4.22.10 Creating Type 1 Cross Tab TabIESc.coveiiiieieiiieieee s 164
4.22.11 Creating Tables with a Callback Methodccooeiiiiiiniii e, 171
4.22.12 Creating Tables From Class QUETIESceovieriieriiirieinieieriee e 172
4.22.13 Creating Tables With SQL ..ot 172
4.22.14 Creating Tables with onCreateReSUILSELcoveveveirieie e 173
4.23 <UMEIINES ..ot es 173
5BUIldiNg Zen REPOIT CIASSESoouiiiiieiiiie ettt e srennas 177
5.1 Controlling Zen Reports With Parameterscoocoeieieinineic e 177
5.1.1 ClaSS PalQMELEISccuiiiirierierieriesieieieieeie ettt be et se et st e s eseesesseebestesbesbeseenes 177
5.1.2 SQL QUETY PAraMELEIScceiieeeeeiieesiesieesesiee e siee e etee e ste e sneeeesaeeseesseeseesseeseesseens 276
5.1.3 Data TYPE PAraMELEISccivieerieeiereeiesteeiesteeseeseeste e seesee e s see e eneestaessesseeneesneensesnes 276
5.1.4 XSLT StyleSheet PArametersScccecervereeeeienieeeseseseseseseessesseseeseessessesessesssssessessens 276
5.1.5 URI QUENY PAr@MELEIS ...iiuviiiiiiiiiiieesiiteieesieessieesieesbeesiaesseestnestesssessnbaessesssnesssnssssesnes 276

5.2 Using Runtime EXPressions in Zen REPOISccoiiiriierereriesiesie e 179
5.3 LOCAIIZING ZEN REPOISovivieiiiitiiiiteieteet ettt bttt 180
5.3.1 Adding Entries to the Message DICLIONAIYccoeereiereiineienese e 276
5.3.2 Localization for EXCel QULPULeieieiercerereeeeeee et eneas 276

5.4 Organizing Zen Reports t0 REUSE COUEccvivierieieiieieciees e se s ste e eresneenens 182
5.5 Using Zen Report COMPOSITESeieriiririirieiieieie ettt sre b st b sr et eneas 183
5.5.1 Creating a Composite t0 DefiNe SYIEccooiiiiiiiie s 183
5.5.2 Creating a Composite t0 Defing LaYOULccveiririiinieirieirieesieeseeeseeesee s 185
5.5.3 Referencing a Composite from a Zen REPOItccooerrireerineneieneesee e 186

5.6 Using Zen Report TEMPIALEScvcviviiriiesere ettt st sre e enens 188
5.6.1 Creating a Zen Report TEMPIALEccvcvvieiiiisiere e 189
5.6.2 Referencing a Zen Report TEMPIALEcooviiriiiniie i 189

5.7 Supplying XSLT Templates t0 Zen REPOISccerueruerierierieiieieeieeeeeie st 190

Using Zen Reports

5.7.1 Calling XSLT Templates to APPlY SEYIESc.ooeiiiiiiii e 191

5.7.2 Calling XSLT Templates While Rendering [temscccoceiiiiiiiniiininne e 192

5.8 Conditionally Executing Methods in Zen REPOITSccceerieernineineesee et 193
5.9 Executing Code Before or After Report GENErationcccoceveenireninensense e 194
6 RUNNING ZEN REPOIS ...eiviieeeeeeieereee s st sttt ae e e se e e e e e e saessessessesrestesaeseesseseseesennsenes 197
6.1 Invoking Zen Reports from a Web BrOWSETcccvieierierieiieecesiese s sie e e s ssesaeeenens 197
6.1.1 URI Query Parameters fOor Zen REPOIScoevveieieierieineresie st 198
6.1.2 Setting Zen Report Class Properties from the URI ..o, 200

6.2 Invoking Zen Reports from Zen PAJESceriierieineinieesee sttt 201
6.3 Environment Variables for Memory Configuration ... 201
6.4 Configuring Zen Reports for PDF OQULPULccevviree et 202
6.4.1 Using the Built-in PDF Rendering ENQINEccovvivieieiiieie e e e e s se e 202
6.4.2 Using Other ReNdering ENQINEScccveiiiieieeieceee et esre e sre e sre e ste e seeannens 203
6.4.3 Splitting and Merging PDF OULPULcoviiirieirieenieesieesiee s 204
6.4.4 The HOtJIVM RENUEE SEIVETcuviuiiiieiiieiie ettt 205
TSR I T o] T A T-T T S 209

6.5 Configuring Zen Reports for Excel Spreadsheet OULPULc.covevevvierievnninresene e 211
6.5.1 Including Data in the SPreadShEetcccviveiericriceiec e 276
6.5.2 Numbers, Dates ant AQQIrEgatesceiviveererieerieeiesieeieeseeeesree e sreesresreessesneesreseeseens 213
6.5.3 MUILI-SNEEE REPOITSveviiieitiitiiie ittt bbb et sbe st e e sne 217
6.5.4 Generating Excel Spread Sheets from Arbitrary XMLcccooiiiniinniniincneens 220
6.5.5 THE EXCEI SEIVEF ...e.eiiiiiiesie ettt st sttt ese e enestessesneseeseeneens 222

6.6 Invoking Zen Reports from the Command LiNeccccovvvrieiieniininninene e s seesee s 224
6.6.1 The GenerateReport Methodcccvieieiiiieieiccs e enea 224
6.6.2 The GenerateTOFile MEthodccocoviiiiiieice e 226
6.6.3 The GenerateReportToStream Method ..o 226
6.6.4 Zen Report Class PrOPEITIEScoeereirieirieeriee ettt 226

6.7 Exposing Zen Report Data as a WED SEIVICE ..o 227
7 Using Callback ChartSin Zen REPOIScceieveeieierecererese et sie e s ae e e e e e e e ssesnesseens 229
7.1 Zen Reports Chart PrOPEITIESviviiiiieiesicieieie e se et te e s se e e sa e te e snesreseesnens 229
7.2 Zen Reports Charts Callback Methods ..o 231
7.3 Providing Data for Zen RepOrt Chartscocoereernenieeniee et 232
7.3.1 Getting Data from SQL ...c.coeiiiiieiese et 276
7.3.2 Getting Data from XML ..ot e 234

T4 XMITIIE Lottt sttt bbbttt 235
8 Using XPath ChartSin Zen REPOITSc..ccccceeireresesie e e e seeae e seeeees e s e sre e sse e sresseseessensenes 237
8.1 XPath Chart Attributes iN Z&N REPOITSc..ceeeiiiiiriiieiienie sttt 237
8.2 Providing Data for Zen Report XPath Chartscccveireiineieneieneesecse e 238
8.3 Chart AXES IN ZEN REPOISoveuiieeieiieiiiteisie sttt b ettt 240
8.4 dataGroup and SEMESGIOUDcviveirierieteriete ettt ettt sttt sttt ettt et sb e 243
8.4.1 <lineChart> USING dataGIOUDveiverreriereeriiiesieseeiereeese e e sesre e sreseesresseseeseeneeneesesneenens 276
8.4.2 <lineChart> USING SEIESGIOUP ...veivivirerierieriiieiereeseeesestesresresresse e ssessesseseeseesessessenns 276
8.4.3 <barChart> USiNG datAGIOUPcecceririeririirie ettt bbb e 276
8.4.4 <barChart> USING SEIESGIOUPcvueiuirieriereeriiniereereeeeee et siesiesbesbeseeseesbesbeseeseeneesee e e 276

8.5 Examples of Zen Report XPath Chartsc.cccooeireiieieniee e 248
8.5.1 Bar Chart With ONe Data SEIEScceeeiereiieierieieieese e sesee e see e seesie e seeeeseesesneesens 249
8.5.2 Line Chart with Multiple Data POINEScc.coeieeieisieie e 250
8.5.3 Pivoted Bar Chart with Multiple Data POINScccovviiineiencieieeecesese e 252
8.5.4 Pie Chart With ONe Data SEIIEScceierireriiiinere st 253

vi

Using Zen Reports

8.5.5 Bar Chart With TWO Data SEIIEScvieiiieiiiiieie ettt s sbee e s srree e 255

9 Troubleshooting ZEeN REPOITScuiiieiirieirieerie e 257
9.1 Changing CharaCter SBLSceiririruiriririeterieierie ettt bttt 257

9.2 Displaying XHTML with URI QUErY Parametersccoeoereereiereieneenieesie e 257

9.3 Solving PDF Generation ProbIEMScccevveieiriiese s 258

9.4 Viewing INtermediate FilESccviveiicieieeer sttt eneas 260
9.4.1 Adding Saxon Messages t0 LOg FIlEScccveiiieiiieeie et 260

9.4.2 Logging Messages from the XSL-FO ParSErccccocireiereieneienerisenesesesre e 260

9.4.3 Changing Output Mode to View Intermediate Filesccocoireiiiiinnineinceieines 261

9.4.4 Preserving Intermediate Files for Later VIEWINGccocooereiininniennieneieneeseesieeas 262

9.4.5 Setting a File Name for Intermediate and Final Filesccccocvivviiviniennicrciesecnennns 263

9.4.6 Saving the Intermediate XSLT Transformation Filecccccovviviiiincieicccicieieeens 264

9.5 Debugging XHTML Seen in the BrOWSETc.cccvevueieeiieiee e seesie e ste e ste e e eneesneeseesnneseeas 265

9.6 Troubleshooting the <call> eleMEeNt ..o 266
Appendix A: Zen Report Class Par@mELErS ..o e 267
A.1 Class Parameters for GENEIral USEccccevuerieieeeieieise sttt sre e 267

A.2 Class Parameters for XSLT StyleShEetsc.ccvvivviviivrieiinsinere e 275
Appendix B: Default Format and SEYIEcececeierecese e s 279
B.1 Default CSS Styles for Zen Reports in HTML FOrMatccocvveiininenenieneseseecieeecens 280

B.2 Default XSL-FO Styles for Zen Reports in PDF FOrMatcoccoveininnenseneeneesee e 281
Appendix C: Using an Alternative Ver Sion of SAXO0Nccceoeererinenienesesese e sessesesese e 285
Appendix D: Generated XSL-FO and HTML ..o 287
Appendix E: Configuring for TIFF GeNneration ... 289

Using Zen Reports vii

List of Figures

Figure 1-1: Overview of RepOrt GENEIALIONccccerieerieiirieiesie ettt 3
Figure 1-2: Zen Report Data INPUE OPLIONScvirieiiiieiiieisieese et 4
Figure 1-3: Zen Report Output FOrmMat OPLIONScccoeiiiiiierieienesie et 4
Figure 2-1: XData ReportDefinition Statements and the Resulting XML OUtpUtccccvveviivrivrnnnnns 14
1o U C Rl =T oo | 011U | 30
FIgUIe 2—3: REPOI OULPUL ..ottt bbb st ettt ettt ebe b bbb b e 31
FIGUIE 247 XIML OULPUL ...ttt sttt bbb b e bbb et e et e bt e bt et e sbeebesbesbesbe b ee 42
Figure 2-5: Main Report and Subreport Names in XIMLccccoviereinneneienee e 49
Figure 2-6: Main Report and Subreport Names in ReportDiSplaycccoeererrennennensenee e 50
Figure 3-1: XPath Expressions that Select Nodes in XIMLc.ccvivviviinrnrininiene e sese e seenees 61
Figure 3-2: XPath Expressions Implicit in XData ReportDisplay SyntaXcccceeveivrienivninsieseseneens 62
Figure 3—3: XSL-FO Page Layout in Portrait MOUEcccvevveiieiiiiere e 68
Figure 3—4: XSL-FO Page Layout in LandSCape MOTEcccurreereireineinecseesie e 69
Figure 3-5: <document> Attributes for Page Layout in Portrait Modec.cccoeereinienneniensees 70
Figure 3—6: EXaMpPle PAge LAYOULcoiviiriiirieiiecrieere ettt 72
Figure 3—7: MainReport and SUDIEPOINAIMEcccvvvieirereriesiesese et eeee e ere s e see et seeseeneenees 109
Figure 4-1: Simple Line Item Table Showing All Data Fieldscc.ccccviviieiinieneierceese e 165
Figure 4—2: Cross Tab Table WithOUt BOFUEISccveiuiiieiiciese e 165
Figure 4-3: Sample XData ReportDefinition for a Cross Tab Tableccccccveineiniineniennee, 166
Figure 4-4: Sample XData ReportDisplay for a Cross Tab Table ... 167
Figure 4-5: Cross Tab Table with Borders Showing Internal Structureccocoevevvveeennncennen, 168
Figure 4-6: Generated XData ReportDefinition for a Cross Tab Tablecccccevvevivieiivecvcinniesesnceea 170
Figure 4-7: Generated XData ReportDisplay for a Cross Tab Tablecccccoovviviievincieveieciciesieenns 171
Figure 5-1: Composite Class for Zen Report StYIe ... 184
Figure 5-2: Composite Class for Zen Report DiSPlaycccveirriiriininineseseree s 185
Figure 5-3: XData ReportDisplay with References to COMPOSItESccoeireirrireiineseeeeiens 187
Figure 7—1: Callback Bar Chart ..ot 233
Figure V=1: DOWNI0AA the JAL ...c.eceiicece sttt st e e e e ene s 290

viii Using Zen Reports

List of Tables

Table 4-1: Report Display AIDULESc.oiiiiiiie e e 114
Table 5-1: Callback Methods in Zen Report CIASSEScoeereirieireirereesee e 195
Table 6-1: URI Query Parameters for Zen REPOIScccvreirieiereieieenesesie e 198
Table 8-1: Data Source Attributes for Zen Report Chartsccocvevvivrivvievinerescreresese e 239

Using Zen Reports

About This Book

Zen provides an extensible framework called Zen reports for generating reports based on data stored in Caché. This book
explains how to use Zen reports. It contains the following chapters:

“Introducing Zen Reports™ provides an overview of Zen reports, a list of background reading, and a tutorial.
“Gathering Zen Report Data” shows how to specify the data contents of a report.

“Formatting Zen Report Pages” describes how to set up basic page characteristics.

“Displaying Zen Report Data” explains how to position and style individual data items on the page.
“Building Zen Report Classes” explores Zen report class internal structure and organization.

“Running Zen Reports™ explains how to view or print a report from a browser or command line.

“Using Callback Charts in Zen Reports™ describes how to add charts to reports.

*“Using XPath Charts in Zen Reports™ describes an older approach to creating charts.

“Troubleshooting Zen Reports” shows how to diagnose and solve common problems.

With these appendices:

“Zen Report Class Parameters™ lists the parameters you can change to customize report behavior.
“Default Format and Style” outlines default style settings for HTML and PDF output.

“Using an Alternative Version of Saxon” describes how to use a version of Saxon other than the Saxon9he JAR file
that is installed with Zen reports.

“Generated XSL-FO and HTML” summarizes the XSL-FO and HTML generated by Zen reports elements.

“Configuring for TIFF Generation™ describes Java installation to enable TIFF generation..

There is also a detailed table of contents.

The following books provide related information:

Using Zen provides the conceptual foundation for developing Web applications using Zen.
Using Zen Components details each of the built-in Zen components for Web application development.

Developing Zen Applications explores Web application programming issues and explains how to extend the Zen
component library with custom code and client-side components.

For general information, see Using InterSystems Documentation.

Zen Reports Attribute Data Types

Many attributes of Zen objects have one of the following underlying data types:

%ZEN.Datatype.boolean which can have the value "true™ or "false”, or 1 or 0 in XData Contents, and 1 or 0 (but not
"true" or "false") in ObjectScript methods.

Using Zen Reports

About This Book

* %ZEN.Datatype.caption which makes it easy to localize text into other languages, as long as a language DOMAIN
parameter is defined in the Zen page class. The %ZEN.Datatype.caption data type also enables you to use $$$Text
macros when you assign values to the property from client-side or server-side code.

2 Using Zen Reports

Introducing Zen Reports

To generate a Zen report, you start by creating a Zen report class, which performs two main functions:

e Gather data to be presented by the report.

» Define how the data is formatted and displayed in the report.

Many Zen reports perform these functions with two XML sections in the Zen report class, an XData ReportDefinition block
and an XData ReportDefinition block. The ReportDefinition takes data, often from a Caché database, and creates an XML

document. The XData ReportDisplay, creates an XSLT stylesheet which is applied to the XML provided by the ReportDef-
inition to transform it into an appropriate output format. The following figure shows an overview of this process:

Figure 1-1: Overview of Report Generation

XData i
ReportDefinition DATA (from Caché)
l XSLT XData
XTL stylesheet ReportDisplay
Report Output

The primary goal of Zen reports is to enable you to create reports based on data in a Caché database. To increase flexibility
and power, Zen reports can also incorporate data from other sources. The XML generated by the ReportDefinition must
have a structure suitable for processing by the XSLT stylesheet generated by the ReportDisplay. If the ReportDefinition
block does not provide XML in the correct format, you can invoke an additional step and use an XML stylesheet to perform
additional transformations prior to generating the report output. The following illustration summarizes the possible data
sources, and shows the optional use of an XML stylesheet.

Using Zen Reports 3

Introducing Zen Reports

Figure 1-2: Zen Report Data Input Options

<report sql="query"> '—\\

<group sql="guery">
<report call="class method">
<group call="class method">
<call> XData
ReportDefinition

<callelement>

<include> —— |

<macrodef> xmistylesheet
<get> —— | i

class query —// XML

You can generate Zen reports without using a ReportDefinition block. The application parameter DATASOURCE provides
an XML document that contains the data for the Zen report. The report parameter xmlstream specifies a stream object that
provides the XML data source. It is discussed in the section “Zen Report Class Properties.”

The primary output formats for Zen reports are Excel, PDF, and HTML. Output in TIFF format is also possible.

The ReportDisplay block generates a different XSLT stylesheet depending on the output format you have selected. The
stylesheet is applied to the XML produced by the ReportDisplay to generate the report. Note that in the case of PDF output,
the XSLT stylesheet creates an XSL-FO document which is used by the PDF rendering engine to create the final PDF
output.

Figure 1-3: Zen Report Output Format Options

XData
ReportDisplay

/ \

to Excel to xslfo to HTML

/ | \

| XML |

/ \

Excel XSL-FO HTML

PDF

Rendering Engine

The XData ReportDisplay block is relevant to production of reports in Excel format only when the XML from the Report-
Definition needs to be transformed into the specific structure required for Excel output. Production of Excel spreadsheets
is discussed in the section “Configuring Zen Reports for Excel Spreadsheet Output.”

The Caché installation provides a version of Apache FOP as a PDF rendering engine. You can also use the XEP PDF ren-
dering engine from RenderX, or download and install FOP from Apache.

1.1 Background Reading

Before using Zen reports, you need a good understanding of the following topics:

4 Using Zen Reports

Zen Report Tutorial

HyperText Markup Language (HTML), eXtensible Markup Language (XML), XPath syntax, and Cascading Style
Sheets (CSS). Many excellent books are available through the Internet and commercial bookstores.

Caché, ObjectScript, Caché Server Pages, and Caché SQL. Depending on your level of experience, you might want
to review the following books from the InterSystems documentation set:

— Using Caché Objects

— Using Caché ObjectScript

— Using Caché Server Pages (CSP)
— Using Caché SQL

1.2 Zen Report Tutorial

A Zen report is a class that extends %ZEN.Report.reportPage, which in turn extends the base class for Caché Server Pages,
%CSP.Page. This topic explores the structure of a Zen report class by building it in gradual steps.

If you have a new Caché installation, before you begin this exercise you must first run the ZENDemo home page. Loading
this page silently generates data records for the SAMPLES namespace. You only need to do this once per Caché installation.

Enter the following URI in the browser:

http://localhost:57772/csp/samples/ZENDemo.Home.cls

Where 57772 is the Web server port number that you have assigned to Caché.

Now begin the exercise as follows:

1.

2
3.
4

o

Start Caché Studio.
Choose File > Change Namespace Of F4.

Choose the SAMPLES namespace.

Choose File > New or Ctrl-N or the |14 icon.
Select the zen tab.

Click the New Zen Report icon.

Click oK.

The Zen Report Wizard presents the fields shown in the following table. For this exercise, enter the values shown in
the right-hand column of the table.

Field Meaning Value to Enter
Package Name The package that contains the report | MyApp

class.
Class Name The report class name. ReportDemo

Using Zen Reports

http://localhost:57772/csp/samples/ZENDemo.Home.cls

Introducing Zen Reports

Field Meaning Value to Enter

Application The package and class name of the Associates the Zen report with a Zen
application associated with this report. | application, which provides default values
for built-in class parameters. Values
specified in the report take priority. If
unspecified, the Zen report uses
%ZEN.Report.defaultApplication.

Report Name The logical hame of this report within | MyReport
its application.

Description Any text that you want to use to Sample of building a new report.
describe the report.

Click Next.
8. The wizard prompts you to enter an SQL query to provide data for the report. Type:

SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice ORDER BY SalesRep,Customer

Click Finish.

The New Report Wizard creates and displays a Zen report page class with predefined parameter values and the XML
blocks XData ReportDefinition and XData ReportDisplay.

9. Find the following text in the XData ReportDefinition block. Place the cursor between this comment and the closing
</report> element and click to move the insertion point there:

<!-- add definition of the report here. -->

10. A report consists of one or more nested groupings. Define the first grouping inside the XData ReportDefinition block
by adding the following <group> element at the insertion point, before </report>:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice ORDER BY SalesRep,Customer™™ >
<group name="'SalesRep" breakOnField="SalesRep'>
</group>
</report>

11. &
Choose Build > Compile or Ctrl-F7 or the - = icon.

12.
Choose View >Web Page or the 9 icon. If you have difficulty viewing the Zen report page from Studio, start a browser

session and enter the class name as follows:
http://localhost:57772/csp/samples/MyApp -ReportDemo.cls

Where 57772 is the Web server port number that you have assigned to Caché.

The XML view of your report data displays as follows. It has structure, but no content:

<?xml version="1.0" ?>

<MyReport>
<SalesRep/>
<SalesRep/>
<SalesRep/>
<SalesRep/>
<SalesRep/>
<SalesRep/>

</MyReport>

13. Add an <attribute> element to the <group> within XData ReportDefinition:

6 Using Zen Reports

http://localhost:57772/csp/samples/MyApp.ReportDemo.cls

Zen Report Tutorial

14.

15.

16.

17.

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice ORDER BY SalesRep,Customer' >
<group name="'SalesRep' breakOnField="SalesRep'>
<attribute name="name'" field=""SalesRep" />
</group>
</report>

Compile the class and view the report. The XML output appears as follows. Each <SalesRep> element now includes
an attribute, name, whose value is the SalesRep field returned by the SQL query:

<?xml version="1.0" ?>

<MyReport>
<SalesRep name="Jack'/>
<SalesRep name='"Jen"/>
<SalesRep name="Jill"/>
<SalesRep name="Jim"/>
<SalesRep name=''Joanne'' />
<SalesRep name='"John"/>

</MyReport>

Add an <aggregate> element to the group within XData ReportDefinition:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice ORDER BY SalesRep,Customer' >
<group name="'SalesRep" breakOnField=""SalesRep'>
<attribute name="name" field=""SalesRep" />
<aggregate name="total" type="SUM" field="Num" />
</group>
</report>

Compile the class and view the report. The XML output appears as follows. Each <SalesRep> element now includes
an element called <total>. The value within <total> is the sum of all the Num field values for the corresponding
SalesRep field returned by the SQL query:

<?xml version="1.0" ?>
<ReportDemo>
<SalesRep name='"Jack'>
<total>833</total>
</SalesRep>
<SalesRep name='"Jen">
<total>774</total>
</SalesRep>
<SalesRep name="Jill">
<total>983</total>
</SalesRep>
<SalesRep name="Jim">
<total>826</total>
</SalesRep>
<SalesRep name="Joanne'>
<total>824</total>
</SalesRep>
<SalesRep name='"John'>
<total>825</total>
</SalesRep>
</ReportDemo>

Add more <aggregate>, <element>, and <group> elements within XData ReportDefinition:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice ORDER BY SalesRep,Customer' >
<group name="SalesRep’ breakOnField="SalesRep">
<attribute name="name'" field=""SalesRep" />
<aggregate name="total" type="SUM" field="Num" />
<aggregate name="average' type="AVG" field="Num" />
<aggregate name="‘clients” type="COUNT" field="Customer" />
<group name="SalesTo" breakOnField="Customer" >
<element name="customer' field="Customer" />
<attribute name="date'" field=""SaleDate" />
</group>
</group>
</report>

Using Zen Reports 7

Introducing Zen Reports

18.

19.

20.

21.

22.
23.
24,

Compile the class and view the report. The XML output now displays a much larger data set for each sales person.
The aggregate elements <total>, <clients>, and <average> appear at the end of each <SalesRep> record.

Now that you have structured the report data as XML, you can specify how to display this data.

Find the XData ReportDisplay block, which follows the XData ReportDefinition block. This section contains the fol-
lowing default report definitions structure, which includes several optional elements.

<report xmlns="http://www.intersystems.com/zen/report/display"
name=""MyReport'>
<!-- Optional Init element inserts custom XSLT instructions at
the top level of the generated XSLT stylesheet. -->
<init ></init>
<!-- Optional Document element specifies page layout and style characteristics. -->
<document width="8.5in" height="11in" marginLeft="1_25iIn"
marginRight="1.251n" marginTop="1.0in" marginBottom="1.0in" >
</document>
<I-- Optional Pageheader element. -->
<pageheader ></pageheader>
<!-- Optional Pagefooter element. Does not apply in HTML output. -->
<pagefooter ></pagefooter>

<l-- Required Body element. -->
<body>
<l-- add display definition of the report here. -->
</body>
</report>

In this tutorial, you add code to the <body> element.

Find the following text in the <body> element of the report. Place the cursor between this comment and the closing
</body> tag and click to move the insertion point there:

<l-- add display definition of the report here. -->

At the insertion point, place a <p> that contains text for the title of the report:

<body>
<p>Tutorial Sales Report</p>
</body>

Also add the title attribute to the <report> element to set the title of the browser window:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""MyReport"” title="Tutorial Sales Report'>

</report>

Change the DEFAULTMODE class parameter value from "xml" to "html*".
Compile the class and view the report.

Add a table to XData ReportDisplay as follows:

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""MyReport" title="Tutorial Sales Report'>
<body>
<p>Tutorial Sales Report</p>
<group name="SalesRep" line=""1px">
<table orient="row" width="4in">
<item field="@name" width="2in"">
<caption value="Sales Rep:" width="2in"/>
</item>
<item field="total" formatNumber="##0.00">
<caption value="Total Value of Sales:"/>
</item>
<item field="clients'">
<caption value="Number of Clients:''/>
</item>
</table>
</group>
</body>
</report>

Where:

Using Zen Reports

Zen Report Tutorial

* <group name="SalesRep'> is a reference to the <SalesRep> element in the generated XML.
* <item Ffield="@name'"> is the syntax for referring to the <SalesRep> attribute name.

* <item field=""total"> is the syntax for referring to the <SalesRep> element <total>.

25. Compile the class and view the report.

26. Highlight the heading by formatting it using a predefined style class. Change the <p> element in XData ReportDisplay
as follows:

<p class="bannerl">Tutorial Sales Report</p>
27. Compile the class and view the report.

28. Consider adding the following display modifications within XData ReportDisplay. Some of these changes affect style
and layout; others add data to the display:

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""MyReport" title="Tutorial Sales Report'>
<body>
<p class="bannerl">Tutorial Sales Report</p>
<group name="'SalesRep" line=""1px">
<line pattern="empty'/>
<table orient="row" width="4in">
<item field="@name" width="2in">
<caption value="Sales Rep:" width="2in"/>
</item>
<item field="total" formatNumber="##0.00">
<caption value="Total Value of Sales:"/>
</item>
<item field="average" formatNumber="##0_.00"">
<caption value="Average Individual Sale:'/>
</item>
<item field="clients'">
<caption value="Number of Clients:'/>
</item>
</table>
<line pattern="empty'/>
<table orient="col" group="SalesTo" altcolor="#FFDFDF" width="3.8in">
<item field="customer" >
<caption value="Customers:"/>
</item>
<item field="@date" >
<caption value="Date of Sale:'/>
</item>
</table>
</group>
</body>
</report>

29. Compile the class and view the report.

Using Zen Reports 9

Gathering Zen Report Data

The primary way to gather data for a Zen report is to provide an XData ReportDefinition block in the Zen report class.
XData ReportDefinition specifies the data to acquire from the Caché database and describes how to format this data as
XML. This XML becomes the source data for the Zen report.

The next chapter, “Formatting Zen Report Pages,” describes how to generate the XSLT transformations that render the
XML data for display in HTML or PDF format. This chapter describes how to format the source data as XML so that it
can be input to an XSLT transformation.

Topics include:

XData ReportDefinition

The %val Variable

<report> and <group>

Value Nodes

DATASOURCE

Including an XML Data Source

Generating a Report from a Class Query

Restructuring ReportDefinition XML

Gathering Data in the ReportDisplay Block

The following table lists techniques you can use to generate the XML data source for a Zen report.

Technique

XData
ReportDefinition

DATASOURCE

How to Use It to Generate an XML Data Source

Write an XData ReportDefinition block in a Zen report class.
This generates an XML data source when you run the report.

Provide a value for the DATASOURCE class parameter.
DATASOURCE references an XML file that contains the data
for the Zen report.

If you provide a DATASOURCE value in the Zen report class,
or the equivalent $SDATASOURCE parameter in the URI when
invoking the Zen report from a browser, you can omit the XData
ReportDefinition block from your Zen report class. If you provide
both, the DATASOURCE value takes precedence and Zen
ignores any XData ReportDefinition that you provide.

For More Information

“XData ReportDefinition”
in this chapter

“DATASOURCE" in this
chapter

Using Zen Reports

11

Gathering Zen Report Data

Technique

Full WRITE

Partial WRITE

<call>

<callelement>

<include>

<macrodef>

<get>

Class query

How to Use It to Generate an XML Data Source

Write a class method in the language of your choice that writes
out XML statements that comprise the complete source data
for the report. Reference this method from the XData Report-
Definition block in the Zen report class using the call and
callClass attributes on the top level <report> element.

In this case, your XData ReportDefinition block consists of a
single <report> element that provides call and (optionally)
callClass attributes.

Write a class method in the language of your choice that writes
out a block of XML statements to use at a specific location
within the source data for the report. Reference this method
from the XData ReportDefinition block in the Zen report class
using the call and callClass attributes on a <group> element.

The <call> element calls a method that returns a stream, and
inserts the stream into the report definition at the place where
the call element occurs.

Similar to <call>, but providing awareness of the data context
where it is used.

Bring into the XML data source a block of XML statements that
exists in an XData block. This XData can be in the same Zen
report class or in some other class.

Bring ReportDefinition building-blocks into the ReportDefinition
from an XData block in the same Zen report class or in some
other class.

Bring into the XML data source a block of XML statements that
has been generated by the XData ReportDefinition block in
some other Zen report class.

Generate a complete Zen report, including its XML data source,
by asking the Zen report generator to generate a Zen report
class from an existing ObjectScript class that has a query
defined. The class query contributes to the XData
ReportDefinition block in the generated Zen report class.

For More Information

“Writing XML Statements
From a Class Method” in
this chapter

“Writing XML Statements
From a Class Method” in
this chapter

The “<call>" section in
this chapter

The “<callelement>"
section in this chapter

The “<include>" section
in this chapter

The “<macrodef>"
section in this chapter

The “<get>" section in
this chapter

“Generating a Zen
Report from a Class
Query” in this chapter

Several techniques are also available for gathering data in the ReportDisplay block, see the section “Gathering Data in the
ReportDisplay Block.”

2.1 XData ReportDefinition

An XData ReportDefinition block may contain the following syntax elements:

» <report> defines an SQL query or identifies the SQL result set that contains data for the report.

e <group> elements provides structure and organization for the output XML.

* A <report> or <group> may contain the following *“Value Nodes” in any order or quantity. These elements provide
the data values that appear within the structure specified by <report> and <group> for the output XML.

12

Using Zen Reports

XData ReportDefinition

<aggregate> — Calculates aggregates like sums and averages and outputs the result.
<attribute> — Writes an XML attribute to the output XML.
<element> — Writes an XML element to the output XML.

* A <report> or <group> may contain the following elements in any order or quantity. These elements provide XML
from sources external to the current XData ReportDefinition block.

<call> — Calls a method that returns a stream, and inserts the stream into the report definition at the place where
the element occurs. This capability lets you create a report from separately-developed subreports. Note: <call>
can be used only in a <report>, not in a <group>.

<callelement> — Similar to <call>, but providing awareness of the data context where it is used.

<get> — References the XML statements generated by the XData ReportDefinition block in another Zen report
class.

<include> — References a set of XML statements in an XData block in a Zen report class or in any other class.

In expressions used by these syntax elements, the %val variable represents a field from the current query.

The following figure shows the relationship between elements in the XData ReportDefinition block and the resulting XML
representation of the data. On the left is the ReportDefinition block from zenApp.MyReport in the SAMPLES database. On
the right, is the XML generated by this ReportDefinition. A detailed explanation follows the figure.

Using Zen Reports 13

Gathering Zen Report Data

Figure 2-1: XData ReportDefinition Statements and the Resulting XML Output

XData ReportDelinitaicon
B [XMLMamespace = "http://www.intersystems.com/zen/report/definition”]

{

B<report
xmlns="http://www.intersystems.com/zen/report/definition™
name="'myReport’
sgl="SELECT ILD,Customer,Num,=alesRep,|SaleDate

FROM ZENApp Report.Involce
WHERE (Month (SaleDate) = 7)

OR (7 IS NULL) v<myReport
ORDER BY SalesRep,SaleDate">
<parameter expression='..Month'/>
<parameter exprassion='..Month'/>
<attribute name='runTime'— — o - nTime="2014-05-23 14:25:48"
expression="SZDT($H,3)"' /> runBy="Unknowniser

<attribute name='runBy' author="BOE" month="Jan">
expressicn="'5$UserName' />
<attribute name='author'
expression="..Reportiuthor' />
<attribute name='month'
expression='..GetMonth{)"' />
B<group name='SalesRep'
breakOnField='SalesEep'>
<attribute name='name'

v<5alesfep name="Jack":»

virecord id="514" nunber=™TT>

field='SalesRep' /> <date>2005-01-14</datces

E{qrgup namae="racord™>» <customer>Teralateral Ince.</customer>
<attribute name="id’ \\ o/ zecexd
field='ID" /> v<record id="933" number="I1">

<date>2005=-01-27</date>

<attribute name='"number' - .
N i) foustomer>Incerlateral Group Lotd.</cuscomers
field="Num' /> </ records

<element name="date'
field='sSaleDate’ />

<alement name="customer'
field='Customer" />

<COUNT>2</ Sounty
</group>
g P . o rr_,__ﬂdﬂaafrr#.<3gb::tal>2<;s:b:ctalb
<aggregate name="count

-] N cavgs4</avgs
type="COUNT" flElﬂ.='NUIﬂ-.' ;/,Sal.ﬂge;}
<aggregate name='subtotal'

N p<S5alesBep name="Jen">...</S5alezfep>
type="SUM" field='Num' /> b <SalesRep name="Jill"s,..</SalesRep>

<aggregate name='avg' ——— p<SalesRep name="Jim">...</S5aleaRep>
type="AVG" fisld="Num' /> r<Salesiep nape="Joanne"s,..</Salesiep>
{jgroup} p<SaleaRep name="John">»...</SalesRep>
<aggregate name='grandTotal' ———— <grandTotal>147</grandTotal>
t}rpe="'SUM” field="'"Num' i'r-l:'" < /myReporcs>
</raport>

}

¢ Thetop-level <report>element in XData ReportDefinition has a name attribute with the value myReport. This outputs

a top-level container node for the XML output with the name <myReport>. The sqgl attribute supplies an SQL statement
that gets data from the database.

¢ Inside the <report> container, each <attribute> element generates an output XML attribute that modifies its parent
<myReport> node. The name attribute provides the name of the output XML attribute. In the example, these names
are runTime, runBy, author, and month. The values of these attributes come from the corresponding <attribute>
expression in XData ReportDefinition. In this part of the example, each expression runs an ObjectScript expression
on the server to produce the value that appears in the generated XML.

14 Using Zen Reports

The %val Variable

» This example provides one <aggregate> element that is a direct child of the <report> container. It generates an XML
element that is a direct child of the <myReport> node in the XML output. This element has the name <grandTotal>
and appears at the end of the <myReport> container in the XML output, after any other attributes or elements that
<myReport> contains.

The <grandTotal> element contains a value. The type and field attributes of the <aggregate> combine to produce this
value. The field attribute identifies the column in the SQL query for the <report> that supplies the data, in this example,
“Num.” The type specifies the type of aggregation to perform, in this example, summation.

» The first <group> element adds an additional level of hierarchy. The name attribute provides the name “SalesRep”
for the second-level container node created by the <group>. This <group> could provide its own data using any of the
methods available to a <group>, but since it does not, it inherits the data definition of its parent container, the <report>.
This means that any field attributes used in this <group> refer to the data populated by the <report>. The breakOnField
attribute instructs the XML generation process to create a new node in the output when the value of the specified field
changes. The result is a series of <SalesRep> nodes, one for each named sales rep in the result set.

The <group> contains an <attribute> element, which generates an attribute that modifies each <SalesRep> node in the
XML output. As previously described, name provides the name for the generated attribute, and field provides the value.
In this case, the attribute is called “name” and the value comes from the column “SalesRep” in the SQL query this
<group> inherits from the <report>.

e The first <group> contains, a second <group> element provides a third-level container node for the XML output with
the name “record.” <attribute> elements add the attributes id and number to each <record> node. This <group> also
contains <element> elements which add elements to each <record> node. The name and field attributes in <element>
function much as they do in <attribute>, providing the name and value for the generated elements.

» Thefirst <group> also contains <aggregate> elements which generate XML elements that are children of the <SalesRep>
node in the XML output. These elements have the names count, subTotal, and avg. Each aggregate element contains
avalue. The corresponding <aggregate> type and field attributes combine to produce this value, as described previously.

2.2 The %val Variable

%wval is a special variable that you can use only in an XData ReportDefinition block. All XData ReportDefinition elements
support %val in attributes whose values are ObjectScript expressions: expression, breakOnExpression, and filter are the
primary examples.

%val can be single-valued or multidimensional, as the following topics explain.

Note: A general knowledge of ObjectScript is helpful in knowing how to construct these expressions. See the book
Using Caché ObjectScript, particularly the “String Relational Operators” section in the chapter “Operators and
Expressions.”

2.2.1Where %val is Supported

You can use %val in the expression attribute for the value nodes <element>, <attribute>, or <aggregate>. %val represents
the value of the field from the field attribute in the same element. You can see this in the following <element> example:

<element name="displayURL" field="ID" expression="._GetDisplayURL(%val)"/>

Or in <attribute>:

<attribute name="name'" field="SalesRep"
expression="$E(%val)_$ZCVT($E(%val,2,$1 (%val)),"L")"/>

Using Zen Reports 15

Gathering Zen Report Data

Because the value of the expression attribute is an ObjectScript expression, the previous example can use the ObjectScript
functions such as $SEXTRACT ($E) or $ZCONVERT ($ZCVT) to format the data contained in the resultset field called
SalesRep.

<report>and <group> support %val in breakOnExpression to represent the value of the breakOnField field.

<report>, <group>, <element>, and <attribute> support %val in filter expressions. In this case %val represents the value
of a field from the fields attribute in the same element, and may be multidimensional rather than single-valued.

%val also works inside the ObjectScript code for custom aggregate classes.

2.2.2 Multidimensional Values of %val

Anywhere you can use single valued %val, you can also use its multidimensional form:
%val (*'CaseSensitiveFieldName™)

To do this for value nodes <element> or <attribute>, place a comma-separated list of field names in the fields (not field)
attribute. Then refer to these values subscripted by their field name in the expression or filter attributes. These subscripts
are case-sensitive.

The following example references two query fields in the fields attribute, and then uses these field names as subscripts for
%wval in the value of the expression attribute. In this example, the expression value is an ObjectScript expression that uses
the ObjectScript _ (underscore) concatenation operator for strings:

<element name="message' fields="Customer,SaleDate"
expression="%val (""Customer'”)_" has date "_%val ("'SaleDate')"/>

<report> and <group> also support multidimensional %val. The <report> or <group> must include a fields attribute for
this feature to work.

Use quoting conventions carefully. The expression value above uses double quotes effectively inside single quotes. The
following example applies correct quoting conventions for %val subscripts and the letter G inside the single quote characters
used to contain the filter value.

filter = "$E(Wval ("""TheaterName''))="""G"""

As an alternative to careful use of quotes in expressions like these, and to provide greater modularity and flexibility in your
Zen report classes, attributes such as expression, breakOnExpression, or filter attribute allow you to supply a reference to
a class method as the value of the attribute. Then you can place the logic inside that method instead of inside the expression
attribute. The following is an example of this practice:

filter="__FilterQ"

The previous syntax works when the Zen report class also defines the method being referenced in the expression, and the
method is defined as returning a zero or non-zero value, as in:

Method Filter()
If $SE(Wval ("TheaterName'™))="G" Quit 1

Quit O
Suppose instead you defined your method as follows:

Method Filter(input As %String)

If $EC(input)="G" Quit 1
Quit O

Then you could set the filter as follows. Note the quoting conventions for the %val subscript:

filter="__Filter(%val (""""TheaterName' ")) "

16 Using Zen Reports

<report> and <group>

2.3 <report>and <group>

The <report> element is the required top level container within an XData ReportDefinition block.

Important: Different <report> and <group> elements are used in an XData ReportDisplay block. For details, see
“Formatting Zen Report Pages.”
A <report> contains zero or more <group> elements to organize the data for the report.

When a report contains nested groups, each contained <group> is called a child of the <group> that contains it; the containing
<group> is called the parent of the <group> elements that it contains. Multiple <group> elements may exist at each level
of nesting, except at the top level, where there is only one <report> element. Any <group> elements that are contained
within the same parent <group>, at the same level, are called siblings.

Within an XData ReportDefinition block, the syntax rules for <report> and <group> are:
e A <report> requires a name attribute.
e A <report> contains zero or more <group> elements to organize the data for the report.

» A <report> can supply a query attribute to gather the data for the report or it can set the property runonce=""true"
to execute the report contents.

* A <report> cannot be nested inside any other element.

» A<group> contains zero or more <element>, <attribute>, and <aggregate> elements in any order. <element>, <attribute>,
and <aggregate> elements may not be nested.

e A <group> contains zero or more <group> elements. For details see “Nested Groups™ and “Sibling Groups.”

* A <group> can define its own query. If a <group> has no query of its own, it inherits the query from its nearest
ancestor <report> or <group> that does define a query. For details, see “Building the <report> or <group> Query”
and “Break On Field or Expression.”

2.3.1 <report>and <group> Attributes

<report> and <group> have the general-purpose attributes listed in the following table.

Using Zen Reports 17

Gathering Zen Report Data

18 Using Zen Reports

<report> and <group>

Attribute

Query attributes

Break on attributes

Direct XML attributes

call
callClass

excelSheetName

getxmlstylesheet

name

suppressExcelHeaders

xmlstylesheet

Description

These attributes help you acquire the source data for the report. See the section
“Building the <report> or <group> Query” following the table.

The breakOnExpression and breakOnField attributes help you organize the source
data for the report. See the section “Break On Field or Expression” following the
table.

The call and callClass attributes help you specify the source data by writing XML
statements from a class method instead of generating them with your <report> or
<group> definition. See the section “Writing an XML Data Source.”

See Direct XML Attributes.
See Direct XML Attributes.

The excelSheetName attribute lets you specify a name for the generated worksheet.
By default, the worksheet uses Excel's default naming convention for sheets: "Sheet1",
"Sheet2" and so on. Supply excelSheetName on <report> for a single sheet report,
and on each <group> that defines a worksheet for a multi-sheet report. The
excelSheetName attribute supports localization. See Localizing Zen Reports.

If excelSheetName begins with a ! (exclamation point) the report interprets what
follows as an ObjectScript runtime expression that is evaluated to get the sheet
name. Sheet names supplied by runtime expressions are not localized.

For further control over sheet name generation, you can override the method
%getUniqueExcelSheetName, defined in %ZEN.Report.reportPage. See “Multi-sheet
Reports.”

The name of a method that returns a stream that contains the contents of an XSLT
style sheet. This style sheet is used to perform transformations on the XML provided
by the ReportDefinition block prior to processing by the ReportDisplay block. See
“Restructuring the ReportDefinition XML.” This attribute is available only for <report>
element.

The <report> or <group> generates an XML element of this name in the output.

If the supplied name is an invalid string for use as an XML identifier, the report does
not work correctly. The most obvious characters to avoid are any white space char-
acters, plus the five standard XML entity characters &"<>""

If the group is a <report> the name attribute is required. For a <group> the name is
optional and the <group> generates a name for itself.

The suppressExcelHeaders attribute lets you suppress all headers that are normally
generated when you create an Excel spreadsheet from a Zen report. Specify
suppressExcelHeaders=""true" on <report> to suppress all headers, and on
<group> to suppress headers for the associated worksheet in a multi-sheet report.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

A stream that contains the contents of an XSLT style sheet. This style sheet is used
to perform transformations on the XML provided by the ReportDefinition block prior
to processing by the ReportDisplay block. See “Restructuring the ReportDefinition
XML.” This attribute is available only for <report> element.

Using Zen Reports

19

Gathering Zen Report Data

Attribute Description

xmistylesheetarg An optional argument to the method specified by getxmistylesheet .

2.3.2 Building the <report> or <group> Query

A <report> or <group> requires a resultset to generate data. To obtain this resultset, a <report> or <group> can generate
its own resultset by specifying a query. A <group> can also inherit the resultset generated by one of its ancestor <report>
or <group> elements.

» To specify a query in the current <report> or <group>, see the following topics in this section:
— Query Attributes for Gathering Data — including important qualifiers such as orderby, runonce, and top
— General Rules for Processing Queries
— The orderby Attribute in ReportDefinition
— The OnCreateResultSet Callback Method

» To inherit the resultset from an ancestor <report> or <group>, see the section “Nested Groups.”

2.3.2.1 Query Attributes for Gathering Data

A <report> or <group> supports the following attributes for specifying a query.

Attribute Description

fields fields consists of a comma-separated list of one or more of the field names from the
resultset query.

White space in the fields value is acceptable. For filter syntax details, including the
%val variable, see the filter entry in this table.

For additional information, see the discussion following this table.

filter ObjectScript expression that determines whether or not the resultset row currently being
processed should be included in the XML output for this <report> or <group>. When
the expression evaluates to 0, skip that resultset row.

In the filter expression, you can refer to the values of fields from the resultset query
using the %val variable, subscripted with the case-sensitive names listed in the fields
attribute for this <report> or <group>. For syntax details, see the “The %val Variable”
section.

A general knowledge of ObjectScript is helpful in knowing how to construct these
expressions. In addition to the ObjectScript tips in “The %val Variable” section, see
Using Caché ObjectScript, particularly the “String Relational Operators” section in the
chapter “Operators and Expressions.”

OnCreateResultSet | The name of a server-side callback method to call to create a %ResultSet object. The
OnCreateResultSet value must be the name of a server-only class method defined in
the Zen report class. For details, see “The OnCreateResultSet Callback Method.”

20 Using Zen Reports

<report> and <group>

Attribute
orderby

gueryClass

queryName

removeEmpty

runonce

Description

A comma-separated list of fields used to override any ORDER BY phrase that is already
present in the query for this <report> or <group>. If the first character in the orderby
string is a ! (exclamation point) then Zen reports interpret the remainder of the string
as an ObjectScript expression that provides the string. For further details, see “The
orderby Attribute in ReportDefinition” following this table. For information on using
orderby in the ReportDisplay section of a report, see “The orderby Attribute in Report-
Display” in the chapter “Displaying Zen Report Data”.

The name of the class containing the query. This attribute is used only if you also provide
a value for queryName.

The section “Referencing a Class Query” in the “Zen Tables” chapter of Using Zen
Components provides information on using queryClass in a Zen page.

The name of the class query that provides the %ResultSet. The class query must be
projected as SqlProc. If you do not also provide a value for queryClass, the report
assumes that the query is defined in the current report class.

The section “Referencing a Class Query” in the “Zen Tables” chapter of Using Zen
Components provides information on using queryName in a Zen page.

In the XData ReportDefinition block, the removeEmpty attribute controls whether or not
blank values are included in the XML data generated by <report> or <group> elements.
That is, if the query returns a resultset with one or more empty rows, removeEmpty
determines how to handle those rows. If removeEmpty is:

* Not specified, the <group> inherits the removeEmpty value of its parent. This is
the default for any group that is not a <report>. The default removeEmpty value for
a <report> is false.

« false, empty fields are retained in the group, and are output to the generated XML
description of the data for the report. This is the default for a <report>, because
<report> is at the top level, so there is no parent to supply an inherited value for
removeEmpty.

e true, empty fields are omitted from the group, and are not written to the generated
XML description of the data for the report.

Not supported for Excel or xIsx output.

removeEmpty has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

When a <report> or <group> has its runonce attribute set to true, the <report> or <group>
itself has no query. Instead, the <report> or <group> serves as a container for other
groups that may each have their own query defined.

If you supply a runonce attribute for a <report> or <group>, Zen ignores sql, queryClass,
or any other query attributes that you supply for that <report> or <group>. Subgroups
within that container may have query attributes defined.

runonce has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports Attribute
Data Types.”

Using Zen Reports

21

Gathering Zen Report Data

Attribute Description

runtimeMode SQL runtime mode for the query to be executed to fetch the results for this report.
Possible values are:

« 0 for LOGICAL mode
« 1 for ODBC mode
« 2 for DISPLAY mode

The default runtimeMode of 2 (DISPLAY mode) is appropriate for most cases and
usually does not need to be changed.

For more information about setting the SQL runtime mode for a query that returns a
%ResultSet, see “Queries Invoking User-defined Functions” in the “Querying the
Database” chapter of Using Caché SQL.

sql Server-side SQL query to get contents of the <report> or <group> list. For additional
information, see the discussion following this table.

suppressRootTag suppressRootTag suppresses generation of the report root tag, which is otherwise
generated from the name attribute of the report. Suppressing the root tag is useful if
the report derives its XML solely through DATASOURCE, or the <include> or <call>
elements, and the injected XML includes its own root tag.

sglexpression sqlexpression allows you to use a COS expression to provide an SQL query for the
<table> or <group>. Note that Zen reports does not parse the resulting SQL at compile
time. Studio does not assist you in creating the attribute value, as it does for the sql
attribute. For more information, see The sqglexpression Property.

top Positive integer value. Has the same effect as a "SELECT TOP top" phrase in an SQL
query, for example, "SELECT TOP 10". Causes the <group> or <report> to be limited
to the number of results specified by top.

The following example shows a fields attribute that selects two fields from the resultset returned by the sgl attribute.

<report

xmIns="http://www. intersystems.com/zen/report/definition”
name=""fieldsTest" sql="Select Name, SSN, DOB from
Sample.Person WHERE Name > "m®" fields="Name, SSN"
Ffilter="%val ("""'Name''")="""Vonnegut,Agnes M."""">

</report>

The sql attribute works in Zen reports the same way as it does in Zen <tablePane>, except that all Zen queries run in display
mode and Zen reports support the runtimeMode attribute to control the runtime mode.

Because sql is used within an XML block, its value must conform to XML syntax rules. For example, you cannot use the
< (less-than) character in comparisons; you must substitute the XML entity &It; for < as in:
sql="SELECT ID,Customer,Num,SalesRep,SaleDate

FROM ZENApp_Report.Invoice

WHERE (ID < 500)
ORDER BY SalesRep,SaleDate"

Note that /* */ is the only comment syntax supported in the sql string.

For details and examples using sql and query parameters, see the sections “Specifying an SQL Query ” and “Query
Parameters” in the *“Zen Tables™ chapter of Using Zen Components.

22 Using Zen Reports

<report> and <group>

2.3.2.2 General Rules for Processing Queries

The general rules for processing the results of the query for a <report> or <group> are as follows:

» Any references to a field that does not exist returns an empty string (that is,
error.

) rather than triggering a “not found”

e Ifa<report> or <group> has a query and contains an <element>, the value of the <element> prints out for each row
that satisfies the query.

* When a <group> contains a query with parameters and its parent <group> is a sibling, the parameters refer to the values
they have in the parent, which are the values they had in the first sibling in that parent’s group, before that first sibling
encountered a break.

* When a group is a nested group, it gets a row of data for each row in its parent group, regardless of whether that row
meets any break condition. That is, a parent group gives all its data to each of its child groups, whether or not a break
condition has been met.

» Asibling group only gets data after a break condition has been met, and uses the data that existed in the row just before
the break condition was met.

» Ifthe siblings within a group contain <aggregate> elements, Zen recognizes aggregates on the first sibling in the group,
and in siblings that provide queries. If a sibling group provides its own query, Zen recognizes aggregates in that group,
and the aggregate value reflects the values returned by the group's query.

2.3.2.3The sqglexpression Property

You can provide an SQL query for the <table> or <group> using a COS expression with sglexpression. The following
example first defines a Zen report property called Pattern:

Property Pattern As %String(ZENURL = "PATTERN") [InitialExpression = "M%"];

Then uses the property in a COS expression that constructs an SQL query that defines the resultset which populates the
report with data.

XData ReportDefinition [XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
sqlexpression=""""SELECT ID,NAME,SSN,AGE,HOME_STATE

orderby="1D" name="people'>
<group name="Persons®” breakOnField="1D">
<group name="Person” >
<attribute field="ID" name="ID"/>
<attribute field="AGE" name="AGE"/>
<attribute field="Name® name="Name®/>
<attribute field="DOB" name="DOB*"/>
<attribute field="SSN" name="SSN"/>
<attribute field="HOME_STATE" name="HOME_STATE"/>
</group>
<group name="'MorePersons"
sqlexpression=""""SELECT ID,NAME,SSN,AGE,HOME_STATE

orderby="1D">
<element field="Name" name='"‘Name'/>
</group>

</group>

</report>

2.3.2.4The orderby Attribute in ReportDefinition

The orderby attribute provides a comma-separated list of fields that specify how to order the resultset retrieved by the query
for this <report> or <group>. It overrides any ORDER BY phrase that is already present in the query, and is useful when
you want to change the ordering of the resultset returned by a stored procedure or class and you are not able to rewrite the

Using Zen Reports 23

Gathering Zen Report Data

query for your Zen report. Note that orderby applies sorting on the resultset after it has been retrieved from the table, so
the names you use in the orderby string must reflect aliases applied by the SQL SELECT statement. For information on
using orderby in the ReportDisplay section of a report, see “The orderby Attribute in ReportDisplay” in the chapter
“Displaying Zen Report Data”.

Any fields listed in the orderby string must already be included in the SELECT phrase for the query for this <report> or
<group>. Also, it is not possible to use orderby with a <report> or <group> that has no explicitly defined query.

The orderby value can specify sorting in ascending or descending order. To do this, add a “\” (backslash) and the string
ASC or DESC to the name of a field in the orderby list. The default sort is in ascending order. The ASC or DESC string
is not case-sensitive. For example:

orderby="customer\desc"

The following example provides a literal value for orderby. In this example, the query is ordered by SalesRep and Customer,
rather than by SalesRep and SaleDate as in the original query.

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""myReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice
WHERE (Month(SaleDate) = ?) OR (? IS NULL)
ORDER BY SalesRep,SaleDate™
orderby="SalesRep,Customer" >
<l-- Supply values to the ? query parameters here -->
<parameter expression="._Month"/>
<parameter expression="__Month"/>
<Il-- Other report contents appear here -->
</report>

If the first character in the orderby string isa ! (exclamation point) then Zen reports interprets the remainder of the string
as an ObjectScript expression that provides the string. The following example references a Zen report class property
SortOrder to provide a value for the orderby attribute. Because the current class for ObjectScript expressions evaluated in
the ReportDefinition block is the report, you can use the double dot syntax to reference the report class property. Note that
because the evaluation context is different in the ReportDisplay block, different syntax is required.

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""myReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report. Invoice
WHERE (Month(SaleDate) = ?) OR (? IS NULL)
ORDER BY SalesRep,SaleDate™

orderby=""1__SortOrder" >
<l-- Other report elements here -->
</report>

One way to make the previous example work is to specify the orderby value dynamically when you invoke the report. To
do this, apply the ZENURL data type parameter to the corresponding Zen report class property SortOrder, as follows. An
InitialExpression value can be helpful, but is not required as long as you supply a value for this property when invoking
the report.

Property SortOrder As %String(ZENURL="$SORTME")
[InitialExpression="SalesRep,Customer'];

Once you define SortOrder as shown, you can change the orderby value by invoking the report with a URI like this one.
The following sample URI contains a line break for typesetting purposes only; a correct URI is all on one line.

http://localhost:57772/csp/mine/my.ZENReport.cls
?$SORTME=Customer ,SaleDate&$SEMBEDXSL=1

To enable the orderby attribute, the Zen report class must have its SQLCACHE class parameter set to 1 (true). This is the
default value for SQLCACHE.

24 Using Zen Reports

<report> and <group>

2.3.2.5The OnCreateResultSet Callback Method
If you use the OnCreateResultSet attribute to specify a server-side callback method, as in this example:

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""PersonReport" OnCreateResultSet="CreateRS" >
<parameter value="B"/>
<group name="‘Person'>
<attribute name="Name" field="Name"/>
<attribute name="Age" field="Age"/>
<attribute name="FavoriteColors" field="FavoriteColors'/>
</group>
</report>

Then the method named by the OnCreateResultSet attribute must be defined within the page class with the specific signature
shown in the following example:

ClassMethod CreateRS(ByRef pSC As %Status, ByRef tParams) As %ResultSet
{

set statement=##class(%SQL.Statement) .%New()

if "$$$isObject(statement) set pSC=%objlasterror Quit "

set sql=""SELECT Name,Age,FavoriteColors FROM Sample.Person WHERE Name %STARTSWITH ?*
set pSC=statement.%Prepare(sqgl)

if $$SISERR(PSC) Quit "

set statement.%SelectMode=2

set rs=statement.%Execute(tParams(l))

quit rs

}

Where:
» The callback method must instantiate new instance of an %SQL.Statement object.
e The callback then uses the % SQL .Statement.% Prepar e method to prepare the SQL statement.

» The callback method returns a status code by reference to indicate whether or not there were errors encountered in
preparing the SQL statement.

» The required inbound argument pParams is an array that, at runtime, automatically contains any <parameter> values
that you supplied in the <report> or <group> definition, such as the value "'B"* for STARTSWITH in the example
above.

e The callback then uses the % SQL .Statement.% Execute method to create a result set. This resultset then becomes
the source of data for the <report> or <group>.

» The pParams array is subscripted by a 1-based number that indicates the order of these parameters in the <report> or
<group> definition.
The required signature for the method identified by the OnCreateResultSet attribute is different for Zen reports than it is

for <tablePane>.

For more examples using query parameters, see the section “Query Parameters” in the “Zen Tables™ chapter of Using
Zen Components.

2.3.3 Break On Field or Expression

A <group> can use the breakOnExpression and breakOnField attributes to organize the records in the resultset that it has
received from its containing <report> or <group>. To “break on” an item means to “end this group when the value of this
resultset field changes.”

The resultset in question is the one defined by the parent of the <group> and not the <group> itself. For example, suppose
the containing group and contained group are defined as follows. Ellipses (...) in this example show omitted syntax items:

Using Zen Reports 25

Gathering Zen Report Data

<group name="SalesByState'" sql="SELECT STATE,...">

<group name="'SalesByCity"

sql=""SELECT CITY ... FROM ... WHERE STATE=?"
breakOnField=""STATE">
<parameter fTield="'STATE"/>
</é}6up>
</é}6up>

The contained group lists all the cities for a state, and then when the state changes it closes the group. breakOnField refers
to its containing group, SalesByState, for the same reason that <parameter> refers to its containing group, SalesByCity.
The contained item filters the resultset that the container item provides.

2.3.3.1 Attributes for Break On Field or Expression

<group> support the following attributes for grouping records from its parent resultset. If neither “break on” attribute is
supplied for a <group>, no filtering occurs; the <group> processes every record in the resultset from its parent’s query.

Attribute

breakOnExpression

breakOnField

Description

ObjectScript expression to apply to the value of the field specified by breakOnField.
In the expression, %val represents the actual value of the breakOnField field in the

resultset record that is currently being processed. For syntax details, see “The %val
Variable” section.

A general knowledge of ObjectScript is helpful in knowing how to construct these
expressions. In addition to the ObjectScript tips in “The %val Variable” section, see
Using Caché ObjectScript, particularly the “String Relational Operators” section in
the chapter “Operators and Expressions.”

Name of a field in the resultset returned by the <report> or <group> that contains this
<group>. That is, when looking for a breakOnField value to assign to the nested
<group>, you must look one level up, to the parent, to find a field that you can use to
organize a nested <group>.

If you set the breakOnField attribute for a <group>, the query in the containing <report>
or <group> must ORDER BY the field that you identify as the breakOnField for the
nested <group>. This is because field breaking examines the resultset sequentially,
and creates a break whenever the specified field changes, so if the query is not ordered
by the breakOnField, a break may occur unexpectedly in the output for the nested
<group>.

The following example uses both of the attributes listed in the previous table.

Suppose you want to group by month, and you have a method in the Zen report class called GetM onth which accepts a
date as an input argument and returns a value indicating the month. Then you could set breakOnField to the resultset field
that contains the date, and use breakOnExpression to calculate the month that you want to use to group the records, like

this:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name="myReport”
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice

ORDER BY
<group name="month"

SalesRep,SaleDate">

breakOnField="SaleDate"
breakOnExpression=""_ _.GetMonth(%val)">
<I-- contents of the group here -->
</group>
</report>
26 Using Zen Reports

<report> and <group>

2.3.3.2 Choosing Values for Break On Field or Expression
This section provides incorrect and correct examples of <group> elements that use breakOnField.

In the following example, the <group> named salesRep3ab is incorrect, because its uses breakOnField value is SSN,
and SSN is a field from the group’s own query. It should be a field from the query of the parent <group>:

<group name="'salesRep3a" breakOnField=""Name"
sql=""SELECT HOME_CITY from sample.person WHERE Name=? ORDER BY HOME_CITY"'>
<parameter field="Name'/>
<attribute expression="$G(%node(2))" name="num"/>
<attribute field=""Name" name="name"/>
<element name="City" field="HOME_CITY"/>
<group name="'salesRep3ab' breakOnField=""SSN"
sql=""SELECT SSN from sample.person WHERE HOME_CITY=?"">
<parameter field="HOME_CITY"/>
<element field="SSN" name="SSN3ab"/>
</group>
<group name="salesRep3ac"
sql=""SELECT SSN from sample.person WHERE HOME_CITY=?"">
<parameter field="HOME_CITY"/>
<element field="SSN" name='"SSN3ac'/>
</group>
</group>

The following is the correct equivalent of the previous, incorrect example. The <group> named salesRep3ab is correct,
because HOME_CITY is a field in the query for the containing group, salesRep3a:

<group name="'salesRep3a" breakOnField=""Name"
sql=""SELECT HOME_CITY from sample.person WHERE Name=? ORDER BY HOME_CITY"'>
<parameter field="Name"/>
<attribute expression="$G(%node(2))" name="num"/>
<attribute field="Name"™ name="name’/>
<element name="City" field=""HOME_CITY"/>
<group name="'salesRep3ab'" breakOnField="HOME_CITY""
sql="SELECT SSN from sample.person WHERE HOME_CITY=?"">
<parameter field="HOME_CITY"/>
<element field="SSN" name='"SSN3ab'"/>
</group>
<group name="'salesRep3ac"
sql="SELECT SSN from sample.person WHERE HOME_CITY=?"">
<parameter field="HOME_CITY"/>
<element field=""SSN" name="'SSN3ac"/>
</group>
</group>

2.3.3.3 ObjectScript Expressions for the Break On Field

If the first character in the breakOnField string isa ! (exclamation point) then Zen interprets the remainder of the string
as an ObjectScript expression that provides the string. The following example references a Zen report class property GroupBy
to provide values for the breakOnField and orderby attributes:

<group name="Admissions” queryClass="Report.CurrentAdmissions"

queryName="FindAl lAdmsInWard" orderby="1__GroupBy" >
<parameter expression="_._Hospital'/>
<parameter expression="__Unit"/>
<parameter expression="__Ward"/>
<parameter expression="._Consultant'/>
<parameter expression="__GroupOption"/>
<parameter expression="__SortOption'/>
<parameter expression="._UserName"/>
<group name="GroupBy" breakOnField="1__GroupBy'>

<group name="Admission" >
<attribute field="AdmDate" name="AdmDate'/>
<attribute field="AdmTime" name="AdmTime"/>
<attribute field="PatNo" name="URN'"/>
<attribute field="AdmNo" name="AdmNo"/>
<attribute field="PatName" name='"'Surname'/>
<attribute field="PatName2" name="GivenName"/>
<attribute field="Sex" name="Sex'/>
<attribute fTield="Age'" name="'Age'/>
<attribute field="BedCode" name="BedCode'/>
<attribute field="LocationCode"™ name="LocationCode"/>
<attribute field="DoctorDesc" name="DoctorDesc"/>
<attribute field="insdesc" name="insdesc'/>
<attribute fTield="CARETYPDesc" name=""CARETYPDesc'/>

Using Zen Reports 27

Gathering Zen Report Data

</group>
</group>
</group>

One way to make the previous example work is to specify the breakOnField and orderby values dynamically when you
invoke the report. To do this, apply the ZENURL data type parameter to the corresponding Zen report class property
GroupBy, as follows. An InitialExpression value can be helpful, but is not required as long as you supply a value for this
property when invoking the report.

Property SortOrder As %String(ZENURL=""$SORTME')
[InitialExpression="LocationCode"];

Once you define SortOrder as shown, you can change the breakOnField and orderby values by invoking the report with a
URI like this one. The following sample URI contains a line break for typesetting purposes only; a correct URI is all on
one line.

http://localhost:57772/csp/mine/my.ZENReport.cls
?$SORTME=Hospital &SEMBEDXSL=1

2.3.4 Nested Groups

A group is nested when it is inside a <report> or other <group> element. A group’s level refers to how deeply the group is
nested from the top of the report definition. Zen reports supports any number of nesting levels.

There are two major techniques for setting up the queries for nested groups. A Zen report can:

« Define a query in the parent group and have the nested group process the resultset returned by the query, including
breaking on a field in the query.

» Define a query in the parent group and also define additional queries in the nested groups. In this case, the query for
each child group is typically fed some parameter from the query for its parent. The child query is executed once for
each new breaking value from the parent query. The following code provides an example of this convention:

<report sql="SELECT City FROM Tablel ORDER BY City'>
<group name="City" breakOnField="City"
sql=""SELECT Employee FROM Table2 WHERE City=?"">
<parameter field="City"/>

</group>
</report>

Important: When processing a group, any data that does not match the break condition is passed to any nested groups.
When you use nested groups in Zen reports, references to fields within queries are resolved according to the following set
of rules:

» Every <group> (including the outer <report>) defines a query context at that group’s level.

» Ifachild <group> does not define a new query, it uses its parent group’s query as if it was its own.

» References to fields within a <group>, <parameter>, or <attribute> element are resolved by looking at the query one
level up from the current element.

» References to fields within an <element> or <aggregate> element are resolved by looking at the query at the same
level as the current element.

The following are some examples of resolving references to fields within queries:

* Name comes from Tablel:

<report sql="SELECT Name FROM Tablel'>
<element name="A" field=""Name"/>

28 Using Zen Reports

<report> and <group>

* Name is unresolved and gives an error:

<report sql="SELECT Name FROM Tablel'>
<attribute name="A" field="Name"/>

e Name comes from Table2:

<report sql="SELECT Name FROM Tablel'>
<group name="'Name" sql=""SELECT Name FROM Table2 WHERE...'>
<element name="A" field="Name"/>

* Name comes from Tablel:

<report sql="SELECT Name FROM Tablel'>
<group name="'Name" sql=""SELECT Name FROM Table2 WHERE...'>
<attribute name="A" field="Name"/>

To correctly process the data results returned by nested groups, review the rules in the section “Building the <report> or
<group> Query.” Also see the next section, “Sibling Groups.”

2.3.5 Sibling Groups

Groups are siblings when they are contained within the same <report> or parent <group>, at the same level.

Important: Sibling groups work only if the Zen report class has its SQLCACHE class parameter set to 1 (true). This
is the default setting. If you set SQLCACHE to 0 (false), Zen reports works as before, but throws an error
if the report uses sibling groups or elements.

There are two major techniques for setting up queries for sibling groups:

» Each sibling defines its own query. In this case, the WHERE clause of each sibling often refers to a breaking field
from the parent query.

e The first sibling tests for break conditions and outputs its records, then the subsequent siblings process the same break
field.

Breaking conditions only apply to the first sibling. The attributes breakOnField and breakOnExpression are ignored
for any <group> that is not the first in sequential order among its siblings. The reason for this behavior, is that subsequent
siblings receive only the last record from the set defined by the breaking condition in the first sibling. Because subsequent
siblings process only one record, breaking conditions are irrelevant.

The following example illustrates the first approach. A parent group named company contains two sibling groups, cname
and crev. The parent group defines breakOnField="“Company”. The two sibling groups use the value of “Company”
to look up information about the company for each employee in the resultset provided by the report.

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""SiblingGroupReport"
sql=""SELECT TOP 10 Name,Company FROM Sample._Employee ORDER BY Company' >
<group name="'company' breakOnField=""Company" >
<attribute name="companylID" field="Company" />
<I-- Both sibling groups process all employee records. -->
<I-- First sibling group looks up company name for each employee. -->
<group name='"‘cnhame"
sql="SELECT Name FROM Sample.Company WHERE 1D = ?"'>
<parameter field="Company"/>
<attribute name="employee" field="Name" />
<element name="company_name' field=""Name" />
</group>
<!-- Second sibling group looks up company revenue for each employee. -->
<group name=''crev"
sql=""SELECT Revenue FROM Sample.Company WHERE ID = ?'>
<parameter field="Company'/>
<attribute name="employee" field="Name" />
<element name="company_revenue' field="Revenue" />

Using Zen Reports 29

Gathering Zen Report Data

</group>
</group>
</report>

The following figure shows the XML output of this report. The parent group creates an XML element called company for
each company in the resultset. To save space, the XML for the first company is closed in this image, but you can see the
results where company ID=""2"". The report creates elements that provide the company name and company revenue for
each employee.

Figure 2-2: Report Output

¥v<3iblingGroupReport>

cname employee="Lubbar,Quentin U.">
1y_name>MediComp Media Inc.</company namer

Lubbar, Quentin U.">
venue>§36656449</company revenuel

</3iblingGroupReport>

The following example illustrates the second approach. The report named SiblingGroupReport contains two sibling
groups, EmployeeByCompany and CompanyName. The first group defines the field “Company” as the breakOnField. It
processes all the employee records. When the value of the breakOnField field changes, Zen reports closes the group and
passes the last record in the group to subsequent sibling groups. In this example, the second group uses the value of
“Company” in that record to look up the company name.

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""SiblingGroupReport"
sql=""SELECT TOP 10 Name,Age,Company AS CompanylD,Home_City,Home_State,Home_ Zip
FROM Sample.Employee ORDER BY Company' >
<I-- First sibling group processes all employee records,
breaking on Company. -->
<group name="EmployeeByCompany" breakOnField="CompanyID" >
<attribute name="CompanylID" field="CompanylD" />
<element name="name" field="Name"/>
<element name="city" field="Home_City"/>
<element name="state" field=""Home_State'/>
<element name="zip" field="Home_Zip'/>

</group>
<I-- Second sibling group gets only last employee record.
Uses it to look up company name. -->

<group name="'CompanyName"
sql=""SELECT Name FROM Sample.Company WHERE ID = ?" >
<parameter field="CompanylID" />
<attribute name="CompanylID" field="CompanylD" />
<element name="name" field="Name"/>

</group>

</report>

The following figure shows the output of this report. Again, the XML for company 1D=""1"" is closed. You can see that
for company 1D=""2"", the report places output for all employees of that company in the element Emp loyeeByCompany.
The element CompanyName contains the name of the company.

30 Using Zen Reports

Value Nodes

Figure 2-3: Report Output

ompany Co
p <CompanyMName Compan . </ ConpanyName >
¥v<EnployveeByCompany CompanyID="2":
<name>Djakovic, Angelo H.</name>
<city>»5t Louis</city>
<state>CT</=tate>
<zip»T2T713</zip>
<name>Lubbar, Quentin U.</name>
<cityrGansevoort</city>
<state>ID</=tate>
<zip»B84352</zip>
< /Emnp)] ByCompany>
v<CompanyName CompanyID="2":
<name>MediConp Media Inc.</name>
</ CompanyName >
</5iblingGroupReport>

Note: Asaconvenience, Zen defines a special variable, %node (level) to be equal to the sequential number of the current
sibling at the given grouping level, beginning at 1 for the first sibling. You can use this variable within an
ObijectScript expression in an XData ReportDefinition block, for example:

<attribute expression="3$G(%node(2))" name="num"/>

To correctly process the data results returned by sibling groups, review the rules in the section “Building the <report> or
<group> Query.” Also see the previous section, “Nested Groups,” and the discussion of sibling elements in the <element>
topic.

2.3.6 Conditionally Generated Groups

The <group> element in the XData ReportDefinition block supports an ifexpression attribute that lets the user choose at
runtime which ZEN Report groups are output. If the value of the attribute is 1, which is the default, the group is generated
at runtime. Setting the attribute to 0 suppresses generation of that group and all of its subgroups. You can use a ZENURL
property to control the value of the attribute and turn off generation of a group at runtime.

The following example uses the ZENURL property IncludeRecord, whose definition is shown here:

Property IncludeRecord As %Boolean(ZENURL=""$INCLUDERECORD"")
[InitialExpression = 0];

It controls whether the report generates the group named record:

<group name="record" ifexpression=".._IncludeRecord">
<attribute name="id" field="ID" />
<attribute name="number® field="Num® />
<element name="date" field="SaleDate" />
<element name="customer® field="Customer® />
</group>

2.4\alue Nodes

This topic describes the elements that display the data contents of the report. Any of these elements may be a child of
<report> or <group> in an XData ReportDefinition block. The elements are:

* <element>— Writes an XML element to the output XML.
o <attribute> — Writes an XML attribute to the output XML.

Using Zen Reports 31

Gathering Zen Report Data

» <aggregate> — Calculates aggregates like sums and averages and outputs the result.

2.4.1 Handling White Space

By default, Zen reports strip out carriage return (ASCII 13) characters when processing the XML source data for a report.
Stripping of carriage return characters is controlled by the attribute escape, which is available on <element>, <attribute>,
and <aggregate> elements. escape can have the following values:

o "xml" — (the default) Zen reports strip out carriage return (ASCII 13) characters when processing the XML source
data for a report.

* "none" — Zen reports do not strip out carriage return (ASCII 13) characters. All characters are preserved regardless
of whether or not the original text contains spaces or newline characters. No XML escaping takes place, and all char-
acters are enclosed in CDATA syntax.

* "noneifspace" — Zen reports strip out carriage return (ASCII 13) characters when processing the XML source data
for a report. Any text that contains line feed or space characters is enclosed in CDATA syntax.

» "passthru” — Zen reports do not strip out carriage return (ASCII 13) characters. No XML escaping is done. To keep
the XML document valid, the XML data inside the element must be valid. For example, every opening element tag
such as <foo> must be matched by a closing element tag </foo>.

Special newline handling applies only to <element> elements, never to <attribute> elements. XML does not allow attribute
values to contain newline characters.

2.4.2 VValue Node Attributes

The value nodes <element>, <attribute>, and <aggregate> all have the following attributes.

Attribute Description

accumlf (Optional) It can be convenient to conditionally accumulate aggregates for a Zen
report. For this reason, value nodes have an accumif attribute whose value is an
ObjectScript expression that evaluates to O (false) or non—zero (true). If the accumlf
expression for a value node evaluates to false, Zen skips that value node. As a
consequence, the value node contributes nothing to the data source for the report.
See the section accumlf following this table.

32 Using Zen Reports

Value Nodes

Attribute

expression

field

fields

filter

Description

(Optional) ObjectScript expression that processes the field value before outputting
it. Within the expression you can use the %val variable to represent the actual value
of the field. For syntax details, see “The %val Variable” section.

The following example would work in a Zen report class that defined a
GetDisplayURL() method with one input argument:

<element name="displayURL" field="ID"
expression=""__GetDisplayURL(%val)"/>

The expression attribute can be used without %val to return static data, such as the
report run time in the following example. This example uses the ObjectScript function
$ZDATETIME ($ZDT) and the special value $HOROLOG ($H) to return a timestamp
value:

<element name="runTime" expression="$ZDT($H,3)""/>

A general knowledge of ObjectScript is helpful in knowing how to construct these
expressions. In addition to the ObjectScript tips in “The %val Variable” section, see
Using Caché ObjectScript, particularly the “String Relational Operators” section in
the chapter “Operators and Expressions.”

(Required) field specifies which resultset field supplies the data in the XML output.
The referenced field must actually exist in the resultset for this node. This is the
resultset from the closest query above this node among its ancestors in the XData
ReportDefinition block, either:

* The query for the <report> or <group> that contains the <element>
or:

* The query inherited by the <group> that contains the <element>. This happens
when the <group> that contains the <element> does not provide a query of its
own and instead inherits its query from the nearest ancestor <report> or <group>.
In this case, the <element> may reference any field in the inherited resultset,
just as if the query were defined at the same level as the <group> that contains
the <element>.

In an expression or filter for the value node, you can use the %val variable to repre-
sent the actual value of the field.

If the first character in the field string is a ! (exclamation point) then Zen interprets
the remainder of the string as an ObjectScript expression that provides the string.
See the section Field following this table.

fields is similar to field, but consists of a comma-separated list of one or more fields
from the resultset. In an expression or filter for the value node, you can refer to these
fields using the %val variable subscripted with their case-sensitive names as listed
in fields.

For %val syntax details, see “The %val Variable.”
Not all value nodes support the filter attribute. <element> and <attribute> support

filter; <aggregate> does not. For information about filter, see the individual value
node descriptions.

Using Zen Reports

33

Gathering Zen Report Data

Attribute Description

name Generates an XML element of this name in the output. Suppose there is a field called
month in the resultset for the <report> or <group> that contains this <element>, and
suppose one of the valid values for month is the string July. An entry like this:

<element name="myMonth" field="month" />

Could yield an element like this in the XML that defines the data for the report:

<myMonth>July</myMonth>

If the supplied name is an invalid string for use as an XML identifier, an error results
when you attempt to compile the Zen report class. The most obvious characters to
avoid are any white space characters, plus the five standard XML entity characters
gr<>"

If no name is supplied, Zen uses the name item

2.4.2.1 accumlf

The syntax for the accumlIf expression is intended to be ObjectScript. However, issues with XML escaping in XData
ReportDefinition syntax require you to use quoting conventions carefully in the accumlf value. Enclose the value in single
quotes and double any double quotes that you would normally use in ObjectScript syntax. The following example shows
this convention applied to the double quotes around Region and Northeast in the <aggregate> accumlf value:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""InsurancePolicies"
sql=""SELECT Region,Flood, Insuredvalue
FROM InsurancePolicies ORDER BY Flood'>
<group name="Flood" breakOnField="Flood" >
<attribute name="Flood" field="Flood"/>
<group name="Policy'>
<attribute name="Region" field="Region"/>
<attribute name="InsuredValue" field="Insuredvalue"/>
</group>
<aggregate name="NortheastTotal" field="Insuredvalue"
fields="Region" type=""SUM"
accuml f="%val (*""'‘Region'*)=""Northeast"""" />
</group>
</report>

In this example, there are two possible values for Flood: "Y" and "N" indicates whether or not the property is in a federally
designated flood zone. For each of these values, the <aggregate> calculates the value of insured policies in the Northeast
region.

2.4.2.2 field

If the first character in the field string isa ! (exclamation point) then Zen interprets the remainder of the string as an
ObjectScript expression that provides the string. The following example references a Zen report class property GroupBy to
provide a value for the field attribute of <attribute> as well as the breakOnField and orderby attributes of other elements:

34 Using Zen Reports

Value Nodes

<group name="ReportTime'>
<attribute name="timestamp" expression="$ZDATETIME($H, 2, 2)"/>

</group>

<group name="Admissions" queryClass="Report.CurrentAdmissions"

queryName="FindAl lAdmsInWard" orderby="1__GroupBy" >

<parameter expression="_._Hospital"'/>

<parameter expression="__Unit"/>

<parameter expression="__Ward"/>

<parameter expression="_._Consultant"/>

<parameter expression="__GroupOption"/>

<parameter expression="__SortOption'/>

<parameter expression="._UserName"/>

<group name="GroupBy' breakOnField="1__GroupBy'>
<group name="Admission" >
<attribute field="!._GroupBy" name="groupby"/>
<attribute field="AdmDate™ name="AdmDate"/>
</group>

</group>

</group>

One way to make the previous example work is to specify the field, breakOnField, and orderby values dynamically when
you invoke the report. To do this, apply the ZENURL data type parameter to the corresponding Zen report class property
GroupBYy, as follows. An InitialExpression value can be helpful, but is not required as long as you supply a value for this

property when invoking the report.

Property GroupBy As %String(ZENURL="$SORTME")
[InitialExpression="LocationCode"];

Once you define GroupBy as shown, you can change the field, breakOnField, and orderby values by invoking the report
with a URI like this one. The following sample URI contains a line break for typesetting purposes only; a correct URI is
all on one line.

http://localhost:57772/csp/mine/my.ZENReport.cls
?$SORTME=Hospi tal &$EMBEDXSL=1

2.4.3 <element>

The <element> element is valid within a <report> or <group> in an XData ReportDefinition block. Each <element> adds
an XML element to the XML data definition for the report.

2.4.3.1 <element> Attributes

<element> has the following attributes.

Attribute Description

Value node attributes | For descriptions, see the section “Value Node Attributes.”

Using Zen Reports 35

Gathering Zen Report Data

Attribute

escape

fieldType

filter

Description

Browsers generally remove what they regard as excess white space from pages that
they display. Therefore, if you want to retain white space characters in the output
you must use the escape attribute. escape has the following possible values:

o "xml"— (Default) The text is XML escaped. This means that spaces are visible
in the XML source, but do not appear in the display unless you set the
literalSpaces attribute for the corresponding <item>. Zen reports strip out carriage
return (ASCII 13) characters when processing the XML source data for a report.

e "none" — All characters are preserved regardless of whether or not the original
text contains spaces or newline characters. No XML escaping takes place, and
all characters are enclosed in CDATA syntax. Zen reports do not strip out carriage
return (ASCII 13) characters.

* "noneifspace" — Any text that contains line feed or space characters is enclosed
in CDATA syntax. Zen reports strip out carriage return (ASCII 13) characters
when processing the XML source data for a report.

» "passthru" — No XML escaping is done. To keep the XML document valid, the
XML data inside the element must be valid. For example, every opening element
tag such as <foo> must be matched by a closing element tag </foo>. Zen reports
do not strip out carriage return (ASCII 13) characters.

A string that indicates the type of data retrieved by the element. The value of the
fieldType attribute is either " literal® (which is the default) or "'stream'. When
the fieldType is ""'stream", the element field must retrieve a stream, or run-time
errors result. When the fieldType is "'stream' you cannot use the expression attribute
or %val. If you want to process the OID using %val let fieldType be "literal”,
which is the default. The <element> escape attribute can be used to determine how
the stream is translated, for instance whether < is transformed to less than entity.

ObjectScript expression that may or may not evaluate to 0 (false). When the filter
expression evaluates to 0, Zen skips processing this <element>. As a result, no
output from this <element> appears in the XML data for the report.

In the filter expression, you can refer to the values of fields from the resultset query
using the %val variable. You can use:

« Single-valued %val to represent the value of the field identified by field attribute
for this <element>

* %val subscripted with the case-sensitive names listed in the fields attribute for
this <element>

For details, see “The %val Variable” section.

A general knowledge of ObjectScript is helpful in knowing how to construct these
expressions. In addition to the ObjectScript tips in “The %val Variable” section, see
Using Caché ObjectScript, particularly the “String Relational Operators” section in
the chapter “Operators and Expressions.”

36

Using Zen Reports

Value Nodes

Attribute Description

excelName If you are generating an Excel spreadsheet from a Zen report, you can use the
exce IName attribute to provide a string to use as the header for the column generated
from this <element>. If exceIName is null, the column header comes from the name
attribute. The exce IName attribute supports localization. See Localizing Zen Reports.

excelNumberFormat | If you are generating an Excel spreadsheet from a Zen report, you can use the
excelNumberFormat attribute to provide a string that tells Excel how to format the
number. This attribute is used only when generating an Excel spreadsheet in xlsx
mode, and when EXCELMODE is set to “element”. See Numbers, Dates and
Aggregates.

isExcelDate By default, the value supplied by an <element> is interpreted as text in the generated
Excel spreadsheet. If you set the attribute isExcelDate=""true", the value is
interpreted as a date in Excel. The date must be in Excel date format, which is the
date display format for fetching via SQL when %DATE or a % TIMESTAMP are
present and runtimeMode=""1"" (ODBC mode). If Excel cannot interpret the value
as a date, you see an error when Excel tries to open the generated spreadsheet.
See Numbers, Dates and Aggregates.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

isExcelNumber By default, the value supplied by an <element> is interpreted as text in the generated
Excel spreadsheet. If you set the attribute isExcelNumber="true", the value is
interpreted as a number in Excel. If Excel cannot interpret the value as a number,
you see an error when Excel tries to open the generated spreadsheet. See Numbers,
Dates and Aggregates.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

isExcelTime By default, the value supplied by an <element> is interpreted as text in the generated
Excel spreadsheet. If you set the attribute isExcelTime="true", the value is
interpreted as a time in Excel. The time must be in Excel time format, which is the
time display format for fetching via SQL when %DATE or a % TIMESTAMP are
present and runtimeMode=""1" (ODBC mode). If Excel cannot interpret the value
as a time, you see an error when Excel tries to open the generated spreadsheet.
See Numbers, Dates and Aggregates.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

2.4.3.2 Elements as Siblings of Groups

A <group> may be a sibling of another <group>. There is an extended discussion of “Sibling Groups™ in the section about
the <group> element. An <element> may also be a sibling of one or more <group> elements at the same level of the XData
ReportDefinition block. When this is the case, the <group> that is sequentially the first sibling group at that level has special
significance for each <element> and <group> at that level. This <group> is called the collegial group for that level.

Note: Elements work as siblings of groups only if the Zen report class has its SQLCACHE class parameter set to 1
(true). This is the default setting. If you set SQLCACHE to 0 (false), Zen reports works as before, but throws an
error if the report uses sibling groups or elements.

Using Zen Reports 37

Gathering Zen Report Data

Suppose an <element> and a <group> are siblings. Any <group> at this level gets its data either from its own query, or
from the query defined by its next nearest ancestor <report> or <group>. There is much more detail about this in the
“Building the <report> or <group> Query” and “Break On Field or Expression” sections of the <group> documentation
in this chapter.

Meanwhile, any <element> at the sibling level gets its data from the field whose containing row in the resultset satisfies
the break condition of the collegial group. If an <element> has no collegial group, its contents in the XML output consist
of the value of the identified field for each row in the resultset, even if these are not distinct values.

2.4.4 <attribute>

The <attribute> element is valid within a <report> or <group> in an XData ReportDefinition block. Each <attribute> adds
an attribute to the XML data definition for the report. This attribute modifies the element output by the <report> or <group>
that contains the <attribute>.

The syntax restrictions on attributes and elements can be difficult to understand initially. A beginning user often tries the
following in a Zen report XData ReportDefinition block:
<group name="'surprise'>

<element name="this" field="contains_the_value_x" />

<element name="that" field="contains_the_value_w" />

<attribute name="other" field="contains_the_value_y" />

<attribute name="thing" field="contains_the_value_z" />
</group>

Expecting this XML output:

<surprise>

<this>x</this>

<that other="y" thing="z">w</that>
</surprise>

Whereas the XML output is actually:

<surprise other="y" thing="z">
<this>x</this>
<that>w</that>

</surprise>

It is not possible to nest an <attribute> inside an <element> in a Zen report XData ReportDefinition block. So you cannot
do this:

<element name="that" field="contains_the_value_w" >
<attribute name="other" field="contains_the_value_y" />
<attribute name="thing" field="contains_the_value_z" />
</element>

In an attempt to create this output XML
<that other="y" thing="z">w</that>
The <that> node shown in the previous example uses valid XML syntax, but cannot be generated from any combination

of <element>, <attribute>, and <group> elements in a Zen report XData ReportDefinition block. In the XML generated by
Zen reports:

* An element can contain text content, but cannot contain attributes.

* A group can contain attributes and elements, but cannot contain text content.

Suppose you wanted to create nested elements and attributes in your XML output, along these lines:

<surprise>

<this>x</this>

<that other="y" thing="z">w</that>
</surprise>

38 Using Zen Reports

Value Nodes

The closest a Zen report XData ReportDefinition block could come to generating the previous example would be the fol-
lowing:
<group name="'surprise'>

<element name="this" field="contains_the_value_x" />

<group name=""that''>

<element name="there" field="contains_the_value_w" />

<attribute name="other" field="contains_the_value_y" />

<attribute name="thing" field="contains_the_value_z" />
</group> </group>

Which would generate the following output XML:

<surprise>
<this>x</this>
<that other="y" thing="2z">
<there>w</there>
</that>
</surprise>

<attribute> has the following attributes.

Attribute Description

Value For descriptions, see the section “Value Node Attributes.”
node
attributes

escape Browsers generally remove what they regard as excess white space from pages that they display.
Therefore, if you want to retain white space characters in the output you must use the escape
attribute. escape has the following possible values:

e "xml" — (Default) The text is XML escaped. This means that spaces are visible in the XML
source, but do not appear in the display unless you set the literalSpaces attribute for the
corresponding <item>. Zen reports strip out carriage return (ASCII 13) characters when pro-
cessing the XML source data for a report.

» "none" — All characters are preserved regardless of whether or not the original text contains
spaces or newline characters. No XML escaping takes place, and all characters are enclosed
in CDATA syntax. Zen reports do not strip out carriage return (ASCII 13) characters.

* "noneifspace" — Any text that contains line feed or space characters is enclosed in CDATA
syntax. Zen reports strip out carriage return (ASCII 13) characters when processing the XML
source data for a report.

filter ObjectScript expression that may or may not evaluate to 0 (false). When the filter expression
evaluates to 0, Zen skips processing this <attribute>. As a result, no output from this <attribute>
appears in the XML data for the report.

In the filter expression, you can refer to the values of fields from the resultset query using the
%val variable. You can use:

» Single-valued %val to represent the value of the field identified by field attribute for this
<attribute>

» Y%val subscripted with the case-sensitive names listed in the fields attribute for this <attribute>

For details, see “The %val Variable” section.

A general knowledge of ObjectScript is helpful in knowing how to construct these expressions.
In addition to the ObjectScript tips in “The %val Variable” section, see Using Caché ObjectScript,
particularly the “String Relational Operators” section in the chapter “Operators and Expressions.”

Using Zen Reports 39

Gathering Zen Report Data

2.4.5 <aggregate>

The <aggregate> element performs a calculation over every record in the resultset returned by the query associated with a
<report> or <group>. The result becomes the contents of a node in the XML data for the report.

<aggregate> has the following attributes.

Attribute
Value node attributes

class

escape

excelFormula

excelName

Description
For descriptions, see the section “Value Node Attributes.”

If the type is CUSTOM, the class attribute must specify the package and class name
of a class that extends %ZEN.Report.CustomAggregate.

There are several built-in aggregate classes that you can reference. For details, see
the list of “Built-in Aggregate Classes” following this table.

For custom functionality, create your own %ZEN.Report.CustomAggregate subclass.
See “Creating a New Aggregate Class.”

Browsers generally remove what they regard as excess white space from pages that
they display. Therefore, if you want to retain white space characters in the output
you must use the escape attribute. escape has the following possible values:

e "xml"— (Default) The text is XML escaped. This means that spaces are visible
in the XML source, but do not appear in the display unless you set the
literalSpaces attribute for the corresponding <item>. Zen reports strip out carriage
return (ASCII 13) characters when processing the XML source data for a report.

» "none" — All characters are preserved regardless of whether or not the original
text contains spaces or newline characters. No XML escaping takes place, and
all characters are enclosed in CDATA syntax. Zen reports do not strip out carriage
return (ASCII 13) characters.

* "noneifspace" — Any text that contains line feed or space characters is enclosed
in CDATA syntax. Zen reports strip out carriage return (ASCIl 13) characters
when processing the XML source data for a report.

Specifies that this aggregate should be an Excel formula in the generated spread-
sheet. The value must be the name of the Excel formula equivalent to the type of
the aggregate. See Numbers, Dates and Aggregates.

When you use a Zen report to generate an Excel spreadsheet, aggregates are often
positioned at the bottom of a column generated by elements in the ReportDefinition.
In this case, the aggregate uses the column header generated by the element. You
can generate an Excel spreadsheet from a report that has aggregates, but no ele-
ments. In this case, the default value for the column header comes from the name
attribute. You can also use the exceIName attribute to provide a string to use as the
column header for this <aggregate>. See Numbers, Dates and Aggregates.

The excelName attribute supports localization. See Localizing Zen Reports.

40

Using Zen Reports

Value Nodes

Attribute

excelNumberFormat

filter

format

ignoreNLS

postprocessResult

preprocessValue

type

Description

If you are generating an Excel spreadsheet from a Zen report, you can use the
excelNumberFormat attribute to provide a string that tells Excel how to format the
number. This attribute is used only when generating an Excel spreadsheet in xlsx
mode, and when EXCELMODE is set to “element”. See Numbers, Dates and
Aggregates.

Supports conditional inclusion of the aggregate. When the filter evaluates to 1 the
report includes the aggregate in the output. When the filter evaluates to 0 the report
does not include aggregate. The filter expression can use the special variable %val,
which contains the value of the aggregate.

ObjectScript expression that formats the output from this aggregate. The format
expression can use the special variable %val, which contains the value of the
aggregate.

Used only when the runtime mode is DISPLAY (2). If set to 1, do not perform any
National Language Settings processing for this aggregate. If set to 0, perform NSL
processing. If null (*'**), ignoreNLS takes its value from the value of the parameter
AGGREGATESIGNORENLS . The default value is ****. See National Language
Settings for Aggregates.

Used only when the runtime mode is DISPLAY (2). If set to 1, perform postprocessing
of the aggregate result for National Language Settings. If false, do not perform
postprocessing. If null (****), the value of this attribute is set to 1 during report gener-
ation. The default value is ""*'. See National Language Settings for Aggregates.

Used only when the runtime mode is DISPLAY (2). If set to 1, perform preprocessing
of the aggregate value for National Language Settings. If false, do not perform pre-
processing. If null (****), the value of this attribute is set to 1 during report generation.
The default value is ""**. See National Language Settings for Aggregates.

Specifies which kind of aggregation to perform. Valid values include the following
case-sensitive strings:

 "AVG" — the average of all values

e "CUSTOM" — (see the class attribute)

* "COUNT" — the total number of records

* "MAX" — the maximum value in the set

e "MIN" — the minimum value in the set

e "SUM" — the sum of all values

2.4.5.1 Formatting an Aggregate

The format attribute lets you apply formatting to the output of an aggregate. The following example is derived from the
ZENApp.MyReport class in the SAMPLES database. It formats the aggregate named avg, using the ObjectScript function

$NUMBER:

Using Zen Reports

41

Gathering Zen Report Data

<group name="SalesRep” breakOnField="SalesRep”>
<attribute name="name® field="SalesRep" />
<aggregate name="count®” type="'COUNT" field="Num® />
<aggregate name="subtotal® type="SUM" field="Num® />
<aggregate name="avg" type="AVG" field="Num® format="$number(%val,2)" />
<group name="'record">

<attribute name="id" field="ID" />

<attribute name="number® field="Num® />

<element name="date" field="SaleDate" />

<element name="customer® field="Customer® />
</group>
</group>

The following XML fragment shows the three aggregates. Note the formatting of avg:

Figure 2-4: XML Output

<zubtotal»>57</suktotal>
<awvgr»5.T7</avg>

A general knowledge of ObjectScript is helpful in knowing how to construct these expressions. In addition to the ObjectScript
tips in “The %val Variable” section, see Using Caché ObjectScript, particularly the “String Relational Operators” section
in the chapter “Operators and Expressions.”

2.4.5.2 National Language Settings for Aggregates

Zen reports supports National Language Settings (NLS) when calculating aggregates. NLS support is controlled by the
parameter AGGREGATESIGNORENLS, and the properties ignoreNLS, preprocessValue, and postprocessResult. The
default value of AGGREGATESIGNORENLS is true (1), and the default value of all the properties is null (****). In the
default case, the ignoreNLS property for each aggregate takes its value from AGGREGATESIGNORENLS. Itissetto 1,
and the report ignores National Language Settings. To apply NLS to aggregates in a report, set AGGREGATESIGNORENLS
to false (0). You can also control NLS processing on a per-aggregate basis by setting the value of ignoreNLS, which overrides
the value of AGGREGATESIGNORENLS.

Note: Numeric XSLT functions only honor the US locale. For this reason, an aggregate does not display properly if it
uses XSLT functions that have numeric floating point arguments, and National Language Settings that use commas
to separate decimal values.

When you create a report with the runtime mode set to DISPLAY (2), and Caché is using NLS, the input values used to
calculate the aggregate must be converted from their NLS format to a format that can be used by the COS code that does
the calculation. Once the aggregate has been calculated, it must be converted from the format produced by COS to a format
consistent with the National Language Settings in use.

Support for NLS is implemented by methods in the base aggregate class %ZEN.Report.aggregate. If AGGREGATESIG-
NORENLS is false (0), these methods pre-process values or post-process results according to the National Language Settings
in use. You can extend the base class and define whatever pre- and post-processing methods you need.

If the report is using NLS, and the value of preprocessValue, or postprocessResult is null (****), it is changed to 1 during
report generation. You can override this behavior by explicitly setting the value of either preprocessValue, or
postprocessResult to 1 or O. If the report is ignoring NLS, the value of these properties is ignored, and the report never
calls the methods that perform NLS processing.

All of the standard and shipped custom aggregates provided by Zen reports work transparently with NLS when AGGRE-
GATESIGNORENLS is false (0). If you need to define a custom aggregate, and the custom aggregate needs to work with
National Language Settings, use the aggregates defined in Zen reports as a template.

42 Using Zen Reports

Value Nodes

2.4.5.3 Built-in Aggregate Classes

The following is a list of built-in custom aggregate classes that you can specify using the <aggregate> class attribute when
the <aggregate> type is CUSTOM. The alternative to using these built-in classes is to create your own class, as described
in the section “Creating a New Aggregate Class.”

%ZEN.Report.Aggregate.Correlation

Returns the correlation coefficient between two sets of values. Returns an empty string if the denominator would
be zero.

This aggregate accepts a %L.ist of two sets of values as an argument. You can supply this argument using the
SLISTBUILD function and the %val variable with the <aggregate> expression attribute. For example:
<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""SampleCorrelation”
sql="SELECT AmountOfChocolateConsumed,AgeAtDeath
FROM Correlation.TestData'>
<aggregate type="'CUSTOM" class="%ZEN.Report.Aggregate.Correlation"
name="DeathByChocolate*”
expression="$LB(%val (""AmountOfChocolateConsumed') ,%val (""AgeAtDeath'))"
fields="AmountOfChocolateConsumed,AgeAtDeath® />
</report>

%ZEN.Report.Aggregate.CountDistinct

Returns the number of distinct values in a set of data, as opposed to a simple COUNT.

%ZEN.Report.Aggregate.Covariance

Returns the statistical covariance of the values processed. This is a measure of the degree to which two variables
change together.

This aggregate accepts a %L.ist of two sets of values as an argument. You can supply this argument using the
SLISTBUILD function and the %val variable with the <aggregate> expression attribute. For example:
<report xmlns="http://www. intersystems.com/zen/report/definition”
name="relationship" sql="SELECT x,y FROM Test.XYData'>
<aggregate type=""CUSTOM™ class="%ZEN.Report.Aggregate.Covariance"

name="covariance” expression="$LB(%val("x"),%val("'y'"))" fields="x,y" />
</report>

%ZEN.Report.Aggregate.LinearRegression

This custom aggregate class is not meant for displaying a value in Zen reports but is used internally by other linear
regression aggregates to calculate their aggregate values. The return value is a %L.ist with two elements that provide
the coefficients a and b of the linear equation that best approximates a graph of the relationship between the two
sets of input values x and y:

y=(@*x) +b

The input argument is a %L.ist of two sets of values that provide x and y in the linear equation. You can supply
this argument using the SLISTBUILD function and the %val variable with the <aggregate> expression attribute.
For example:
<report xmlns="http://www. intersystems.com/zen/report/definition”
name="xydata" sql="SELECT x,y FROM Test.XYData'>
<aggregate type=""CUSTOM" class="%ZEN.Report.Aggregate.LinearRegression”

name="linreg" expression="$LB(%val ("'x"),%val('y'"))" fields="x,y" />
</report>

%ZEN.Report.Aggregate.LinReglIntercept
See the description of %ZEN.Report.Aggregate.LinearRegression.

Using Zen Reports 43

Gathering Zen Report Data

This aggregate accepts a %L.ist of two sets of values x and y, and returns the coefficient b (the y-intercept value)
of the linear equation that best approximates a graph of the relationship between the values x and y:

y=(@@™*x) +b

%ZEN.Report.Aggregate.LinRegR2
Returns the coefficient of determination, which provides a measure of how well future outcomes are likely to be
predicted by the statistical model.

%ZEN.Report.Aggregate.LinRegSlope
See the description of %ZEN.Report.Aggregate.LinearRegression.

This aggregate accepts a %L.ist of two sets of values x and y, and returns the coefficient a (the slope value) of the
linear equation that best approximates a graph of the relationship between the values x and y:

y=(@*x +b

%ZEN.Report.Aggregate.LinRegVariance

Returns the statistical variance of the values processed for linear regression.

%ZEN.Report.Aggregate.Median

Returns the median of a set of numerical data, as opposed to a simple AVG (average). The median is a number
with half of the data set of greater value than it, and half of lesser value.

For a data set with an odd size, the median is a member of the data set. For a data set with an even size, the median
is a value halfway between two members of the data set.
%ZEN.Report.Aggregate.Mode

Returns the statistical mode (most frequent observation) of a set of data.

%ZEN.Report.Aggregate.StDev
Returns the standard deviation of the values processed. This is the unbiased standard deviation using Bessel’s
correction of n - 1 in the denominator rather than n.

%ZEN.Report.Aggregate.StDevP

Returns the biased standard deviation of a whole population of values provided.

%ZEN.Report.Aggregate.Var

Returns the statistical variance of the values processed. This is square of the unbiased standard deviation.

%ZEN.Report.Aggregate.VarP

Returns the biased statistical variance of a whole population of values provided.

2.4.5.4 Creating a New Aggregate Class

If you need a new type of aggregate, you can develop and use a custom aggregate class as follows:
1. Subclass %ZEN.Report.CustomAggregate

2. Provide a name for the aggregate:

Parameter XMLNAME = "‘nyaggr egat enane"

44 Using Zen Reports

Value Nodes

The name myaggregatename must be unique in the XML namespace.
3. If you need to provide parameters to the aggregate, define them as properties of the class.
4. Override the following methods:
* GetResult is invoked once all records have been processed to return the final value of the aggregate.

» ProcessValueis called sequentially on each record returned by the report or group query.

You may use the single-valued or multidimensional special variable %val inside these methods.
5. Save and compile the class as myPackage.myClassName

6. You can reference this aggregate in a report, using myaggregatename as the element name. You can pass parameters
to the aggregate as attributes. You do not need to provide the type or class attributes.

The following example creates two custom aggregate classes, called me.MultiDimAggregate andme.ParameterizedAggregate,
and uses them in a report.

Class me._MultiDimAggregate Extends %ZEN.Report.CustomAggregate

Parameter XMLNAME = "multidim®;

Property Count As %Integer [InitialExpression = 0];
/// Processes each new value

Method ProcessValue(ByRef pValue As %String) As %Status

{
it $e(pvalue('Name'™))="A" Set ..Count=..Count+1
it $e(pvalue('Home_State'))="A" Set ..Count=..Count+1l

/// Return the count of names and states that begin with "A"
Method GetResult() As %String

quit ..Count
3

The class me.ParameterizedAggregate uses the %ZEN.Report.Datatype.string datatype for the FieldToCount property. The
value of a property having this datatype must be the name of a field in the result set. This datatype supports the parameter
REPORTFIELD, which triggers special processing, feeding the value of FieldToCount into a subscript of the %val special
variable. The value of the field specified by FieldToCount is passed to %val as data at that subscript.

For other properties, use datatypes from %ZEN.Datatype package or other datatypes as desired.

Class me.ParameterizedAggregate Extends %ZEN.Report.CustomAggregate

Parameter XMLNAME = "mycountdistinct";

Property exclude As %ZEN.Datatype.string;

/// Array of values processed

Property Values As array Of %String;

/// Running count of distinct values processed

Property Count As %Integer [InitialExpression = 0];
/// The field you"re counting

Property FieldToCount As %ZEN.Report.Datatype.string;
/// Processes each new value

Method ProcessValue(ByRef pValue As %String) As %Status

if pvalue(..FieldToCount)=""" quit $$$0K
if $e(pvalue(..FieldToCount))=..exclude quit $$$0K
IT __.Values.GetAt(pValue(. .FieldToCount)) {
#; seen i1t already
} Else {
Do ..Values.SetAt(1,pValue(..FieldToCount))
Set ..Count=..Count+1

}

Quit $$$0K
}
/// Return the count of distinct values processsed
Method GetResult() As %String

Quit ..Count

Using Zen Reports 45

Gathering Zen Report Data

<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" sgl="select top 20 Name,Home_Street,
Home_City,Home_State From Sample.Person order by Home_State'>
<group name="State" breakOnField="Home_State'>
<group name="‘Person'>
<attribute name="Name" field="Name"/>
<attribute name="Street" field="Home_Street'/>
<attribute name="City" field=""Home_City"/>
<attribute name="State" field="Home_State' />
</group>
<aggregate name="countSomething" field="!_._Field" type="CUSTOM"
class="%ZEN.Report.Aggregate.CountDistinct" />
<mycountdistinct name="mycount" exclude="#($zcvt("a","u"))#" FieldToCount="Name"/>
<multidim name="mymultidim"” fields=""Name,Home_State" expression="%val"/>
</group>
</report>

This example report uses three aggregates. The first is a built-in custom aggregate class, see Built-in Aggregate Classes:

<aggregate name="countSomething"” field="!__Field" type="CUSTOM"
class="%ZEN.Report.Aggregate.CountDistinct" />

The second is an aggregate of the custom type defined in me.ParameterizedAggregate. Note that the value passed in the
exclude attribute is a Zen expression.

<mycountdistinct name="mycount" exclude="#($zcvt("a","u"))#" FieldToCount="Name'/>

The third is an aggregate of the custom type defined in me.MultiDimAggregate. Note that the value of the expression attribute
is %val . In this case, %val is passed to ProcessValue by reference. In other words, the aggregate passes .%val. This
gives the ProcessValue method access to the multidimensional array called %val.

<multidim name="mymultidim"” fields=""Name,Home_State" expression="%val"/>

2.5 DATASOURCE

Identifies an XML document that contains the data for the Zen report. The DATASOURCE value can be any of the following:
» The URI of any valid XML document. Relative URIs are handled with respect to the current URI.

» Afile containing a valid XML document. The file must reside in the directory specified in the CSP Files Physical Path
for the Web Application definition for the Zen report. For example, if the URI for the Zen report class is:

http://localhost:57772/csp/myNamespace/mine .MyReport.cls

Then the syntax for the DATASOURCE parameter is:

Parameter DATASOURCE="'data.xml";

And the file data.xml must reside in the directory specified as the CSP Files Physical Path. The default value for this
directory is: /CSP/myNamespace below the Caché installation directory

* Anempty string. In this case, the class generates its own XML document using the specification in its XData Report-
Definition block. If a Zen report class has both a non-empty, valid DATASOURCE string and an XData ReportDefi-
nition block, the DATASOURCE parameter takes precedence over the XData block.

» An XML document generated by another Zen report class in the same namespace. Use the SMODE=xm1 query param-
eter to specify that you want to use the XML output from that class, as follows:

Parameter DATASOURCE="MyApp.Report.cls?$MODE=xml"";

When a Zen report identifies a DATASOURCE, it ignores EMBEDXSL or SEMBEDXSL. You cannot use embedded
XSLT with a data source. The report property suppressRootTag can be useful with DATASOURCE if the data source
includes its own root tag.

46 Using Zen Reports

Including an XML Data Source

A user can override the current DATASOURCE setting for the report class by providing a $DATASOURCE parameter in
the URI when invoking the Zen report from a browser.

If you are invoking the report from the command line using the GenerateReport method, Zen reports looks for the data
source files in the same location as it does when the report is run in a browser.

If you want to override the class’s defined DATASOURCE value during this command sequence, you can set the report’s
Datasource property to the desired value, as in the following command line example:

zn ""SAMPLES"
set %request=##class(%CSP.Request) .%New()
set %request.URL = ""/csp/samples/datacurrent.xml"

set %request.CgiEnvs(''SERVER_NAME')="127.0.0.1"

set %request.CgiEnvs(''SERVER_PORT")=57777

set rpt=##class(sl.TimeLine) . %New()

set rpt.Datasource = "/csp/samples/datanew.xml"

set tSC=rpt.GenerateReport(*'C:\TEMP\timeline.pdf",2)

if "tSC do $system.Status.DecomposeStatus(tSC, .Err) write !,Err(Err) ;-
write !I,tSC

2.6 Including an XML Data Source

This section describes techniques that allow you to provide XML statements that contribute directly to the XML data source
for your Zen report. Topics in this section include:

e Writing XML Statements From a Class Method — Use the coding language of your choice.

e <call>— Includes XML generated by a called method and returned as a stream. Note: <call> can be used only in a
<report>, not in a <group>.

e <callelement> — Similar to <call>, but providing awareness of the data context where it is used.
* <include>— Includes literal XML statements from an XData block.

e <get>— Includes XML statements generated by the XData ReportDefinition block from another Zen report.

2.6.1 Writing XML Statements From a Class Method

You can write XML statements from a class method in the language of your choice, then reference this method from the
XData ReportDefinition block in the Zen report class using the call and callClass attributes on the top level <report> element.
In this case, there is no need for your XData ReportDefinition block to provide statements that generate an XML data
source. Instead, your XData ReportDefinition block consists of a single <report> element that provides a call and (optionally)
a callClass attribute.

The class method that writes out an XML data source can be in the same Zen report class as XData ReportDefinition, or it
can be in some other class. The following example is an ObjectScript method, but you could use MultiValue or Basic as
the language for this method:
ClassMethod CreateXML() {

WRITE 1I,"<MyExample>"

WRITE !,"some text for a text node"

WRITE 1I,"</MyExample>"
}

To use this method, the XData ReportDefinition block looks like the following example. If the method identified by the
call attribute is in the same class, the <report> element in needs to specify only the call attribute. Zen looks for a method
of this name in the same class:

Using Zen Reports 47

Gathering Zen Report Data

XData ReportDefinition
[XMLNamespace="http://www. intersystems.com/zen/report/definition’]

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name=""myReport" call="CreateXML">
</report>

If the method is in some other class in the same Caché namespace, Zen can find it if you supply a callClass attribute in
addition to call. The value of the callClass attribute must be the full package and class name of the class that contains the
call method. If not supplied, the default is the class in which the <report> or <group> appears. The callArgument attribute
supplies an argument to the method specified by the call attribute.

Both <report> and <group> support the call, callClass, and callArgument attributes. If you specify the call attribute on the
<report> element, the XML statements written by the class method comprise the complete source data for the report. If
you specify the call attribute on the <group> element, the class method provides a portion of the source data for the report,
positioned where the <group> element is located in the <report>.

2.6.2 <call>

The <call> element calls a method that returns a stream, and inserts the stream into the report definition at the place where
the call element occurs. The stream must be well-formed XML. This capability allows a report definition to incorporate
XML created by the XData ReportDefinition block of another report. It is useful if you want to create a report from separately
developed subreports, or if a report becomes too large to compile. The <call> element must be a direct child of <report>.
A called subreport cannot contain a <call> element.

The <call> element has the following attributes when used in the XData ReportDefinition block:

Attribute Description
hasStatus If true, the method returns a status value by reference in last parameter to method.
method A class or instance method which returns a stream. This method must be defined in the

Zen report. The stream is inserted into the report definition at the place where the call
element occurs.

The method can return the output of the XData ReportDefinition block of a subreport, or
it can perform other functions. If used with a subreport, the method must create a new
instance of the subreport, and use GenerateStream to return a stream. For methods
called from the XData ReportDefinition block, the mode argument to GenerateStream
is always 0 (XML), which is the default.

Important: A different <call> element is used in the XData ReportDisplay block.

For help resolving problems with the <call> element, see Troubleshooting the <call> element.

2.6.2.1 Example using the <call> element

The SAMPLES namespace provides a code example in the ZENApp package. The Zen report class
ZENApp -MyReportMainDeT.cls defines a report that uses the <call> element in the XData ReportDefinition block:
<report xmlns="http://www. intersystems.com/zen/report/definition”

name="myReport" runonce=""true'>

<call method="GetSub"/>
</report>

The method GetSub creates a new instance of MyReport. cls and generates a stream containing the output of the XData
ReportDefinition block. This stream is placed in the XML generated by MyReportMainDef.cls, at the point where the

48 Using Zen Reports

Including an XML Data Source

<call> element is placed. The second argument to Gener ateStream supplies the mode, which is always 0, indicating XML,
when you call the method from ReportDefinition.

Method GetSub() As %GlobalCharacterStream

set stream="""
set rpt=##class(ZENApp.MyReport) .%New()
i $isobject(rpt)

set tSC=rpt.GenerateStream(.stream,0)

quit stream

The section “XData ReportDefinition™ in the chapter “Gathering Zen Report Data” discusses the structure of the XML
generated by the XData ReportDefinition block. As this figure shows, the top-level element in the generated XML comes
from the name attribute of the report element. When the ReportDefinition block uses <call> to add XML from a subreport,
the top-level element of the subreport becomes an immediate child of the top-level element of the report.

The following figure illustrates how the report names of the main report and subreport appear in the generated XML.:
Figure 2-5: Main Report and Subreport Names in XML

¥XData ReportDefinition (from main report)
B[XMLNamespace = "http://www.intersystems.com/zen/report/definition™]
{
B<report xmlns="http://www.intersystems.com/zen/report/definition”
[name='Report']runonce="true">

¥Data ReportDefinition (from subreport)
B[XMLNamespace = "http://www.intersystems.com/zen/report/definition”
{
B<report xmlns="http://www.intersystems.com/zen/report/definition™
[name='myReport']
sgl="S8ELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp Report.Invoice
WHERE (Month(SzleDate) = 2} OR (? IS NULL)
ORDER BY SalesRep,Salelate™>

—<Report>,
—<myReport ranTime="2011-01-24 18:10:26" runBy="UnknownUser" author="BOB" month="ALL">
—<SalesRep name="Jack">
—<record id="214" number="8">
<date>2005-01-12</date>
<customer>MacroTech Inc. </customer=
</record>

<count>184</count>
<subtotal=985</subtotal>
<avg>5 353260869565217391</avg>
</SalesRep>
<grandTotal>5112</grandTotal>
</myReport>
</Report>

The XData ReportDisplay block in MyReportMainDef.cls formats the report, which produces a summary instead of
the detailed report produced by MyReport.cls. The name attribute of the <report> element must match the name used
in the ReportDefinition block. You must also add a <group> element to the ReportDisplay block, as an immediate child of
the <body> element. The name attribute of this <group> must match the name attribute of the <report> element of the
subreport.

The following figure shows how the name attribute of the <report> element refers to the XML element from the main
report, and the name attribute of the <group> refers to the XML element from the subreport. The ReportDisplay block

Using Zen Reports 49

]

Gathering Zen Report Data

resolves subsequent XPath references in the context of the Report/myReport structure, as described in section *“Groups,
Fields, and XPath Expressions.”

Figure 2-6: Main Report and Subreport Names in ReportDisplay

HXData ReportDisplay [XMLNamespace = "http://www.intersystems.cc
{

B<report zmlns="http://www.lintersystems.com/zen/report/display"”
[name='Repo:t']tit;e='HeLpEesk Sales Report' style='standard'>
B<document width="8.5in" height="11in" marginLeft="1.25in"

marginRight=S"1.25in" marginTop="1.0in" marginBottom="1.0in">
</document> from main report)
H<body> =€R£pmﬂ;#f4ﬁnm5umqm¢)
H<group |[name="myReport"> <myReport ranTime="2011-01-24 18:10:26" runB
B<header> —<SalesRep name="Jack">

—<record id="214" number="§">
<date>2005-01-12</date=
<customer>MacroTech Inc </customer>

</record>

2.6.2.2 Using the <call> element with parameters

When you use the <call> element, you can also pass parameters to the method which returns the stream. The mechanism
is similar to the use of parameters in the <report> or <group> sql property. The parameters are passed by reference in an

array. The array is indexed by the positive integers 1, 2, 3 ... n where n is the number of parameters. For example, the fol-
lowing report passes a parameter to the method MyMethod. The value of the parameter is supplied by the field SalesRep
in the resultset of the report:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name="Report" sql="SELECT SalesRep FROM ZENApp_Report.Invoice ">
<call method="MyMethod">

<parameter field="SalesRep"/>

</call>
</report>

When you use a parameter field or expression, one that requires the setting of a field, then the field used is from the last
row of the surrounding group or report, depending on where the call is nested. This is a subtle point that can cause unexpected
results.

The method MyM ethod adds the value of the parameter, in this case the name of the SalesRep, to XML it generates:

Method MyMethod(ByRef pParms) As %GlobalCharacterStream
{

s stream=##class(%GlobalCharacterStream) .%New()
do stream_Write(''<A12>")

do stream._Write(pParms(1))

do stream.Write(''</A12>")

quit stream

If the property hasStatus is true, the method can also send back a status. The status is passed back as the last

<report xmlns="http://www. intersystems.com/zen/report/definition”
name="Report” sql="SELECT SalesRep FROM ZENApp_Report.Invoice ">
<call method="MyMethod" hasStatus='""true'>

<parameter field="SalesRep"/>

</call>
</report>

Method MyMethod(ByRef pParms, Output pStatus) As %GlobalCharacterStream

s stream=##class(%GlobalCharacterStream) .%New()
do stream.Write(''<A12>")

do stream.Write(pParms(1))

do stream_Write(''</A12>")

Set pStatus=$$$ERROR(9999, " Deliberate Error'™)
quit stream

50 Using Zen Reports

Including an XML Data Source

2.6.3 <callelement>

Like <element>, <callelement> can take filter, expression, field and fields attributes. It is aware of the data context where
it is used, and repeats for each record in the calling SQL. Unlike <element>, it calls a method, passes the value of expression,
or the value of field if there is no expression, to the called method. Like the <call> element, <callelement> puts the output
of the method in the generated XML at the place where the element occurs.

When you use <callelement>, you are responsible for ensuring that the outputted stream contains properly-escaped values.
Be aware that the escaping selected by the escape attribute is applied to the data values before they are passed to the <cal-
lelement>'s method. So, if you are entering COS expressions or values, you may wish to set escape="passthru". You must
determine whether or not XML-escaping is desired on a case-by-case basis.

<callelement> has the following attributes.

Attribute Description

escape Browsers generally remove what they regard as excess white space from pages that
they display. Therefore, if you want to retain white space characters in the output you
must use the escape attribute. Note that the escape style is applied to the data values
before they are passed to the method specified for the <callelement>.

escape has the following possible values:

o "xml"— (Default) The text is XML escaped. This means that spaces are visible in
the XML source, but do not appear in the display unless you set the literalSpaces
attribute for the corresponding <item>. Zen reports strip out carriage return (ASCII
13) characters when processing the XML source data for a report.

e "none" — All characters are preserved regardless of whether or not the original text
contains spaces or newline characters. No XML escaping takes place, and all char-
acters are enclosed in CDATA syntax. Zen reports do not strip out carriage return
(ASCII 13) characters.

* "noneifspace" — Any text that contains line feed or space characters is enclosed in
CDATA syntax. Zen reports strip out carriage return (ASCII 13) characters when
processing the XML source data for a report.

e "passthru" — No XML escaping takes place. To keep the XML document valid, the
XML data inside the element must be valid. For example, every opening element
tag such as <foo> must be matched by a closing element tag </foo>. Zen reports
do not strip out carriage return (ASCII 13) characters.

expression Optional ObjectScript expression that can either be applied to the value of this item,
supplied as %val, or provide an arbitrary value for this item. If present, this value is sent
to the called method.

Also see “Value Node Attributes”.

field Name of the field (column) in the base query for this report that supplies the value for
this item. If this starts with a ! (exclamation point) then this is an expression that evaluates
to field name. If there is no expression, this value is sent to the called method.
Also see “Value Node Attributes”.

fields Name of fields (columns) in the base query for this report that supply the values for this
item.
Also see “Value Node Attributes”.

Using Zen Reports 51

Gathering Zen Report Data

Attribute Description

filter ObjectScript expression that may or may not evaluate to 0 (false). When the filter
expression evaluates to 0, Zen skips processing this <callelement>, and as a result, no
output from this <callelement> appears in the XML data for the report.

In the filter expression, you can refer to the values of fields from the resultset query using
the %val variable. You can use:

» Single-valued %val to represent the value of the field identified by field attribute for
this <element>

« Y%val subscripted with the case-sensitive names listed in the fields attribute for this
<callelement>

For details, see “The %val Variable” section.

A general knowledge of ObjectScript is helpful in knowing how to construct these
expressions. In addition to the ObjectScript tips in “The %val Variable” section, see
Using Caché ObjectScript, particularly the “String Relational Operators” section in the
chapter “Operators and Expressions.”

method Name of a method that returns an XML stream. The stream is included in the generated
XML at the location where the <callelement> element occurs.

You can use <callelement> to build a report using data from different Zen reports in a way that depends on the data. For
instance, you could examine the content of a date field, and send records to different subreports depending on the month,
so that the main report generates different XML for each month.

The output of the method must be well-formed XML. The method can call a Zen report with information from the field or
expression, but it does not have to. It can modify the data passed to it to produce well formed XML.

The following example uses the Cinema database in the SAMPLES namespace to illustrate <callelement>. The ReportDef-
inition block uses <callelement> to call a method once for each theater:

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""FromTheater"
sql="Select ID, TheaterName from Cinema.Theater">
<parameter expression="__1D"/>
<group name="Theater'>
<element name="ID" field=""ID" />
<element name="TheaterName" field="TheaterName"/>
<callelement method="MyMethod" field="ID"/>
</group>
</report>

The method MyMethod uses the subreport ZENrCal I . ShowByTime:

Method MyMethod(Theater) As %GlobalCharacterStream
{

s stream=##class(%GlobalCharacterStream) .%New()
s rpt=##class(ZENrCall.ShowByTime) .%New()

s rpt.Theater=Theater

s tSC=rpt.GenerateStream(.stream,0)

i $$$ISERR(LSC) set stream=""

quit stream

}

Note that the method sets the Theater property of the subreport to the current theater. The subreport finds films showing
at that theater, and their show times:

52 Using Zen Reports

Including an XML Data Source

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""FromShow"
sql="Select Theater, StartTime, Film from Cinema.Show
where (Theater = ?) order by StartTime"
>
<parameter expression="._Theater"/>
<group name="'Show">
<element name="StartTime" field="StartTime" />
<element name="Film" field="Film" />
</group>
</report>

The ReportDisplay block formats the resulting XML into a report that lists each theater and the films showing there sorted
by show time.

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""FromTheater">
<body>
<group name="Theater" pagebreak="true'>
<item field="TheaterName" width="2in""></item>
<group name="'FromShow"'>
<table orient="col" group="Show" class="table2">
<item field="StartTime">
<caption value="StartTime" width="1lin" />
</item>
<item field="Film">
<caption value="Film" width="3.5in" />
</item>
</table>
</group>
</group>
</body>
</report>

2.6.4 <include>

You can place a set of XML statements into an XData block in your Zen report class or in any other class, and then reference
that XData block from an XData ReportDefinition using the <include> element. Doing this inserts the contents of your
XData block into the generated XML data source for the report. The report property suppressRootTag can be useful with
<include> if the included data has its own root tag.

<include> has the following attributes:

Attribute = Description

class Package and class name of the class that contains the XData block to be included. If not supplied,
the default is the class in which the <include> element appears.

xdata Name of the XData block. This name is case-sensitive.

Suppose you add the following XData block to a class called My.Class.cls:

XData FloodInfo {

<Flood Type="Total">
<Central>38</Central>
<East>609</East>
<Midwest>210</Midwest>
<Northeast>70</Northeast>
<Total>927</Total>

</Flood>

You can then place an <include> statement in the XData ReportDefinition block of a class called Your.Class.cls as follows:

Using Zen Reports 53

Gathering Zen Report Data

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name=""root" sql="SELECT TOP 1 ID FROM InsurancePolicies'>
<group name="InsurancePolicies"
sql=""SELECT Location, InsuredValue
FROM InsurancePolicies
ORDER BY Location'>
<group name="Location" breakOnField="Location" >
<attribute name="Locationl" field="Location"/>
<aggregate name="TotalLocation" field="InsuredvValue" type="SUM" />
</group>
<aggregate name="Total" field=""insuredvalue™
type="'SUM" format="$fnumberval,",')"/>
<include class="My.Class" xdata="FloodInfo"/>
</group>
</report>

2.6.5 <macrodef>

You can place a set of ReportDefinition building-blocks into an XData block in your Zen report class or in any other class,
and then reference that XData block from an XData ReportDefinition using the <macrodef> element. You must also set
Parameter SUPPORTMACROS=1;. Doing this inserts the contents of your XData block into the ReportDefinition for the
report. The XML inserted by <macrodef> is interpreted as if it had been entered directly in the ReportDefinition.

<macrodef> has the following attributes:

Attribute Description

class Package and class name of the class that contains the XData block to be included. This attribute
is required.
xdata Name of the XData block. This name is case-sensitive.

Modify the report ZENApp.MyReport in the SAMPLES database in the following way. Create an XData block called Record:

XData Record {
<group name="‘record"
<attribute name="id" field="ID" />
<attribute name="number® field="Num® />
<element name="date" field="SaleDate" />
<element name="customer® field="Customer® />
</group
T

Then place a <macrodef> statement in the XData ReportDefinition block of ZENApp.MyReport as follows:

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name="myReport”
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report.Invoice
WHERE (Month(SaleDate) = ?) OR (? IS NULL)
ORDER BY SalesRep,SaleDate"
<parameter expression="._Month"/>
<parameter expression="__Month"/>
<attribute name="runTime" expression="$ZDT($H,3)" />
<attribute name="runBy" expression="$UserName® />
<attribute name="author® expression="._ReportAuthor® />
<aggregate name="grandTotal® type='"SUM" field="Num® />
<attribute name="month® expression="._GetMonth()" />
<group name="SalesRep” breakOnField="SalesRep*
<attribute name="name" field="SalesRep" />
<aggregate name="count® type="COUNT" field="Num® />
<aggregate name="subtotal® type="SUM" field="Num® />
<aggregate name="avg" type="AVG" field="Num® />
<macrodef class="ZENApp.MyReportMACRO" xdata='"‘Record" />
</group>
</report>

54 Using Zen Reports

Generating a Report from a Class Query

The XML output by the modified report exactly duplicates the XML output by the original report.

2.6.6 <get>

It is useful to be able to include the generated XML from one report in a group generated by another report. This way you
can combine the results of various Zen reports into a master report. This gives you flexibility and simplicity since each
report does one thing well. Use the <get> element to reference the XML statements generated by the XData ReportDefinition
block in another Zen report class.

<get> has the following required attributes.

Attribute = Description

host Host name, usually the host name for the Caché installation or localhost.
port Port number, usually the Web server port number for the Caché installation.
url Taken together, the host, port, and url attributes identify where to get a block of XML statements

to include in the XML data source for the report. The url string provides the remainder of a URI
string that begins with host and port.

The host, port, and url combination may produce any string that resolves to a URI. The purpose of this combination is to

identify a source of valid XML text. In some cases this may be a file, but usually the url completes the URI by providing

the application path name, package name, and class name of a Zen report class. The idea is for Zen to process this class in
XML output mode so that it generates XML statements. In this case the url value should also include the following query
parameters:

e $MODE=xml is required if the url value identifies a Zen report class. SMODE=xml specifies that the desired output
format is XML.

» $STRIPPI means “strip processing instruction” and a value of 1 means true. $STRIPPI=1 is appropriate if the XML
source identified by the url value begins with the usual <?xml version="1_0"?> processing instruction. This is
the case for XML output created by a Zen report class with SMODE=xml.

If you are using <get> to insert an XML block inside another XML block, it makes sense to strip out the <?xml
version="1.0"?> instruction. If you do not, Zen inserts it into the middle of the containing block when it performs
the text substitution indicated by the <get> element.

The following sample <get> statement identifies a Zen report class. Suppose this <get> statement appears in the XData
ReportDefinition block of Your.Class.cls. This <get> statement takes the full set of XML statements generated by My.Class.cls
and inserts them into the XML data source for Your.Class.cls:

<get host="localhost"

port=""57777"
url="/csp/ours/My.Class.cls?$MODE=xml& $STRIPPI=1""/>

2.7 Generating a Report from a Class Query

You can generate a complete Zen report class, including the XData ReportDefinition block that defines its XML data source,
by asking the Zen report generator to generate a Zen report class from an ordinary ObjectScript class that has a query
defined in it. The resulting Zen report has default layout and styling which you can adjust by editing the generated Zen
report class.

As an example, consider the Sample.Person class in the SAMPLES namespace. Sample.Person defines a query called
ByName that looks like this:

Using Zen Reports 55

Gathering Zen Report Data

Query ByName(name

As %String =

") As
%SQLQuery(CONTAINID = 1, SELECTMODE = "RUNTIME™)
[SqIName = SP_Sample_| By Name, SqlProc]

SELECT 1D, Name,

DOB, SSN

FROM Sample.Person
WHERE (Name %STARTSWITH :name)

ORDER BY Name
}

You could invoke the Zen report generator to create a Zen report class from Sample.Person by issuing the following sequence
of commands. The SET statement in the following example would normally appear all on one line. Here it appears on four
lines for typesetting purposes:

ZN “'SAMPLES™
Set Status=

##class(WZEN .Report.reportGenerator) .Generate("'myOwn.GeneratedReport",
"Persons',""Sample._Person",""ByName",1,

"GroupOption™,™

SortOption","SortBy", " SSN'")

If "Status Do $system.Status.DecomposeStatus(Status, -Err) Write !,Err(Err) ;-

Write !I,"Status=""_

Kill

Status

You can also use the Gener ateFor SQL () method to generate a Zen report class from an SQL query, by providing the query
instead of the name of a class that contains the query.

The Generate() and GenerateFor SQL () methods have the following arguments:
Argument Purpose Value Shown in the Example
className Package and class name for the generated Zen report myOwn . GeneratedReport
class.
reportName Name of the Zen report. This becomes the name of the | Persons
root element in the generated XML data for the report.
gueryClass Name of the ordinary ObjectScript class from which to Sample_.Person
generate the Zen report class. Used only by Generate.
sql String that provides the SQL query used in report Sample.Person
generation. Used only by GenerateForSQL.
gueryName Name of a query defined in the queryClass. ByName
sortandgroup If 1 (true) sorting and grouping code is generated and the | 1
next four arguments are used; when 0 (false) this does
not occur and you may omit the next four arguments. The
generated Zen report is much simpler without sorting and
grouping.
GroupOption Name of the option that determines grouping. GroupOption
SortOption Name of the option that determined sorting of detail SortOption
records.
SortBy Name of an internal option related to the SortOption. SortBy
InterSystems recommends a value of SortBy, as long
as no column in the query is named SortBy.
Uniqueld Name of a column in the query. The Zen report generator | SSN — the person’s Social
uses the value in this column to decide whether or not Security number
two rows are different for “COUNT DISTINCT” purposes.
If two records have the same value on this column they
are considered equivalent and are not counted as distinct.
56 Using Zen Reports

Restructuring the ReportDefinition XML

2.8 Restructuring the ReportDefinition XML

In some situations it is easier to take the XML provided by the ReportDefinition and transform it via XSLT. The resulting
XML becomes the input XML for the ReportDisplay block, which generates the report. The PDF, HTML, tiff, excel, xIsx,
and displayxlIsx output modes all support this type of XML transformation. The XSLT style sheet can call isc:evaluate.
You can define an XSLT style sheet that performs the XML transformation in the following ways:

1. Set xmistylesheet, which is a property of %ZEN.Report.reportPage. This property specifies a stream containing the
contents of the stylesheet.

2. Ifxmistylesheet is null, Zen reports looks for a method specified with the property getxmlstylesheet. This method returns
the contents of the stylesheet as a stream. You can define an xmlstylesheetarg whose ZENURL is $XMLSTYLESHEE-
TARG and this argument is passed to the getxmlstylesheet method.

3. If getxmlstylesheet is null, Zen reports looks for the parameter XMLSTYLESHEET. This parameter specifies an
absolute or relative URI that points to a location whose contents are an XML stylesheet. If you provide a relative URI,
the file must be located in csp/nanespace in the Caché installation directory. The file can be either an .xs1 file or
a .cspfile.

2.9 Gathering Data in the ReportDisplay Block

Zen reports charts and tables provide alternatives to gathering data in the ReportDefinition block. The following sections
describe these alternative approaches:

e “Providing Data for Zen Report Charts.”

e “Creating Tables with a Callback Method.”
e “Creating Tables from Class Queries”

e “Creating Tables with SQL”

e “Creating Tables with onCreateResultSet”

Using Zen Reports 57

Formatting Zen Report Pages

The previous chapter, “Gathering Zen Report Data,” explained how to generate and organize the XML data upon which
the Zen report is based. This chapter explains how to write a specification for displaying this data. The specification consists
of an XData ReportDisplay block in the Zen report class.

For the most part, styles in the XData ReportDisplay block are independent of the output format. You can specify the format
in the report class, in a browser URI string or at the Terminal command line. For details about invoking reports and speci-
fying the output format, see the chapter *“Running Zen Reports.”

Topics in this chapter include:

XData ReportDisplay

Finding Data with XPath Expressions

The id Attribute

Dimension and Size

International Number Formats

Default Format and Style

Pagination and Layout

Supported Fonts for Complex Scripts
Conditional Expressions for Displaying Elements
Conditional Expressions for Displaying Values
<report>

<xslt>

<section>

<pagemaster>

<masterreference>

<document>

<pageheader>

<pagefooter>

<pagestartsidebar>

<pageendsidebar>

Using Zen Reports 59

Formatting Zen Report Pages

* <body>

3.1 XData ReportDisplay

An XData ReportDisplay block contains a single <report> element. <report> contains additional elements that define the
report display. You can omit the XData ReportDisplay block entirely, if you provide a valid value for the HTML-
STYLESHEET and XSLFOSTYLESHEET class parameters. For details, see the section “Class Parameters for Zen
Reports.” If you provide both an XData ReportDisplay block and parameter values, the parameter values take precedence.

You can also omit XData ReportDisplay if you only plan to use this Zen report class to generate XML data files.

In order to write an XData ReportDisplay block you must understand XPath expressions. Many reference books and user
guides for XPath are available on the Web and through commercial publishers.

3.2 Finding Data with XPath Expressions

Elements in the XData ReportDisplay block specify the formatting of data on the page. The display elements use XPath
expressions to identify the data they are formatting. The following figure shows the XML data source on the right, and the
XPath expressions required to access the data on the left. The XML in this figure is that generated by the XData ReportDef-
inition block of zenApp.MyReport in the SAMPLES database. You can see the XML output if you run the report with the
output mode set to XML using SMODE. See the chapter, “Gathering Zen Report Data,” for more information on generating
XML from data in the Caché database.

This example uses a small subset of available XPath expressions. The XPath syntax used here is:
* /nodename — Selects the root element named nodename.
* /nodename/subnode — Selects all child elements of nodename named subnode.

* /nodename/subnode/@attrname — Selects all attributes of /nodename/subnode/ named attrname.

60 Using Zen Reports

Finding Data with XPath Expressions

Figure 3-1: XPath Expressions that Select Nodes in XML

fmyReport

SmyReport/@runTime
Imyreport/@runBy
ImyReport/@author

/myReport/@month
ImyReport/SalesRep/@name
JmyReport/SalesRep/record/@id
/myReport/SalesRep/record/date
/myReport/5alesRep/record/customer

fmyReport/5alesRep/count
fmyReport/SalesRep/subtotal
/myReport/SalesRep/avg

fmyRepeort/grandTotal

—sv<myReport

—_—perunTime="2014-05-23 14:25:48"
—runBy="UnknownlU=ser"
———pauthor="BOB"

—_—s-month="Jan" >

—sv<SalesRep name="Jack">

—_—y<record id="914" number="7">

—= Jdate>2005-01-14</date>

—— Jcustomers>Teralateral Inc.</customer>

rv<record id="933" number="1":
<date>2005-01-27</date>
<customer>Interlateral Group Ltd.</customer>
</record>
—_— <countx>2</count >
— <subtotal>8</subtotal>
—_— Cavga<) avg>
</ 5ale=sRep>
p<SalesRep name="Jen"»>...</SalesRep:
p<SalezRep name="Jill">...</SalesRep>
p<SalesRep name="Jim">...</S5alesRep>
»<Sale=Rep name="Joanne">...</5ale=sRep>
p<Sale=zRep name="John">...</S5ale=sRep>
—_— < grandTotal>147</grandTotals
</myReport>

The next figure continues the example by showing how you can use XPath expressions in an XData ReportDisplay block
to retrieve the data from the XML and format it in a report. The code shown here is from ZenApp.MyReport in the SAMPLES
database, edited for compactness. A detailed explanation follows the figure:

Using Zen Reports

61

Formatting Zen Report Pages

Figure 3-2: XPath Expressions Implicit in XData ReportDisplay Syntax

EX¥Data ReportDisplay [XMLWamespace = "http://www.intersysti
{
E<report
¥mlng="http://www.intersystems.com/zen/report/display"
fmyReport —=name="myReport' title='"HelpDesk Sales Report's>
B<body>
E<header>
<!l—-— BREPORT HEADER —->
<p class="bannerl">HelpDesk Sales Report</p>
B<table ocriesnt="row">
B<item value="Sales by Sales Rep">
<caption value="Title:"/>
</item>
fmyReport/@month ————= <item field="@month"” caption="Month:"/>
fmyReport/@author ——— <item fisld="fauthor" caption="Author:"/>

fmyreport/@runBy <item field="@ErunBvy" caption="Frepared By:"/>
fmyReport/@runTime <item field="@runTime" caption="Time:"/>
</table>
</header>
£l== MATN REPORT GROUP -->
fmyReport/SalesRep —=E <group name="SalesRep" pagebreak="true">
£l-- SALES REF INFQ -->
B<headar>

<line pattern="empty"/>
B<table orient="row" width="3.8in">
fmyReport/SalesRep/@name ————= <item field="@nams" caption="Saless Rep:"/>
/myReport/SalesRepfcount ————— <item field="count" caption="Number of Sales:"/>
fmyReport/SalesRep/subtotal ——— <item field="subtotal”
caption="Total Value of Sales:"/>
</table>
<!l=-- AVERAGE/DEVIATION -->
B<table orient="col" >
E<table orient="row" width="3in">
<item field="avg" caption="Average Sale:"/>
</table>
</table>
</header>

<!l-- TRABLE OF SALES -->
fmyReport/SalesRep/record—— B <table group="record” orient="col" oldSummary="false">
fmyReport/SalesRep/record/@id <item field="@id" caption="Sale ID"/>
/myReport/SalesRep/record/date <item field="date"™ caption="Date"/>
/myReport/SalesRep/record/customer ————= <item field="customer" caption="Customer"/>

B<item field="@number" caption="Amount">

<summary value=" "/><summary valus=" "/>
<summary value=" "/><summary valus=" "/>
<summary field="subtotal"/>
</item>
<ftable>
</group>
<! FOOTER -

B<table orient="row" class="tablel"™ width="2.5in">
fmyReport/grandTotal —— <item field="grandTotal" caption="Grand Total:™ />
</table>
</body>

</report>
}

¢ The name attribute of the top-level <report> element provides the root node for all other XPath expressions in the
report. In this example, the value of the attribute is:
myReport

All other XPath expressions in the report are evaluated in the context of this root node.

62 Using Zen Reports

Finding Data with XPath Expressions

» Inside the <body>, the first <table> contains <item> elements whose field attributes provide second-level node names
that use the XPath syntax for attributes, for example:

@month

Evaluated in the context of the root node, the effective expression here is:
/myReport/@month

This identifies the data value of the month attribute of <myReport> in the XML.

* The <group> element adds a level of hierarchy. Its name attribute provides the second-level node name for all XPath
expressions within that <group>. The value is:

SalesRep
Evaluated in the context of the root node, the effective expression is:
/myReport/SalesRep

This identifies all the <SalesRep> elements which are children of <myReport>. <SalesRep> is a container for attributes
and elements.

* The first <table> inside the <group> container contains several <item> elements.
— The first <item> element has a field attribute value that identifies an attribute:
@name
Evaluated in the context of the root and the group nodes, the effective expression is:
/myReport/SalesRep/@name
This identifies the data value of the name attribute of <SalesRep>, a child of <myReport>.
— The next two <item> elements have field attribute values that identify elements. For example:
count
Evaluated in the context of the root and the group nodes, the effective expression is:
/myReport/SalesRep/count
This identifies the data value of the <count> element, a child of <SalesRep>, which is in turn a child of <myReport>.
» The second <table> inside the <group> container contains a group attribute that identifies a node in the XML. The
value is:
record
Evaluated in the context of the root node and the group, the effective expression is:
/myReport/SalesRep/record

This identifies all the <record> elements which are children of <SalesRep>. <record> is a container for attributes and
elements. The items in this table have field attributes that identify attributes and elements in the <record> container.
They are evaluated in the full context established at this point, resulting in effective XPath expressions like:

/myReport/SalesRep/record/date

* The last <table> follows the closing </group> so it is not a contained by the <group>. This <table> contains an <item>
element whose field attribute provides a node name:

grandTotal
Evaluated in the context of the root node, the effective expression is:

/myReport/grandTotal

Using Zen Reports 63

Formatting Zen Report Pages

This identifies the data value of the <grandTotal> element, a child of <myReport>.

3.3The id Attribute

Every element in the XData ReportDisplay block supports the id attribute. If you set a value for an element’s id attribute
in XData ReportDisplay, you can later access the element programmatically on the server side before displaying the report.

To do this, make your server-side code call the class method % GetComponentByl d(id) to retrieve a pointer to the object.
Then you can access the properties of the object to change them as needed. This can be especially useful to make last-
minute adjustments to the value of the content property, whose value is the text contents of elements that contain text, such
as <link>, <inline>, <p>, or <write>.

For example, suppose a Zen report class has this XData ReportDisplay block:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""myReport'>
<html>
<write id="Al"/>
<write id="A2"/>
<write i1d="A3"/>
</html>
</report>

An OnAfter CreateDisplay() method in this class could adjust the values of these <write> elements prior to displaying
them:

ClassMethod OnAfterCreateDisplay()
{

set writel=_ _%GetComponentByld(*"Al™")

set write2=. _.%GetComponentByld(''A2'")

set write3=..%GetComponentByld(""A3"")

set writel.content="<hl>Hello</h1>"

set write2.content=""<hl1>Hello "_%report.Month_"</h1>"

set write3.content="<hl>Hello "_%report.GetMonth()_"</h1>"

}

For details about callback methods like OnAfter CreateDisplay(), see “Executing Code Before or After Report Generation”
in the chapter *“Building Zen Report Classes”.

3.4 Dimension and Size

An XData ReportDisplay block allows you to specify sizes (widths, heights, lengths, etc.) in a variety of units, just as you
would in HTML or XSL-FO syntax. "2in", "5¢cm", "12px", "14pt", "3em", or "75%" are all valid formats for length values
in Zen reports. This chapter uses the term HTML length value to describe length values that use these formats.

Generally, Zen measures percentages with respect to the parent container for the element whose size is being specified as
a percentage. In Zen report tables, using percentage values to specify proportional column widths works only for PDF
output. Percentages do not work as width specifications for tables in Zen report HTML output.

If you are taking advantage of any automatic Zen calculations for portions of your page layout, do not use "%", "em", or
"px" in the HTML length values that you provide for height, margin, or extent attributes in your <document> element.

64 Using Zen Reports

International Number Formats

3.5 International Number Formats

Rather than the default North American number format (76,543,212,345.67), it is possible to set output conventions to a
European number format (76.543.212.345,67) or any other alternative that you prefer. To accomplish this, you need to add
a simple XSLT instruction to your Zen report as described in the *<init>" section, later in this chapter.

3.6 Default Format and Style

If you set sty le=""none"" for the top-level <report> element in XData ReportDisplay, the standard Zen stylesheet is
ignored and there are no predefined styles for Zen reports. However, if you omit the style attribute for <report>, your reports
use the standard stylesheet for Zen reports. This stylesheet is a collection of predefined style classes. The appendix “Default
Format and Style” describes the default styles for HTML and XSL-FO output in detail.

3.7 Pagination and Layout

Zen reports creates report output in both HTML and PDF. When you produce reports in PDF, you may want to control
how the report is formatted on the printed page. The section “The <document> element and Page Layout” describes how
to use the <document> element to format Zen reports for PDF output, and includes a description of some of the underlying
XSL-FO syntax. For many reports, the <document> element, with the <pageheader> <pagefooter>, <pagestartsidebar>,
and <pageendsidebar> elements, provides sufficient formatting capability.

Zen reports supports additional XSL-FO features that provide additional formatting capability. The following sections
describe features you can use if you need more sophisticated report formatting than you can achieve using <document>.
These advanced formatting capabilities include:

e “Conditional Page Margins and Regions”

e “Resetting the Page Count”

e “Multiple Display Layouts”

» “Keeping Display Components Together”

e “Conditionally Including a Group’s Elements”

Zen reports also supports the XSL-FO writing-mode attribute, which is necessary for creating appropriate page layout for
languages such as Arabic and Hebrew which are written in a right-to-left direction. See the section “Writing Mode™”.

3.7.1The <document> element and Page Layout

The Zen reports <document> element lets you set the values of XSL-FO attributes that control the layout of PDF output
pages.

You can omit <document> element from a <report>, even if you intend to produce PDF output. The result is a default PDF
page layout: an 8.5 x 11 inch page, in portrait mode, with 1.25 inch left and right margins and 1 inch top and bottom margins.
If you want to include <class>, <cssinclude>, and <xslinclude> elements to define styles, you must provide a <document>
element to contain them, even if you are not providing any <document> attributes to define page layout. If you include
more than one <document> element in the <report>, Zen uses the contents of the first <document> element and ignores
any others.

Using Zen Reports 65

Formatting Zen Report Pages

To understand how <document> attributes work, you must first understand XSL-FO. There are excellent sources of XSL-
FO information available on the Web and in bookstores. However, a few basic elements and concepts are critically important
and deserve a brief overview here.

3.7.1.1 XSL-FO Syntax for Page Layout

<fo:simple-page-master> defines a page layout template. Zen reports adds a single <fo:simple-page-master> element to
the generated XSL-FO, which applies the same layout to all pages in the report. There are additional Zen reports elements
that allow you to add multiple <fo:simple-page-master> elements to a report, providing multiple layouts in a single report.
See the section *“Multiple Display Layouts”.

The following <fo:simple-page-master> attributes define basic properties of the page layout:

e page-height: Sets the height of the page. For printing on US letter size paper, this value is 11 inches.

e page-width : Sets the width of the page. For printing on US letter size paper, this value is 8.5 inches.

* margin-top: Sets the margin at the top of the page.

* margin-bottom: Sets the margin at the bottom of the page.

» margin-left: Sets the margin at the left of the page.

* margin-right: Sets the margin at the right of the page.

e margin: Sets all four margins to the same value.

The page size attributes and the page margins together define the area of the page that contains printed content. For example,
a 8.5 by 11 inch page with a 1 inch margin on all four sides, defines a print area of 6.5 by 9 inches. This area is described

by the element <fo:region-body>, which is a child element of <fo:simple-page-master>. The <fo:region-body> has its own
margin properties, which define the area within the <fo:region-body> where the printed content of the body region is placed:

* margin-top: Sets the margin at the top of the region-body.

e margin-bottom: Sets the margin at the bottom of the region-body.
e margin-left: Sets the margin at the left of the region-body.

* margin-right: Sets the margin at the right of the region-body.

» margin: Sets all four margins to the same value.

Four additional child elements of <fo:simple-page-master> can be used to place content in other areas of the region-body:

» <fo:region-before>: Places content before the region-body content. On a page in portrait orientation, this is a page
header.

» <fo:region-after>: Places content after the region-body content. On a page in portrait orientation, this is a page footer.

» <fo:region-start>: Places content on the side of the region-body content where reading of that content starts. On a page
in portrait orientation, formatted for a language read left to right. this is a left sidebar.

» <fo:region-end>: Places content on the side of the region-body content where reading of that content ends. On a page
in portrait orientation, formatted for a language read left to right. this is a right sidebar.

The extent property determines the width of <fo:region-start> and <fo:region-end>. Their height is the is the height of
<fo:region-body>. The width of <fo:region-before> and <fo:region-after> is the distance between <fo:region-start> and
<fo:region-end>. Their height is determined by the extent property. Content printed in these regions occupies space allocated
for it by the margin attributes of <fo:region-body>. For this reason, the margins applied to <fo:region-body> must be at
least as large as the extent attribute of the corresponding region. If they are not, the printed content can overlap.

66 Using Zen Reports

Pagination and Layout

The following diagram shows how various XSL-FO elements and attributes shape the layout of a PDF output page in portrait
mode. Note the following points about this diagram:

» The image represents an 8.5 by 11 inch page.

» The gray area represents the <fo:region-body> area of the page. Its dimension are determined by the margins set on
<fo:simple-page-master>.

e The <fo:region-body> area also has margins, represented by the red lines in this diagram. These margins define the
portion of <fo:region-body> that contains content.

» The <fo:region-*> areas are arranged within the <fo:region-body>. The distance these areas extend into the region-
body area is determined by their extent properties.

* For the <fo:region-before> element, the diagram shows how the region-body margin and the region-before extent
interact. You can see that the margin must be at least a large as the extent, or else content in <fo:region-before> overlaps
with content in <fo:region-body>

Using Zen Reports 67

Formatting Zen Report Pages

Figure 3-3: XSL-FO Page Layout in Portrait Mode

margin-top

T region-before T
region-body margin-top region-before extent

| |

Content in the region-body
appears here.

margin-left
region-start

region-end
margin-right

region-after

margin-bottom

The next diagram shows the same page layout, with orientation=""landscape" or referenceOrientation="90".
Note the following points about this page layout:

e The page has rotated 90 degrees clockwise, so that the top edge is now at the right.

» The before, after, start, and end region elements are repositioned so that they maintain their relationship to the content
in the body region.

68 Using Zen Reports

Pagination and Layout

* The page margins are not repositioned.

Figure 3-4: XSL-FO Page Layout in Landscape Mode

margin-left

T T

region-body margin-top region-before region-before extent

l !

L

Content in the region-body
appears here.

margin-bottom
region-start
region-end
margin-top

region-after

margin-right

3.7.1.2 <document> Attributes for Page Layout

You use attributes of the <document> element in a Zen report to set attribute values for <fo:simple-page-master> and its
child elements in the generated XSL-FO stylesheet that Zen uses to transform the Zen report into PDF output format. The
table of attributes in the section “<document> " describes these attributes in detail, including which XSL-FO attribute
they control. The following diagram provides a visual overview of how <document> attributes control page layout:

Using Zen Reports 69

Formatting Zen Report Pages

Figure 3-5: <document> Attributes for Page Layout in Portrait Mode

margin-top

T <pageheader:> T
headerheight regionBeforeExtent

L |

-
S
=
-
e
3
=
o
g
L A
o ©
A3 A s
S S . g s
= b Content in the <body> (5 3
= £ appears here. < =
m j -
E 2 1) E
8 2
W W
=
o
L]
T
1]
g—
[}
E
E

<pagefooter>

margin-bottom

Note the following points:

» <pageheader>>, <pagefooter>, <pagestartsidebar>, and <pageendsidebar> place content in <fo:region-before>,
<fo:region-after>, <fo:region-start>, and <fo:region-end>

70 Using Zen Reports

Pagination and Layout

» headerHeight and footerHeight supply the top and bottom margin values for <fo:region-body>
» regionBeforeExtent and regionAfterExtent supply the extent values for <fo:region-before> and <fo:region-after>
» startSidebarHeight and endSidebarHeight supply the left and right margin values for <fo:region-body>

» regionBeforeExtent and regionAfterExtent supply the extent values for <fo:region-before> and <fo:region-after>

The following <document> element generates a page layout with a 2.5 inch header, a 1.5 inch footer, a region-after with
a 1 inch extent, and a region-before with a 2 inch extent:

<document
width="8.5in" height="11in"
marginLeft="1in" marginRight="1.5in"
marginTop="1.25in" marginBottom="1.0in"
footerHeight="1.5in"
headerHeight=""2.5in"
regionAfterExtent=""1in"
regionAfterColor="silver"
regionBeforeExtent="2in"
regionBeforeColor="silver"
orientation="landscape" />

It generates the following XSL-FO page layout definition:

<fo:simple-page-master master-name="main"
margin-right="1_.5in" margin-left="1in"
margin-top="1.25in" margin-bottom="1_.0in"
reference-orientation="0"
page-width="8.5in" page-height="11in">
<fo:region-body margin-bottom="1_5in" margin-top="2._.5in"/>
<fo:region-before extent="2in" display-align="inherit"
background-color="silver"/>
<fo:region-after extent="1in" display-align="after"
background-color="silver"/>
</fo:simple-page-master>

The XSL-FO page layout definition produces a page that looks like this:

Using Zen Reports 71

Formatting Zen Report Pages

Figure 3-6: Example Page Layout

HelpDesk Sales Report

Title:Sales by Sales Rep
Maonth:ALL
Author:BOB
Prepared By:Unknownlser
Time:2011-12-15 16:45:14

Sales Rep: Jack
Number of Sales: 10
Total Value of Sales: 49.00

Avarage Sale: 4 800

I Sale ID Date Customer Amount
1 obo 2005-01-13 BloSonics Inc 6.00
2 338 2005-01-23 KwalData.com 2.00
3 858 2005-01-23 SynerDynamics.com 4.00
d B96 2005-01-27 MediDynamics LLC. 1.00
5 102 2005-02-01 CompuMatix Holdings Inc. 8.00
3] 447 2005-02-01 MataCalc Group Lid. 10.00
T 679 2005-02-01 Hypermo.com 9.00
8 47 2005-02-05 MetaComp Corp. 6.00
9 526 2005-02-05 Compulet Media Inc. 1.00
0 778 2005-02-07 MegaSys Inc. 1.00
Grand Total:43

For an important note about viewing design changes as you work on PDF layout, see the introduction to the <document>
section.

3.7.2 Conditional Page Margins and Regions

You may need to create a report that has different page margins or regions for the first page, last page, and intervening
pages of the report. To achieve this, you add a <pagemaster> element as an immediate child of <report>, and add a <mas-
terreference> element for each page position in the report that needs different formatting. The <masterreference> element
contains the <document>, <pageheader> <pagefooter>, <pagestartsidebar>, and <pageendsidebar> elements that would
otherwise be direct children of <report>.

72 Using Zen Reports

Pagination and Layout

The following example is based on the report ZENApp.MyReport in the SAMPLES namespace. Given the ReportDefinition
section as defined in ZENApp.MyReport, the following ReportDisplay creates a report that has a header height of 2 inches
on the first page, and .75 inches on subsequent pages. The report header information, which should appear only on the first
page, is located in the <masterreference> element for the first page. The key steps are:

» Add a <pagemaster> element to the report. It must be an immediate child of <report>.

» Add a<masterreference> element for each separately formatted section of the report. In this example, two <masterref-
erence> elements are required, one for the first page, and one for the remaining pages.

e The <masterreference> for the first page sets the properties masterReference and pagePosition to “first”. masterReference
could have any string value, but “first” is a useful mnemonic.

» The <masterreference> for the first page contains a <document> element with headerHeight specified as “2.0in”,
which provides a larger header on the first page to accommodate the title and general information.

» It also contains a <pageheader> element that contains the title banner, and the table of general information about the
report.

e The <masterreference> for the second page sets both masterReference and pagePosition to “rest”. masterReference
could have any string value, but “rest” is a useful mnemonic.

» The <masterreference> for the second page contains a <document> element with headerHeight specified as “.75in".
This is sufficient for the single line header containing “Sales Report” and the page numbers. Note that this configuration
puts page numbers only the pages identified as “rest”.

The following code sample provides the initial part of the ReportDisplay section for a report that formats the first page
differently from the following pages:

<report xmlns="http://www. intersystems.com/zen/report/display"
name="myReport” title="HelpDesk Sales Report® style="standard">
<pagemaster>
<masterreference masterReference="first" pagePosition="first'>
<document width="8.5in" height="11in" marginLeft="1.25in"
marginRight="1.25in" marginTop="1.0In"
marginBottom="1.0in" headerHeight="2._0in"></document>
<pageheader>
<p class="bannerl”>HelpDesk Sales Report</p>
<fo><line pattern="empty'/><line pattern="empty'/></fo>
<table orient="row" width="3_.45in" class="tablel">
<item value="Sales by Sales Rep" width="2in">
<caption value="Title:" width="1_.35iIn"/></item>
<item field="@month" caption="Month:"/>
<item field="@author" caption="Author:"/>
<item field="@runBy" caption="Prepared By:''/>
<item field="@runTime" caption="Time:"/>
</table>
</pageheader>
</masterreference>
<masterreference masterReference="rest" pagePosition="rest">
<document width="8.5in" height="11in" marginLeft="1_25in"
marginRight="1.25in" marginTop="1.0in"
marginBottom="1.0in" headerHeight="_.75in"></document>
<pageheader>
<table orient="col" layout="fixed" width="6in">
<item style="text-align:left"” value="Sales Report" />
<item style=""text-align:right" special="page-number-of" />
</table>
</pageheader>
</masterreference>
</pagemaster>
<body >
<I1-- MAIN REPORT GROUP -->
<group name="SalesRep" pagebreak="true" line="1px">

</gr6up>
</body>
</report>

Using Zen Reports 73

Formatting Zen Report Pages

3.7.3 Resetting the Page Count for Each Element of a Group

You may need to create a report that displays page numbers, and starts page numbering from 1 for each element of a group.

The following example is based on the report ZENApp.MyReport in the SAMPLES namespace. Given the ReportDefinition
section as defined in ZENApp.MyReport, the following ReportDisplay creates a report that starts page numbering at 1 when
the name of the sales representative changes, and determines the total page count of the report section for each sales person.
The key steps are:

» Inthe <report> element, set the attribute primaryGroup to the name of the group defined in the ReportDisplay that
contains the elements you want to use to restart numbering. In this case, the group is “SalesRep”. See this line in the
following code sample:

<report xmIns="http://www. intersystems.com/zen/report/display"
name="myReport® title="Sales Report® primaryGroup="SalesRep'>

;/}ebort>

» Use one of the "-with-xpath" values of the <item> attribute special to add page numbers to the report. These values
tell the report that the page numbering is going to be controlled by the XPath value provided in the field attribute of
this <item> element. This example uses "page-number-of-with-xpath", and the XPath value is “@name”, so page
numbering starts at 1 when the value of “@name” changes. See this line in the following code sample:

<item field="@name" special="page-number-of-with-xpath" width="1in"/>

» Inthe <body> element, set the attribute genLastPageldOn to the XPath value that controls numbering. This is the same
XPath expression used in the field attribute in the previous step. See this line in the following code sample:

<body genLastPageldOn=""@name"">
é/ﬁody>

* Inthe <group> element whose name matches the group set as primaryGroup in the <report> element, set the attribute
primaryGroup to “true”. This boolean value states that this is the ReportDisplay group that contains the elements that
control numbering. See this line in the following code sample:

<group name="SalesRep" primaryGroup=""true'>

é/éréup>

The following code sample provides the entire ReportDisplay section for a report that restarts page numbering for each
sales representative:

<report xmlns="http://www. intersystems.com/zen/report/display"
name="myReport” title="Sales Report" primaryGroup="SalesRep'>
<document marginBottom="_.75in" marginLeft="_5in"
marginRight="_5iIn" marginTop="_5iIn"
height="11in" width="8.5in"/>
<pagefooter>
<line pattern="solid" thickness="1px" width="7.5in"/>
<table orient="col" width="7.5in" layout=""fixed">
<item field="@name" width="6in"/>
<item value="Page:" width="_.5in"/>
<item field="@name" special="page-number-of-with-xpath" width="1in"/>
</table>
</pagefooter>
<body genLastPageldOn=""@name"">
<!-- MAIN REPORT GROUP -->
<group name="SalesRep" primaryGroup=""true'>
<Il-- SALES REP INFO -->
<header>
<table orient="row" width="3in" class="table2">
<item field="@name" width="1in">
<caption value="Sales Rep:" style="width:2in"/></item>
<item field="count'">
<caption value=""Number of Sales:" /></item>
<item field="subtotal" formatNumber="###, ### ,##0.00;(#)">
<caption value="Total Value of Sales:" /></item>

74 Using Zen Reports

Pagination and Layout

<item field="avg" formatNumber="###,### ,##0.000; (#) ">
<caption value="Average Sale:" /></item>
</table>
<line pattern="empty" thickness="1px" width="7.5in"/>
</header>
<I-- TABLE OF SALES -->
<table orient="col" group="record" width="6in" class="table4" altcolor="#DFDFFF'>
<item special="number" width="_45in" style="color: darkblue;">
<caption value="#" /></item>
<item field="@id" width="_7in" style="border:none;padding-right:4px">
<caption value="Sale ID"/></i1tem>
<item field="date" width="1.5in" style="padding-left: 4px;">
<caption value="Date"/></item>
<item field="customer"™ width="2.65in">
<caption value="Customer"/></item>
<item caption="Amount" width="_7in" style="text-align:right;"
Ffield="@number" formatNumber="###,### ,##0.00; (#) ">
<caption value="Amount'/>
<summary field="subtotal" style="font-weight:bold;text-align:right"”
FformatNumber="### , ### ,##0.00; (#) " /></item>
</table>
</group>
</body>
</report>

3.7.4 Multiple Display Layouts

The <section> element lets you specify multiple report formats in a single report. <section> must be an immediate child
of <report>, and shares many characteristics with <report>. The SAMPLES namespace provides a Zen report class called
PageLayouts.cls in the ZENReports package that illustrates the use of multiple display layouts in a single Report. This
example first defines an XData ReportDefinition block that produces XML data in sections:

» <Sales> organizes information by SalesRep.
* <ByNumber> organizes sales data by number of sales.

» <ByDate> organizes sales data by date of sale.

The XData ReportDisplay block uses <section> elements to provide different page formatting for each data section. The
following discussions describe the sections of the report:

3.7.4.1 The <Sales> Section

The display section for the <Sales> element in the generated XML is similar to the report that resets the page count, described
in the section Resetting the Page Count for Each Element of a Group, but there are some differences worth noting.

The key points are:

e Thisis one of several <section> elements in the report. The <section> element is similar to <report> but requires a
string value for the attribute sectionName. This string ensures unique values for XSL-FO tags generated in this section.
In this example, the value is “Sales”, which helps identify this section. Each section in this report sets a value for
primaryGroup, which specifies XML <group> formatted by this section. Setting primaryGroup makes it possible to
restart page numbering for each element in the primary group. The primary group is “SalesRep” for this report section,
but because <SalesRep> is contained in <Sales>, you need to specify “Sales/SalesRep”. See this line in the sample
report:

<section name="myReport" sectionName="Sales" primaryGroup="Sales/SalesRep'>
</section>

» A <pagemaster> element contains <masterreference> elements that specify page formatting. The value of the attribute
pagePosition indicates the page or pages the <masterreference> is formatting, in this case, firstand rest. See these
lines in the sample report:
<masterreference masterReference="first" pagePosition="first">

</masterreference>

Using Zen Reports 75

Formatting Zen Report Pages

and

<masterreference masterReference="rest" pagePosition="rest">

</masterreference>

» Inside each <masterreference> element, the same <document>, <pageheader>, and <pagefooter> elements you use to
format pages in a <report>, format the pages controlled by the <masterreference>. This part of the example uses only
<document> and <pageheader>.

Note that because the primaryGroup you set in the <section> establishes the XML context as Sales/SalesRep, you
must specify an XPath from the root to access attributes of myReport or Sales. See these lines in the sample report:

<item field="/myReport/Sales/@month" caption="Month:" />

<item field="/myReport/@author' caption="Author:" />

Note also that page numbering uses one of the “*-with-xpath” values of the <item> attribute special. This generates
page numbers dynamically in response to changes in the value of the field attribute. In this example, field is set @name,
which is an attribute of the primary group, <SalesRep>. This report section restarts numbering at 1 each time the value
of SalesRep/@name changes. See this line in the sample report:

<item

style=""text-align:right"”
special="page-number-of-with-xpath"
field="@name" />

» Total page count for each section is controlled by the genLastPageldOn value @name.

<body genLastPageldOn="'@name"">
;/Bo&y>

3.7.4.2The <ByNumber> Section

The display section for the <ByNumber> element in the generated XML is similar to the section for <Sales>. Some
important differences are:

» The primaryGroup for this section is <ByNumber>. This means that page numbering starts at one at the beginning of
the <ByNumber> group in the generated XML, and continues to the end of the group, rather than restarting for each
element of the group as the report for the <Sales> section did.

» The <pagemaster> element contains <masterreference> elements for the First, last, and rest page positions.

» The layouts for the last, and rest page positions do not include a page header. Note that the <pageheader> element
must be present, even if it is empty. This is also true for the <document> element.
» Page numbering is controlled by the XPath value NumbRecs, which is an element of the primary group <ByNumber>.
<item
style=""text-align:right"

special="page-number-of-with-xpath"
Ffield=""NumbRecs" />

» Total page count is controlled by the genLastPageldOn value NumbRecs.

<body genLastPageldOn=""NumbRecs">
</body>

76 Using Zen Reports

Pagination and Layout

3.7.4.3The <ByDate> Section

The display section for the <ByDate> element in the generated XML is similar to the section for <ByNumber>. Some primary
difference is that no page breaks are generated within the section, so the keepCondition attribute of <foblock> keeps the
table containing the sales date together with the table containing the corresponding list of sales. The keepCondition attribute
is discussed in Keeping Display Components Together.

3.7.5 Keeping Display Components Together

Sometimes you want to ensure that pieces of information in a report, for example, the title of a table and the table it refers
to, are not separated by a page break. The XSL-FO standard provides properties of the <fo:block> object, such as keep-
together, keep-with-next, and keep-with-previous, that let you control page breaks. The Zen reports element <foblock> and
the keepCondition attribute let you use these features in Zen reports.

The <foblock> element simply groups elements. You can use the keepCondition attribute to specify a keep condition for
the contents of the block.

The following example is based on the report ZENApp.MyReport in the SAMPLES namespace. This example assumes you
do not want to insert a page break for each new “SalesRep”, but you also do not want a page break in the table of “SalesRep”
information. You can put the <header> element in an <foblock> with the keepCondition set to

keep-together _within-page="always”, which forces the table onto a new page if it would otherwise span the
page break.

<group name="SalesRep" line="1px">

<!-- SALES REP INFO -->
<foblock keepCondition="keep-together.within-page="always®'>
<header>
<line pattern="empty"/>
<table orient="row" width="3.8in" class="table2">
<item
field="@name" width=""2in""><caption value="Sales Rep:" width="2in"/>
</item>
<item
field="count''><caption value="Number of Sales:'/>
</item>
<item
field="subtotal' formatNumber="###,###,##0.00; (#) ">
<caption value="Total Value of Sales:"/>
</item>
</table>
<line pattern="empty'/>

<1-- AVERAGE/DEVIATION -->
<table orient="col" width="6in"
style="border:thin solid gray;" class="invisible">
<table orient="row" width="3iIn"
style=""margin-bottom:lem;padding-left:0;"
class="tablel"™ align="left">
<item
field="avg" class="tablel"
style="margin-bottom:lem;padding-left:3px;" width="1.7in"
formatNumber="###, ### ,##0.000; (#) ">
<caption value="Average Sale:" style="width:1.3in"/>
</item>
</table>
</table>
</header>
</foblock>

Zen reports also supports the <table> attribute rowAcrossPages, which controls whether table rows can split across a page
break. You can use this attribute when you have a <table> with a column that contains data long enough to wrap in the
table cell, or has cell content that is a <table> that returns multiple rows. These conditions can cause a row to split between
the bottom of one page and the top of the next page. To prevent the row from splitting, define the <table> element with the
rowAcrossPages attribute set to “false”, as in the following example:

Using Zen Reports 77

Formatting Zen Report Pages

<table
group=""Projects/Details" orient="col"
width="10.5in" layout="Ffixed"
class="table5" altcolor="#DCFOFF"
style="border:1pt solid black;font-size:9;"
rowAcrossPages=""false">

</table>

3.7.6 Conditionally Including a Group’s Elements

Zen reports supports functionality that allows a report to include or exclude elements in a group based on an XPath condition.
This approach is different from other methods of conditionally including information, which include all elements in a group,
or none of them. Note that you should not include calculations performed on the whole set of elements in the group, because
the result does not reflect the selection performed by the ReportDisplay.

The attributes primaryGroup, primaryGroupifxpath, and testEachifxpath support both HTML and PDF output. However,
pagination, page breaks, and page numbering are not supported in HTML.

3.7.6.1 Using primaryGroup and primaryGroupifxpath

One approach uses the primaryGroup and primaryGroupifxpath attributes of <report>. The following example is based on
the report ZENApp.MyReport in the SAMPLES namespace. Given the ReportDefinition section as defined in
ZENApp.MyReport, the following ReportDisplay creates a report that includes only the specified sales people. The key steps

are:

The <report> attribute primaryGroup establishes that the group under consideration is "SalesRep". The attribute
primaryGroupifxpath sets the condition that members of the group “SalesRep” must satisfy to be included in the report.
See this line in the following code sample:
<report

xmIns="http://www. intersystems.com/zen/report/display”

name="myReport” title="HelpDesk Sales Report® style="standard"
primaryGroup=""SalesRep" primaryGroupifxpath="@name != "Jack"'>

</report>

The <item> attribute special uses the value "page-number-of-with-xpath™ to add page numbers to the report that restart
numbering at 1 when there is a change in the value of “@name”, specified in the attribute field. See this line in the
following code sample:

<item field="@name"
special="page-number-of-with-xpath" width="1in"/>

The <body> attribute genLastPageldOn specifies that the report should use the value of "@name" to generate a unique
last page identifier for each item in “SalesRep” included in the report. This makes it possible to start page numbering
at 1 for each sales person. See this line in the following code sample:

<body genLastPageldOn="'"@name"">

</body>

When you set a primaryGroup for the report, the report processes each of the elements of the primary group, which
makes the primaryGroup, rather than the name, the XML context for elements contained by the report. This changes

the way you address elements and attributes in the XML. The following lines show how you need to supply a full path
to attributes of <myReport>, but not to the name attribute of <SalesRep>.

<item field="/myReport/@author' caption="Author:"/>
<item field="/myReport/@runBy" caption="Prepared By:"/>
<item field="/myReport/@runTime" caption="Time:"/>
<item field="@name" caption="Name:"/>

78

Using Zen Reports

Pagination and Layout

The following code sample provides the initial part of the ReportDisplay section for a report that uses primaryGroupifxpath
to include elements in <SalesRep> conditionally:

<report xmIns="http://www. intersystems.com/zen/report/display"
name="myReport*”
title="HelpDesk Sales Report® style="standard”
primaryGroup="SalesRep" primaryGroupifxpath="@name !'= "Jack"" >
<document width="8.5in" height="11in"
marginLeft="1_25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0in">
</document>
<pagefooter>
<line pattern="solid" thickness="1px"
color="green" width="7.5in"/>
<table orient="col" width="7.5in" layout="fixed">
<item field="@name" width="6in"/>
<item value="Page:" width="_.5in"/>
<item field="@name"
special="page-number-of-with-xpath" width="1in"/>
</table>
</pagefooter>
<body genLastPageldOn="@name"">
<header>
<1-- REPORT HEADER -->
<p class="bannerl">HelpDesk Sales Report</p>
<fo><line pattern="empty'/><line pattern="empty'/></fo>
<table orient="row" width="3.45in" class="tablel">
<item value="Sales by Sales Rep" width="2in">
<caption value="Title:" width="1.35in"/>
</item>
<item field="__./@month" caption="Month:"/>
<item field="/myReport/@author" caption="Author:"/>
<item field="/myReport/@runBy" caption="Prepared By:"/>
<item field="/myReport/@runTime" caption="Time:"/>
<item field="@name" caption="Name:"/>
</table>
</header>
</body>
</report>

3.7.6.2 Using testEachifxpath

Another approach uses the testEachifxpath attribute of <group>. The following example is based on the report
ZENApp.MyReport in the SAMPLES namespace. Given the ReportDefinition section as defined in ZENApp.MyReport, the
following ReportDisplay creates a report that includes only the specified sales people. The key steps are:

» The <group> attribute testEachifxpath sets the condition that members of the group “SalesRep” must satisfy to be
included in the report. See this line in the following code sample:

<group name=""SalesRep" testEachifxpath="@name != "Jack"" >

</g}0ﬁp;

» The XML context of the report has not been altered by setting a primaryGroup, so you access elements and attributes
in the report in the usual way.

The following code sample provides the initial part of the ReportDisplay section for a report that uses testEachifxpath to
include elements in <SalesRep> conditionally:

<report xmlns="http://www. intersystems.com/zen/report/display"
name="myReport” title="HelpDesk Sales Report® style="standard">
<document width="8.5in" height="11in"
marginLeft="1_25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0in">
</document>
<body>
<header>
<!-- REPORT HEADER -->
<p class="bannerl">HelpDesk Sales Report</p>
<fo><line pattern="empty"/><line pattern="empty'/></fo>
<table orient="row" width="3_.45in" class="tablel">
<item value="Sales by Sales Rep" width="2in">
<caption value="Title:" width="1_.35In"/></item>
<item field="@month" caption="Month:"/>
<item field="@author" caption=""Author:"/>

Using Zen Reports 79

Formatting Zen Report Pages

<item field="@runBy" caption="Prepared By:"/>
<item field="@runTime" caption="Time:"/>
</table>
</header>
<I-- MAIN REPORT GROUP -->
<group name="SalesRep" testEachifxpath="@name !'= "Jack"" >

</group>
</body>
</report>

3.7.7Writing Mode

The writing-mode attribute controls aspects of page layout that are relevant to the direction in which text is read. For
example, in a language read left to right, the first column of a table should be on the left side of the page, but in a language
read right to left, it should be on the right side.

The ordering of characters in text is controlled by the Unicode Bidirectional Algorithm, which interprets the directional
information encoded in the characters, not by the writing-mode attribute. writing-mode does contribute to the proper posi-
tioning and orientation of weakly directional characters such as parenthesis and quote marks. Where necessary, the ordering
of characters can be fine-tuned with the <bidioverride> element.

The following table summarizes the Zen reports elements that support the writing-mode attribute.

Zen Reports Element Generated XSL-FO Element

<report> Adds the writing-mode attribute to the <fo:page-sequence> element,
where it sets the writing mode for the entire report. If the report
contains multiple <section> elements, adds the writing-mode attribute
to the <fo:page-sequence> element generated by each <section>.

<section> Adds the writing-mode attribute to the <fo:page-sequence> element
generated by the <section>.

<document> Adds the writing-mode attribute to the <fo:simple-page-master>
element. writing-mode on <document> controls the placement of
sidebars. If writing-mode=""1r" <pagestartsidebar> is a left side
bar and <pageendsidebar> is a right sidebar. If wri ting-mode=""r 1"
the positions are reversed.

<container> Adds the writing-mode attribute to the <fo:block-container> element
generated by the <container>.

<inlinecontainer> Adds the writing-mode attribute to the <fo:inline-container> element.

<table> Adds the writing-mode attribute to the <fo:table> element generated
by the <table>.

3.8 Supported Fonts for Complex Scripts

The following two sections list the fonts supported for complex scripts supported for PDF rendering with the supplied FOP
rendering engine.

80 Using Zen Reports

Supported Fonts for Complex Scripts

3.8.1 Arabic

Avrial Unicode MS (arialuni.ttf)
— Version 1.01 (Word 2007)
* 50377 glyphs
* includes limited GPOS support

Lateef (LateefRegOT.ttf)
— Version 1.0
e 1147 glyphs
» includes GPOS for advanced position adjustments

» language specific features for Kurdish (KUR), Sindhi (SND), Urdu (URD)

Scheherazade (ScheherazadeRegOT.ttf)
— Version 1.0
e 1197 glyphs
» includes GPOS for advanced position adjustments

» language specific features for render (KUR), Sindhi (SND), Urdu (URD)

Simplified Arabic (simpo.ttf, simpbdo.ttf)
— Version 1.01 (Windows XP)

e not supported - contains invalid, out of order coverage table entries

— Version 5.00 (Windows Vista)
e 414 glyphs
» lacks GPOS support

— Version 5.92 (Windows 7)
e 473 glyphs

e includes GPOS for advanced position adjustments

Traditional Arabic (trado.ttf, tradbdo.ttf)
— Version 1.01 (Windows XP)

* 530 glyphs

» lacks GPOS support

— Version 5.00 (Windows Vista)
e 530glyphs
* lacks GPOS support

Using Zen Reports

81

http://www.microsoft.com/typography/fonts/family.aspx?FID=24
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1081
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=ArabicFonts
http://scripts.sil.org/cms/scripts/page.php?site_id=nrsi&id=ArabicFonts
http://www.microsoft.com/typography/fonts/family.aspx?FID=261
http://www.microsoft.com/typography/fonts/font.aspx?FMID=867
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1645
http://www.microsoft.com/typography/fonts/family.aspx?FID=264
http://www.microsoft.com/typography/fonts/font.aspx?FMID=877
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1658

Formatting Zen Report Pages

— Version 5.92 (Windows 7)
» 589 glyphs

» includes GPOS for advanced position adjustments

3.8.2 Devanagari

Aparajita (aparaj.ttf, aparajb.ttf, aparajbi.ttf, aparaji.ttf)
— Version 1.00 (Windows 7)
e 706 glyphs

Kokila (kokila.ttf, kokilab.ttf, kokilabi.ttf, kokilai.ttf)
— Version 1.00 (Windows 7)
e 706 glyphs

Mangal (mangal.ttf, mangalb.ttf)
— Version 5.01 (Windows 7)

» 885glyphs

* Ul font

Utsaah (utsaah.ttf, utsaahb.ttf, utsaahbi.ttf, utsaahi.ttf)
— Version 1.00 (Windows 7)
e 706 glyphs

3.9 Conditional Expressions for Displaying Elements

Every XData ReportDisplay element except <document> allows its output to be controlled using conditional expressions.
If the specified expression evaluates to true, the report displays the element; if the expression evaluates to false, the report
does not display the element.

The attributes described in this topic apply to all elements contained within the element that uses them. So, for example,
if you use ifexpression or ifxpath with a <table> element, the result is to display or conceal the entire <table>, including
every element that <table> contains, depending on the value of the expression. The following is an example using ifexpression.
For more about the special variable %report shown in the example, see the detailed discussion of ifexpression later in
this section:

<table orient=""row" width="3.45in" class=""tablel"

ifexpression="%report._Month=1">

<item value="Sales by Sales Rep" width="2in">

<caption value="Title:" width="1.35in"/>
</item>
<item field="@month" caption="Month:"/>
<item field="@author" caption="Author:"/>
<item field="@runBy" caption="Prepared By:"/>
<item field="@runTime" caption="Time:"/>

</table>

82

Using Zen Reports

http://www.microsoft.com/typography/fonts/family.aspx?FID=370
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1700
http://www.microsoft.com/typography/fonts/family.aspx?FID=374
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1749
http://www.microsoft.com/typography/fonts/family.aspx?FID=243
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1759
http://www.microsoft.com/typography/fonts/family.aspx?FID=384
http://www.microsoft.com/typography/fonts/font.aspx?FMID=1811

Conditional Expressions for Displaying Elements

Every XData ReportDisplay element except <document> supports the following attributes. You can use one of these
attributes to supply a conditional expression that controls output of the element:

» ifexpression

o ifxpath

* includeCollfExpression

e includeColUnlessExpression
* includeCollfXPath

* includeColUnlessXPath

* unlessexpression

3.9.1 ifexpression
The value of the ifexpression attribute is an ObjectScript expression that controls output of the element. If true, the element
is output to the report; if false, the element is suppressed.

The expression may not contain private variables. However, you may use the special variable %report to indicate the
report class, and dot syntax with %report to reference properties or methods of the Zen report class. For example:

<p ifexpression="%report.Month=1">

This is January! Cold! Yeal!

</p>

<p ifexpression="%report.Month>1">

This is later than January! Spring is around the corner!
</p>

The previous example references the Month property in the Zen report class using this syntax:
%report._Month

Do not use following syntax convention, which does not work in this context:

- -Month

Similarly, you can reference the myM ethod() method in the Zen report class using this syntax:
%report.myMethod()

Do not use the following syntax conventions, which do not work in this context:

- -myMethod()

#Hclass(myClass) .myMethod()

If you use %report in an ifexpression in a way that relies on a property value passed as a ZENURL in the URI that invokes
the report, you may see unexpected results if XSLT processing takes place in the browser. See the section “Setting Zen
Report Class Properties from the URI” for more information on this issue.

A general knowledge of ObjectScript is helpful in knowing how to construct these expressions. See Using Caché ObjectScript,
particularly the “String Relational Operators™ section in the chapter *Operators and Expressions.”

3.9.2 ifxpath

The value of the ifxpath attribute is an XPath expression that controls output of the element. If true, the element is output
to the report; if false, the element is suppressed.
The expression is based on the XML data source for the report and uses XPath syntax, as follows:

<p ifxpath="SalesRep[@name="Jack']">0h boy, Jack is herel</p>

Using Zen Reports 83

Formatting Zen Report Pages

Because ifxpath is an XPath expression, it must conform to XPath and XML syntax rules. You cannot use the < (less-than)
character in comparisons; instead use &lt; which is the XML-escaped XML entity that represents <.

The following example shows the correct syntax for an ifxpath expression that tests whether the attribute called id has a
value less than 100:

<item field="@id" ifxpath="@id&It;100" />

3.9.3 includeCollfExpression

The value of the includeCollfExpression attribute is an ObjectScript expression that controls output of a specific column
of data to the report. If true, the column is output; if false, the column is suppressed.

The expression may not contain private variables. However, you may use the special variable %report to indicate the
report class, and dot syntax with %report to reference properties or methods of the Zen report class.

If you use %report in an includeCollfExpression in a way that relies on a property value passed as a ZENURL in the URI
that invokes the report, you may see unexpected results if XSLT processing takes place in the browser. See the section
“Setting Zen Report Class Properties from the URI” for more information on this issue.

3.9.4 includeColUnlessExpression

The value of the includeColUnlessExpression attribute is an ObjectScript expression that controls output of a specific column
of data to the report. includeColUnlessExpression is the logical opposite of includeCollfExpression: If false, the column
is output; if true, the column is suppressed.

The expression may not contain private variables. However, you may use the special variable %report to indicate the
report class, and dot syntax with %report to reference properties or methods of the Zen report class. For example:
<item field="@LocationCode"
includeColUnlessExpression=
"%report.GroupOption="Unit"">
<caption value="Unit"
includeColUnlessExpression=

“%report.GroupOption="Unit""/>
</item>

If you use %report in an includeColUnlessExpression in a way that relies on a property value passed as a ZENURL in
the URI that invokes the report, you may see unexpected results if XSLT processing takes place in the browser. See the
section “Setting Zen Report Class Properties from the URI” for more information on this issue.

3.9.5includeCollfXPath

The includeCollfXPath attribute is similar to includeCollfExpression, except that its value is an XPath expression rather
than an ObjectScript expression. It is also similar to the ifxpath attribute, which controls output of an element rather than
a column of data in the report. If the XPath expression evaluates to true, the column is output; if false, the column is sup-
pressed.

3.9.6 includeColUnlessXPath

The includeColUnlessXPath attribute is similar to includeColUnlessExpression, except that its value is an XPath expression
rather than an ObjectScript expression. If the XPath expression evaluates to false, the column is output; if true, the column
is suppressed.

84 Using Zen Reports

Conditional Expressions for Displaying Values

3.9.7 unlessexpression

The value of the unlessexpression attribute is an ObjectScript expression that controls output of a specific column of data
to the report. unlessexpression is the logical opposite of ifexpression: If false, the column is output; if true, the column is
suppressed.

In the following example, the item is always output except when GroupOption is null; then it is suppressed. Note that
you cannot enclose string arguments to concat and other XPath functions, in single quotes. You need to use double quotes
or the " entity.
<item

field="concat(/CurrAdm/LeftGroup,Adm/groupby,"

Comment: ", Adm/groupbydesc)*®
unlessexpression="%report.GroupOption="""" />

If you use %report in an unlessexpression in a way that relies on a property value passed as a ZENURL in the URI that
invokes the report, you may see unexpected results if XSLT processing takes place in the browser. See the section “Setting
Zen Report Class Properties from the URI” for more information on this issue.

3.10 Conditional Expressions for Displaying Values

The <item>, <p>, and <inline> elements support the attributes if and expression. These attributes allow you to conditionally
display the value of the element, as explained in following the table:

Attribute Description

expression ObjectScript expression whose result appears in the report output if the if condition is
true.

if ObjectScript expression that controls output of the expression result. If the if expression

evaluates to true (any non-zero value in ObjectScript), the expression result is output
to the report; otherwise the expression result is not output.

The default value for if is 1 (true). If you do not specify a value for if, the element always
outputs the expression result.

The <p> and <inline> elements behave differently from the <item> element when they combine the content from the
expression attribute with other content. For a <p> or <inline> element, content can be provided by text contained in the
element, by the field attribute, and conditionally by the expression attribute. Content from all three sources is output at the
same time. The order in which the contents are arranged is: field, followed by expression, followed by the text content.

For an <item> element, content can be provided by the field, special, expression, and value attributes, but <item> outputs
content from only one of these attributes to the report. If content is available from multiple attributes, <item> selects the
one to output based on the following order of precedence, from highest to lowest: field, special, expression, and value. If
an <item> has both an expression, and a value attribute, but the if attribute evaluates to false, the expression still takes
precedence over the value, and nothing is output to the report.

The if or expression values may not contain private variables. However, you may use the special variable %report to
reference properties in the Zen report class. So, to refer to the property called employeeld in the Zen report class, you can
use this syntax:

<item expression="%report.employeeld® if="1" />

Given a report class definition that starts as follows:

Using Zen Reports 85

Formatting Zen Report Pages

Class my.SimpleReport Extends %ZEN.Report.reportPage
{
Parameter REPORTNAME = "'SimpleReport";

Parameter XSLTMODE = "'server';
Property Title As %String (ZENURL="TITLE");
//... and so on

The following are some expression examples using Title. These URIs contain line breaks for typesetting purposes only; a
correct URI is all on one line. The %20 character sequence provides a space character in the output. In these examples,
57772 is the Web server port configured for Caché:

http://localhost:57772/csp/mine/my.SimpleReport.cls
?$MODE=htmI&SEMBEDXSL=1&T I TLE=My%20T i t1e%20Example

http://localhost:57772/csp/mine/my.SimpleReport.cls
?$MODE=pd F&T I TLE=My%20T i tle%20Example

The following example runs the report from the command line rather than the browser.

ZN "MINE"

SET %request=##class(%CSP.Request) .%New()

SET %request.URL = "/csp/mine/SimpleReport.xml"

SET %request.CgiEnvs(*'SERVER_NAME')="127.0.0.1"

SET %request.CgiEnvs(''SERVER_PORT")=57777

SET rpt=##class(my.SimpleReport).%New()

SET rpt.Title="My Title Example"

SET tSC=rpt.GenerateReport(*'C:\TEMP\SimpleReport.html",1)

IF "tSC DO $system.Status.DecomposeStatus(tSC, .Err) WRITE !,Err(Err) ;-
WRITE I,tSC

If the goal is to display the expression only if the property is non-null, this requires extra effort to process quotation marks,
which are special characters in both XML and ObjectScript. The following example correctly shows " for escaping
the straight double quote character, and "= to indicate “not equals” in ObjectScript:

<item expression="Y%report.Title" if="%report.Title"="""/>

The following example uses the ObjectScript function STRANSLATE ($TR) to strip out space characters, and displays
the expression result only if it is non-null:

<item expression="$TR(%report.Title,"™ ")"
if=""%report.Title"="" """ />

If you use %report in a way that relies on a property value passed as a ZENURL in the URI that invokes the report, you
may see unexpected results if XSLT processing takes place in the browser. See the section “Setting Zen Report Class
Properties from the URI” for more information on this issue.

3.11 <report>

The <report> element is the required top level container within an XData ReportDisplay block.

Important: A different <report> element is the required top level container within an XData ReportDefinition block.
For details, see “Gathering Zen Report Data.”

Within an XData ReportDisplay block, <report> may contain the following elements:

e <init>— Executes XSLT instructions at the top level of the stylesheet

e <section>— Anelement similar to <report> that lets you create multiple report display definitions in a single <report>.
If a report contains a <section>, it should not contain elements, such as <document> or <body> outside of a <section>.
<section> can contain:

- <pagemaster>

86 Using Zen Reports

<report>

- <body>

» <pagemaster>— Lets you specify formatting for the first page, last page, the rest of the pages, or any page in a report.
* <document>— Sets page layout for PDF and other styling for HTML and PDF output.

e <pageheader> — Page header, used in PDF and optionally in HTML.

e <pagefooter> — Page footer, used in PDF only.

e <pagestartsidebar> — Page sidebar, on the side of the document where text starts. In languages read left to right, this
is a left sidebar. Used in PDF only.

» <pageendsidebar>— Page sidebar, on the side of the document where text ends. In languages read left to right, this
is a right sidebar. Used in PDF only.

» <body>— The container for elements that control layout, style, and appearance. This element is required.

— <call> — Calls a method that returns a stream, and inserts the stream into the report definition at the place where
the element occurs. This capability lets you create a report from separately-developed subreports.

A <report> element that appears in an XData ReportDisplay block has the following attributes.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally output the <report>

expressions for element, see the section “Conditional Expressions for Displaying Elements.”

display

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

primaryGroup Identifies the group in the XData ReportDefinition block that should be used to control
page numbering. Set it with the name of the group from the ReportDefinition section
as follows:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""SalesReport"
title="Sales Report"
primaryGroup="SalesRep'>

Use it In conjunction with the “*-with-xpath” values for the <item> attribute special
and the <body> attribute genLastPageldOn.

Note also that a <group> element with the attribute primaryGroup set to “true” does
not need the attribute pagebreak set to “true” since the page break happens auto-
matically when the page number resets to 1.

primaryGroupifxpath | An XPath that provides a condition that is applied to each element of the primary
group to determine whether the element is included in the report.

name The report name, which should match the top-level element name in the XML data
for the report.

If the XData ReportDefinition block from the same Zen report class is used to generate
this XML, then the name attribute for the <report> element in XData ReportDisplay
should match the name attribute for the <report> element in XData ReportDefinition.

If the supplied name is an invalid string for use as an XML identifier, the report does
not work correctly. The most obvious characters to avoid are any white space char-
acters, plus the five standard XML entity characters &"<>""

Using Zen Reports 87

Formatting Zen Report Pages

Attribute Description

style If you omit the style attribute, your reports use the standard stylesheet for Zen reports.
If you set style=""none" the standard Zen stylesheet is ignored and there are no
predefined styles for Zen reports.

For details about the default styles see the section “Default Format and Style.”

terminatelfEmpty If true, if there is no data for the report, instead of displaying a blank page print the
message “No Data!”

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

title The report title, used for items such as the PDF filename or HTML page title.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

The special variable %display represents the <report> container in XData ReportDisplay. Properties of the %display
object correspond to attributes of the <report> element. Also see the description of %display in the section “Using
Runtime Expressions in Zen Reports ” in this document.

3.12 <init>

The <init> element, if present in the <report>, must occur before the <document> element. <init> provides a way to insert
custom XSLT instructions at the top level of the generated XSLT stylesheet for the Zen report, before any other stylesheet
processing occurs.

Generally, <init> contains only <xslt> elements.

In the following example, <init>, <xslt>, and a custom XData block work together to set output conventions to a European
number format (76.543.212.345,67) rather than the default North American number format (76,543,212,345.67).

As described in the detailed “<xslt>" section that follows this topic, <xslt> works with a custom XData block. This XData
block contains the XSLT instructions to insert. To set European number format conventions, the XData block would need
to contain the following xs1 :decimal-format instruction:

XData EuropeanNumberFormat

<zenxslt>
<xsl:decimal-format name="‘euro"
decimal-separator="","
grouping-separator="_"/>
</zenxslt>

The <xslt> element that references this custom XData block would need to appear inside an <init> element in the XData
ReportDisplay block for the same Zen report class. In the following example, the <xslt> element uses its all attribute to
reference the custom XData block called EuropeanNumberFormat. The all attribute tells Zen that the XSLT instructions
in this XData block apply to stylesheets for both HTML and PDF report output.

88 Using Zen Reports

<xslt>

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""myReport"” style='"standard" >
<init>
<xslt all="EuropeanNumberFormat"/>
</init>
<document width="8.5in" height="11in"
marginLeft="1.25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0in">
</document>
<body>
<I-- Contents of report here -->
</body>
</report>

3.13 <xslt>

The great advantage of Zen reports is that they generate XSLT for you. However, Zen reports also offer an <xslt> element
that enables you to contribute custom XSLT instructions to the generated XSLT.

The <xslt> element can appear anywhere within an XData ReportDisplay block, but if you want the resulting XSLT
instructions to apply at the top level of the generated stylesheet, place the <xslt> element in the <init> block. For example,
<init> is the appropriate container to use when you want your <xslt> element to define values for XSLT global variables.

An <xslt> element must identify a custom XData block in your Zen report class. This XData block has its own name, and
is distinct from XData ReportDefinition or XData ReportDisplay. This custom XData block contains the XSLT instructions
that you want to add to the XSLT stylesheet for your Zen report.

Once you have created a custom XData block, your <xslt> syntax must use one of the attributes all, html, or xslfo to identify
this XData block. The choice of attribute determines the type of output to which your XSLT instructions apply: all forms
of output, HTML only, or PDF only.

The next several sections provide details:
o <xslt>and its Attributes
» XData Blocks for <xslt>

e Setting XSLT Global Variables with <xslt>

3.13.1 <xslt> and its Attributes

<xslt> has the attributes described in the following table.

Using Zen Reports 89

Formatting Zen Report Pages

Attribute Description

all Name of an XData block in the Zen report class that defines XSLT instructions to be used in
the generated XSLT stylesheet for all types of output. These XSLT instructions apply to all
forms of Zen report output, both XHTML and PDF. For alternatives to the all attribute, see html
and xslfo.

expressions | Semicolon-separated list of one or more expressions that give values to the corresponding
variables listed in vars. expressions may be XSLT or ObjectScript expressions. If ObjectScript,
the 1 (exclamation point) operator must precede them, as in the example.

html Name of an XData block in the Zen report class that defines XSLT instructions to be used in
the generated XSLT stylesheet for XHTML output only. For alternatives to the html attribute,
see all and xslfo.

id Optional identifier. If present, it can be used to retrieve this element in server-side code, by
calling the %GetComponentByld(id) method.

vars A semicolon-separated list of one or more XSLT variables. The expressions attribute provides
values for these variables.

xslfo Name of an XData block in the Zen report class that defines XSLT instructions to be used in
the generated XSLT stylesheet for PDF output only. For alternatives to the xslfo attribute, see
all and html.

In the following example, the <xslt> element has its all attribute set to setsize. setsize is the name of a custom XData
block in the Zen report class, as shown in the next section, “XData Blocks for <xslt>.”

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""Container'>
<init>
<xslt all="setsize" vars="orientation"”
expressions="1%report.Orientation’/>
</init>
<document width="{$width}" height="{$height}"
margin="10mm" size="{$orientation}" />

<l-- Other elements for the report -->

</report>

This example uses <init> and <xslt> to pass the value held in the Zen report class Orientation property to an XSLT global
variable called or ientation. This value can subsequently be referenced using the normal XSLT syntax for global variables,
as shown for $orientation, $width, and $height in this and other examples in this section.

3.13.2 XData Blocks for <xslt>

The following example shows an XData block called setsize that works with the <xslt> element shown in the previous
section, “<xslt> and its Attributes.”

This XData block example uses a root element called <zenxslt> to contain the XSLT statements. A <zenxslt> container is
required when there is no single root for the XSLT statements that you want to provide in the XData block for <xslt>. This
allows the complete XData block to contain only one root element, as is appropriate for well-formed XML. At compile

time, Zen strips out the <zenxslt> container and adds the XSLT statements to the generated stylesheet for your Zen report.

XData setsize

<zenxslt>
<xsl:variable name="height'>
<xsl:choose>
<xsl:when test="$orientation="landscape”'>
<xsl:value-of select=""210mm""'/>

90 Using Zen Reports

<xslt>

</xsl:when>
<xsl:otherwise>
<xsl:value-of select=""297mm"""/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
<xsl:variable name="width">
<xsl:choose>
<xsl:when test="$orientation="landscape”'>
<xsl:value-of select=""297mm""'/>
</xsl:when>
<xsl:otherwise>
<xsl:value-of select=""210mm""'/>
</xsl:otherwise>
</xsl:choose>
</xsl:variable>
</zenxslt>

This sample XData block conditionally defines values for XSLT global variables height and width based on the value
of the XSLT global variable orientation. The previous topic, “<xslt> and its Attributes,” shows how you could use
<init> and <xslt> elements to give the XSLT variable orientation the current value of the Orientation property of the
Zen report class. However, there is no restriction on how the Orientation property gets its value. It might have a default
value, or the Zen report class might contain code that sets the value. The next section provides information about how a
user might set the value of the Orientation property such dynamically, from the browser URI, when invoking the Zen report.

3.13.3 Setting XSLT Global Variables with <xslt>

Suppose you define Orientation in the Zen report class as a ZENURL property:

Property Orientation As %ZEN.Datatype.string(ZENURL=""ORIENT");

Regardless of any other conventions described in this section, this ZENURL statement means you can use a URI query
parameter called ORIENT when invoking the Zen report. When you do this, the Zen report class Orientation property gets
the value that you assign to ORIENT in the URI. Remember that URI query parameters do not use quotes around their
values. For example:

http://localhost:57772/csp/hs/ZR_SDA.cls?0RIENT=portrait

Now suppose you have the <xslt> element shown in “<xslt> and its Attributes” and the XData block shown in “XData
Blocks for <xslt>.” These work together to set the XSLT global variable orientation to the value of the Zen report

class property Orientation and to set appropriate values for the XSLT global variables height and width based on the
value of orientation.

The following are four examples of URI strings that could set the Orientation property of the Zen report class when the Zen
report is invoked.

http://localhost:57772/csp/hs/ZR_.SDA.cls?$MODE=pdf&ORIENT=portrait
http://localhost:57772/csp/hs/ZR.SDA.cls?$MODE=pdf&ORIENT=1andscape
http://localhost:57772/csp/hs/ZR_.SDA.cls?$MODE=htmI&ORIENT=portrait

http://localhost:57772/csp/hs/ZR.SDA.cls?$MODE=htmI&ORIENT=landscape

Using Zen Reports 91

Formatting Zen Report Pages

3.14 <section>

The <section> element lets you create multiple report display definitions in a <report>. It must be an immediate child of
<report> And must contain a <pagemaster> element for page formatting. In addition to <pagemaster>, a <section> must
contain a <body> element, which in turn contains anything valid in the body of a report. <section> supports most of the
same properties as <report>. The additional property sectionName is required, and is used to generate identifiers that are
unique in the generated XSL-FO.

3.15 <pagemaster>

The <pagemaster> element lets you specify formatting for different pages in the report. It can be a direct child of a <report>
or a <section> element. It contains one or more <masterreference> elements.

3.16 <masterreference>

The <masterreference> element lets you specify formatting for specific pages. It must be a direct child of <pagemaster>.
<masterreference> can contain <document>, <pageheader> <pagefooter>, <pagestartsidebar>, and <pageendsidebar> ele-
ments. The elements must be in order, and you cannot skip any element. For example, if you need to specify only the
<document> element, you need not include <pageheader> and <pagefooter>, but if you need to specify only <pagefooter>,
you must include both <document> and <pageheader> even if they are empty.

<masterreference> has the following attributes:

Attribute Description

masterReference | Can be an arbitrary string. It is used to create unique identifiers for objects in the sections of
the report.

pagePosition | Supplies the value of the page-position attribute of the <fo:conditional-page-master-reference>

XSL-FO object. Valid values are, “first”, “last”, “rest”, “any”.

3.17 <document>

The <document> element specifies page layout and style characteristics for PDF output. For an overview of PDF page
layout, see the section “The <document> element and Page Layout”.

<document> can contain multiple <class>, <cssinclude>, and <xslinclude> elements. These elements provide custom style
specifications. Their results can apply to XHTML or PDF output, separately or equally, depending on your choices within
these elements. The corresponding sections in this topic describe <class>, <cssinclude>, and <xslinclude>.

Note that as you design a PDF output page, you might try different layouts in rapid succession. If you edit your <document>
element to change margin values, adjust headers, or switch from portrait to landscape mode, the next time you view your
Zen report, your changes might not display in the PDF output. You might draw incorrect conclusions when your changes
do not appear. This can happen due to caching of previously displayed pages, especially in Firefox. To overcome this

92 Using Zen Reports

<document>

problem you must fully exit Firefox and start a new Firefox session before viewing the revised Zen report. It is not necessary
for you to restart Caché, but you must exit and restart Firefox.

The <document> element supports a number of attributes that control aspects of page layout. The following tables present
them grouped according to their function.

The following attributes control the margins of the page:

Attribute

margin

marginBottom

marginLeft
marginRight

marginTop

Description

Provides an HTML length value for the margin attribute of the <fo:simple-
page-master> element in the generated XSL-FO stylesheet.

When you supply a margin value, Zen replaces any values supplied for
marginBottom, marginLeft, marginRight, or marginTop with the value supplied
for margin.

Provides an HTML length value for the margin-bottom attribute of the
<fo:simple-page-master> element in the generated XSL-FO stylesheet.
When you supply a margin value, it replaces any values supplied for
marginBottom, marginLeft, marginRight, or marginTop.

Sets the left margin, as marginBottom sets the bottom margin.

Sets the right margin, as marginBottom sets the bottom margin.

Sets the top margin, as marginBottom sets the bottom margin.

The following attributes control the margins of the <fo:region-body> element in the generated XSL-FO:

Using Zen Reports

93

Formatting Zen Report Pages

Attribute
endSidebarLength

footerHeight

headerHeight
startSidebarLength

Description

Provides an HTML length value for the margin-right attribute of the <fo:region-
body> element in the generated XSL-FO. It defines the area occupied by
<fo:region-end>, which contains page footer text.

If your report has a <pageendsidebar>, you must specify a endSidebarLength
and this endSidebarLength must be greater than the regionEndExtent to
ensure that text does not overlap. If your report has no <pageendsidebar>,
regionEndExtent and endSidebarLength are optional. The default value of
endSidebarLength is 0.

The property startSidebarLength performs the same function for <fo:region-
start>.

"2in", "5cm", "12px", "14pt", "3em", or "75%" are all valid formats for HTML
length values. A percentage is relative to the container for the element
specifying the length.

If you are taking advantage of any automatic Zen calculations for portions
of your page layout, do not use "%", "em", or "px" in the HTML length values
that you provide for the height, margin, or extent attributes of <document>.

Provides an HTML length value for the margin-bottom attribute of the
<fo:region-body> element in the generated XSL-FO. It defines the area
occupied by <fo:region-after>, which contains page footer text.

If your report has a <pagefooter>, you must specify a footerHeight and this
footerHeight must be greater than the regionAfterExtent to ensure that text
does not overlap. If your report has no <pagefooter>, regionAfterExtent and
footerHeight are optional. The default value of footerHeight is 0.

headerHeight performs the same function for <fo:region-before>

"2in", "5cm", "12px", "14pt", "3em", or "75%" are all valid formats for HTML
length values. A percentage is relative to the container for the element
specifying the length.

If you are taking advantage of any automatic Zen calculations for portions
of your page layout, do not use "%", "em", or "px" in the HTML length values
that you provide for the height, margin, or extent attributes of <document>.

Sets the header height as footerHeight sets the footer height.

Defines the area occupied by <fo:region-start> in the <fo:region-body>
asendSidebarLength defines <fo:region-end>.

Each content area in the <fo:region-body>, the page headers, footers, and sidebars, have a set of similarly-named attributes
that control styling and other characteristic of the area. The following table lists the attributes that control the <pagefooter>,
which corresponds to the <fo:region-after> element in the generated XSL-FO. Attributes controlling other areas behave

similarly.

94

Using Zen Reports

<document>

Using Zen Reports 95

Formatting Zen Report Pages

Attribute

regionAfter

regionAfterColor

regionAfterDisplayAlign

regionAfterExtent

regionAfterName

Description

Style to assign to the <fo:region-after> area of the page as shown in the
diagrams at the beginning of this section.

You can also use the more specific attributes regionAfterColor,
regionAfterDisplayAlign, regionAfterExtent, regionAfterName, and
regionAfterOrientation.

regionBefore, regionStart, and regionEnd perform the same function for
<fo:region-before>, <fo:region-start>, and <fo:region-end>.

Provides a value for the background-color attribute of the <fo:region-after>
element in the generated XSL-FO stylesheet. This can be useful for diagnos-
tic purposes.

regionBeforeColor, regionStartColor, and regionEndColor perform the same
function for <fo:region-before>, <fo:region-start>, and <fo:region-end>.

Provides a value for the display-align attribute of the <fo:region-after> element
in the generated XSL-FO stylesheet.

* auto — use the relative-align property if one applies
* before — align with the “before” edge of the region.
* center — center in the region.

« after — align with the “after” edge of the region.

regionBeforeDisplayAlign, regionStartDisplayAlign, and
regionEndDisplayAlign perform the same function for <fo:region-before>,
<fo:region-start>, and <fo:region-end>.

Provides an HTML length value for the extent attribute of the <fo:region-
after> element in the generated XSL-FO. The <fo:region-after> element
contains the page footer content. The default value is 0.

If your report has a <pagefooter>, you must specify a footerHeight and this
footerHeight must be greater than the regionAfterExtent or content may
overlap. Make sure the regionAfterExtent is large enough to contain the
content you plan for your footer. If your report has no <pagefooter>,
regionAfterExtent and footerHeight are optional.

regionBeforeExtent, regionStartExtent, and regionEndExtent perform the
same function for <fo:region-before>, <fo:region-start>, and <fo:region-end>.

Provides a name for the region-after area in the region-body. If supplied,
this name and the name supplied for the regionName of <pagefooter> should
be the same.

regionBeforeName, regionStartName, and regionEndName perform the
same function for <fo:region-before>, <fo:region-start>, and <fo:region-end>.
Supplied named should match regionName on the relevant page element.

96

Using Zen Reports

<document>

Attribute

regionAfterOrientation

Description
Controls how content is oriented on the <fo:region-after>.

e 0 — Content is oriented so that the top of the content is at the top of the
page. This is the default.

* 90 — Content is rotated 90 degrees counterclockwise.
» 180 — Content is rotated an additional 90 degrees counterclockwise.

e 270 — Content is rotated an additional 90 degrees counterclockwise,
for a total rotation of 270 degrees. This rotation is the same as rotating
the content 90 degrees clockwise.

regionBeforeOrientation, regionStartOrientation, and regionEndOrientation
perform the same function for <fo:region-before>, <fo:region-start>, and
<fo:region-end>.

The remaining attributes control other aspects of the document:

Attribute

column-count

column-gap

height

id

orientation

Description

Specifies number of columns in PDF output. The default value is 1. When
the value is greater than one, output is formatted into columns such that

content flows from the bottom of the first column to the top of the second
and so forth until all columns on the page are filled.

Used if column-count is greater than 1. Specifies the space between columns.
The value is an explicit length, specified with units such as “cm” or “in”.

Provides an HTML length value for the page-height attribute of the <fo:simple-
page-master> element in the generated XSL-FO. Defines the height
dimension of the printed page.

Optional identifier. If present, it can be used to retrieve this element in
server-side code, by calling the %GetComponentByld(id) method.

Controls how page content is oriented on the page. The orientation of the
page itself does not change.

* "portrait" — Content is oriented so that the top of the content is at
the top of the page. This is the default. It is the same as setting
referenceOrientation to 0.

* "landscape' — Content s rotated 90 degrees counterclockwise. If you
specify ""landscape'" for orientation, it is the same as setting
referenceOrientation to 90.

Using Zen Reports

97

Formatting Zen Report Pages

Attribute

referenceOrientation

size

width

writing-mode

writing-mode-region-after

Description

Controls how page content is oriented on the page. The orientation of the
page itself does not change.

* 0 — Content is oriented so that the top of the content is at the top of the
page. This is the default. It is the same as setting orientation to
"portrait".

* 90— Content is rotated 90 degrees counterclockwise. This is the same
as setting orientation to "*landscape™".

e 180 — Content is rotated an additional 90 degrees counterclockwise,
which results in an orientation like portrait mode upside down.

e 270 — Content is rotated an additional 90 degrees counterclockwise,
for a total rotation of 270 degrees. This rotation is the same as rotating
the content 90 degrees clockwise.

Value for the <fo:simple-page-master> size attribute in the generated XSL-
FO stylesheet.

Provides an HTML length value for the page-width attribute of the <fo:simple-
page-master> element in the generated XSL-FO stylesheet. Defines the
width dimension of the printed page.

Adds the writing-mode attribute to the <fo:simple-page-master> element in
the generated XSL. writing-modecontrols aspects of page layout relevant to
the direction in which text is written. See the section “Writing Mode” for
additional discussion of thewriting-mode attribute.

Possible values are:

e “Ir-tb” — for text written left-to-right and top-to-bottom, as in most Indo-
European languages.

* “rl-tb” — for text written right-to-left and top-to-bottom, as in Arabic and
Hebrew.

* “tb-rl" for text written top-to-bottom and right-to-left, as in Chinese and
Japanese.

e “Ir"— same as “Ir-tb”
e “r’— same as “rl-tb”
e ‘“tb” — same as “tb-Ir"

* ‘“inherit” — takes writing-mode value from the parent element
Note that not all XSL-FO renderers support all possible values.

Adds the writing-mode attribute to the <fo:region-after> element in the gen-
erated XSL. For details, see the writing-mode property in this table.

writing-mode-region-before, writing-mode-region-body,
writing-mode-region-end, and writing-mode-region-start perform the same
function for <fo:region-before>, <fo:region-body>, <fo:region-end>, and
<fo:region-start>.

98

Using Zen Reports

<document>

Attribute Description

writing-mode-region-before See writing-mode-region-after in this table.
writing-mode-region-body See writing-mode-region-after in this table.
writing-mode-region-end See writing-mode-region-after in this table.
writing-mode-region-start See writing-mode-region-after in this table.

3.17.1 <class>

The <class> element renders style information into a CSS class in the XHTML report, and into equivalent XSLT stylesheet
information for the PDF report. <class> elements can only occur as children of <document>. Multiple <class> elements
may be present. Each <class> element has attributes described in the following table.

Attribute

Conditional
expressions
for display

id

name

Description

For descriptions of the attributes that allow you to conditionally output the <class> element,
see the section “Conditional Expressions for Displaying Elements.”

Optional identifier. If present, it can be used to retrieve this element in server-side code, by
calling the %GetComponentByld(id) method.

Identifies a style class. The name value must use the following syntax:
tagName. className

Where tagName may be the name of one of the following HTML tags only:
» a— formats links to other pages

* block — formats a group of inline items

e div — formats a block of items

e inline — formats inline text

* p— formats paragraphs

» table — formats general table layout

* td — formats table cells

* th — formats table header cells

The className portion of the tagName . className value can be any name of your choosing
that uniquely identifies this style.

The following are some examples of valid name syntax:
name=""th_.myTable"

name=""td.myTable"

name=""a.myLink"

name=""inline_myFormat"

Using Zen Reports 99

Formatting Zen Report Pages

The <class> element contains the following elements that specify the styling information for the class. These elements can
only occur as children of <class>.

» <att> specifies a piece of style information that applies to all types of output
o <atthtml> specifies a piece of style information that applies to XHTML output only

» <attxslfo> specifies a piece of style information that applies to PDF output only

<att>, <atthtml>, and <attxslfo> have the following attributes.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally output the <att>, <atthtml>, or
expressions | <attxslfo> elements, see the section “Conditional Expressions for Displaying Elements.”
for display

name The attribute name. This corresponds to a CSS attribute name (color, background-color,
font-size, font-family, width, etc). Zen simply passes the <att> attributes on to CSS or XSL-FO,
so the user can specify anything; it is up to the browser or PDF rendering tool to be able to
interpret the attribute.

value The value to assign to the attribute.

To provide the equivalent of the CSS document fragment given here:

th.myTable {
background-color: blue;
color: white;

Use the following <class> element:

<class name="th.myTable">
<att name="background-color" value="blue" />
<att name="color" value="white" />

</class>

To apply this custom style to a <td> element, you would apply the class attribute to the <td> element, its parent <table>
element, or its parent <body> element. When specifying a value for the class attribute, do not include the element name,
such as <td>, <table>, or <body>. Just use the style name. For example, if you have a style class named th.myTable that
you want to use, in the <report> you may specify:

<table class="myTable">

The following <table> element uses the class attribute to apply the table.grid style to a table in a Zen report:

<table class="'grid" group="Step'>

<item width="0.8in" field="@Number" />
<item width="0.8in" field="./Al1Set" />
<item field="./DemoText" />

</table>

Parent elements propagate their class attribute values to children that do not have a class specified. So if you define
table.myTable, th.myTable, and td.myTable, you only need to give the <table> element a class attribute. You can even put
a class attribute on the <body> element to give a class for every element in the report.

For more about class, see the “Report Display Attributes™ section in the chapter “Displaying Zen Report Data.”

For descriptions of the default Zen report styles that you can override or supplement using <class>, <att>, <atthtml>, and
<attxslfo>, see the following topics in the appendix “Default Format and Style”:

o Default CSS Styles for Zen Reports in HTML Format

100 Using Zen Reports

<document>

e Default XSL-FO Styles for Zen Reports in PDF Format

3.17.2 <cssinclude>

The <cssinclude> element applies to XHTML output only. When producing the XSLT stylesheet for PDF output, the class
simply ignores any <cssinclude> elements.

Multiple <cssinclude> elements may be present within a <document> element. Each <cssinclude> element has the attribute

listed in the following table.

Attribute

Conditional
expressions for
display

href

id

makeAbsoluteURL

Description

For descriptions of the attributes that allow you to conditionally output the
<cssinclude> element, see the section “Conditional Expressions for Displaying
Elements.”

URI of an external CSS stylesheet to include in the HTML stylesheet.

The href string can be a comma-separated list of URIs, and each is included,; this
the same as providing multiple <cssinclude> elements.

Some browsers struggle when the file referenced does not end in .css.
Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

If true, and %request is not defined, convert the filename supplied by href to an
absolute URL that points to a file in csp/nanespace in the Caché installation direc-
tory.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

3.17.3 <xslinclude>

The <xslinclude> element applies to the XSLT stylesheet for PDF output only. When producing the HTML version of the
report, the class simply ignores any <xslinclude> elements.

Multiple <xslinclude> elements may be present within a <document> element. Each <xslinclude> element has the attribute

listed in the following table.

Using Zen Reports

101

Formatting Zen Report Pages

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally output the <xslinclude>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

href Filename of an external XSLT file to include in the to-XSLFO stylesheet.

This feature is potentially very powerful, but XSLT can be difficult to write. In practice,
the main purpose of the <xslinclude> element is for the external XSLT stylesheet to
contain <xsl:attribute-set> elements, which can do the same work as CSS classes.

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

makeAbsoluteURL If true, and %request is not defined, convert the filename supplied by href to an
absolute URL that points to a file in csp/nanespace in the Caché installation direc-
tory.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

To continue the previous <class> example, to import the th.myTable class from external files, the <document> element
would look something like this:
<document>

<cssinclude href="myStyle.css" />

<xslinclude href="myStyle._xsl" />
</document>

With myStyle.css containing:

th.myTable {
background-color: blue;
color: white;

}

And myStyle.xsl containing:

<xsl:attribute-set name=""th.myTable">
<xsl:attribute name="background-color'>blue</xsl:attribute>
<xsl:attribute name="color">white</xsl:attribute>
</xsl:attribute-set>

3.18 <pageheader>

The <pageheader> element puts content into a header at the top of each printed page. You must place it before the <body>
element in the XData ReportDisplay block.

<pageheader> can contain the same layout and display elements as <body>. See the list of elements in the chapter “Dis-
playing Zen Report Data.” However, everything contained within the <pageheader> is rendered in the blank space provided
by the <document> element headerHeight and regionBeforeExtent attributes. To add a page header to the PDF report output,
the XData ReportDisplay block must contain:

e A <document> element with headerHeight and regionBeforeExtent values. The headerHeight must be greater than
the regionBeforeExtent. Make sure the regionBeforeExtent is large enough to contain the content you plan for your
header.

102 Using Zen Reports

<pagefooter>

* A <pageheader> element

XHTML reports do not support page-by-page headers, so in XHTML reports the contents of <pageheader> are simply
rendered at the beginning of the report.

The <pageheader> element supports the attributes listed in the following table.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the
expressions for <pageheader> element, see the section “Conditional Expressions for Displaying
display Elements.”

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section in the chapter “Displaying Zen Report Data.”

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

regionName A name for the <pageheader>. If supplied, this name and the name supplied for
regionBeforeName in <document> must be the same.

3.19 <pagefooter>

The <pagefooter> element puts content into a footer at the bottom of each printed page. You must place it before the <body>
element in the XData ReportDisplay block.

<pagefooter> can contain the same layout and display elements as <body>. See the list of elements in the chapter “Displaying
Zen Report Data.” However, everything contained within the <pagefooter> is rendered in the blank space provided by the
<document> element footerHeight and regionAfterExtent attributes. To add a page footer to the PDF report output, the
XData ReportDisplay block must contain:

* A <document> element with footerHeight and regionAfterExtent values. The footerHeight must be greater than the
regionAfterExtent. Make sure the regionAfterExtent is large enough to contain the content you plan for your header.

* A <pagefooter> element

XHTML reports do not display <pagefooter> elements at all.

The <pagefooter> element supports the attributes listed in the following table.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the
expressions for <pagefooter> element, see the section “Conditional Expressions for Displaying
display Elements.”

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section in the chapter “Displaying Zen Report Data.”

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

regionName A name for the <pagefooter>. If supplied, this name and the name supplied for
regionAfterName in <document> must be the same.

Using Zen Reports 103

Formatting Zen Report Pages

3.20 <pagestartsidebar>

The <pagestartsidebar> element puts content into a sidebar on each printed page. The sidebar is positioned on the side of
the page where text starts. In a language read left to right, <pagestartsidebar> creates a left sidebar. If you set
writing-mode=""rI" on the <document> element, sidebars switch sides, and <pagestartsidebar> creates a right sidebar.
You must place it before the <body> element in the XData ReportDisplay block.

<pagestartsidebar> can contain the same layout and display elements as <body>. See the list of elements in the chapter
“Displaying Zen Report Data.” However, everything contained within the <pagestartsidebar> is rendered in the blank
space provided by the <document> element startSidebarLength and regionStartExtent attributes.

To add a sidebar to the PDF report output, the XData ReportDisplay block must contain:

* A <document> element with startSidebarLength and regionBeforeExtent values. The startSidebarLength must be
greater than the regionStartExtent. Make sure the regionStartExtent is large enough to contain the content you plan
for your header. The figure <document> Attributes for Page Layout in Portrait Mode illustrates these relationships.

* A <pagestartsidebar> element

HTML report output does not display <pagestartsidebar> elements at all.

The <pagestartsidebar> element supports the attributes listed in the following table.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the
expressions for <pagestartsidebar> element, see the section “Conditional Expressions for Displaying
display Elements.”

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section in the chapter “Displaying Zen Report Data.”

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

regionName A name for the <pagestartsidebar>. If supplied, this name and the name supplied
for regionStartName in <document> must be the same.

3.21 <pageendsidebar>

The <pageendsidebar> element puts content into a sidebar on each printed page. The sidebar is positioned on the side of
the page where text ends. In a language read left to right, <pageendsidebar> creates a right sidebar. If you set
writing-mode=""rI" on the <document> element, sidebars switch sides, and <pageendsidebar> creates a left sidebar.
You must place <pageendsidebar> before the <body> element in the XData ReportDisplay block.

<pageendsidebar> can contain the same layout and display elements as <body>. See the list of elements in the chapter
“Displaying Zen Report Data.” However, everything contained within the <pageendsidebar> is rendered in the blank space
provided by the <document> element endSidebarLength and regionEndExtent attributes.

To add a sidebar to the PDF report output, the XData ReportDisplay block must contain:

» A<document> element with a endSidebarLength value. This endSidebarLength must be greater than the regionEndExtent
for the <document>. Make sure the regionEndExtent is large enough to contain the content you plan for your header.
The figure <document> Attributes for Page Layout in Portrait Mode illustrates these relationships.

104 Using Zen Reports

<body>

* A <pageendsidebar> element

XHTML reports do not display <pageendsidebar> elements at all.

The <pageheader> element supports the attributes listed in the following table.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the
expressions for <pageheader> element, see the section “Conditional Expressions for Displaying
display Elements.”

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section in the chapter “Displaying Zen Report Data.”

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

regionName A name for the <pageendsidebar>. If supplied, this name and the name supplied for
regionEndName in <document> must be the same.

3.22 <body>

The <body> element is the required child of <report>. It contains the Zen report elements that control layout and style.

The <body> element supports the attributes listed in the following table.

Using Zen Reports 105

Formatting Zen Report Pages

Attribute Description

Conditional expressions For descriptions of the attributes that allow you to conditionally output the <body>
for display element, see the section “Conditional Expressions for Displaying Elements.”

appendldToZenLastPage | Inorder to calculate a total page count, Zen reports generates a last-page marker.
A report that has multiple, independently numbered sections, effectively has
more than one ‘last’ page. This attribute instructs the report to use the value
supplied by the <body> attribute id to generate a unique last-page marker. Use
it in conjunction with the <item> attribute appendToZenLastPage. The value of
appendToZenLastPage must match the value supplied for <body> id.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

See the section Page Numbering in Multi-section Reports for more information
on using the appendidToZenLastPage attribute.

blockZENLastPage Boolean flag to block last page reference creation. Default value is “false”. It
provides a useful ‘shortcut’ to avoid the necessity of generating unique last-page
markers if you are not using page numbering in your report.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

genLastPageldOn In order to calculate a total page count, Zen reports generates a last-page marker.
A report that has multiple, independently numbered sections, effectively has
more than one ‘last’ page. This attribute provides an XPath that is used to gen-
erate unique last-page markers. Use it in conjunction with the “*-with-xpath”
values for the <item> attribute special, and the <report> or <section> attribute
primaryGroup.

foStyle Allows an XSL-FO style to be defined for PDF generation. The following entry
in the Zen report XData ReportDisplay block:
<body foStyle="font-family="Arial® font-size="9pt"">
Produces the following output in the generated XSL-FO stylesheet for the report:

<fo:flow flow-name="xsl-region-body" font-family="Arial"
font-size=""9pt">

The foStyle attribute does not apply to output in XHTML format. When the output
mode is XHTML, foStyle is ignored.

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

The <body> element for a <report> may contain any number of elements to control positioning and layout of data items
in the report. For a list and full details, see the next chapter, “Displaying Zen Report Data.”

The <body> element may also contain the following elements to control style for the <report>:
o <call>
o <fo>

o <foblock>

106 Using Zen Reports

<body>

e <html>
e <write>
3.22.1 <call>

The <call> element allows a report display to include XSLT created by the XData ReportDisplay block of another report.
It is useful if you want to create a report from separately developed sub-reports, or if a report becomes too large to compile.
The <call> element must be a direct child of the <body> element. A called subreport cannot contain a <call> element. The
report property suppressRootTag can be useful with <call> if the included XSLT has its own root tag.

The <call> element has the following attributes when used in the XData ReportDisplay block:

Attribute Description

method A class or instance method which returns a stream. This method must be defined in the
Zen report. The stream is inserted into the report definition at the place where the call
element occurs.

The method can return the output of the XData ReportDisplay block of a subreport, or it
can perform other functions. If used with a subreport, the method must create a new
instance of the subreport, and use GenerateStream to return a stream. You must write
the method to accept a mode argument even though the <call> element does not pass
this argument explicitly. The value of mode is handled automatically by Zen reports, and
is determined by the output mode of the report. If the method is also called from a
ReportDefinition block, mode is not set automatically, and you must set it to 0 in the
method.

subreport Provides a string used in the generated XSLT to identify a set of formatting instructions.
It enables the generated XSLT to process the same XML more than once, and produce
different results each time.

The method must set the SubReport property to the same string as subreport. The
subreport attribute must be unique in the report, so that each set of formatting instructions
is uniquely identified.

subreportname The value of this attribute is the value of the name attribute of the report element of the
XData ReportDisplay block of the subreport called by this <call> element. This value
enables the generated XSL to select the correct nodes in the generated XML. If the report
also calls subreports in the XData ReportDefinition block, <report> element in the
ReportDefinition block of those subreports must also use this name.

If the first character in the subreportname string is a ! (exclamation point) then Zen
reports interprets the remainder of the string as an ObjectScript expression that provides
the string. You can set the report name from a property in the report, and define the
property as a ZENURL and set it at runtime from the URL that invokes the report. Because
the ObjectScript is evaluated in the context of the <call> element, if the expression
involves executing a method in the main report, you must prefix the method name with
%report.

Important: A different <call> element is used in the XData ReportDefinition block.

For help resolving problems with the <call> element, see Troubleshooting the <call> element.

Using Zen Reports 107

Formatting Zen Report Pages

3.22.1.1 Example using the <call> element in ReportDisplay

The SAMPLES namespace provides a code example in the ZENApp package that illustrates the use of <call> in the
ReportDisplay block. The Zen report class ZENApp . MyReportMain.cls generates the same XML as

ZENApp -MyReport.cls. It then uses the <call> element in the XData ReportDisplay block to display that XML in two
different ways:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name="myReport® title="HelpDesk Sales Report® style="standard">

<body>
<header>
<!-- Combined REPORT HEADER -->
<p class="bannerl"HelpDesk: Summary and Detail Reports</p>
<fo><line pattern="empty"/><line pattern="empty'/></fo>
</header>

<call method="GetSummary"' subreport="SummaryReport" />
<call method="GetDetail" subreport="DetailReport" />

</body>
</report>

The method attribute specifies a method that returns a stream. The method GetSummary produces a summary of sales for
each sales representative, and GetDetai I produces the same detailed report as ZENApp . MyReport.cls. The following
code shows GetSummary as an example:

Method GetSummary(mode) As %GlobalCharacterStream [ProcedureBlock = 0]

set (tSC,rpt,stream)="""

set rpt=##class(ZENApp.MyReportSummary) .%New()
if rpt

{

set rpt.SubReport="SummaryReport"
set tSC=rpt.GenerateStream(.stream,mode)

¥
if $$SISERR(LSC) {set stream="""}
quit stream

The method used to call a subreport from the ReportDisplay block is essentially the same as the method used with <call>
in the ReportDefinition block. Methods called from the ReportDisplay block must take a mode argument, and must pass
mode to Gener ateStream. Zen reports automatically provides the value of mode. In this example, the method GetSummary
calls the report ZENApp -MyReportSummary .cls, and GetDetai l calls ZENApp -MyReport.cls You can include
mode in the signature of methods called from the ReportDefinition block, but the method must provide a default value,
because none is supplied automatically by Zen reports.

The subreport attribute provides a character string used by the XSLT to identify the formatting commands generated by
each subreport. It enables the Zen report to process the XML more than once, generating different output each time. In the
method, you must also set the property SubReport of %ZEN.Report. reportPage to the same value as subreport.

3.22.1.2 Example using <call> in ReportDefinition and ReportDisplay

The SAMPLES namespace provides a code example in the ZENApp package that illustrates the use of <call> in both the
ReportDefinition block and the ReportDisplay block. The Zen report class ZENApp . MyReportBoth.cls creates a
composite report from the subreports ZENApp.MyReportByDay.cls and ZENApp .MyReportByRep.cls. The
ReportDefinition block of ZENApp -MyReportBoth.cls calls the methods GetSubDai ly and GetSubRep, which
each call a subreport to generate the XML for the report. The previous section “Example using the <call> element” discusses
this type of call.

108 Using Zen Reports

<body>

The ReportDisplay block of ZENApp -MyReportBoth. cls calls the methods GetSubDai lyDspl and GetSubRepDspl.
The way <call> is used here is similar to what you saw in the section “Example using the <call> element in ReportDisplay”’,
but with an additional attribute called subreportname. The value of this attribute is a string that must match the name
attribute of the <report> element of the ReportDisplay block in the subreport. Zen reports uses this name to locate nodes
in the XML generated by the subreport.

XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]

<report xmlIns="http://www. intersystems.com/zen/report/display"
name="myReport" title="HelpDesk Combined Sales Report® style="standard">
<document width="8.5in" height="11in" marginLeft="1.25in"
marginRight="1.25in" marginTop="1.0in" marginBottom="1.0in">
</document>
<body>
<header>
<I-- COMBINED REPORT HEADER -->
<p class="bannerl">HelpDesk Combined Sales Report </p>
<fo> <line pattern="empty'/> <line pattern="empty'/> </fo>
<table orient="row" width="3.45in" class="tablel">
<item value="Combined Sales" width="2in">
<caption value="Title:" width="1.35in"/>
</item>
<item field="@month" caption="Month:"/>
<item field="@author" caption="Author:"/>
<item field="@runBy" caption="Prepared By:''/>
<item field="@runTime" caption="Time:"/>
</table>
</header>
<call method="GetSubDailyDspl" subreport="DailyReport"
subreportname="myReportByDay" />
<call method="GetSubRepDspl' subreport="RepReport"
subreportname=""myReportByRep" />
</body>
</report>

The methods GetSubDai lyDspl and GetSubRepDspl also set the value of %ZEN.Report.reportPage.MainReport to the
name of the main report, which is also the top-level element in the generated XML. The following code shows
GetSubDai lyDspl with MainReport set.

Method GetSubDailyDspl(mode) As %GlobalCharacterStream [ProcedureBlock = 0]

set (tSC,rpt,stream)=""
set rpt=##class(ZENApp.MyReportByDay) - %New()
if rpt {

set rpt.SubReport="DailyReport"

set rpt.MainReport="myReport"

set tSC=rpt.GenerateStream(.stream,mode)

1
if $$SSISERR(LSC) {set stream="""}
quit stream

The subreportname attribute and the value of MainReport provide the generated XSLT by the information required to find
elements in this two-level structure. The following figure shows how the MainReport property of the report, and the
subreportname attribute of <call> correspond to the top and second level elements in the generated XML.

Figure 3-7: MainReport and subreportname

set rpt.MainReport={"myReport”| —gmyReport/runTime="2011-03-08 18:47:45" month="ALL"
author="BOB" runBy="UnknownUser">
subreportname=["myReportByDay"|.—gmyReportByDay|/runTime="2011-03-08 18:47:45"
runBy="UnknownUser" author="BOB" month="ALL">
— <SaleDate date="2005-01-01">
— <record id="316" number="6">
<date>2005-01-01</date>

Using Zen Reports 109

Formatting Zen Report Pages

3.22.2 <fo>

The <fo> element can contain the same elements as <body>. See the list of elements in the next chapter, “Displaying Zen

Report Data.”

The difference is that everything contained within <fo> is rendered in the XSL-FO (that is, PDF) report only. <fo> is useful
for correcting issues where the XHTML report and PDF report do not look alike due to inherent page differences, such as

page breaks.

<fo> has the following attributes:

Attribute

Conditional
expressions for
display

Display attributes

caption

3.22.3 <foblock>

Description

For descriptions of the attributes that allow you to conditionally output the <fo>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section in the chapter “Displaying Zen Report Data.”

(Optional) Caption text for this block.
Although you can enter ordinary text for this attribute, it has the underlying data type

%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

The <foblock> element becomes an <fo:block> in generated XSL-FO. You can use it to group elements in a report for
formatting, such as applying block-level styling to a group of <inline> components.

<foblock> has the following attributes:

Attribute

Conditional
expressions for
display

Display attributes

Description

For descriptions of the attributes that allow you to conditionally output the <foblock>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section in the chapter “Displaying Zen Report Data.”

keepCondition (Optional) String that specifies an XSL-FO keep condition. You can use any valid
keep condition, but the following is often the most useful:
""keep-together . _within-page="always""
It keeps all content within the <foblock> together on a single page.
id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.
110 Using Zen Reports

<body>

3.22.4 <html>

The <html> element supports the same elements and attributes as <fo>, but <htmlI> renders its contents in the XHTML
report only.

3.22.5 <write>

The <write> element writes directly to the stylesheet, instead of to the report. The <write> element may legally appear
anywhere within a <body>, <pageheader> <pagefooter>, <pagestartsidebar>, and <pageendsidebar> element. However,
<write> can be most useful within <fo> or <html>. For example:
<html>
<write>
<I[CDATAL[This is HTML!]]>
</write>
</html>
<fo>
<write>
<I[CDATA[<fo:block>This is XSL-FO</fo:block>]]>

</write>
</fo>

The <write> element supports the attributes listed in the following table.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally output the <write> element,
expressions | see the section “Conditional Expressions for Displaying Elements.”
for display

id Optional identifier. You can use the id to access the <write> element to change its contents
programmatically. For details, see the discussion of the content property following this table.

The <write> element is an XML projection of the Zen report class %ZEN.Report.Display.write. If you view the description
of this class in the online Class Reference Information, you see that it has a property called content. This is where Zen stores
the text that you place in between the <write> and </write> elements in XData ReportDisplay. If you have a reason to
programmatically change the text of a <write> element on the server side before displaying a report, call the class method
% GetComponentByl d(id) to retrieve a pointer to the %ZEN.Report.Display.write object. Then you can access the content
property of this object to change it as needed. For an example, see “The id Attribute” in the chapter “Formatting Zen
Report Pages.”

If you manipulate the content property programmatically, keep in mind that this text string actually has the underlying data
type %ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

Using Zen Reports 111

Displaying Zen Report Data

This topic describes the elements that display the visual content of the report. Many of these elements can be a child of
<pageheader> <pagefooter>, <pagestartsidebar>, <pageendsidebar>, <body>, <block>, <div>, <group>, or <table>.

The display elements are:

» <barcode> — Adds a barcode to the generated PDF. Not supported for HTML.
» <barcodeOptions>— Adds options to a <barcode>.

* <block>— Group of items to be handled inline

» <bidioverride> — Adds an <fo:bidi-override> element to the generated XSL-FO, and a <bdo> element to generated
HTML.

»
— Line break within a block

» <container> — Group of items, usually layered over a background image
» <div>— Group of items to be handled as a block

» <footer> — Group of items for a page footer

e <group>— Group of items for repeated actions

e <header>— Group of items for a page header

e — Image

e <inline> — Inline text styling

» <inlinecontainer> — Adds an <fo:inline-container> element to the generated XSL-FO.
* <item>— Data value

o <line> — Horizontal line between blocks

» <link>— Link to another URI

e <list>— Simple, bulleted, or numbered list of items

e <p>— Text string of any length

» <pagebreak> — Page break

* <small-multiple> — Series of graphic elements repeated on the page.

o <table>— Table

» <timeline> — A graphic summary of episodes

Using Zen Reports 113

Displaying Zen Report Data

In addition, Zen reports supports a number of elements that let you create charts. Zen reports callback charts replicate the
charting capability provided by charts in Zen pages. The section “Zen Charts” in the chapter “Using Zen Components”
describes all the types of charts supported by both Zen pages and Zen reports. The section “Zen Reports Callback Charts”
in this book discusses topics specific to charts in Zen reports.

4.1 Report Display Attributes

Each of the display elements listed in this chapter has the attributes described in the following table. It may have other
attributes also.

Table 4-1: Report Display Attributes

Attribute Description

class CSS style class to apply to the element. Style classes can be defined by the <class>
element in addition to those given by the standard style sheet. For more information,
see the discussion following this table.

htmistyle Same as the style attribute described in this table, but the styles specified using the
htmistyle attribute apply to HTML output only.

selectstylecond Comma-separated list of ObjectScript expressions. At runtime, the Zen report evaluates
the selectstylecond expressions from left to right. The style in selectstylelist that corre-
sponds to the first true condition in selectstylecond is applied to the display element.

For details, see “Conditionally Applying CSS Styles” following this table.
selectstylelist Comma-separated list of CSS statements to use with selectstylecond.
style Similar to the style attribute in CSS, this attribute may provide a semicolon-delimited
list of attribute:value pairs. For example:
style="fill:yellow;font-size:6pt;"

If you apply a style to a container such as <block>, it might not apply to every node
within the container. If you have difficulty with this, try applying the style attribute to the
lower-level node, such as <item>.

stylecall The name of an <xsl :template> to execute. The template must be defined in an
XData HtmIXslt or XData XslFoXslt block (or both) in the same Zen report class.
See styleparamNames and styleparams in this table, and the section “Calling XSLT
Templates to Apply Styles.”

styleparamNames | Semicolon-separated list of names of <xsl : param> arguments for an <xsl : template>
to invoke for this <item>.

See stylecall and styleparams in this table, and the section “Calling XSLT Templates
to Apply Styles.”

114 Using Zen Reports

Report Display Attributes

Attribute

styleparams

template

width

xslfostyle

Description

Semicolon-separated list of expressions that provide values for the <xsl : param>
arguments defined for an <xsl : template> to invoke for this <item>. These expressions
can be literal values, node sets, XPath expressions, or XSLT function calls. Anything
that is valid as a value for <xsl :with-param> in XSLT is valid in styleparams.

See stylecall, styleparamNames in this table, and the section “Calling XSLT Templates
to Apply Styles.”

Name of the template that specifies this element. The format is:

templateClass :templateName

Where:

« templateClass is the name of the subclass of %ZEN.Report.Display.reportTemplate that
defines the template.

« templateName is the name of the specific XData block within the templateClass
that provides the template for this element.

If the template name starts with exclamation point (1) it is interpreted as a COS runtime
expression.

To create a template, see the “Using Zen Report Templates” section in the chapter
“Building Zen Report Classes.”

HTML length value that defines the element’s width. The exact meaning depends on
the individual element. If widths are omitted, the PDF rendering tool can produce
unexpected results.

"2in", "5cm", "12px", "14pt", "3em", or "75%" are all valid formats for HTML length values.
A percentage is relative to the container for the element that uses the width attribute.

Same as the style attribute described in this table, but the styles specified using the
xslfostyle attribute apply to the XSLFO stylesheet for PDF output only.

When specifying a value for the class attribute, do not include the element name that is given when creating the class. Thus,
if you have a style class named table.myTable that you want to use, in the <report> specify:

<table class="myTable">

The following <table> element uses the class attribute to apply the table.grid style to a table in a Zen report:

<table class="grid" group="Step'>

<item width="0.8in" field="@Number' />
<item width="0.8in" field="./Al11Set" />
<item field="./DemoText" />

</table>

Parent elements propagate their class attribute values to children that do not have a class specified. So if you define
table.myTable, th.myTable, and td.myTable, you only need to give the <table> element a class attribute. You can even put
a class attribute on the <body> element to give a class for every element in the report (at least, for those that do not override
it with a class attribute of their own).

The class value may consist of multiple class names separated by space characters, as in the following example:

Using Zen Reports

115

Displaying Zen Report Data

<document width="8.5in" height="11in"
marginLeft="1_25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0in">
<class name="p.classl">
<att name="background-color" value="red" />
</class>
<class name="p.class2">
<att name="color" value="white" />
</class>
</document>
<body>
<p class=""classl class2">Can CSS use two classes?</p>
</body>

For descriptions of predefined style classes for Zen reports, see:
o Default CSS Styles for Zen Reports in HTML Format
o Default XSL-FO Styles for Zen Reports in PDF Format

Whether or not you use the predefined styles, you may define custom style classes using the <class> element and apply
them to elements in a Zen report using the class attribute.

4.2 Conditionally Applying CSS Styles

The simplest style attribute for a display element is style. This provides a semicolon-delimited list of CSS styles to apply
to the display element.

It is possible for a display element to define a list of conditions to define a list of styles. The selectstylecond attribute is a
comma-separated list of ObjectScript expressions. These expressions may not contain private variables, but you may use
the special variable %report to indicate the report class, and dot syntax with %report to reference properties of the Zen
report class. At runtime, the Zen report evaluates the selectstylecond expressions from left to right. The style in selectstylelist
that corresponds to the first true condition in selectstylecond is applied to the display element.

In the following example, when the Month property has the value 1, the numbers are red, otherwise they are yellow:

<item special="number" width="75%"
selectstylecond="%report.Month=1,1" selectstylelist=
""border:none;padding-right:4px;color:red,padding-right:4px;color:yellow"/>

There are three different separators at work in the previous example:

» A comma (,) separates list entries in the Zen report selectstylelist list. Each selectstylelist entry may consist of a list of
CSS style definitions.

» Asemicolon (;) separates entries in the list of CSS style definitions within the same Zen report selectstylelist list. Each
entry consists of a CSS style name and its value.

» Acolon (:) separates each CSS style name from its value.

Information contained within any style attribute takes precedence over style information given by the class.

If you use %report in aselectstylelist list in a way that relies on a property value passed as a ZENURL in the URI that
invokes the report, you may see unexpected results if XSLT processing takes place in the browser. See the section “Setting
Zen Report Class Properties from the URI” for more information on this issue.

116 Using Zen Reports

<barcode>

4.3 <barcode>

Zen reports supports generation of barcodes with Barcode4J. Barcode support is provided by the FOP rendering engine
provided with Caché which has the file barcode4 j-fop-ext-complete. jar installed. Zen reports does not support
barcode rendering for HTML or the RenderX PDF rendering engine.

You can simply add a barcode element to the body of the XData ReportDisplay section of a report, as illustrated by the
following code fragment:

<body>
<barcode value="hello world"/>
</body>

A more realistic scenario involves using data from the database. Given the following XData ReportDefinition:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" sql="Select top 10 Name From Sample.Person'>
<group name="‘Person'>
<!-- commas are not valid in barcode code39 -->
<attribute field="Name" name="name"
expression="$replace(%val,","," ")"/>
</group>
</report>

This XData ReportDisplay outputs each name, and a barcode for the name:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""MyReport''>
<body>
<table group="Person'>
<item Tield="@name" />
<barcode field="@name" />
</table>
</body>
</report>

The next code sample uses the same XData ReportDefinition, and illustrates the use of <barcodeOptions>:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""MyReport''>
<body>
<table group="Person'>
<item field="@name" />
<barcode field="@name" barcodeType="codel28">
<barcodeOptions>
<I[CDATAL
<barcode:height>8mm</barcode:height>
;?arcode:module—width>0.6mm</barcode:module—width>
>
</barcodeOptions>
</barcode>
</table>
</body>
</report>

<barcode> has the following attributes:

Using Zen Reports 117

Displaying Zen Report Data

Attribute

Conditional
expressions for
display

Display attributes

barcodeNamespacePrefix

barcodeOrientation

barcodeType

field

htmlErrorMessage

value

Description

For descriptions of the attributes that allow you to conditionally display the <block>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section at the beginning of this chapter.

The namespace prefix for BarCode4J barcode elements in the namespace
http://barcode4j.krysalis.org/ns.

Specifies the orientation of the printed barcode. Possible values are: 0, 90, -90, 180,
-180, 270, and -270. The default value is 0.

The type of this barcode. See http://barcodedj.sourceforge.net/2.1/barcode-xml.html
for information about barcode types.

An XPath expression that provides the information rendered in the barcode. If null,
value can provide the barcode message.

A text message you can use in HTML output as a place holder for barcodes. The
initial value is: "Barcode elements are only supported in PDF output.”

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

The information rendered in the barcode, used only if field is null.

4.4 <barcodeOptions>

The <barcodeOptions> element allows you to specify barcode options. It has the same syntax as the <write>element. Note
the use of CDATA in the following example:

<barcodeOptions>
<I[CDATAL

<barcode:height>8mm</barcode:height>
<barcode:module-width>0.6mm</barcode:module-width>

11>
</barcodeOptions>

<barcodeOptions> has the following attributes:

118

Using Zen Reports

http://barcode4j.krysalis.org/ns
http://barcode4j.sourceforge.net/2.1/barcode-xml.html

<block>

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <block>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.

XMLEscape Specifies whether the barcode uses XML escaping. If <barcodeOptions> is true, the
<barcodeOptions> content is enclosed in CDATA syntax; if false it is not.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

See the Barcode4j documentation at sourceforge.net for information on filling out <barcodeOptions> for a specific
barcodeType.

4.5 <block>

The <block> element renders all of its child elements sequentially. The output becomes a in XHTML and an
<inline>in XSL-FO. It can be used anywhere in the <report>, but it is most useful as a container within a <table>. In general,
a <table> treats every child element as a new row or column, so the <block> element can be used to group multiple elements
into a single row or column. For the list of elements that <block> can contain, see the beginning of this chapter, “Displaying
Zen Report Data.”

<block> has the following attributes.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <block>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.
caption (Optional) Caption text for this block.
Although you can enter ordinary text for this attribute, it has the underlying data type

%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

4.6 <bidioverride>

The <bidioverride> element adds an <fo:bidi-override> element to the generated XSL-FO. It is used to override the direction
of text as determined by the Unicode Bidirectional Algorithm, to correctly render text for different scripts in mixed-language
documents.

Using Zen Reports 119

http://barcode4j.sourceforge.net/2.1/index.html
http://sourceforge.net/

Displaying Zen Report Data

Here is an example:

<div> <bidioverride direction="rtl" unicode-bidi="bidi-override" >
<inline>Normal text</inline> </bidioverride> </div>

It produces the following output:
txet lamroN

Practical uses for <bidioverride> include cases where text includes text written in a different direction, and rendering of
European numbers in Hebrew or Arabic text.

Note that an <fo:bidi-override> cannot contain an <fo:block>, hence the use of <inline>. The appendix “Generated XSL-
FO and HTML™ lists which Zen reports elements generate block and inline XSL-FO output.

<bidioverride> has the following attributes:

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <block>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.

direction Specifies the text direction. Possible values:
« inherit — takes text direction value from the parent element
» ltr — text is written left-to-right

* rtl — text is written right-to-left

unicode-bidi Specifies override behavior. Possible values:

» bidi-override For inline elements this creates an override. For block container
elements this creates an override for inline-level descendants not within another
block container element. This means that inside the element, reordering is strictly
in sequence according to the direction property; the implicit part of the bidirectional
algorithm is ignored. This corresponds to adding a LRO (U+202D; for 'direction:
Itr') or RLO (U+202E; for ‘direction: rtl") at the start of the element or at the start
of each anonymous child block box, if any, and a PDF (U+202C) at the end of
the element.

» embed If the element is inline, this value opens an additional level of embedding
with respect to the Unicode Bidirectional Algorithm. The direction of this
embedding level is given by the direction property. Inside the element, reordering
is done implicitly.

e inherit

« normal The element does not open an additional level of embedding with respect
to the Unicode Bidirectional Algorithm. For inline elements, implicit reordering
works across element boundaries.

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

120 Using Zen Reports

4.7

The
 element inserts a line break within the current element. The correct syntax for this element is XHTML syntax,
which makes the element into valid XML by placing a slash character before the closing angle bracket.

This is correct:

This is not correct:

The following example inserts a line break into the <caption> for an <item>:

<item Field="EAST" formatNumber="### , H#iH , #HHHH, i, i, #HiHE, #HHET>
<caption multiline="true">
<inline>
EAST
</inline>

<inline>
WEST
</inline>
</caption>
</item>

4.8 <container>

The <container> element provides a container for other content. The <container> can have a background image assigned
to it; this image is displayed as a tiled background for the contents of the <container>. You can provide multiple <container>
elements on a page, and you can nest <container> elements.

<container> elements are useful if you want to create a report that looks like a pre-printed form, with text layered over
images that represents fields on the form. You can also use a <container> to provide a watermark such as “CONFIDENTIAL”
or “DRAFT” for the entire report page.

The following example outputs a <list> that contains one line for each person found in the imagetest group. Each
output line contains the value of the Name of each person. In this example, the <container> creates a background for the
<list> output by tiling the barchartblue.png image behind the list in the report.
<report xmlns="http://www. intersystems.com/zen/report/display"
name=""Iimagetest''>
<body>
<container backgroundlImage="barchartblue.png" >
<list group="person'>
<item field="Name"/>
</list>
</container>

</body>
</report>

By default, Zen tiles the background image across the width and height of the container area, starting at the top left corner
and tiling from left to right and top to bottom as permitted by the relative sizes of the image and the container area. You
can change the image repeat and positioning style for XHTML and PDF output by applying the “Report Display Attributes”
style, htmlstyle and xslfostyle to the <container>, as in the following example. Note this example also shows a convention
of using nested containers on the same report page.

Note: Inthis example, line breaks have been added within attribute values to avoid truncating the code on the documen-
tation page; these line breaks would not be present in working code.

Using Zen Reports 121

Displaying Zen Report Data

<group name="SalesRep'" pagebreak="true'">
<container
backgroundImage=""'ssmocreport.png"
style="width:9.47in;height:7.761n;background-repeat:no-repeat;
margin-top:0cm;margin-bottom:0cm;margin-left:0cm;
margin-right:0cm;padding-top:0cm;padding-bottom:0cm;
padding-left:0cm;padding-right:0cm;
background-position:top left;" >
<container
style="font-size:.5in;margin-top:0cm;margin-bottom:0cm;
margin-left:0cm;margin-right:0cm;padding-top:0cm;
padding-bottom:0cm;padding-left:0cm;padding-right:0cm;"
htmlstyle="top:5.2in;left:4in;position:relative”
xslfostyle=""top:4.8in;left:3in;absolute-position:absolute'>
<p field="@name">
Hi there!
</p>
</container>
</container>
</group>

To produce correct PDF output, the elements that you place within a <container> must be blocks of some kind. The more
complex elements such as <p> <list> and <table> are blocks, but this is not the case for simpler elements like <item>. For
this reason, if you wish to output a single <item> within a <container>, you must provide a block to contain it. The simple
way is to insert a <div> between the <container> and the <item>. For example:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""imagetest'>
<body>
<cog§ainer backgroundImage="barchartblue.png"” >
<arv>
<item field="grandTotal"/>
</div>
</container>
</body>
</report>

<container> supports the following attributes:

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.

backgroundimage URI of the source file for the background image. This URI is relative to the subdirectory
in which CSP stores the supporting files for applications in the current namespace.
Suppose the namespace in which the Zen report resides is called myNameSpace. Then
there is a subdirectory called /csp/mynamespace below the Caché installation directory
in which the image is expected to reside. If you specify:

The Zen report class looks for the file myPic.png in the subdirectory
Icsp/mynamespace/images below the Caché installation directory.

If the backgroundimage attribute value begins with an exclamation point, it is interpreted
as an XPath expression just as in the field attribute of the <item> element. This allows
you to dynamically generate URIs within the XML data, and then use these customized
URIs as the image source. When using ! (exclamation point) to dynamically generate
the image URI, the resulting string must be an absolute URI or it does not appear in
the PDF report.

Note that the built-in FOP may have problems rendering image files in . jpg format.
To avoid problems, use files in _png format.

122 Using Zen Reports

<div>

Attribute

caption

height

id

width

writing-mode

4.9 <div>

Description

(Optional) Caption text for this container.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

HTML length value that specifies the area in which to display the container in the report.
By default, the container contents fill this area.

Optional identifier. If present, it can be used to retrieve this element in server-side code,
by calling the %GetComponentByld(id) method.

HTML length value that specifies the container width. By default, the container contents
fill this area.

Adds the writing-mode attribute to the <fo:page-sequence> element in the generated
XSL-FO. writing-modecontrols aspects of page layout relevant to the direction in which
text is written. See the section “Writing Mode” for a detailed discussion of
thewriting-mode attribute.

Possible values are:

e “Ir-tb” — for text written left-to-right and top-to-bottom, as in most Indo-European
languages.

o “rl-tb” — for text written right-to-left and top-to-bottom, as in Arabic and Hebrew.
e “tb-rl" for text written top-to-bottom and right-to-left, as in Chinese and Japanese.
e “Ir"— same as “Ir-tb”

* “rI"— same as “rl-tb”

* “tb”— same as “tb-Ir"

e ‘“inherit” — takes writing-mode value from the parent element

Note that not all XSL-FO renderers support all possible values.

The <div> element can be used to group multiple elements into a block in the report output. This is useful if you want to

apply a style to an entire block, such as placing a border around it. The output becomes a <div> in XHTML and a <block>
in XSL-FO. For the list of elements that a Zen report <div> element can contain, see the beginning of this chapter, “Dis-
playing Zen Report Data.”

The following example defines border styles so that a table is contained in a black bordered box. <div> can be used within
tables to define bordered areas containing tables within tables.

Using Zen Reports

123

Displaying Zen Report Data

<div style="border-style:solid;border-width:4px" >
<p style=""text-align:center;text-decoration:underline'>
"Current Address Data"
</p>
<table orient="row" class="subtable">
<item field="@patient_add_street 1" class="'subtable" defaultWidth="none" >
<caption value="Street(1):" class="subtable" defaultWidth="none"/>
</item>
<item field="@patient_add_street 2" class="subtable" defaultWidth="none">
<caption value="Street(2):" class="subtable" defaultWidth="none"/>
</item>
</table>
</div>

<div> has the following attributes.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <div>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.

id Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

linefeed-treatment Supports the XSL-FO property linefeed-treatment. See the discussion following this
table for more details. Possible values are:

e ignore
* preserve
+ treat-as-space

» treat-as-zero-width-space

See the discussion following this table for more details.

You can use the linefeed-treatment value “preserve” to retain linefeed characters in the source data when generating PDF
output. Given the following element in the Report Definition:

<element

name="Finding”

expression=

}"AAA"_$C(13,10)_" "'_$C(13,10)_""BBB"_$C(13,10)_" "_$C(13,10)_" "_$C(13,10)_"CCC"_$C(13,10)"
>

The following example uses linefeed-treatment in the Report Display to output the item and retain the linefeeds:

<item

field="Finding" width="2_65In"
linefeed-treatment="preserve'>
<caption value="Finding"/>

</item>

You cannot use breakOnLineFeed=""true" in conjunction with linefeed-treatment="preserve".

124 Using Zen Reports

<group>

4.10 <group>

Within an XData ReportDisplay block, the <group> element allows the Zen report class to respond to the hierarchically
structured data that is typical of XML.

Important: There is a different <group> element for use within an XData ReportDefinition block.

<group> has the following attributes in XData ReportDisplay.

Attribute

Conditional
expressions for
display

Display attributes

breakCheck

caption

line

Description

For descriptions of the attributes that allow you to conditionally display the <group>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section at the beginning of this chapter.

An XPath expression that provides a condition used to determine whether to add a
page break to the report.
(Optional) Caption text for this group.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

HTML length value that specifies the thickness of the line to be drawn between each
iteration of the group. If line is 0, no line is drawn.

"2in", "5cm", "12px", "14pt", "3em", or "75%" are all valid formats for HTML length
values. A percentage is relative to the container for the element that uses the width
attribute.

Using Zen Reports

125

Displaying Zen Report Data

Attribute

name

pagebreak

pagebreakBefore

primaryGroup

Description

Required. XPath expression that identifies the group, within the XML data source,
that supplies the data for this part of the display.

The elements within the <group> container determine how the display handles this
data. <group> can contain the same elements as <body>. See the list of elements
at the beginning of this chapter, “Displaying Zen Report Data.”

<group> elements can be nested. Suppose your XML data contains <SalesRep>
elements. Your XData ReportDisplay block could contain:

<group name="'SalesRep''>..._.</group>
Now suppose each <SalesRep> elements contains multiple <sale> elements. To

specify how to display each sale within the display for each sales representative,
you would provide something like:

<group name="'SalesRep'>
<group name="sales'>

</group>
</Q}6up>
To display a group as a table, see the group attribute of <table>.

If true, put a page break after each iteration of the group.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

If true, put a page break before each iteration of the group.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

If true, identifies the group that is processing the primary group set by the
primaryGroup attribute of <report>.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

removeEmpty In the XData ReportDisplay block, the removeEmpty attribute controls whether or

not empty elements and attributes that Zen encounters in the XML data for this report

display in the XHTML or PDF output generated by this <group> in the report. If

removeEmpty is:

* Not specified, the <group> inherits the removeEmpty value of its parent. If no
element in the ancestry of this <group> specifies a removeEmpty value, then
the default is 0.

e 0, empty element and attribute values are output to the XHTML or PDF generated
for this <group> in the report.

* 1, empty element and attribute values are not output to the XHTML or PDF
generated for this <group> in the report.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports

Attribute Data Types.”

126 Using Zen Reports

<header> and <footer>

Attribute

separator

small-multiple

small-multiple-name

testEachifxpath

Description
Use to separate rendered items. May have one of the following values:

e "none'" — Items in the group have no visible separator between them. This is
the default if no separator is specified.

» "line" — A thin horizontal line separates items in the group.

Use to output the contents of the group as small multiples:

 "false” — Items in the group are not output as small multiples. This is the
default if small-multiple is not specified.

e "true" —Items in the group are output as small multiples. See <small-multiple>.

The name of the small multiple. Use with small-multiple.

An XPath that provides a condition that is applied to each element of the group to
determine whether the element is included in the report. Used when you are not
using a primaryGroup.

4.11 <header> and <footer>

The <header> and <footer> elements are simple containers. Their primary purpose is to help organize the propagation of
styles within the report. Each of the <header> and <footer> elements can propagate its class attribute value to its children.

<header> and <footer> each support the attributes listed in the following table.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <header> or <footer>
expressions | elements, see the section “Conditional Expressions for Displaying Elements.”

for display
Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter.
foStyle Allows an XSL-FO style to be defined for PDF generation. The following entry in the Zen report
XData ReportDisplay block:
<header foStyle="font-family="Arial” font-size="14pt"">
Produces the following output in the generated XSL-FO stylesheet for the report:
<fo:block font-family="Arial" font-size="14pt">
This attribute does not apply to output in XHTML format.
id Optional identifier. If present, it can be used to retrieve this element in server-side code, by

calling the %GetComponentByld(id) method.

Using Zen Reports

127

Displaying Zen Report Data

4.12

The element inserts an image into the report. has the following attributes.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the element,

expressions | see the section “Conditional Expressions for Displaying Elements.”

for display

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”

attributes section at the beginning of this chapter.

caption (Optional) Caption text for this image.
Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

contentHeight | HTML length value that specifies the actual height of the image. For PDF output, the
contentHeight may be different from the height specified for the area in which to display the
image in the report.
"2in", "5cm”, "12px", "14pt", "3em", or "75%" are all valid formats for HTML length values. A
percentage is relative to the container for the element that uses the width attribute.

contentType | For PDF output, contentType is required to specify the MIME content type to use for an image
that is being provided as a stream from the database. For example:

There is more information about providing images as streams following this table.

contentWidth | HTML length value that specifies the actual width of the image. For PDF output, the
contentWidth may be different from the width specified for the area in which to display the
image.

height HTML length value that specifies the area in which to display the image in the report. By
default, the image contents fill this area.

id Optional identifier. If present, it can be used to retrieve this element in server-side code, by
calling the %GetComponentByld(id) method.

128 Using Zen Reports

<inline>

Attribute Description

src URI of the source file for the image. This URI is relative to the subdirectory in which CSP
stores the supporting files for applications in the current namespace. Suppose the namespace
in which the Zen report resides is called myNameSpace. Then there is a subdirectory called
Icsp/mynamespace below the Caché installation directory in which the image is expected to
reside. If you specify:

The Zen report class looks for the file myPic.png in the subdirectory /csp/mynamespace/images
below the Caché installation directory.

If the src attribute value begins with an exclamation point, it is interpreted as an XPath
expression just as in the field attribute of the <item> element. This allows you to dynamically
generate URIs within the XML data, and then use these customized URIs as the image source.
When using ! (exclamation point) to dynamically generate the image URI, the resulting string
must be an absolute URI or it does not appear in the PDF report.

width HTML length value that specifies the image width. By default, the image contents fill this area.

The following example shows how you might retrieve a stream stored in the database to use as an image in a Zen report.
In XData ReportDefinition, provide an <element> or <attribute> that references the stream in the data for the report. In
this reference, the expression must provide the cookie and share parameters. In reality this expression value would be all
on one line, but for typesetting purposes the example breaks it into several lines:

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name="'streamtest" sql=""select * from mine.myStream'>
<group name='‘group'>
<element name="test" field="ID"
expression=""http://localhost:57777/csp/samples/%25CSP .StreamServer.cls?

STREAMOID=""_. .Encrypt(##class(mine.myStream) .%0penld(%val) .myStream.%0id())_"
& ; CSPCHD=""_%session.CSPSessionCookie_"&CSPSHARE=1""
/>
</group>
</report>

To continue the example, the following XData ReportDisplay references the image stream data provided by the previous
XData ReportDisplay. A contentType value is required if you are creating PDF output from this report:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmIns="http://www. intersystems.com/zen/report/display"
name="'streamtest'">
<body>
<group name='‘group'>

</group>
</body>
</report>

4.13 <inline>

The <inline> element is useful if you need a single line to display text of various styles. The following is an example. Note
the use of
 to force a line break at the end of the inline content:

Using Zen Reports 129

Displaying Zen Report Data

<inline>This

is a test of </inline>

<inline style="font-size:14pt'>14 point text</inline>

You cannot arbitrarily nest an <inline> element inside another element. There are display elements that can have children,
and display elements that can only contain text. <inline> can appear as a child of <pageheader> <pagefooter>, <pagestart-
sidebar>, <pageendsidebar>, <body>, <block>, <group>, or <bidioverride> only. <inline> cannot appear as a child of
content elements such as <link>, <inline>, <p>, or <write>.

<inline> has the following attributes. Of these, the style attribute is the most significant for <inline>.

Attribute

Conditional
expressions for
display

Conditional
expressions for
values

bidi-override-direction

Description

For descriptions of the attributes that allow you to conditionally display the <item>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of the expression and if attributes that allow you to conditionally display
the value of the <item> element, see the section “Conditional Expressions for Displaying
Values. "

Sets the bi-directional override direction for the inline text. Possible values are: "rtl” and

“Itr". The default is “Itr". Also supported by <p>.

For more information on bi-directional text, see <bidioverride>
Display attributes Use the style attribute to apply style to the content that appears within the <inline>
element. For example:

For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section at the beginning of this chapter.

id Optional identifier. You can use the id to access the <inline> element to change its
contents programmatically. For details, see the discussion of the content property
following this table.

linefeed-treatment | Supports the XSL-FO property linefeed-treatment. See the discussion at the end of the

section <div> for more details.

The <inline> element is an XML projection of the Zen reports class %ZEN.Report.Display.inline. If you view the description
of this class in the online Class Reference Information, you see that it has a property called content. This is where Zen stores
the text that you place in between the <inline> and </inline> elements in XData ReportDisplay. If you have a reason to
programmatically change the text of an <inline> element on the server side before displaying a report, call the class method
% GetComponentByl d(id) to retrieve a pointer to the %ZEN.Report.Display.inline object. Then you can access the content
property of this object to change it as needed.

If you manipulate the content property programmatically, keep in mind that this text string actually has the underlying data
type %ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

4.14 <inlinecontainer>

The <inlinecontainer> element adds an <fo:inline-container> element to the generated XSL-FO. It can contain an attribute
that overrides the writing-mode currently in effect. It must contain <fo:block> elements even though it represents an <inline>
element. The appendix “Generated XSL-FO and HTML ™ lists which Zen reports elements generate block and inline XSL-
FO output.

130 Using Zen Reports

<item>

Here is an example:

<inlinecontainer writing-mode=""1r">
<div><p>123</p></div> </inlinecontainer>

The <inlinecontainer> element has the following attributes:

Attribute

Conditional
expressions for
display

Conditional
expressions for
values

Display attributes

writing-mode

4.15 <item>

Description

For descriptions of the attributes that allow you to conditionally display the <item>
element, see the section “Conditional Expressions for Displaying Elements.”

For descriptions of the expression and if attributes that allow you to conditionally display
the value of the <item> element, see the section “Conditional Expressions for Displaying
Values. ”

Use the style attribute to apply style to the content that appears within the <inline>
element. For example:

<inline style="font-size:14pt'”>14 Point Text</inline>
For descriptions of style, width, class, and other attributes, see the “Report Display
Attributes” section at the beginning of this chapter.

Optional identifier. You can use the id to access the <inline> element to change its
contents programmatically. For details, see the discussion of the content property
following this table.

Adds the writing-mode attribute to the <fo:page-sequence> element in the generated
XSL. writing-modecontrols aspects of page layout relevant to the direction in which text
is written. See the section “Writing Mode” for a detailed discussion of thewriting-mode
attribute.

Possible values are:

e “Ir-tb” — for text written left-to-right and top-to-bottom, as in most Indo-European
languages.

e “rl-tb” — for text written right-to-left and top-to-bottom, as in Arabic and Hebrew.
e “th-rlI" for text written top-to-bottom and right-to-left, as in Chinese and Japanese.
* “Ir"— same as “Ir-tb”

* “rI"— same as “rl-tb”

e “tb” — same as “tb-Ir”

e ‘“inherit” — takes writing-mode value from the parent element

Note that not all XSL-FO renderers support all possible values.

The <item> element outputs literal values or data from the XML into the report. InterSystems recommends that you specify
exactly one of the attributes field, special, or value in an <item>, because <item> outputs only one. For details on the

Using Zen Reports

131

Displaying Zen Report Data

interaction of these attributes, and their interaction with the expression attribute, see the section “Conditional Expressions

for Displaying Values. ”

<item> has the following attributes:

Attribute
Conditional expressions for
display

Conditional expressions for
values

Display attributes

Attributes for cross tab tables

appendToZenLastPage

breakOnLineFeed

call

caption

copyxml

Description

For descriptions of the attributes that allow you to conditionally display the
<item> element, see the section “Conditional Expressions for Displaying
Elements.”

For descriptions of the expression and if attributes that allow you to
conditionally display the value of the <item> element, see the section
“Conditional Expressions for Displaying Values.”

For descriptions of style, width, class, and other attributes, see the “Report
Display Attributes” section at the beginning of this chapter.

For descriptions of the attributes used to create this specialized type of table,
see Creating Type 2 Cross Tab Tables.

In order to calculate a total page count, Zen reports generates a last-page
marker. A report that has multiple, independently numbered sections,
effectively has more than one ‘last’ page. When you use the attribute special
to include page numbers, you need to use this attribute to provide a value
that generates a unique last-page marker for the section that contains the
item. Use it in conjunction with the <body> attribute appendldToZenLastPage.
The value must match the value of id supplied for appendldToZenLastPage.
See the section Page Numbering in Multi-section Reports for more information
on using the appendToZenLastPage attribute.

If breakOnLineFeed is true, any line feeds that Zen encounters in element
data are rendered as visible line breaks in PDF output. Line feeds are not
preserved or supported within attribute values, only within the text contents
of XML elements.

If breakOnLineFeed is false, line feeds are treated as white space and ignored,
as is typical for XML processing. The default breakOnLineFeed value is false.

Also see literalSpaces.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

The name of an <xsl :template> to execute. The template must be defined
in an XData block called AllXslt, HtmIXslt, or XsIFoXslt in the same Zen report
class. See paramNames and params in this table, and the section “Calling
XSLT Templates While Rendering Items.”

(Optional) Caption text for this item. See displayCaption. Although you can
enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

If true, the field value of this <item> is interpreted as an XPath to be input to
an <xsl:copy-of> operation; if false, the field value is interpreted as an XPath
to be input to an <xsl:value-of> operation.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

132

Using Zen Reports

<item>

Attribute
displayCaption

field

fieldname

fieldnum

formatNumber

id

insert-zero-width-spaces

linefeed-treatment

Description

If true, prefix the caption text to the item output. For additional details see
<caption>.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

If the field attribute is specified, the <item> renders the value of that field in
the XML data. See the section field for more information.

When a table uses sql or a queryClass and queryName to gather data, an
item in the table can use the fieldname attribute to specify a data field in thesq|
attribute or query by name. See the sections “Creating Tables from Class
Queries” and “Creating Tables with SQL".

When a table uses sql or a queryClass and queryName to gather data, an
item in the table can use the fieldnum attribute to specify a data field in thesq|
attribute or query by number. Also used to identify fields in the data returned
to a table by a callback method. See the section “Creating Tables with a
Callback Method.”.

String specifying the number format to use. This string uses the same
conventions as the XSLT format-number function, such as ###.# for a
three-digit number with one decimal place. When you obtain the value for the
<item> using call, you cannot use the formatNumber attribute to format the
result. Instead, use the XSLT format-number function inside the

<xsl :template> that you are referencing with the call attribute. For more
information, see the section “Calling XSLT Templates While Rendering
ltems.”

Optional identifier. If present, it can be used to retrieve this element in
server-side code, by calling the %GetComponentByld(id) method.

To permit text wrapping for the contents of an <item>, set this attribute to
true, as shown in the following example:

<item field="@BedCode" width="_25in"
insert-zero-width-spaces="true"/>

When insert-zero-width-spaces is true, Zen places an invisible, zero-length
space after every other character in the contents of an <item>, except for the
last character. This allows the FOP and XEP rendering engines to find these
spaces and use them to wrap the data inside the display column.

Without this setting, the default behavior is to allow the text to run over to the
next column (FOP) or condense the characters in the data to fit the space
(XEP). Either default can result in illegible text.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

Supports the XSL-FO property linefeed-treatment. See the section <div> for
more details.

Using Zen Reports

133

Displaying Zen Report Data

Attribute
link

literalSpaces

paramNames

params

special

suppressDuplicates

Description
Optional hyperlink to place around the item’s data.

If the link attribute begins with an exclamation point, it is interpreted as an
XPath expression just as in the field attribute. This allows you to dynamically
generate URIs within the XML data, and then use these customized URIs in
the display.

The following is an example of valid link syntax:

<item value="click to open"
link="!concat("'MyApp.EmpDetails.cls?I1D="",0@id)"/>

Note that you cannot enclose string arguments to concat and other XPath
functions, in single quotes. You need to use double quotes or the "
entity.

If link is specified, the item’s style class uses the ""a’* option.

If true, this attribute causes literal spaces to display as spaces rather than
being skipped. To do the same for line feed characters, set breakOnLineFeed
to true.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

Semicolon-separated list of names of <xsl :param> arguments for an

<xsl :template> to invoke for this <item>. For details, see call and params
in this table, and the section “Calling XSLT Templates While Rendering
ltems.”

Semicolon-separated list of expressions that provide values for the

<xsl :param> arguments defined for an <xsl :template> to invoke for this
<item>. These expressions can be literal values, node sets, XPath
expressions, or XSLT function calls. Anything that is valid as a value for
<xsl:with-param> in XSLT is valid in params. For details, see call and
paramNames in this table, and the section “Calling XSLT Templates While
Rendering ltems.”

If the special attribute is specified, the <item> renders a predefined piece of
dynamic data. For more information see the section special.

Controls whether to display duplicate values that appear in sequence in a
table. For more information see the section suppressDuplicates.

134

Using Zen Reports

<item>

Attribute
suppressEmpty

value

Description

suppressEmpty offers an alternative to removeEmpty. removeEmpty is an
attribute that you can apply to a <table>, <group>, or <report>. When true,
removeEmpty actually removes empty items from the output. This can misalign
the data set. Depending on the application, this can have fatal or disastrous
effects.

Where this poses a problem, you can use the suppressEmpty attribute on
individual <item> elements. suppressEmpty displays a blank placeholder in
place of any empty <item> so that positioning is not disturbed. suppressEmpty
applies only to the individual <item> on which it appears.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

If the value attribute is specified, the <item> renders it as a literal value.
Although you can enter ordinary text for this attribute, it has the underlying
data type %ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.” For
details on the interaction of the value attribute with field and special, and their
interaction with the expression attribute, see the section “Conditional
Expressions for Displaying Values.”

The following attributes are used when generating Excel spreadsheet output in displayxlsx mode.

Attribute

excelFormula

excelName

excelNumberFormat

isExcelAggregate

Description

Specifies that this aggregate should be an Excel formula in the generated
spreadsheet. The value must be the name of the Excel formula equivalent
to the type of the aggregate. This attribute is used only when generating an
Excel spreadsheet in displayxlsx mode.

See <element> for information on how excelFormula is used in the
ReportDefinition.

Provides the column name for Excel output. This attribute is used only when
generating an Excel spreadsheet in displayxlsx mode. See <element> for
information on how exce lName is used in the ReportDefinition.

The exce lName attribute supports localization. See Localizing Zen Reports.

Provides a string that tells Excel how to format the number. This attribute is
used only when generating an Excel spreadsheet in displayxlsx mode.
See <element> for information on how excelNumberFormat is used in the
ReportDefinition.

Indicates that this item generates an Excel aggregate. The AGGREGATETAG
parameter must be set in the report for the aggregate to appear in the Excel
output. This attribute is used only when generating an Excel spreadsheet in
displayxisx mode.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

Using Zen Reports

135

Displaying Zen Report Data

Attribute Description

isExcelNumber By default, the value supplied by an <item> is interpreted as text in the gen-
erated Excel spreadsheet. If you set the attribute isExcelNumber=""true",
the value is interpreted as a number in Excel. If Excel cannot interpret the
value as a number, you see an error when Excel tries to open the generated
spreadsheet. This attribute is used only when generating an Excel spreadsheet
in displayxlsx mode. See <element> for information on how i sExce INumber
is used in the ReportDefinition.

xmlname Provides a name for the tag generated from this item in intermediate XML.
The default tagname is <item>. Having custom tag names can be helpful in
debugging. This attribute is used only when generating an Excel spreadsheet
in displayxlsx mode. See “Preserving Intermediate Files for Later Viewing.”

4.15.1 field

The field attribute is used as an XPath expression, so if you have the data:

<SalesRep id="1"><customer>MegaPlex Systems</customer></SalesRep>

To get the value of the id attribute you need the XPath expression:

field= "@id"

Whereas to obtain the value of the <customer> element you need the XPath expression:

field="customer"

The field attribute is interpreted with respect to the current <group> matched. For an <item> within <group
name="SalesRep">, only <SalesRep> attributes and children of <SalesRep> are available.

For details on the interaction of the field attribute with special and value, and their interaction with the expression attribute,
see the section “Conditional Expressions for Displaying Values. ”

4.15.2 special

The attribute special has the following possible values:

* number — gives the record number within the group.

* page-number — inserts the page number within a PDF report. Is rendered as '##' in XHTML.

» page-count — inserts the number of pages within a PDF report. It is rendered as '##' in XHTML.

e page-number-of — inserts the page number in the form '2 of 18'. It is rendered as '## of ##' in XHTML.

e page-number-/ — inserts the page number in the form '2/18'". It is rendered as "##/##' in XHTML.

The last three values of special allow you to generate the last page marker id dynamically based on an XPath value defined

in the field attribute of the <item>. You need to generate the last page marker dymanically when you have set the <body>
attribute genLastPageldOn.

» page-count-with-xpath — inserts the number of pages within a PDF report. It is rendered as '##' in XHTML.
e page-number-of-with-xpath — inserts the page number in the form '2 of 18'". It is rendered as ‘## of ##' in XHTML.
e page-number-/-with-xpath — inserts the page number in the form '2/18'". It is rendered as ‘##/##' in XHTML.

136 Using Zen Reports

<line>

See the section Page Numbering in Multi-section Reports for more information on using the special attribute.

4.15.3 suppressDuplicates

If suppressDuplicates is omitted or set to 0, duplicate <item> values that appear in sequence in a <table> are displayed, as
follows:

Name Sales

John Doe $100

John Doe $150
John Doe $345

If set to 1, duplicate <item> values within a <table> are not displayed:

Name Sales
John Doe $100
$150
$345

The code to produce the previous output looks something like this:

<table group="SalesPerson’ width="6in"
class="table4" altcolor="#DFDFFF'>
<item caption="Name" field="Name"
suppressDuplicates="1" />
<item caption="Amount"” field="Amount" />
</table>

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports Attribute Data Types.”

4.15.4 Page Numbering in Multi-section Reports

In order to calculate a total page count, Zen reports generates a last-page marker. In a report with multiple independently-
numbered sections, each section has a last page, so for the purposes of page numbering, there are multiple last pages in the
report. When the report <body> element has appendldToZenLastPage set to true, the report appends the <body> element’s
id value to the last page marker for the section in order to generate a unique last-page marker. When you use the <item>
attribute special to add page numbers and page counts, you use appendToZenLastPage to identify the last page marker for
the section that contains the item. Therefore, the value supplied in appendToZenLastPage must match the id value of the
<body> element of the section.

For details on the interaction of the special attribute with field and value, and their interaction with the expression attribute,
see the section “Conditional Expressions for Displaying Values. ”

4.16 <line>

The <line> element inserts a line break between elements in the report. This can either be a visible horizontal line or an
empty line break. <line> has the following attributes.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally display the <line> element,
expressions | see the section “Conditional Expressions for Displaying Elements.”

for display

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter.

align Alignment within the report page. Possible values are "left", "right", and "center".

Using Zen Reports 137

Displaying Zen Report Data

Attribute Description
caption (Optional) Caption text for this line.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

color CSS color value that specifies the line color. color only applies to solid or dashed lines
count The number of line breaks to draw. This is the same as repeating the <line> element.
id Optional identifier. If present, it can be used to retrieve this element in server-side code, by

calling the %GetComponentByld(id) method.
length HTML length value that specifies the line length. length only applies to solid or dashed lines.

"2in", "5cm", "12px", "14pt", "3em", or "75%" are all valid formats for HTML length values. A
percentage is relative to the container for the element that uses the width attribute.

lineHeight HTML length value that specifies how much vertical space to reserve for displaying the line.
This is not the same as the line thickness when the pattern is "solid" or "dashed". lineHeight
applies to "empty" lines as well.

Despite using this attribute, line spacing can vary between XHTML and XSL-FO (thatis, PDF).
This can be overcome using <fo> and <html> elements.

pattern Possible values are "empty", "solid", and "dashed".

thickness HTML length value that specifies the line thickness. The default value is 1px. thickness only
applies to solid or dashed lines.

4.17 <link>

The <link> element allows a user to click on a link to display the online resource identified by the <link> destination value.
To provide a link caption, enter text between the <link> and </link> elements in the report.

An important use of the <link> element is to allow one XHTML report to link to another. This can be used to create the
effect of a subreport. For example:

<link

destination="concat("'*http://localhost:57779/csp/app/Rpt.EpHist.cIs?FACILITY="",

@FACILITY,"&amp; PATID="",@PATID) ">

Episode History
</link>

In the previous example, a report on a patient provides a <link> with the label “Episode History.” Clicking on this link
invokes the Rpt.EpHist.cls report. The example demonstrates two important features:

e Use of the XSLT function concat() to compose the URI from text snippets and data values.

» Passing XPath expressions as the values for ZENURL parameters FACILITY and PATID in the target report class.

Note that you cannot enclose string arguments to concat and other XPath functions, in single quotes. You need to use
double quotes or the " entity. Also note the somewhat unusual-looking string & ; amp;, which is required pass
an ampersand character through to the URI in the browser. The first ampersand entity, & ;, is converted to an ampersand
during Zen reports XData block processing. That ampersand and the following amp ; combine to form an ampersand entity
in the generated HTML which is then rendered as & by the browser.

138 Using Zen Reports

<list>

<link> has the following attributes.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally output the <link> element, see
expressions | the section “Conditional Expressions for Displaying Elements.”

for display
Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter.

destination | An XPath expression that provides the URI for the link destination.

id Optional identifier. You can use the id to access the <link> element to change its contents
programmatically. For details, see the discussion of the content property following this table.

internal If true, the link destination is the id of an element on the current page. In HTML output an
internal value of true prepends the link with a # character; in XSL-FO output it assigns the
internal-destination attribute to the link.

If the internal attribute is false, blank, or not supplied, the link destination is assumed to be
the URI of another page.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports Attribute
Data Types.”

name Provides a name attribute value for the link, to be used in HTML output only.

The <link> element is an XML projection of the Zen report class %ZEN.Report.Display.link. If you view the description of
this class in the online Class Reference Information, you see that it has a property called content. This is where Zen stores
the text that you place in between the <link> and </link> elements in XData ReportDisplay. If you have a reason to pro-
grammatically change the text of a <link> element on the server side before displaying a report, call the class method

% GetComponentByl d(id) to retrieve a pointer to the %ZEN.Report.Display.link object. Then you can access the content
property of this object to change it as needed.

If you manipulate the content property programmatically, keep in mind that this text string actually has the underlying data
type %ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

4.18 <list>

The <list> element is used to display an itemized or ordered list within a Zen report. The following example outputs one
line for each person found in the imagetest group. In this case, each output line contains the value of the Name of each
person:

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""Iimagetest''>
<body>
<list group="person'>
<item field="Name"/>
</list>
</body>
</report>

<list> has the following attributes.

Using Zen Reports 139

Displaying Zen Report Data

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally display the <list> element, see
expressions | the section “Conditional Expressions for Displaying Elements.”
for display

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter. For a <list> element, the style attribute applies to its
bullets or numbers.

group Required. If no group is specified for a <list>, there is only one item in the list. Since you want
multiple items in a list, it makes sense to specify a group attribute for each <list>. Within the
list you must provide one or more elements such as an <item> to identify which data from the
group needs to be displayed in the list.

Atfirst glance, it appears that the rule is that the group value for a <list> in XData ReportDisplay
must match the name value for a high-level <group> or <report> defined in XData ReportDef-
inition. Many times this is superficially true.

However, this convention is more interesting than it seems. The value of the group attribute
is a partial XPath expression that continues the implicit XPath expression that began with the
containing <report> or <group> for the <list>. That is, group and field expressions concatenate
downwards from other group and field expressions that are specified above them in the hier-
archy of the <report>. Knowing this allows you to use groups and lists in more interesting
ways.

For detailed information about how to use XPath expressions in Zen reports, see the section
“Groups, Fields, and XPath Expressions.”

id Optional identifier. If present, it can be used to retrieve this element in server-side code, by
calling the %GetComponentByld(id) method.

image The URI of an image to use as a custom bullet. If you provide an image value, the type attribute
is ignored.

separator Use to separate list items. May have one of the following values:

* "none" — Items in the list have no visible separator between them. This is the default if
no separator is specified.

e "line" — A thin horizontal line separates items in the list.

startvalue The first number value for ordered lists. startvalue is always specified as an integer. If type is
"A" and startvalue is "3", the first element in the list is labeled "C".

type The bullet or numbering style to use for list items. Possible values are: "none",
"disc", "1", "A", "a", "I", "i". PDF reports do not support "square" or "circle".

circle", "square",

4.19 <p>

The <p> element renders a block of text. It uses the **p** option for its style class. <p> has the following attributes.

140 Using Zen Reports

<pagebreak>

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally display the <p> element, see
expressions | the section “Conditional Expressions for Displaying Elements.”
for display

Conditional | For descriptions of the expression and if attributes that allow you to conditionally display the
expressions | value of the <item> element, see the section “Conditional Expressions for Displaying Values.
for values ”

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter.

doerkdedn | Sets the bi-directional override direction for text in the paragraph. Possible values are: "rtl"and
“Itr". The default is “Itr". Also supported by <inline>.

For more information on bi-directional text, see <bidioverride>

caption (Optional) Caption text for this block.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

id Optional identifier. You can use the id to access the <p> element to change its contents
programmatically. For details, see the discussion of the content property following this table.

The <p> element is an XML projection of the Zen reports class %ZEN.Report.Display.p. If you view the description of this
class in the online Class Reference Information, you see that it has a property called content. This is where Zen stores the
text that you place in between the <p>and </p> elements in XData ReportDisplay. If you have a reason to programmatically
change the text of a paragraph on the server side before displaying a report, call the class method % GetComponentByl d(id)
to retrieve a pointer to the %ZEN.Report.Display.p object. Then you can access the content property of this object to change
it as needed.

If you manipulate the content property programmatically, keep in mind that this text string actually has the underlying data
type %ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

4.20 <pagebreak>

The <pagebreak> element inserts a page break in PDF output. It inserts a dashed line in the XHTML report on screen, and
causes a page break when you print the XHTML report.

The <pagebreak> element supports the attributes listed in the following table.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally display the <pagebreak>
expressions | element, see the section “Conditional Expressions for Displaying Elements.”
for display

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
attributes section at the beginning of this chapter.
id Optional identifier. If present, it can be used to retrieve this element in server-side code, by

calling the %GetComponentByld(id) method.

Using Zen Reports 141

Displaying Zen Report Data

4.21 <small-multiple>

The <small-multiple> element lets you output data from a <group> in a series of graphics repeated on the page. Small
multiples are useful for tasks such as generating mailing labels. Zen reports takes data from a <group>, formats it in the
<small-multiple> element, and then populates a <table> with the repeated elements.

To define a small multiple, first define a <group> that contains the data that fills each of the <small-multiple> elements.

<group name="Person' small-multiple="true" small-multiple-name="person-labels">
<table orient="row" >
<item field="@Name'/>
<item field="@Street"/>
<item field="@City"/>
<item field="@State"/>
</table>
</group>

The attribute small-multiple specifies whether the data in this group is output as small multiples. The default value is
"“false". The attribute small-multiple-name specifies the name of the small multiple associated with this group. The
default value is **'smal I-multiple'. Note that each small multiple in a report must have a unique name.

Then you define the small multiple:

<small-multiple
num-rows=""1"
num-cols="3"
table-class="table4"
table-width="5in"
col-width="2_.5in"
name=""person-labels"

/>

The name attribute has the same value as the small-multiple-name in the <group> that gathers data for this small multiple.

The <small-multiple> element supports the attributes listed in the following table.

Attribute Description

Conditional | For descriptions of the attributes that allow you to conditionally display the <small-multiple>
expressions | element, see the section “Conditional Expressions for Displaying Elements.”
for display

Display For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”

attributes section at the beginning of this chapter.

id Optional identifier. If present, it can be used to retrieve this element in server-side code, by
calling the %GetComponentByld(id) method.

numM-rows The number of rows in the table that holds the small multiple.

num-cols The number of columns in the table that holds the small multiple.

table-class | The table CSS class or attribute-set.
table-style The table CSS style.

table-width | The table width.

row-class The row CSS class or attribute-set.

row-style The row CSS class or attribute-set.

142 Using Zen Reports

<small-multiple>

Attribute Description

row-width The row width.

col-class The column CSS class or attribute set.

col-style The column CSS style.

col-width The column width.

name The name of the small multiple. The default is “small-multiple”. Each small multiple in a report

must have a unique name.

fill-order Used to define how the small multiple is filled by the temporary tree defined by the group which
is a collection of zr:smal l-multiple XML elements. horizontal means that as elements
are encountered, they fill a small multiple across rows before moving down columns. vertical
means the first column on the small multiple should be filled before moving on to the next.
The default is horizontal.

Important: Because small multiple generation uses temporary trees, you must set the parameter XSLTVERSION =
2.0 for both HTML and PDF output, to ensure processing with XSLT version 2.0. You must not use the
class parameter XSLTMODE or the URI parameter $XSLT to direct XSLT processing to the browser. By
default, XSLT processing takes place on the server. The data in the group is stored in a variable whose
name is small-multiple-name.

The following Zen reports class:

Class ZENSmallMultiple.JKSMailingLabel Extends %ZEN.Report.reportPage
{

Parameter DEFAULTMODE = "'‘pdf';

Parameter XSLTVERSION = 2.0;

/// This XML defines the Ioglcal contents of this report.

// NEW STUFF

XData ReportDefinition [XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name="MailingLabel"
sql=""SELECT top 9 name,Home_Street,Home_City,
Home_State,Home_Zip from Sample.Person order by name'>
<group name="'Person''>
<element field="name" name=""name" />
<element field=""Home_Street" name='"Home_Street"/>
<element field= "Home " City" name="Home_City'/>
<element field=""Home_State' name='"Home_State'/>
<element field="Home_Zip" name="Home_Zip"/>
</group>
</report>

3

/// This XML defines the display for this report.

/// This is used to generate the XSLT stylesheets for both HTML and XSL-FO.

XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]
{

<report xmlIns="http://www. intersystems.com/zen/report/display"
name=""Mai lingLabel"">
<document width="8.5in" height="11in"
marginLeft="_.175in" marginRight="_.175in" marginTop="_.5in" marginBottom="_.5in" />
<body>
<group name="Person" small-multiple="true" small-multiple-name="person-labels">
<table orient="row" >
<item field="name"/>
<item field="Home_Street"/>
<item field="concat(Home_City,", ',Home_State," ' ,Home_Zip)'"/>
</table>
</group>
<small- multlple
num-rows="
num-cols="3"
table-class="table4"
table-width="8iIn"

Using Zen Reports 143

Displaying Zen Report Data

table-style="border:0pt;padding:0Opt"
row-style="border:0Opt;padding:0Opt;height:0.75In"
col-width="2in"
row-width="4in"
name=""person-labels"

/>

</body>

</report>

}

Produces the following output:

Adams,Chris U. Ahmed,Paul E. Ahmed,Ted S.

522 First Court 7423 Second Drive 8998 Main Blvd
Xavier, MN 22913 Islip, NC 51289 Gansevoort, ND 12182
Avery,Josephine M. Avery,Paul K. Avery,Zelda A.

509 Second Street 9846 Madison Court 6018 Elm Court
Queensbury, OK 69365 St Louis, M| 73432 Albany, TX 61225
Basile,Quigley J. Basile, Thelma O. Beatty,Dan Y.

388 First Place 8141 Second Place 4706 First Blvd
Pueblo, GA 12700 Hialeah, NC 34716 Albany, FL 46799

4.22 <table>

The <table> element outputs a table into the report. <table> has the following attributes.

Note: In Zen report tables, using percentage values to specify proportional column widths works only for PDF output.
Percentages do not work as width specifications for tables in Zen report XHTML output.

Attribute Description

Conditional For descriptions of the attributes that allow you to conditionally display the <table>
expressions for element, see the section “Conditional Expressions for Displaying Elements.”
display

Display attributes For descriptions of style, width, class, and other attributes, see the “Report Display

Attributes” section at the beginning of this chapter.

Every cell the table renders uses td for its style class, except for header cells, which
use th.

align Possible align values are "left," "right," and "center". For HTML output, the align
attribute aligns the table within the report.

For PDF output, a value of "center" centers text within the table, but it does not
center the table with respect to the margins of the report. To center the table you
must put the <table> in a <div> and position the <div>. For additional details, see
the section “Centering a <table> for PDF Output.”

144 Using Zen Reports

<table>

Attribute

altcolor

caption

crosstab

data-type

defaultWidth

excelGroupName

excelSheetName

foHeaderStyle

foStyle

Description

CSS color value that specifies the background color of the alternate rows (2, 4, 6,
etc.). This is only possible when orient is "col" and group is specified. Overrides the
color set report-wide with TABLEALTCOLOR.

(Optional) Caption text for this table.

Although you can enter ordinary text for this attribute, it has the underlying data type
%ZEN.Datatype.caption. See “Zen Reports Attribute Data Types.”

Specifies that the table is a cross tab table. See “Creating Type 1 Cross Tab Tables.”

The data-type attribute specifies the data-type for the data in the sort column specified

by orderby. Possible values are: “text”, “number”, and “gname”.

HTML length value for the default width of the table, or the value ""none' which
means no column width value are generated.

Provides a name for the tag generated from this table in intermediate XML. The
default tagname is <group>. Having custom tag names can be helpful in debugging.
This attribute is used only when generating an Excel spreadsheet in displayxlsx
mode. See “Preserving Intermediate Files for Later Viewing.”

The excelSheetName attribute lets you specify a name for the generated worksheet.
By default, the worksheet uses Excel's default naming convention for sheets: "Sheet1",
"Sheet2" and so on. Supply excelSheetName on <report> for a single sheet report,
and on each <group> that defines a worksheet for a multi-sheet report. The
excelSheetName attribute supports localization. See Localizing Zen Reports.

If excelSheetName begins with a ! (exclamation point) the report interprets what
follows as an ObjectScript runtime expression that is evaluated to get the sheet
name. Sheet names supplied by runtime expressions are not localized.

For further control over sheet name generation, you can override the method
%getDisplayUniqueExcelSheetName, defined in %ZEN.Report.reportPage.

Allows an XSL-FO style to be defined for the table header, for PDF generation. The
following entry in the Zen report XData ReportDisplay block:

<table foHeaderStyle="font-weight="bold""">

Produces output such as the following in the generated XSL-FO stylesheet for the
report:

<fo:table-header font-weight="bold">

This attribute does not apply to output in XHTML format.

Allows an XSL-FO style to be defined for the table as a whole, for PDF generation.
The following entry in the Zen report XData ReportDisplay block:

<table foStyle="font-family="Arial® font-size="9pt="'>

Produces output such as the following in the generated XSL-FO stylesheet for the
report:

<fo:table font-family="Arial" font-size=""9pt">

This attribute does not apply to output in XHTML format.

Using Zen Reports

145

Displaying Zen Report Data

Attribute
group

layout

Description

If no group is specified for a <table>, the table is based on a single row of data, so
there is only one row or column in the table. Since you want multiple rows and
columns in most tables, it makes sense to always specify a group attribute for each
<table>. Within the table you must provide one or more elements such as an <item>
to identify which data from the group needs to be displayed in the table.

At first glance, it appears that the rule is that the group value for a <table> in XData
ReportDisplay must match the name value for a high-level <group> or <report>
defined in XData ReportDefinition. Many times this is superficially true.

However, this convention is more interesting than it seems. The value of the group
attribute is a partial XPath expression that continues the implicit XPath expression
that began with the containing <report> or <group> for the <table>. That is, group
and field expressions concatenate downwards from other group and field expressions
that are specified above them in the hierarchy of the <report>. Knowing this allows
you to use groups and tables in more interesting ways.

For detailed information about how to use XPath expressions in Zen reports, see
the section “Groups, Fields, and XPath Expressions.”

Optional identifier. If present, it can be used to retrieve this element in server-side
code, by calling the %GetComponentByld(id) method.

Possible layout values are "auto" "fixed" and "none". For PDF output, the XEP ren-
dering tool supports both "auto" and "fixed" formats. FOP supports "fixed" only.
"none" means to suppress output of any table layout attribute value to the generated
stylesheet.

When layout is "fixed", it is important that you specify a width for each column. The
code produces a good result from minimal width information, but you can gain closer
control as follows:

* Iforientis "col," then each child of the table class should have a width attribute
specified.

» If orientis "row", then only one child of the table needs to have its widths speci-
fied. However, if that element within the table has a <caption> or <summary>
child element to define a header column or footer column, these elements must
also specify their widths.

146

Using Zen Reports

<table>

Attribute

oldSummary

ongetData

orderby

orient

queryClass

queryName

Description

<summary> is an element that can appear inside a <table> to provide a footer for
the table. Older Zen reports use <summary> syntax conventions that are different
from newer Zen reports. The <summary> section describes each convention:

* oldSummary is true by default, so there is no need to change <table> definitions
in older Zen reports. When oldSummary is true, the syntax is as described in
the section “When <table> oldSummary is True.”

* InterSystems recommends you use the newer syntax, which applies when
oldSummary is false. For new Zen reports, or if you are having trouble with the
output from a Zen report that uses <summary> elements, set the oldSummary
attribute to false in your <table> definition and use the syntax described in the
section “When <table> oldSummary is False.”

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

Specifies a server-side callback method that supplies data for the table. See “Creating
Tables with a Callback Method.”

A string that identifies which columns to use to sort the <table>. It consists of a
comma-separated list of elements or attributes in the XML that provides data to the
<table>. If the first character in the orderby string is a ! (exclamation point) then Zen
reports interpret the remainder of the string as an ObjectScript expression that pro-
vides the string.

For further details, see “The orderby Attribute in ReportDisplay” following this table.
For information on using orderby in the ReportDefinition section of a report, see “The
orderby Attribute in ReportDefinition” in the chapter “Gathering Zen Report Data”.

Each element contained within the table is treated as either a row or column,
depending on the value of the orient attribute. If orient is "row," each child element
of table is placed in a new row. Similarly, if orient is "col" each child element is placed
in a new column. Possible values are "row" and "col". The default is "col".

Supplies the name of a class containing a query that supplies data to the table. See
the section “Creating Tables From Class Queries”

Supplies the name of the query that supplies data to the table. See the section
“Creating Tables From Class Queries”

Using Zen Reports

147

Displaying Zen Report Data

Attribute Description
removeEmpty The <table> removeEmpty attribute controls whether or not the empty nodes that

Zen encounters in the XML data for this report display in the XHTML or PDF output

generated by this <table> in the report. If removeEmpty is:

* Not specified, the <table> inherits the removeEmpty value of its parent. If no
element in the ancestry of this <table> specifies a removeEmpty value, then the
default value, 0, applies to this <table>.

e 0, empty element and attribute values are output to the XHTML or PDF generated
for this <table> in the report.

* 1, empty element and attribute values are not output to the XHTML or PDF
generated for this <table> in the report.

If orient is "row," any rows with all empty data values are omitted from the output.
If orient is "col," any columns with all empty data values are omitted from the
output.

If there are some empty cells, but the entire row (or column) is not empty, then
the row (or column) is displayed with the empty cells blank.

The group attribute must be set for removeEmpty to work.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports

Attribute Data Types.”

rowAcrossPages The <table> rowAcrossPages attribute controls whether table rows with multiple lines
of content can be split over a page break. The default value “true” allows the row to
be broken, and the value “false” forces the row to the next page if it would otherwise
be split by the page break.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports

Attribute Data Types.”

selectmode Used with the sql attribute. Specifies the %SELECTMODE of the SQL query that
supplies data to the table. Possible values are:

e 0— Logical

« 1—O0ODBC

» 2 — Display

For additional information see the section “Creating an Object Instance” in the book

Using Caché SQL.

sql Provides an SQL statement that supplies data to the table. See “Creating Tables
with SQL.”
148 Using Zen Reports

<table>

Attribute Description

writing-mode Adds the writing-mode attribute to the <fo:page-sequence> element in the generated
XSL. writing-modecontrols aspects of page layout relevant to the direction in which
text is written. See the section “Writing Mode” for a detailed discussion of
thewriting-mode attribute.

Possible values are:

» “Ir-tb” — for text written left-to-right and top-to-bottom, as in most Indo-European
languages.

e “rl-tb” — for text written right-to-left and top-to-bottom, as in Arabic and Hebrew.
* “tb-rl" for text written top-to-bottom and right-to-left, as in Chinese and Japanese.
s “Ir"— same as “Ir-th”
* “r"— same as “rl-tb”
e “tb”— same as “tb-Ir"

e ‘“inherit” — takes writing-mode value from the parent element
Note that not all XSL-FO renderers support all possible values.

The following sections provide more detail about Zen report tables:
» “The orderby Attribute in ReportDisplay”
e “Centering a <table> for PDF Output”

e “Displaying Elements in a <table>"

e “<caption>”

e “<summary>"

e “Using Complex Headers for a <table>"

* “Embedding a <table> within a <table>"

e “Creating Type 2 Cross Tab Tables”

e “Creating Type 1 Cross Tab Tables”

e “Creating Tables with a Callback Method”
e “Creating Tables From Class Queries”

» “Creating Tables with SQL”

e “Creating Tables with onCreateResultSet”

4.22.1The orderby Attribute in ReportDisplay

Like orderby in the ReportDefinition block, the orderby attribute provides a comma-separated list of fields that specify
how to order items in the <table>. It overrides any ordering already present in the generated XML that provides data to the
table. For information on using orderby in the ReportDefinition section of a report, see “The orderby Attribute in Report-
Definition” in the chapter “Gathering Zen Report Data”.

Each item in the orderby list is an XPath that specifies an attribute or element in the generated XML. You can also specify
sorting in ascending or descending order. To do this, add a “\” (backslash) and the string ASC or DESC to the XPath in
the orderby list. The default sort is in ascending order. The ASC or DESC string is not case-sensitive. You can also specify

Using Zen Reports 149

Displaying Zen Report Data

the data type of the field to be sorted as either number or text. The default data type for sorting is text. To do this, add an
additional “\” (backslash) and the string number or text to the XPath in the orderby list.

The following example provides a literal value for orderby. In this example, the table uses the field “number” to sort items
in descending order as numeric data.
<table orient="col" group="SortMe/item" orderby="number\DESC\number" >

<item field="ID" width="_5in" caption="1D"/>

<item field="number" caption="number"/>
</table>

If the first character in the orderby string isa ! (exclamation point) then Zen reports interprets the remainder of the string
as an ObjectScript expression that provides the value. The following example references a Zen report class property SortBy
to provide a value for the orderby attribute. In the ReportDisplay block, the current class for evaluating expressions is the
class for the tag that contains the expression. In this example, the evaluation context for orderby is %ZEN.Report.Display.table.
For this reason, you cannot use double dot syntax to reference the report class property, as you do in the ReportDefinition
block. You can use the Zen reports special variable %report to reference the report and dot syntax to reference its properties.
You can also supply an expression as described in the section “Using Runtime Expressions in Zen Reports.”

/// Syntax appropriate for sorting via XSLT in ReportDisplay

Property SortBy2 As %String(ZENURL = "'SortBy')
[InitialExpression = "number\ASC"];

<table orient="col" group="SortMe/item" orderby="1%report.SortBy" >
<item field="ID" width="_5in" caption="1D"/>
<item field="number" caption="number"/>

</table>

4.22.2 Centering a <table> for PDF Output

The following example centers a 4—inch table on an 8.5-inch page with 1.25—-inch left and right margins. The “start-indent”
property of the <div> style attribute uses the <table> width (4 inches) and the available page width (6 inches) to position
the table on the page. Because “start-indent” is inherited, you must set it to 0 on each <item> in the table.
<div width="4in"

style="start-indent: ((6in - 4in) div 2)">

<table style="border:1pt solid black™ width="4in" >
<item field="NAME"
style=""start-indent:0;text-align:left"/>

</table>
</div>

4.22.3 Displaying Elements in a <table>

A <table> can contain any Zen report display element, including <item>, <block>, , and all types of chart. For a full
list of display elements that can appear in tables, see the list at the beginning of this chapter: “ Displaying Zen Report Data.”

When placed inside tables, display elements support the following attributes in addition to their regular attributes.

150 Using Zen Reports

<table>

Attribute
foblock

block-container-property

colcount

grouppath

include-block-container

Description

Use this to provide additional block styling information for the current item when
it appears in XSL-FO output, for example:

foblock=""orphans="1"""

The foblock attribute is ignored for XHTML output.

For a simpler option, see truncate or too-long-text.

(For PDF output only) If include-block-container is true, block-container-property
provides formatting instructions for the block that contains the entry. The following
instructions cause any overflow text to be truncated (hidden):

block-container-property="overflow="hidden" width="_.2in""

Tells an item in a cross tab table how many columns it should fill. colcount may
be a literal number, or it may be calculated from the input.

The colcount attribute is required on each item that you place inside a cross tab
table. Other types of tables ignore it. For examples, see “Creating Type 1 Cross
Tab Tables.”

Identifies the group that provides the values for this cross tab table item.

The grouppath attribute is required on each item that you place inside a cross
tab table with multiple columns or rows. It is not required if the cross tab table
has only one column or row, and other types of tables ignore it.

The purpose of the grouppath attribute is to enable a cross tab table to properly
label and count its columns based on the input. For examples, see “Creating
Type 1 Cross Tab Tables.”

For a simpler option, see truncate or too-long-text.

(For PDF output only) When there is a long string of data, XEP compresses the
data to fit the allotted space. FOP overflows the data into the following space,
such as the next table column, printing over what is meant to be in that space.

To truncate FOP overflow for better appearance, you can set the <table> entry
to be contained within a block and then set attributes of that block to the
behavior you want. That is:

include-block-container=""true"

A value of true means the entry is in a block and uses the format identified by
block-container-property. A value of false means Zen applies no special format-
ting to the entry.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

Using Zen Reports

151

Displaying Zen Report Data

Attribute Description
too-long-text (For PDF output only) If the too-long-text attribute is set to:

¢ "none" (the default) — Neither wraping nor truncation happens. The
behavior is specific to the rendering engine, FOP or XEP. FOP allows the
text to run into the next table cell or cells. XEP attempts to condense the
text to make it fit, which may cause the text to become illegible.

e truncate" — the text is truncated, and truncation-width is used if present

« "wrap” — zero length characters are inserted after every character in the
text but the last, so the rendering engine allows the text to wrap

e "unset" — Allows the current element to inherit the value from its parent.

truncate (For PDF output only) If truncate is true, any overflow text is truncated (hidden
from view). This is the simple answer to issues with FOP rendering. It is not
necessary to set any other attributes if you want simple truncation.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen
Reports Attribute Data Types.”

Also see too-long-text.

truncation-height (For PDF output only) Specifies a truncation height to use if truncate is true or
if too-long-text is set to "truncate”. The default is the height of the column that
contains the text.

truncation-width (For PDF output only) Specifies a truncation width to use if truncate is true or if
too-long-text is set to "truncate". The default is the width of the column that
contains the text.

In order to add a blank element to a table, and ensure that it renders as blank in PDF format, you must use a non-breaking
space character, ;. For example, the following code:
<table orient="row" width="3.45in" class="tablel">
<item value="Sales by Sales Rep" width="2in">
<caption value="Title:" width="1_.35in"/>
</item>
<item field="@month" caption="Month:"/>
<item field="@author" caption="Author:"/>
<item value="§ "/>
<item field="@runBy" caption="Prepared By:''/>
<item field="@runTime" caption="Time:"/>
</table>

Produces the following PDF output:

Title:Sales by Sales Rep
Month:ALL
Author:BOB

Prepared By:UnknownUser
Time:2012-06-14 19:15:47

If your <table> style provides visible borders for table cells, you might discover that when the value of a field is empty,
the border for its display cell disappears. This can create an uneven look for a table in which some cells have borders and
others do not. You can fix this problem by adjusting the <table> style: Set the table’s CSS attribute border-collapse to the

152 Using Zen Reports

<table>

value col lapse. One way to do this is to define a <class> element inside the <document> element for the report, then
apply this style to the <table> using its class attribute. For example:
<class name="table.main">

<att name="border-collapse' value="collapse" />
</class>

With:

<table class="main">
<I-- Contents of table here -->
</table>

For details about class, see the “Report Display Attributes” section at the beginning of this chapter.

4.22.4 <caption>

To include a caption for a row or column of the table, an element within a table can contain a <caption> element. The
<caption> element works just like <item>, and has the same attributes. For attribute details, see the <item> section.

To use a <caption> to provide a header for a column in a table, place a <caption> element inside the <item> element for
that column. <caption> must be the child of the element for which it provides a header. The header text comes from the
value inside the <caption> element. Also see <summary>.

When you have nested tables, it is possible for the inner table to have <caption> element within it, but that does not mean
the <caption> is something for that table to display. It actually refers to giving the inner table a caption within the outer
table.

A <caption> may contain line breaks to assist in formatting the text. The following example uses
to insert a line break
into the <caption> for an <item>:
<item Field="EAST" FormatNumber="### #i# HiH HHHE S >
<caption>
<inline>
EAST
</inline>

<inline>
WEST
</inline>
</caption>
</item>

If you specify the caption attribute for an <item>, and do not specify a <caption> element, <table> uses the caption attribute
as a column or row header for the <item>. If you set the displayCaption attribute to true, the <item> also prefixes the text
of the caption attribute to its output.

If you supply both a caption attribute and a <caption> element for an <item>, the table uses the <caption> element as a
column or row header. If the displayCaption attribute is true, the <item> also prefixes the text of the caption attribute to
its output, which lets you specify different text for the header and the prefix. If displayCaption is false, the content of the
caption attribute is ignored.

If you are getting the caption text dynamically from the generated XML, note that the caption is applied in the table header
area before the group context of the table is in effect. For this reason, you must provide the XPath specification with respect
to the element that contains the table. For example, if the generated XML has this structure:
<City City="Albany">
<Person Columnl="Name" Column2="Age'>
<Name>Gaboriault,Frances E.</Name>
<Age>4</Age>

</Person>
</City>

You must use an XPath such as "'Person/@Columnl1' in order to use the value of Columnl as caption, as illustrated in
the following code sample.

Using Zen Reports 153

Displaying Zen Report Data

<group name="City" pagebreak="true'">
<table group="Person" orient="col"
class="table4" altcolor="#DFDFFF'>
<item field="Name'>
<caption field="Person/@Columnl"/>
</item>
<item field="Age">
<caption Ffield="Person/@Column2"/>
</item>
</table>
</group>

4.22.5 <summary>

The <summary> element is similar to <caption>, except that it creates a footer for the row or column, instead of a header.
The <summary> element has the same attributes as <item>. For attribute details, see the <item> section.

Older Zen reports use <summary> syntax conventions that are different from newer Zen reports. InterSystems recommends
you use the newer syntax, but for backward compatibility with existing Zen reports, the default is to use the older syntax.
This section provides syntax information for the <summary> element in each case, as follows:

» For new Zen reports, or if you are having trouble with the output from an older Zen report that uses <summary>, add
oldSummary=""false" to your <table> definition and use the syntax described in the section “When <table> old-
Summary is False.”

» Forolder Zen reports, the section “When <table> oldSummary is True” describes the original syntax for <summary>.
Adding oldSummary=""true" to your <table> definition ensures that Zen follows these conventions, but this is not
necessary since the default for oldSummary is true.

4.22.5.1When <table> oldSummary is False

Consider the following sample <table>. This example displays a summary at the bottom of each column in the table. Notice
that all five <summary> elements for this table appear inside the last <item> element in the <table> definition. Zen looks
for <summary> elements inside <item> elements in the <table> from top to bottom. As it finds them, it assigns the contents
of those <summary> elements as footer text for the output table columns, from left to right. The first <summary> goes in
the first column, the second <summary> in the second column, and so on. That is the reason for the blank value attributes
in the first several <summary> elements in the example: These footers apply color formatting, but contain no text. Only
the last <summary> produces text, by using the field attribute to reference a value in the XML data produced by XData
ReportDefinition.

These rules apply regardless of which <item> contains the <summary> elements. Since <summary> elements provide
footers, it can make sense to group them all inside the last <item> in the <table>, as shown here:

<table orient="col" group="record"” width="6in" class="table4"
altcolor="#DFDFFF" oldSummary=""false" >

<item special="number" width="_45in" style="color: darkblue;">
<caption value="#" />

</item>

<item field="@id" width="_7in"
style="border:none;padding-right:4px'>
<caption value="Sale ID"/>

</item>

<item field="date" width="1.5in" style="padding-left: 4px;">
<caption value="Date"/>

</item>

<item field="customer"™ width="2.65in">
<caption value="Customer"/>

</item>

<item caption="Amount"” width="_7in"
style=""text-align:right;" field="@number"
formatNumber="###, ###,##0.00; (#) ">
<caption value="Amount'/>

<summary
style="font-style:italic;text-align:right;background-color:yellow"
value="" "/>

<summary
style="font-style:italic;text-align:right;background-color:purple"
value="" "/>

154 Using Zen Reports

<table>

<summary
style="font-style:italic;text-align:right;background-color:orange"
value=" "/>
<summary
style="font-style:italic;text-align:right;background-color:blue"
value=" "/>

<summary field="subtotal"
style="font-weight:bold;text-align:right;background-color:red"
formatNumber="###,###,##0.00; (#) " />
</item>

</table>

The following syntax is equally valid. You might prefer this convention because it groups the <caption> and <summary>
for each <item> together:

<table orient="col" group="record" width="6in" class="table4"

altcolor="#DFDFFF" oldSummary="false" >

<item special="number" width="_.45in" style="color: darkblue;">
<caption value="#" />

<summary
style="font-style:italic;text-align:right;background-color:yellow"
value=" "/>

</item>

<item field="@id" width="_7in" style="border:none;padding-right:4px">
<caption value="Sale ID"/>

<summary
style="font-style:italic;text-align:right;background-color:purple"
value=" "/>

</item>

<item field="date" width="1.5in" style="padding-left: 4px;">
<caption value="Date"/>

<summary
style="font-style:italic;text-align:right;background-color:orange"
value=" "/>

</item>

<item field="customer" width="2.65in">
<caption value="Customer"/>

<summary
style="font-style:italic;text-align:right;background-color:blue"
value=" "/>

</item>

<item caption="Amount" width="_7in"
style=""text-align:right;" field="@number"
formatNumber="### , ###,##0.00; (#) ">
<caption value="Amount"/>
<summary Ffield="subtotal”
style="font-weight:bold;text-align:right;background-color:red"
formatNumber="###, ###,##0.00; (#) " />

</item>

</table>

4.22.5.2 When <table> oldSummary is True

Consider the following sample XData ReportDisplay block. In this example the output display a summary in the Average,
Max, and Count columns, but not in the Name column. Notice that all three of the required <summary> elements appear
inside the <item> element that applies to the first <summary> element in order from left to right; that is, the Average:

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""SummaryReport'>
<body>
<table group="SalesByState'>
<item caption="Name" field="@statel”™ width="1in"/>
<item field="average" formatNumber="###### _##" width="4in">
<summary value="AVERAGE" />
<summary value="MAX" />
<summary value="COUNT" />
</item>
<item field="max" formatNumber="#######_ ##" width="2in"/>
<item field="count" width="2in"/>
</table>
</body>
</report>

Using Zen Reports 155

Displaying Zen Report Data

4.22.6 Using Complex Headers for a <table>

To support complex headers that can exceed one line and span multiple rows or multiple columns, Zen reports provide the
following elements, which can appear inside the <table> container. These elements produce output similar to HTML elements
of the same name, but do so equally well for XHTML or PDF output formats.

Note: IfaZen report <table> uses these elements it must not use <caption> or <summary> elements, as these definitions
conflict.

» <thead> — container for a header definition
— <tr>— container for a row inside <thead> or <tfoot>

o <th>— container for a cell inside <tr> inside <thead>

o <tfoot> — container for a footer definition
— <tr>— container for a row inside <thead> or <tfoot>

e <td>— container for a cell inside <tr> inside <tfoot>

The <th> and <td> elements are similar, except that <th> appears in a header and <td> in a footer. Each <th> or <td>
contains an <item> element that provides the text to display in the header. The following is a sample of a <table> with a
header defined:

<table group="SaleRep" orient="col" width="6in" class="table4"
altcolor="#DFDFFF" orderby="@state" >
<thead style="color:red">
<tr>
<th>
<item value="# " width="_.45in"/>
</th>
<th>
<item value="name" width="2.65in"/>
</th>
<th>
<item value="state" width="2.65in"/>
</th>
</tr>
</thead>
<item special="number" width="_45in" style="color: darkblue;" />
<item field="@name" width="2.65in" />
<item field="@state" width="2.65in" />
</table>

When both header and footer are defined, the <tfoot> container must appear immediately after the <thead> container, before
any <item> elements that provide the body of the <table>. The following is a more complex example showing a two-line
header, plus a footer as well.

Note the use of colspan in the <td> and <th> definitions. <td> and <th> support colspan and rowspan attributes. Each
attribute accepts a number as a value and causes the content of its parent <td> or <th> to span that number of columns or
rows in the header or footer. Each produces output similar to the HTML attributes of the same name, but do so equally well
for XHTML or PDF output formats.

<table group="SaleRep" orient="col" width="6in" class="table4"
altcolor="#DFDFFF" orderby="@state" >
<thead style="color:red">
<tr style="color:blue'>
<th colspan="2">
<item value="identity'/>
</th>
<th>
<item value="loc"/>
</th>
</tr>
<tr>

156 Using Zen Reports

<table>

<th>
<item value="# " width="_45in"/>
</th>
<th>
<item value="name" width="2.65in"/>
</th>
<th>
<item value="'state" width="2.65in"/>
</th>
</tr>
</thead>
<tfoot>
<tr>
<td colspan="3">
<item value="the end" />
</td>
</tr>
</tfoot>
<item special="number" width="_.45in" style="color: darkblue;" />
<item field="@name" width="2_.65in" />
<item field="@state" width="2.65in" />
</table>

4.22.7 Embedding a <table> within a <table>

You can place a <table> within a <table> in XData ReportDisplay. These are called embedded tables. Simply use a <table>
element where you might normally use something like <item> inside the table. Look for examples in the next section,
“Creating Type 1 Cross Tab Tables.” You do not need to be working on a cross tab table to embed tables. You can embed
tables anywhere your display layout requires it.

4.22.8 Zen Reports Cross Tab Tables

A cross tab table is one that displays a horizontal header and also uses the leftmost column as a vertical header. At the
junction of each pair of headers, the table displays data related to both headers.

Some sources call a cross tab table a pivot table; other sources distinguish between cross tab and pivot tables by stating
that, while they are similar, a cross tab table contains only aggregated data, whereas a pivot table may also contain data
that is not aggregated. It is also possible to distinguish between tables that aggregate by row and those that aggregate by
column. This book refers to all such tables as cross tab tables.

Zen reports implements two approaches to cross tab tables, identified as type 1 cross tab tables and type 2 cross tab tables.
Type 1 tables were the first type of cross tab table implemented by Zen reports, and continue to be supported. Type 2 cross
tab tables are recommended for new development, because it is easier to manage their layout, and they provide a more
general solution to the problem of creating cross tab tables.

4.22.9 Creating Type 2 Cross Tab Tables

The more recently implemented type of Zen reports cross tab table enables you to place data values at a specific row/column
intersection in a table. It also provides more robust support for headers and footers. The following attributes of the <item>
element are used together to create these tables:

Attribute Description
crosstabDataGroup An XPath expression that locates data for a cross tab table in the context
established by the crosstabRowGroup.

crosstabFooterDataField An XPath expression that locates data to put in the cross tab table footer
cells. This expression is evaluated in the context of the crosstabFooterGroup.
If not specified, the table uses values from crosstabFooterGroup .

crosstabFooterFormatNumber | If non-null, specifies how footer data is formatted.

Using Zen Reports 157

Displaying Zen Report Data

Attribute Description

crosstabFooterGroup An XPath expression that provides the context for evaluating
crosstabFooterDataField. If crosstabFooterDataField is not specified,
crosstabFooterGroup locates data to put in the cross tab table footer cells.

crosstabHeaderDataField An XPath expression that locates data to put in the cross tab table header
cells. This expression is evaluated in the context of the crosstabHeaderGroup.
If not specified, the table uses values from crosstabHeaderGroup.

crosstabHeaderGroup An XPath expression that provides the context for evaluating
crosstabHeaderDataField. If crosstabHeaderDataField is not specified,
crosstabHeaderGroup locates data to put in the cross tab table header cells.

crosstabHeaderGroupLabels | An XPath expression that provides the context for evaluating
crosstabHeaderLabelDataField. If crosstabHeaderLabelDataField is not
specified, crosstabHeaderGroupLabels locates values to use as labels in the
cross tab table header cells.

crosstabHeaderGroupTooLongText | Specifies how to handle text that is too long for the available space. Possible
values are:

« "none" (the default) — Neither wrapping nor truncation happens. The
behavior is specific to the rendering engine, FOP or XEP. FOP allows
the text to run into the next table cell or cells. XEP attempts to condense
the text to make it fit, which may cause the text to become illegible.

e truncate" — The text is truncated, and truncation-width is used if present.

* "wrap”— Zero length characters are inserted after every character in the
text but the last, so the rendering engine allows the text to wrap.

e "unset" — Allows the current element to inherit the value from its parent.

crosstabHeaderLabelDataField | An XPath expression that locates values to use as labels in the cross tab
table header cells. This expression is evaluated in the context of the
crosstabHeaderGroupLabels. If not specified, the table uses values from
crosstabHeaderGroupLabels.

crosstabHeaderMatchField An XPath expression that specifies data that matches values provided by the
crosstabHeaderGroup

crosstabRowGroup An XPath expression that locates row data. Provides the context for evaluating
the crosstabDataGroup.

Each of these attributes provides an XPath expression which locates data in the generated XML for the report. The
crosstabHeaderGroup provides values for column headers in the table. The crosstabRowGroup provides rows in the table.

The following example shows how to use these attributes to create a cross tab table. The example uses data from the Cinema
application in the SAMPLES database. The following report definition in an XData ReportDefinition block:

158 Using Zen Reports

<table>

<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport’ runonce=""true'>
<group name="Beginning"
sql="select ID,Title,Category->CategoryName as Category,Rating
From Cinema.Film order by Category->CategoryName' >
<group name="CategoryGrp" breakOnField="Category" >
<attribute name="Category" field="Category'/>
<group name="Film" breakOnField="I1D">
<attribute name="ID" field="1D"/>
<attribute name="Title" field="Title" />
<attribute name="FilmRating" field="Rating" />
</group>
</group>
</group>
<group name="ListRate"
sql="select DISTINCT Rating From Cinema.Film order by Rating" >
<element name="Rating" field="Rating" />
</group>
</report>

Generates XML having the following structure:

— <MyReport>
— <Beginning>
— <CategoryGrp Category="Action">
<Film ID="13" Title="A Hollow Way of Life" FilmRating="R"/>
<Film ID="14" Title="The Santa Fe Conspiracy" FilmRating="PG"/>
<Film ID="15" Title="An Invisible Attitude" FilmRating="PG-13"/>
<Film ID="16" Title="On English Time" FilmRating="G"/>
</CategoryGrp>

— <CategoryGrp Category="Thriller">
<Film ID="9" Title="The Joy Diet" FilmRating="R"/>
<Film ID="10" Title="Invisible House" FilmRating="PG-13"/>
<Film ID="11" Title="The New York Robot" FilmRating="PG"/>
<Film ID="12" Title="Blue Connection" FilmRating="G"/>
</CategoryGrp>
</Beginning:>
— <ListRate>
<Rating>G</Rating>
<Rating>PG</Rating>
<Rating>PG-13</Rating>
<Rating>R</Rating>
</ListRate:>
</MyReport:>

The following report definition in an XData ReportDisplay block:

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""MyReport">
<body>
<group name="Beginning/CategoryCGrp” pagebreak="true">
<table orient="row" width="50%"">
<item field="@Category”
style="text-align:center;font-weight:bold;font-size:16pt" />
</table>
<table class="table2" group="Film" orient="col" >
<item field="@Title" caption="Title" width="50%"/>
<I-- The crosstabRowGroup uses the variable "$prevmatch"
to allow the absolute XPath expression
to find the group®s current iteration. -->
<item
crosstabHeaderGroup="/MyReport/ListRate/Rating"
crosstabRowGroup=
"/MyReport/Beginning/CategoryGrp[$prevmatch]/Film*
crosstabDataGroup="self::Film"
crosstabHeaderMatchField=""@Fi ImRating"
field="""X""
style="text-align:center;font-weight:normal "
/>
</table>

Using Zen Reports 159

Displaying Zen Report Data

</group>
</body>
</report>

Generates a report having the following structure:

Thriller
Title G| PG PG-13 |R
The Joy Diet X
Invisible House X

The New York Robot X
Blue Connection X

This illustration shows output for only one film category. The full report generates a similar table for each category.
The first item in the table:

<item field="@Title" caption="Title" width="50%"/>

creates the column of film titles at the left side of the table. The second item uses specialized attributes to generate column
headers and put values in cells of the table.

The following illustration shows how the attributes in the cross tab <item> element reference nodes in the generated XML.
Note that crosstabRowGroup and crosstabHeaderGroup require absolute location paths. The use of absolute paths means
that you cannot rely on context created by an enclosing group. This report uses the special variable $prevmatch to keep
track of which category the report is processing.

The variable $prevmatch contains the position of the node in the parent group which matched when the report began to fill
in the table data. Additional variables are available to handle deeper levels of nesting. These variables are named $levelO,
$levell, $level2, and so forth, to the deepest level of nesting used in the report. The example ReportDisplay section given
previously works equally well with $levell as with $prevmatch.

The crosstabDataGroup selects the specific data hode to process, and the crosstabHeaderMatchField specifies which field
in the data node the report uses to determine whether the current node matches one of the columns specified by the
crosstabHeaderGroup.

crosstabRowGroup="/MyReport/Beginning/CategoryGrp[Sprevmatch] /Film'

— <CategoryGrp Category="Thriller">
<Film ID="9" Title="The Joy Diet" FilmRating="R"/>-=—crosstabDatacroup="self: :Film"
<Film ID="10" Title="Invisible House" FilmRating="PG-13"/>
<Film ID="11" Title="The New York Robot" FilmRating="PG"/>
<Film ID="12" Title="Blue Connection" FilmRating="G"/>
</CategoryGrp>
</Beginning> crosstabHeaderMatchField="@FilmRating"
— <ListRate:>
<Rating>G</Rating>
<Rating>PG</Rating>
<Rating>PG-13</Rating> crosstabHeaderGroup="/MyReport/ListRate/Rating”
<Rating>R</Rating>
</ListRate>
</MyReport:

The following illustration shows how a match between a value in the crosstabHeaderGroup and the
crosstabHeaderMatchField puts a value in the appropriate table cell. In this case, the value is the letter “X’, which is provided
as the value for the Field in the <item>. You could also use an XPath expression, such as @Title, that selects data from
an element or attribute. Within the cross tab table, the field attribute is interpreted with respect to the crosstabDataGroup
of the <item>, rather than in the context of the <table>.

160 Using Zen Reports

<table>

— <MyReport>
— <Beginning>
— <CategoryGrp Category="Action">
<Film ID="13" Title="A Hollow Way of Life" FilmRating="R"/>
<Film ID="14" Title="The Santa Fe Conspiracy" FilmRating="PG"/>
<Film ID="15" Title="An Invisible Attitude" FilmRating="PG-13"/>
<Film ID="16" Title="0n English Time" FilmRating="G"/>
</CategoryGrp:

— <CategoryGrp Category="Thriller">
<Film ID="9" Title="The Joy Diet" FilmRating="R"/>
<Film ID="10" Title="Invisible House" FilmRating="PG-13"/>
<Film ID="11" Title="The New York Robot" FilmRating="PG"/>

<Film ID="12" Title="Blue Connection"/FilmRating="G">

</CategoryGrp> e\ Thriller

</Beginning> -

_ <ListRate> Title _ \[G| PG| PG13 |R
<Rating}G</Rating> [Lhe Joy Diet X
<Rating>PG</Rating> INvisible House X
<Rating>PG-13</Rating>The New York Robot } | X
<Rating>R</Rating> Blue Connection X

</ListRate>

</MyReport:

The next example shows a more complex report. The example uses data from the ZENApp application in the SAMPLES
database. The following code sample shows the report definition in an XData ReportDefinition block:

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name=""Test" runonce="true'>
<group name="'rowdata"
sql="select salesRep, month(saleDate) as saleMonth, num
from ZENApp_Report.Invoice order by salesRep, month(saleDate) ">
<group name="SalesRep'" breakOnField="SalesRep" >
<attribute name="SalesRep" field="SalesRep'/>
<group name="row" breakOnField="saleMonth">
<attribute name="saleMonth" field="saleMonth"/>
<element name="num" field="num"/>
<aggregate name="month_sum" type="SUM" field="num"/>

</group>
<aggregate name="row_sum" type="SUM" field="num"/>
</group>
<aggregate name="total_sum" type="SUM" field="num"/>
</group>

<group name="'coldata"
sql="select month(saleDate) as saleMonth, num
from ZENApp_Report.Invoice order by month(saleDate) ''>
<group name="col" breakOnField="saleMonth">
<attribute name="saleMonth" field="saleMonth"/>
<attribute name="name"
field="saleMonth"
expression=
"$piece(##class(USYS.NLS.Format) .GetFormatltem(*'MonthName'™)," ", %val+1)"/>
<aggregate name="col_sum' type="SUM" field=""num"/>
</group>
</group>
</report>

The following code sample shows the report as defined in the XData ReportDisplay block:

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""Test">
<body>
<table group="rowdata/SalesRep™ class=""table2"
oldSummary="false" >
<item field="@SalesRep" caption="SalesRep'>
<summary value="Total" />
</item>
<item crosstabHeaderGroup="/Test/coldata/col"
crosstabHeaderDataField=""@saleMonth"
crosstabHeaderGroupLabels="/Test/coldata/col"
crosstabHeaderLabelDataField="@name"

Using Zen Reports 161

Displaying Zen Report Data

crosstabRowGroup="/Test/rowdata/SalesRep"
crosstabDataGroup=""row"
crosstabHeaderMatchField="@saleMonth"
field="month_sum*

crosstabFooterGroup="/Test/coldata/col/"
crosstabFooterDataField="col_sum" >
</item>
<item field="row_sum" caption="Total" >
<summary Ffield="rowdata/total_sum" />
</item>
</table>
</body>
</report>

The attribute crosstabHeaderGroupLabels is redundant in this example. If it is not specified, the report uses the value of
crosstabHeaderGroup, which is the same in this case. The existence of crosstabHeaderGroupLabels lets use a different
location in the XML for the header labels.

The following illustration shows the XML generated by the ReportDefinition block. It also shows which attributes of the
item in the ReportDisplay refer to which data in the XML. Notice that the crosstabDataGroup and the
crosstabHeaderMatchField are evaluated in terms of the crosstabRowGroup.

In this example, crosstabHeaderGroup, crosstabHeaderGroupLabels, and crosstabFooterGroup all point to the same node
inthe XML: ""/Test/coldata/col". In areport with a different data structure, these three attributes could have different
values, which provides the potential for greater flexibility in constructing cross tab tables.

162 Using Zen Reports

<table>

rv<Test>
rorowdata>
p<S5alesRep 5
e <5alesRepn
p<S5alesRep 5
e <5alesRepn

p<5alesRep SalesRep="Joanne">...</

alesRep>

v<SalesRep SalesRep="John"» +————crosstabRowdroup
v<row saleMonth="1"> a4 crosstablataGroup

=alel Lk Lo I
=alel LE- L
=alel h="5">,..</
zaleMo 1="6" . LS
saleMonth="7T">...</
7 saleMo 8", ../
saleMo - L

</5alesRep>

<total sum>»4971</total sum:

=

n="1" name="January"r-=-—crosstabHeaderGrouplabels

o0l sum>8T7</col sum>
</calx» ﬁhﬁﬁ“am

</coldata>
</Te=st>

crosstabHeaderDataField
crosstabHeaderLabelDataField
crosstabHeaderGroup

‘“““crcsstabFocterGrcup
crosstabFooterDataField

zaleMonth="2" name="February">...</col>
zaleMonth="3" name="March">...</col>»
zaleMonth="4" name="April">»...</col>
zaleMonth="5" name="May"»>...</col>
zaleMonth="6" name="June">...</col>
zaleMonth="7T" name="July">...</col>
zaleMonth="8" name="August">...</col
zaleMonth="9" name="September™>...
zaleMonth="10" name="October">...</
zaleMonth="11" name="November">...
zaleMonth="12" name="December">...

The item attributes that identify fields are evaluated in the context of another attribute that provides an absolute XPath to
a node in the XML. The report builds the XPath to the field by concatenating the context attribute and the field attribute.
The following list shows these relationships for the one set of attributes in this example:

» value of crosstabHeaderGroup: "/Test/coldata/col”

» value of crosstabHeaderDataField: "@saleMonth"

» path to crosstabHeaderDataField: "/Test/coldata/col/@saleMonth"

The next illustration shows how the data referenced by the item attributes appears in the resulting cross tab table. The

crosstabHeaderLabelDataField is used to replace the numeric sale month provided by the crosstabHeaderDataField with
the name of the month. The crosstabFooterGroup provides the row of column sums that appears at the bottom of the table.
The property field functions here much as it did in the previous example. It provides the values for each cell at the intersection
of sales person and month, as determined by crosstabHeaderMatchField.

This illustration also shows the additional <item> and <summary> elements that supply the row headers and row totals. In
both cases, the item property caption provides the header for the column, and the <summary> element provides the footer

value.

Using Zen Reports

163

Displaying Zen Report Data

<item field="@5alesRep" caption="SalesRep">
<gsummary value="Total" >

<Altems
crosstabHeaderﬁabelDataField
_|Sa.lesRep|||Januaf__.'||Februaf__.f||3v*[arch||April||3v*[a}f||June||August||September||Dctober||Nm=ember||December|l|Total|_
Jack (20 88 85 [104 56 [s0 [js2 |57 |66 103 |99 20 870 |
Jen 5 Jao s6 61 [ss |71 |ss |78 |65 55 |18 30 692 |
g 13 11 Jes [108s6 |76 |[s6 |79 67 106 |64 21 816 |
Jm 26 [s6 106 [s4 |114|112][61 |08 |49 9 |60 |50 |94 |
Joamne [4 o2 63 [48 [63 |86 [l45 |79 |68 61 126 |4 759 |
John 19 66 s8 [97 [s6 |110]121]79 |81 30 |36 |47 880 |
| Total |||8? sz [a97 502 |493]535 46140 396 453|423 192 |||49?1|_
crosstahFéoterGroup

<item field="row_sum" caption="Total" >
<summary field="rowdata-total_sum" >
<s1ltem’

Note that $prevmatch is not always updated correctly if XSLTVERSION = 1.0, which can result in incorrect output,
especially in cross tab tables that use footers. To avoid this problem, set XSLTVERSION = 2.0.

4.22.10 Creating Type 1 Cross Tab Tables

This section discusses the first type of cross tab table implemented by Zen reports.

4.22.10.1 Introducing Cross Tab Tables

Suppose an insurance company maintains information about the buildings it insures. Each building has the following fields
in the insurance company database:

e Policy — ldentification number

» Start — Policy start date

e Expiry — Policy expiration date

* Location — Are the surroundings rural or urban?

e State — State or territory within a country

* Region — Region of the country; includes more than one State

* InsuredValue — What is the amount of money for which this building is insured?

* Construction — What is the construction type: fire resistant, frame, masonry, or metal-clad?

» BusType — What is the purpose of the structure: Hospitality, Office, Farming, Apartment, etc.
* Flood — Is the building in a designated flood zone: yes or no?

A line item table to report on this data might look like the following example. The example shows five entries. This report
does not process or aggregate values in any way; it pulls each value straight from the database.

164 Using Zen Reports

<table>

Our portfolio might includes hundreds or thousands of such entries. It is difficult for us to efficiently assess the state of our
business based on such a table. It simply contains too much data to scan. Also, depending on what we want to learn about
our business, it contains many fields that do not matter to our analysis.

Figure 4-1: Simple Line Item Table Showing All Data Fields

Policy Start Expiry Location State Region InsuredValue Construction BusType Flood
100200 02-Jan-07 28-Dec-07 Urban NY East 1425000 Masonry Apartment I
100201 02-Jan-07 25-Dec-07 Urban MY East 11575700 Frame bApartment ¥
100202 02-Jan-07 23-Dec-07 Urban NI East 3750000 Frame bApartment T
100203 02-Tan-07 22-Dec-07 Rural WY East 3724338 Frame Farming i)
100204 02-Jan-07 21-Dec-07 Urban WL Midwest 1400000 Masonry Organization I

To better support an analysis based on our source data, we could aggregate selected fields from within this data to create
a cross tab table like the following example. Each table cell contains the total Insured Value of all buildings in our portfolio
that have a particular Construction type in a particular Location type. At right we also include a column that displays a total
Insured Value for each Construction type. Suppose our research department tells us that frame buildings in urban areas are
the most likely to catch fire. The aggregated data in this chart clearly indicates how value and risk are distributed across
our portfolio:

Figure 4-2: Cross Tab Table without Borders

Value by Constinction Type

Fire Resist

Frame

Masowry

Metal Clad

Rural Urban Total
2,562,500 763687335 766,249 835
420,513,555 2,483,184,087 2,903,657 652
60,764,804 622,952,042 683,716,855
80,495,532 113,583,451 194,078,983

The following two code examples show how to generate the cross tab table shown in the previous figure. The first example
shows the XData ReportDefinition block. This block:

1
2
3
4.
5
6

Retrieves the three relevant fields from the database (Construction, Location, and InsuredValue).

Groups all values by Construction.

Records the Construction type (Fire Resist, Frame, Masonry, or Metal Clad).

Groups Construction values by Location.

Records the Location type (Rural or Urban).

Generates the values to place in the Rural and Urban columns by summing the InsuredValue for each combination of
Construction type and Location type. These values are stored in an aggregate called Total in each Location group.

Generates the value to place in the output column called “Total” by summing the InsuredValue for each Construction
type regardless of Location. This value is stored in the aggregate called TotalConstruction in each Construction group.

Using Zen Reports

165

Displaying Zen Report Data

Figure 4-3: Sample XData ReportDefinition for a Cross Tab Table

XData ReportDefinition
[XMLHamespace = "http: //fuww. intersystens.con/zen/report/definition™]
{
<report xmlns="http: f/fuww. intersystens. con/zen/report/definition™
name="Insur
sql="SELECT Ci

Location,InsuredValue

es
n,Location™>
breakOnField="Construction™ >
ction” field="Construction"/>

1
2
3
breakOnField="Location"™> 4
== S5
6

<group name="Con
<attribute name="

<attribute name ion"” field="Location"/>

<aggregatename
field=" iredValue"”

type=""5UH
format="% frumber [(3val ,cquot; ,")" />
</group
n&ne=“'.'-:'..=.'.?:-:'.-stmttlt-n“
field= ed¥alue™ 7
="
format="%fnumber (%¥val , squot;, equot;)™ />
</group>
</report>

H

The next example shows the XData ReportDisplay block for this sample cross tab table. This block does the following:

1. Define astyle to apply to each <table> within the embedded table definition. This style (table. table) is borderless
so that the five embedded tables that structure the display looks like a single table in the output.

2. Define the top level <table> container with column orientation.

3. To create the first column in the top level <table>, define a <div> that contains a <table> with column orientation.
This table contains one column. The entries in this column come from values of the Construction attribute in the
Construction group. Values are the Construction types defined in the database (Fire Resist, Frame, Masonry, or Metal
Clad). Entries have bold red style and the column width is two inches. The caption for this column is a literal string,
“Value by Construction Type.”

4. To create the second column in the top level <table>, define a <div> that contains a <table> container with column
orientation. This <table> contains two <table> elements, each of which defines a table with row orientation. The output
from this part of the definition consists of two columns, each of which may contain some columns and rows.

5. For the first column in the <table> from step 4, define a <table> with row orientation and crosstab set to 1. The entries
in this table come from values of the Total aggregate in the Location group.

This is a row oriented table, so there is a column for each Location type and a row for each Construction type. This
produces two columns and four rows. There is no special style for this text. The captions for the columns in this table
come from values of the Location attribute in the Location group: “Rural” and “Urban.”

As is required for cross tab tables with multiple columns or rows, the <item> and <caption> elements in this <table>
each specify a grouppath and a colcount value:

» grouppath identifies the group that provides the values for this cross tab table item. The grouppath attribute is
required on each item that you place inside a cross tab table with multiple columns or rows. It is not required if
the cross tab table has only one column or row. Other types of tables ignore the grouppath attribute. The purpose
of grouppath is to enable a cross tab table to properly label and count its columns based on the input.

» colcount tells an item in a cross tab table how many columns it should fill. colcount may be a literal number, or
it may be calculated from the input. The colcount attribute is required on each item that you place inside a cross
tab table. Other types of tables ignore colcount.

166 Using Zen Reports

<table>

6. For the second column in the <table> from step 4, define a <table> with row orientation and crosstab set to 1. The
entries in this table come from values of the TotalConstruction aggregate in the Construction group.

This is a row oriented table, so there is a row in the table for each Construction type. This produces one column and
four rows. Entries have blue color. The caption for this column is a literal string, “Total.”

As is required for cross tab tables with multiple columns or rows, the <item> and <caption> elements in this <table>
each specify a colcount value. Since there is only one column, this value is 1.

Figure 4-4: Sample XData ReportDisplay for a Cross Tab Table

#Data ReportDisplay [MLNamespace = "http://www.intersystens.com/zen/report/display”]
{
CEeport Xmlns="http://ummr, intersyatens. con/zen/report/display” hame="InsurancePolicies">
Cdocunent width="8.5in" height="1lin" narginleft="1.2Z5in" marginRight="1,251in"

="].0in" marginBottom="1.0in" >
fclass name="table.tahle” 1

<att name="border-width™ walus="1"/>
€att name="horder-collapse” value="separate”/>
<att name="horder-spacing” wvalue="len" />

</class>
</docunent>
£hod
2 efaulcui dth="none"

<dive
3 ——<C<table orient="col™>defaultWidth="none"
~ group="Construction™»
:igiigp f%g}d-"@ﬂunstrucqlaﬁ":style-"fnnE:yeight:hnld;cnlnr:red" width="2in">»
< <caption value="value by Construction Type™/F>
</item> o
£/tables
Cldive
<dive
ctable orient="col"defaul tWidth="nones">

Ttable orient="row ~defaultilidth="none"{class="tahle"”

JEompE"Tonstruction” crosstab="1"»
(fitenm field="Total Detyle="text-aligm:right"”
nti/InsurancePolicies/Construction[l]/Location)” >

fcapt

5

grouppath="Construction[l]/Location”
calcount="count(/InsurancefPolicies/Construction[l]/Location) ™ />
</itens
</
1=

tab
'- efaultifidth="none"

group="LonsStruction” Crosstab="1"»
tem field="TotalConstruction tyle="text-align:right;color:blue" colcount="1">
tyles"text-aligmi right”™ colcount="1"/>

</ itens
</table>
</table>
«/dive
</tahles
</ bodye
</reports
b

The following figure uses borders to show how the previous code example creates the visual effect of a single table, while
it actually consists of five embedded tables. A solid black border surrounds each <table> in the cross tab table definition:

Using Zen Reports 167

Displaying Zen Report Data

Figure 4-5: Cross Tab Table with Borders Showing Internal Structure

Value by Construction Tvpe Rural Urban Total
Fire Resist 2,562,500 763,687,335 766,249,835
Frame 420,513,555 2.483,134,097 2,903,697 652
Masomy 60,764,804 £22,952.049 683,716,853
Metal Clad 80,495,532 113,583,451 194,078,983

4.22.10.2 Using the Pivot Table Generator

Zen provides a pivot table generator that:
1. Accepts your specification of which fields you wish to aggregate from your data source.

2. Generates Zen report classes that contain cross tab or pivot tables based on your data.

The pivot table generator outputs Zen report classes that use the cross tab table syntax described in the previous section.
By generating the syntax instead of typing it into the class directly, you can focus on the data rather than how it looks on
the page. This saves time and allows you generate more complex and interesting reports that can potentially offer a deeper
analysis of your data.

To invoke the pivot table generator, issue a sequence of ObjectScript commands at the Terminal command line prompt or
place statements in a Caché routine or class method. The following example sequence provides COUNT and SUM aggregates
on the Insured Value of a set of insurance policies:

zn "USER"

set Gen=##class(%ZEN.Report.pivotTableGenerator) .%New()

set Gen.reportName="InsurancePolicies"

set Gen.table="SQLUser.InsurancePolicies"

set Gen.group="Policy"

set Gen.cols="Region"

set Gen.rows="Flood,Construction,BusType"

set Gen.value="InsuredvValue"

set agg = ##class(WZEN.Report.aggregate).%New()

set agg-type=""COUNT"

set agg-name=""Count"

do Gen.aggs. Insert(agg)

set agg = ##class(%ZEN.Report.aggregate) .%New()

set agg-type=""SUM"

set agg.-name="Sum"

do Gen.aggs.- Insert(agg)

set Gen.className="PivotTables.FloodRegionBusTypeConstrGen"
set Gen.classNameForTotals="PivotTables.FloodRegionBusTypeConstrGenTotals"
do Gen.genZenReport()

kill

The previous sample command sequence:
1. Changes to the namespace where it creates new classes.

2. Creates a new %ZEN.Report.pivotTableGenerator instance and sets some basic properties. For a full list of properties
see the table following this example.

3. Creates a new %ZEN.Report.aggregate object and sets some properties, including a type of COUNT. The <aggregate>
section describes all the properties you can set.

4. Inserts the new COUNT aggregate into the aggs collection for the %ZEN.Report.pivotTableGenerator instance.

168 Using Zen Reports

<table>

5. Creates a new %ZEN.Report.aggregate object and sets some properties, including a type of SUM. The <aggregate>
section describes all the properties you can set.

6. Inserts the new SUM aggregate into the aggs collection for the %ZEN.Report.pivotTableGenerator instance.

7. Finishes defining the %ZEN.Report.pivotTableGenerator instance by providing values for the className and
classNameForTotals properties.

8. Invokes the genZenReport() method to generate and compile the new classes. These classes now exist in the namespace
from step 1.

9. Invokes KILL to remove local variables created by this command session.

10. Once you have generated the class, you may edit it in Studio to fine-tune the details.

%ZEN.Report.pivotTableGenerator has the following properties.

Properties Description
aggs Collection of %ZEN.Report.aggregate objects. Each member of this collection:

« Describes an operation that should be performed on the value identified by the
value property.

e Has the properties described in the <aggregate> section.

className Full package and class name of the Zen report class to generate.

classNameForTotals Full package and class name of a supplementary class that provides some of the
aggregated values for the report. The generated Zen report class references the
supplementary class using <get>.

cols In the output pivot table, columns are numbered from left to right starting at 1. The
cols attribute provides a comma-separated list of strings to use as column labels
in columns 2 and higher in the output table.

group Field by which to group the entries in the generated XML data for the report.

reportName Value to use for the <report> name attribute in the generated Zen report class
identified by className.

rows In the output pivot table, columns are numbered from left to right starting at 1. The
rows attribute provides a comma-separated list of strings to use as row labels in
column 1 of the output table.

table Data source for the report.

The following example sequence provides a CUSTOM “count distinct” aggregate on the Policy value for a set of insurance
policies:

zn "USER"

set Gen=##tclass(%ZEN.Report.pivotTableGenerator) .%New()
set Gen.reportName="InsurancePolicies"

set Gen.table="SQLUser.InsurancePolicies"

set Gen.group="Policy"

set Gen.cols="Region"

set Gen.rows="Flood"

set Gen.value="Policy"

set agg = ##class(%ZEN.Report.aggregate) .%New()

set agg.-type="CUSTOM"

set agg.class=""%ZEN.Report.Aggregate.CountDistinct"

do Gen.aggs.- Insert(agg)

set Gen.className="PivotTables.FloodRegionGen"

set Gen.classNameForTotals="PivotTables.FloodRegionGenTotals"
do Gen.genZenReport()

kill

Using Zen Reports 169

Displaying Zen Report Data

The previous sample command sequence:

1.
2.

Changes to the namespace where it creates new classes.

Creates a new %ZEN.Report.pivotTableGenerator instance and sets some basic properties. For a full list of properties
see the previous table.

Creates a new %ZEN.Report.aggregate object and sets some properties. It identifies a type of CUSTOM and uses the
class property to identify the class that computes the aggregate. The <aggregate> section describes all the properties
you can set.

Inserts the new CUSTOM aggregate into the aggs collection for the %ZEN.Report.pivotTableGenerator instance.

Finishes defining the %ZEN.Report.pivotTableGenerator instance by providing values for the className and
classNameForTotals properties.

Invokes the genZenReport() method to generate and compile the new classes. These classes now exist in the namespace
from step 1.

Invokes KILL to remove local variables created by this command session.

Once you have generated the class, you may edit it in Studio to fine-tune the details.

The following two figures illustrate the Zen report class generated by the previous sample command sequence. All of this
text appears in one Zen report class; each figure indicates any omitted or truncated text with ellipses (...). The first figure
shows the top left portion of the class, highlighting the DEFAULTMODE and XSLTMODE parameters and the XData
ReportDefinition block. The second figure shows the bottom left portion of the same class, featuring the XData ReportDisplay

block.
Figure 4-6: Generated XData ReportDefinition for a Cross Tab Table
Class PivorTebles.FloodRegionGen Extends 3ZEN.Repore.reportPage [ProcedureBlock]
{
Parameter DEFAULTHODE = “html™:
Parsmeter MILTHODE = “serwver™;
¥Dbata Reportbefinition [XMlNamespace = "hitp://www. intersystems.com/zen/report/definition™]
{
B<repore
namEs x
B <group n
<atcribuce
<aggregate
CAgEragats fielde”Poliey™ field=e"Region” asccumTfm'fs
<AagUregate TeR” fleld="Folicy™ fielda="Eegion” accusIfes'f
<aggregate [itex" field="Policy™ fields="Region" accumIfs t L {equot;aqu
<agyregate nam »u" Fielde”Policy™ types"COSTON" clazss'$ZEN.Report. Aggregate, CountDiscines' f>
SPEOUR DAamE=TF
<attribute name: n" Lield="Region™/»
<areribute names"Policy” Fields™Policy™/>
<AgEOUp
<lgeoup>
Lagyregacs _itew” fields”Folicy” fislds="Region” sccumIfs'
CREUESFATE © fields"Policy” fields="Region™ accumIfs's 5
CAggregare " fields"Folicy” fields="Region” accumIf O quot ;Reglonigus
Lagyregace fielde"Policy” fields="Eegion™ sccumIf al [&euot; seuot: Reglonsg
<aggoegate name="TOTAL itew” fields"Policy” type=“CUSTOH™ classs' Epo ggregate. Countbistinct'
<get host='localhost’ port="ST7TT5' uele'/Sfospfuser /PivotTables, FloodRegionfenTotals, cls§M0DE=xnlsanp;§ STRIFFI=1"
</ ERPOETy
H
170 Using Zen Reports

<table>

Figure 4-7: Generated XData ReportDisplay for a Cross Tab Table

XPata Reporcliaplay [»JLNamespace = "HUTp: [e, inTEEIVITERD. COR/IEn/Ceport/diaplay”]
i
B<repore xmlnse™heep: / n
naxes" InsurancePo .3
El<document width="8,5in" height="11lin" macginleft="1.25in" marginRight="1.25in" macginTop="1.0in" marginBottom="1.
<elasa names’rable,prable’><felasss
<clasa names="th,prable'd<att nases'text-align’ walue="right' < class>
<class pames"td,ptable'>Catt names'text-align' values'right'/></class>
< fdocuments
B <body>
El<table orient="col” group="Flood" class="numeric™ styles='padding:lpt' layoubs='fixed' width="100%' »
El<theads
Bt
<thrCitem values'FLOOD' styles'téxt-align:lefe' >/ the
<th *Citem values' CENTRAL' f</fuhix
>Citem values 'EAST' o</ /chx

L intersyseens, confrenSrepore/display™

<th »item values T' < ehe
<th Citen values AT Fe fulis
<th 3 »Citem wvalues TOTAL' o</ thD
L = =]
Bl<rr:

»Citém walues'iten'
*iten values
ht >Citen values'
¥E-alignicight "><itém walus='it
'pexc=align:right'>{iten values='ic

</ theads
<item fiel od" acyles'text-align: left >¢/icen
citem f L it formatHumber="@8d, §88, S80S0 LEE i ten
<item L cnatHunbher=" §f < St
<item f tormatHumber="§#§#, 5§, F58 §laditens
Citen £ ten” formatNumher="#§f S§f it
<itém SHEE R e
</tablex
< /body>
<fEepoEes

}

4.22.11 Creating Tables with a Callback Method

Another technique for supplying data to a table is to use a callback method. The attribute ongetData specifies the name of
a method written in ObjectScript or another suitable language and executed on the server. It returns a two dimensional, O-
based array by reference. ongetData is similar to the ongetData attribute which specifies a callback method used by Zen
reports charts to supply data. See “Providing Data for Zen Report Charts.” In addition to the array reference, a second
argument is passed to the ongetData callback method. This argument is also passed by reference, and contains parameter
values defined by the table. If the method signature does not include the parameters argument, you get an error. The callback
method has access to the xmlfile Zen report property, which allows you to use XPATH techniques to populate the data,
using the Caché built-in XPATH implementation. Callback tables are helpful if you want to display data as both a table
and a chart. Items in a callback table cannot use the fieldName attribute. Instead, they must use the fieldNum attribute.

The following code example creates a simple callback table. Note that the ReportDefinition section of the report is a
placeholder. Data is generated by the table callback method.

Class MyApp.LoopTableCallback Extends %ZEN.Report.reportPage

/// ReportDefinition is a placeholder.
XData ReportDefinition [XMLNamespace = "http://www.intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" runonce=""true'>
</report>

¥
XData ReportDisplay [XMLNamespace = *"http://www.intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""MyReport''>
<body>
<table ongetData=""NamesAndAddresses" >
<parameter value="EpicFigures” />
<item fieldnum="1" >
<caption value="Name"/>
</item>

Using Zen Reports 171

Displaying Zen Report Data

<item fieldnum="2" >
<caption value="Address" />
</item>
</table>
</body>
</report>

Method NamesAndAddresses(ByRef var As %String, ByRef params)
{
if (params(l) = "EpicFigures™)
{

Set var(0,0)="Santa Claus"

Set var(0,1)="North Pole™

Set var(1,0)="Zeus"

Set var(1,1)="0lympus"

Set var(2,0)="Robin Hood"

Set var(2,1)="Sherwood Forest"

(params(1) = "RegularGuys™)

e

Set var(0,0)="Joe Smith"
Set var(0,1)="Cleveland”
Set var(1,0)="Bob Jones"
Set var(l,1)="Boise"
Set var(2,0)="Fred Small"
Set var(2,1)="Deluth"

4.22.12 Creating Tables From Class Queries

The queryClass and queryName <table> attributes allow you to populate a table with data directly from a class query.
queryClass provides the name of the class, and queryName provides the name of the query within the class, as illustrated
in the following example:

<body>
<table queryClass="Sample.Person" queryName="ByName"
selectmode="2" orient="col'>
<item fieldnum="1">
<caption value="ID"/>
</item>
<item fieldnum="2">
<caption value="Name"/>
</item>
</table>
</body>

The table can also use the orderBy attribute to sort the results, which is useful when you cannot rewrite the class to provide
the desired sorting. The suppressDuplicates attribute is also supported.

4.22.13 Creating Tables with SQL

The sql <table> attribute allows you to populate a table with data from an SQL statement. You cannot use <group> in the
table if you are getting data from the sql attribute. The <item> elements in such a table use the fieldnum or the fieldname

attribute to identify the data. fieldnum supplies the 1-based number of the projection field in the SQL statement. fieldname
supplies the name of the field as returned by the SQL statement.

<body>
<table

sql=""SELECT NAME,AGE,FAVORITECOLORS FROM SAMPLE.PERSON WHERE NAME %STARTSWITH ?"

selectmode="2" orient="col" class=""table4" >

<parameter value="B"/>

<item fieldname="NAME" suppressDuplicates="true" width="1.5in">
<caption value="Name"/>

</item>

<item fieldname="AGE" width="_.5in">
<caption value="Age"/>

</item>

<item fieldname="FAVORITECOLORS">
<caption value="Favorite Colors"/>

</item>

172 Using Zen Reports

<timeline>

<table sql="SELECT AGE,NAME FROM SAMPLE.PERSON WHERE NAME=?" selectmode='2" orient="col">
<parameter fieldname="NAME"/>
<item fieldname="AGE">

<caption value="Years 0ld"/>

</item>

</table>

</table>
</body>

4.22.14 Creating Tables with onCreateResultSet

The onCreateResultSet <table> attributes allows you to use a callback method to populate a table with data. You cannot
use <group> in the table if you are getting data from the onCreateResultSet attribute. The <item> elements in such a table
use the fieldnum or the fieldname attribute to identify the data. fieldnum supplies the 1-based number of the projection field
in the SQL statement. fieldname supplies the name of the field as returned by the SQL statement.

<body>
<table onCreateResultSet="MyRS" selectmode="2" orient="col" class="table4">
<parameter value="B"/>
<item fieldname="NAME" suppressDuplicates="true" width="1.5in">
<caption value="Name"/>
</item>
<item fieldname="AGE" width=""_5in">
<caption value="Age"/>
</item>
<item fieldname="FAVORITECOLORS'">
<caption value="Favorite Colors"/>
</item>
</table>
</body>

Method MyRS(ByRef pSC, ByRef tParams)
{

set statement=##class(%SQL.Statement) .%New()
set sql = "SELECT Name,Age,FavoriteColors FROM Sample.Person WHERE Name %STARTSWITH 2"
Set pSC=statement.%Prepare(sql)
Set statement.%SelectMode=2
Set ~foobar($i(~foobar))="pSC="_pSC
if $$SISERR(PSC) quit "™
;Zw tParams
if $D(tParams) {
Set rs=statement.%Execute(tParams(l))
} else {
Set rs=statement.%Execute()

quit rs

4.23 <timeline>

The <timeline> element can be used to display a graphic summary of episodes. An episode is a period of time with a start
date and an end date.

Some episodes are indicated as generated in the data. You can use the attributes episode-type-node-set and
generated-type-code to identify generated data. You can graph generated data using a distinctive color, specified by generated-
type-color. The <timeline> determines the start and end dates for the timeline from the data. You can use the attributes
static-start-date and static-end-date to override the automatic calculation. Note that variables are in XPath format, so you
must quote constant strings. You cannot place a <timeline> inside a <table> unless you place it in a <block>, <group>,
<container>, or other “wrapper” element first.

Important: You must set the parameter XSLTVERSION = 2.0 for both HTML and PDF output, to ensure processing
with XSLT version 2.0. You must not use the class parameter XSLTMODE or the URI parameter $XSLT
to direct XSLT processing to the browser. By default, XSLT processing takes place on the server.

<timeline> has the following attributes.

Using Zen Reports 173

Displaying Zen Report Data

Attribute

background-color

current-date

end-date-node-set

episode-type-node-set

generated-type-code

generated-type-color

interval-height

interval-type

Description

An XPath expression that provides the background color of the timeline graph.
The default background-color is white.

A date, indicated by a downward pointing arrow on the timeline if the date falls
within the range of the date data. By default, current-date is the date the timeline
graph was generated, but you can use this attribute to set an alternate date. The
value of this attribute is not an XPath expression, unlike the majority of <timeline>
attributes.

The XPath expression for end dates.

An episode consists of a start date, and end date, and an optional episode type.
The node sets for these three types of data are grouped to form episodes based
on position in the XML file: the first start date, end date, and episode type
encountered define the first episode, and so forth.

The XPath expression for episode types. The episode type determines whether
an episode is considered a generated episode.

An episode consists of a start date, and end date, and an optional episode type.
The node sets for these three types of data are grouped to form episodes based
on position in the XML file: the first start date, end date, and episode type
encountered define the first episode, and so forth.

An XPath expression that provides a string or integer indicating a generated
episode. When Zen reports finds this value in an episode type node, the episode
is considered a generated episode, and is charted using the generated-type-color.

An XPath expression that provides the color used to draw generated episodes.
Generated episodes are those that have the generated-type-code value in the
episode type node. The default generated-type-color is gray.

An XPath expression that provides the height of episode ticks and X axis ticks.

An XPath expression that provides the type of interval you are charting on the
timeline. The interval type can be “year”, “quarter”, “month” or “day”. If you
do not supply an interval type, it is determined from the data.

The interval-type interacts with on-color and off-color in the following ways:

» For “year” and “quarter” intervals, on-color and off-color alternate with
every other interval. Odd-numbered years and odd numbered quarters (Q1
and Q3) are colored with the on-color.

« For “month” intervals, the coloring alternates with every quarter. The result
is similar to the coloring pattern for “quarter” intervals, with odd-numbered
guarters colored colored using the on-color.

» For “day” intervals, one day per week is colored with the off-color. The
alternate colored days are day 7, 14, 21, and 28 of each month, that is, the
end of each full week in the month.

174

Using Zen Reports

<timeline>

Attribute Description

max-height The maximum height of the episode graph. If the entire data set does not fit in
the available space, unseen episodes are indicated with an up-arrow. The value
of this attribute is not an XPath expression, unlike the majority of <timeline>
attributes.

minimume-interval-width An XPath expression that specifies the width of an interval in the timeline, in
millimeters (mm). An interval can be a day, a month, a quarter or a year.
Constants must be quoted, "10mm™ for instance.

number-of-intervals The number if intervals in the graph. By default, this value is calculated from the
data, but you can use this attribute to override that automatic calculation. The
value of this attribute is not an XPath expression, unlike the majority of <timeline>
attributes.

off-color An XPath expression that provides the color of intervals on the X axis when they
are "off". The on and off state of intervals groups them visually on the X axis.
Which intervals are considered “on” and which are considered “off” is
determined by the interval-type attribute. The default off-color is white.

on-color An XPath expression that provides the color of intervals on the X axis when they
are "on". The on and off state of intervals groups them visually on the X axis.
Which intervals are considered “on” and which are considered “off” is
determined by the interval-type attribute. The default on-color is gray.

plotting-color An XPath expression that provides the foreground color used to graph episodes
that are not generated, see generated-type-color. The default plotting-color is
black.

start-date-node-set The XPath expression for start dates.

An episode consists of a start date, and end date, and an optional episode type.
The node sets for these three types of data are grouped to form episodes based
on position in the XML file: the first start date, end date, and episode type
encountered define the first episode, and so forth.

static-end-date An XPath expression that overrides the automatic calculation of the end date
from the data. A right arrow indicates data to right of the static end date.

static-start-date An XPath expression that overrides the automatic calculation of the start date
from the data. A right arrow indicates data to left of the static start date.

Here is an example using the timeline element:

<timeline
plotting-color=""black™" background-color=""white""
max-height=""9" generated-type-code=""1"" generated-type-color=""gray""
interval-height=""5mm""" minimum-interval-width=""5mm"" width=""2000mm"""
on-color=""gray"" off-color=""white""
start-date-node-set="/MyTimeLine/dates/start-date"
end-date-node-set=""/MyTimeLine/dates/end-date"
episode-type-node-set="/MyTimeLine/dates/episode-type"
static-start-date=""2009-07-20"" static-end-date=""2009-08-05""/>

The preceding code produces a timeline graph given the following data set:

<MyTimeLine>
<dates>
<start-date>2009-07-30</start-date>
<end-date>2009-07-31</end-date>
<episode-type>0</episode-type>
<start-date>2009-06-30</start-date>
<end-date>2009-07-31</end-date>

Using Zen Reports 175

Displaying Zen Report Data

<episode-type>1</episode-type>
<start-date>2009-07-30</start-date>
<end-date>2009-07-31</end-date>
<episode-type>0</episode-type>
<start-date>2009-07-30</start-date>
<end-date>2009-07-31</end-date>
<episode-type>0</episode-type>
<start-date>2009-07-30</start-date>
<end-date>2009-07-31</end-date>
<episode-type>0</episode-type>
<start-date>2009-07-29</start-date>
<end-date>2009-08-15</end-date>
<episode-type>0</episode-type>
<start-date>2009-07-02</start-date>
<end-date>2009-08-03</end-date>
<episode-type>0</episode-type>

</dates>
</MyTimeLine>

Note that you have considerable flexibility in how the data elements are arranged in the file. For example, the following

data set produces the same timeline graph as the preceding one:

<MyTimeLine>
<dates>

<start-date>2009-07-30</start-date>
<start-date>2009-06-30</start-date>
<start-date>2009-07-30</start-date>
<start-date>2009-07-30</start-date>
<start-date>2009-07-30</start-date>
<start-date>2009-07-29</start-date>
<start-date>2009-07-02</start-date>
<end-date>2009-07-31</end-date>
<end-date>2009-07-31</end-date>
<end-date>2009-07-31</end-date>
<end-date>2009-07-31</end-date>
<end-date>2009-07-31</end-date>
<end-date>2009-08-15</end-date>
<end-date>2009-08-03</end-date>
<episode-type>0</episode-type>
<episode-type>1</episode-type>
<episode-type>0</episode-type>
<episode-type>0</episode-type>
<episode-type>0</episode-type>
<episode-type>0</episode-type>
<episode-type>0</episode-type>

</dates>
</MyTimeLine>

176

Using Zen Reports

Building Zen Report Classes

The “Zen Report Tutorial” section of the chapter “Introducing Zen Reports™ explains that a Zen report is a class that
extends %ZEN.Report.reportPage. The “Zen Report Tutorial” explores the structure of a Zen report class by building it in
gradual steps.

Other chapters explain how to write the XData ReportDescription and XData ReportDisplay blocks that cause the Zen
report class to generate report output in XHTML and PDF formats. These chapters are “Gathering Zen Report Data,”
“Formatting Zen Report Pages,” and “Displaying Zen Report Data.”

Building on the foundation established by these prior chapters, this chapter explores Zen report class structure and organi-
zation in greater detail. Topics include:

e Controlling Zen Reports with Parameters

» Using Runtime Expressions in Zen Reports

» Localizing Zen Reports

» Organizing Zen Reports to Reuse Code

e Using Zen Report Composites

e Using Zen Report Templates

» Supplying XSLT Templates to Zen Reports

» Conditionally Executing Methods in Zen Reports

» Executing Code Before or After Report Generation

5.1 Controlling Zen Reports with Parameters

The word parameter is widely used. This section describes several kinds of parameter that you can use to change the way
a Zen report class operates. In each case, the item is called a parameter when it is used to control the Zen report, but in each
case, the context and syntax for using the parameter are different.

5.1.1 Class Parameters

A class parameter is an ObjectScript convention that you can use in Zen report classes. For an overview, see “Class
Parameters” in the “Caché Classes” chapter of Using Caché Objects.

Using Zen Reports 177

Building Zen Report Classes

The “Zen Report Tutorial ” section of the chapter *Introducing Zen Reports” introduced the class parameters APPLICA-
TION, DEFAULTMODE, and REPORTXMLNAMESPACE, which the Zen Report Wizard automatically provides when
you create a new Zen report class in Studio. A Zen report class supports many additional class parameters. For details, see
the following sections in the appendix “Zen Report Class Parameters™:

e “Class Parameters for General Use” provide the general processing instructions for a Zen report.

e “Class Parameters for XSLT Stylesheets™ contribute additional, specialized XSLT processing instructions. This set
of parameters addresses problems that can occur when the browser is Internet Explorer and the Zen report class is
marked as private by setting its CSP class parameter PRIVATE to 1 (True). If this is not your situation, you do not
need these additional class parameters.

5.1.2 SQL Query Parameters

When you supply the SQL query that populates your Zen report with data, this query can include SQL parameters, which
Zen reports support in the same way as Zen pages. The following is an example of an SQL query that accepts parameters.
The ? character is the placeholder for parameters in the query:
SELECT ID,Customer,Num,SalesRep,SaleDate

FROM ZENApp_Report.Invoice

WHERE (Month(SaleDate) = ?) OR (? IS NULL)
ORDER BY SalesRep,SaleDate

The following is an example of a Zen report that provides its data using the sgl attribute with <parameter> elements to
supply values to the ? placeholders:

Note: Each ? placeholder in the query requires its own <parameter> element.

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""myReport"
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate
FROM ZENApp_Report. Invoice
WHERE (Month(SaleDate) = ?) OR (? IS NULL)
ORDER BY SalesRep,SaleDate"
orderby="SalesRep,Customer" >
<!-- Supply values to the ? query parameters here -->
<parameter expression="__Month"/>
<parameter expression="._Month"/>
<!-- Other report contents appear here -->
</report>

For detailed information about SQL queries and their parameters, see the section “Building the <report> or <group> Query”
in the chapter “Gathering Zen Report Data.”

5.1.3 Data Type Parameters
A data type parameter is an ObjectScript convention that you can use in Zen report classes. For an overview, see “Param-
eters” in the “Data Types” chapter of Using Caché Objects.

The most useful data type parameter for Zen reports is ZENURL. If a developer assigns the ZENURL parameter to a Zen
report class property, this enables a user to set the value of that property at runtime by providing a query parameter in the
URI when invoking the Zen report. The ZENURL value names the URI query parameter. Note that by convention, ZENURL
values starting with dollar sign (“$”) are reserved for predefined URI query parameters such as $MODE. For example:

Property employeelD As %ZEN.Datatype.string(ZENURL="1D");

For details, see “Setting Zen Report Class Properties from the URI™ in the chapter “Running Zen Reports.”

178 Using Zen Reports

Using Runtime Expressions in Zen Reports

5.1.4 XSLT Stylesheet Parameters

It is possible for a user to pass XSLT stylesheet parameter values to Zen reports via URI query parameters when invoking
the Zen report class. Parameters defined in this way become XSLT global variables inside the XData ReportDisplay <report>
element. This convention requires careful coordination of an <xslt> element within the XData ReportDisplay block with
a Zen report class property that has at least one property with the ZENURL data type parameter defined.

For details and a complete example, see “<xslt>" in the chapter “Formatting Zen Report Pages”

5.1.5 URI Query Parameters

In addition to the URI query parameters that you might introduce with ZENURL, Zen reports offer several predefined URI
query parameters that you can use at runtime to override the values set by the corresponding Zen report class parameters.
By convention, the names of these parameters begin with dollar sign (“$”).

The following example uses the $SMODE parameter in the URI string to override any value that might have been set for
the DEFAULTMODE parameter in the Zen report class. A value of $MODE=pd ¥ changes the type of output to PDF:

http://1ocalhost:57772/csp/myPath/myApp.myReport.cls?$MODE=pdf

For a summary of available URI parameters and their class parameter equivalents, see “URI Query Parameters for Zen
Reports™ in the chapter “Running Zen Reports.”

5.2 Using Runtime Expressions in Zen Reports

You can use runtime expressions in Zen report class XData ReportDisplay blocks. Simply use the #()# container to hold
the expression. This convention allows you to reference the following items only:

» Properties of the Zen report class.

The following example uses a runtime expression to assign the value of a class property called username to the field
attribute of an <item> in XData ReportDisplay. Inside the #()# container, double dot syntax references the property.
This can be any property defined in the class or one of its superclasses:

<item field="#(..username)#" />

The example above assigns the value of a property to an attribute. You can also assign the value of a property as the
contents of an element, such as <p> in the following example. Here the example also shows how you can concatenate
the value of a property with regular text using ObjectScript conventions:

<p>#("'The current user is " _ ..username)#</p>

e ObijectScript expressions.

Runtime expressions can contain ObjectScript expressions, as long as they resolve to a value. The following example
uses a runtime expression to assign a calculated time value to the field attribute of an <item> in XData ReportDisplay:

<item Field="#($ZDATETIME($HOROLOG,3))#" />

Similarly, this could work for the contents of an element, such as <p>:

<p>#($ZDATET IME ($HOROLOG , 3))#</p>

» The special variable %display.

Using Zen Reports 179

Building Zen Report Classes

%display represents the top level <report> container within XData ReportDisplay. Properties of the %display
object correspond to attributes of the <report> element. For example, if you have the <report> title attribute defined
as shown here:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmIns="http://www. intersystems.com/zen/report/display"
title="Help Desk Sales Report® style="standard">
<I-- OTHER PARTS OF THE REPORT -->
</report>

Then in other parts of XData ReportDisplay, inside the <report> container, you can use the runtime expression
#(display.title)# to represent the value of the <report> title attribute, for example:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
title="Help Desk Sales Report® style="standard">
<body>
<header>
<p class="bannerl">#(%display.title)#</p>
</header>
<Il-- OTHER PARTS OF THE REPORT -->
</body>
</report>

The section “Organizing Zen Reports to Reuse Code™ describes how to use composites and templates to define reusable
portions of code that you can reference from XData ReportDisplay in the main Zen report class. Runtime expressions work
in composite and template classes. This is because, at runtime, Zen integrates the XData material from composites and
templates into the code generated by the XData ReportDisplay that references them. Any runtime expressions found in the
composite or template classes become part of the higher level XData ReportDisplay block.

Note: Runtime expression #()# syntax does not work in XData ReportDefinition blocks.
Many XData ReportDefinition and XData ReportDisplay elements support the use of expressions without the runtime
expression #()# container. This is true of:

» The expression, breakOnExpression, and filter attributes in XData ReportDefinition; for details see the chapter
“Gathering Zen Report Data.”

» The expression attribute and the conditional expression attributes available for use with elements in XData ReportDisplay;
for details see the chapter “Formatting Zen Report Pages.”

5.3 Localizing Zen Reports

The “Zen Localization™ chapter of the book Developing Zen Applications explains how to substitute translated text for
different language locales in Zen applications. These concepts apply to Zen reports as well.

5.3.1 Adding Entries to the Message Dictionary

Anywhere that you use the Zen data type %ZEN.Datatype.caption or $$$Text macros in the code for a Zen report, the cor-
responding text value becomes an entry in the message dictionary for that namespace, from which it can be exported for
translation. Later, the translated text can be imported back into the message dictionary to localize the application.

180 Using Zen Reports

Localizing Zen Reports

Important: Localization works only if the DOMAIN parameter is defined as a non-empty string in the Zen report
class. Messages for classes in the same localization DOMAIN are stored together in the message dictionary
for that namespace.

Many attributes of Zen report components are already of type %ZEN.Datatype.caption and so automatically support local-
ization. Their descriptions in this book indicate when this is the case. You can use $$$Text macros anywhere that ObjectScript
is supported, including the values of Zen report runtime expressions. Additionally, Zen report classes offer a shortcut to
invoking the $$$Text macros. This shortcut is available only within an XData ReportDisplay block in a Zen report class.

The following syntax:

<item value="@footertime@Created on: " />

Creates a message dictionary entry for that namespace with:
» Message text "Created on: '*— this is the text to translate for other languages

e Message identifier ""footertime' — this is how the Caché localization facility finds the translated text

Unlike when you use the $$$Text macros, when you use the double-@ shortcut it is your responsibility to ensure that each
message identifier (*"footertime™ in this example) is unique across the localization DOMAIN.

Important: The double-@ shortcut works only if the special variable %response . Language is set correctly. The
way to do this is to place the following statement in the %OnBeforeReport callback method within the
Zen report class. This method runs automatically before the report displays:

Method %OnBeforeReport() As %Status

Set %response.Language =
##class(%MessageDictionary) .MatchLanguage ($$$SessionLanguage, ""ZenReport')
Quit $$$0K

5.3.2 Localization for Excel Output

The section “Configuring Zen Reports for Excel Spreadsheet Output™ describes how to use Zen reports to create Excel
spreadsheets. When you create spreadsheets, the excelName attribute of <element> provides text for column headers in the
spreadsheet. When you use a ReportDefinition block that has the required specific structure, excelName supports localization
by automatically putting the column header text into the message dictionary. When you use the ReportDisplay block to
create an Excel spread sheet from XML in an arbitrary format, you must take some additional steps to localize the column
header text.

1. Such reports require the output mode displayxIsx, so you must set DEFAULTMODE or SMODE appropriately. You
must also set the DOMAIN parameter. DOMAIN is an arbitrary text string, used to match entries in the message dic-
tionary with the classes that generated them. Localization does not work if you have not set DOMAIN.

Parameter DEFAULTMODE As STRING = "displayxlsx";
Parameter DOMAIN As STRING = "SKISC";

2. Create a ReportDefinition block that provides XML for the report, such as the one in the following code sample.

Using Zen Reports 181

Building Zen Report Classes

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""MyReport"
sql=""SELECT TOP 10 Name,DOB,Age FROM Sample.Person"
runtimeMode="0"">
<group name="'Person'>
<attribute name="name" field="Name"/>
<attribute name="dob" field="Dob"

expression=""..ToExcelDate(%val)"/>

<attribute name="age" field="Age"/>
</group>
</report>

3. Define a ReportDisplay block that formats the report for Excel output. The “$$$” at the start of the value of excelName
marks that text value for localization.

XData ReportDisplay
[XMLNamespace ;= "http://www. intersystems.com/zen/report/display”]
{

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""MyReport''>
<body>
<table group="Person" excelSheetName="Persons"
excelGroupName="Person" oldSummary="false">
<item field="@name" excelName=""$$$Name" />
<item field="@dob" isExcelDate=""true"
excelName=""$$$Date of Birth" />
<item field="@age" isExcelNumber=""true"
excelName="$$$Age"">
</item>
</table>
</body>
</report>

The name of the report must be the same in the ReportDefinition and the ReportDisplay.

4. Inorder to generate entries in the *CacheMsg Global for the $$3$ expressions, write a helper ClassMethod. It generates
the entries during compile of the report:

ClassMethod Translations()
set x=$$$Text(*"Name')
set x=$$$Text(''Date of Birth')
set x=$$$Text(""Age™)
5. Export CacheMsg:

DO ##class(%Library._MessageDictionary) . ExportDomainList(*'C:\Temp\local .xml","SKISC')

6. Translate the exported message file, and save the localized versions.
7. Import your translation.

DO ##class(%Library._MessageDictionary). Import(*'C:\Temp\local_de.xml'")

5.4 Organizing Zen Reports to Reuse Code

In designing a suite of Zen reports, you might discover that you wish to reuse portions of your page design in other reports.
Reuse ensures consistency among related reports and generally speeds development. Zen reports offer two ways to achieve
reuse within XData ReportDisplay blocks: composites and templates. The primary distinction is that composites can accept
parameters at runtime, and templates are entirely static.

182 Using Zen Reports

Using Zen Report Composites

The SAMPLES namespace provides a detailed code example in the ZENApp package. The Zen report class

ZENApp - CompositeReport.cls defines a report that renders identically to the ZENApp - MyReport.cls example,
except that it does so using composites and templates. The ZENApp.CompositeReport package contains several classes that
define the composites and templates referenced by ZENApp . CompositeReport.cls.

The following table provides a quick comparison between composites and templates:

Extends XData Top Level For More Information
Block Container
Element
%ZEN.Report.Display.composite Display <composite> | “Using Zen Report Composites”
%ZEN.Report.Display.reportTemplate (any name) | <template> “Using Zen Report Templates”

5.5 Using Zen Report Composites

This topic uses the term composite to describe a block of Zen report syntax that you wish to define separately and then
reference repeatedly to provide consistency and reusability for your Zen reports. Like templates, composites can define
any part of the XData ReportDisplay block, including elements you would normally place within the <document> <body>
or <report> containers. Unlike templates, composites can accept parameters whose values are supplied at runtime. These
parameters must be defined as properties of the composite class; you supply values for these properties when you reference
the composites in the XData ReportDisplay block of a Zen report class.

The sections in this topic explains all the steps required for this technique to work:
» Creating a Composite to Define Style
e Creating a Composite to Define Layout

* Referencing a Composite from a Zen Report

Note: Aslong as the set of properties defined in the composite class does not change in any way, a composite class may
be modified and recompiled without recompiling the classes that reference the composite. The composite changes
are picked up at runtime.

A Zen report composite is a subclass of %ZEN.Report.Display.composite that contains an XData Display block. Unlike
templates, the name of the definition block for all composites must be the same: XData Display. Inside the XData Display
block is the definition of the composite. This definition is substituted into the code generated by any XData ReportDisplay
block that references the composite. In addition to an XData Display block, the composite class can define properties; the
purpose of these properties is to allow you to pass values to the composite to modify details of its XData Display definition
at runtime.

The sections “Creating a Composite to Define Style” and “Creating a Composite to Define Layout” show the parts of a
%ZEN.Report.Display.composite class in more detail.

5.5.1 Creating a Composite to Define Style

The following figure highlights key parts of a %ZEN.Report.Display.composite class whose purpose is to define a set of
style classes to place within a <document> container. A detailed description follows this figure.

Using Zen Reports 183

Building Zen Report Classes

Figure 5-1: Composite Class for Zen Report Style

composite class must extend this class

f

Class Report.HINE.Composites.Style.nygroupheader Extends ZZEN.Report.Display.composite

{ ¥ required Parameter can have any value
Parameter NAMESPACE = "http://wwv.intersystems.comn/zen/report/display/my/style™;
must have this name § this keyword must have this value
sData Display [XHLNamespace = "http://vww.intersystems.con/zZen/report/display”™]
i same value as XMLNamespace or
must be top . .))) . .
B —e=- < COMposite ¥mlns="http: /uww.intersystens.con/Zen/report/display different value
level container xmins:mystyle="http: //vww. intersystens. con/zen/report/display/my/atyle™>
<class name="table.nygroupheader™>
e t- o . o
<att name="font-family”™ wvalue="Arial”/> same value as NAMESPACE

<att name="font-szize” wvalue="10pt" />
<att name="font-weight” walue="bold" />
<att name="text-align™ wvalue="lefr" />
<att name="keep-with-next” wvalue="always" />
<fclass>
<class name="th.nygroupheader™> - name based on name of composite class
<att name="font-family”™ wvalue="Arial”/>
<att name="font-szize” wvalue="10pt" />
<att name="font-weight” walue="bold" />
<att name="text-align™ wvalue="lefr" />
<fclass>
<class name="td.mygroupheader™>
<att name="font-family”™ wvalue="Arial”/>
<att name="font-szize” wvalue="10pt" />
<att name="font-weight” walue="bold" />
<att name="text-align™ wvalue="lefr" />
<att name="line-height”™ walue="1.5emn" />
<fclass>
Lfcomposite>
¥

» A composite class must extend the class %ZEN.Report.Display.composite.

e The class must define the NAMESPACE parameter. This parameter can have any value you wish.

e The name of the XData block must be Display.

» The XData Display block must provide an XMLNamespace keyword with the following value:
http://www. intersystems.com/zen/report/display

* The top-level container element in XData Display must be a <composite>. It can have an xmlIns attribute value that is
the same as, or different from, the value of the XMLNamespace keyword.

e Define a supplementary XML namespace hame for the <composite> container using xmins: attribute syntax, as shown.
This new namespace becomes important when you reference the composite from another class. It has the same value
you used for the NAMESPACE parameter. In the example, this new namespace is called mystyle.

» The purpose of the composite class shown in the example is to define a set of styles to place within a <document>
container in a Zen report. Over time you might accumulate a large library of style composite classes. To ensure clean
naming conventions for managing these classes and references to them, InterSystems recommends that you construct
style names based on the simple name of the class itself, as seen in the example (the style for table headers,
th.mygroupheader, takes its style name from the class, whose simple name is mygroupheader).

» After you compile the composite class, its simple class name (mygroupheader in the example) becomes the name
of an XML element that you can place in the XData ReportDisplay block of any Zen report class. Doing so references
the composite and causes its contents to be substituted at that location in the XData ReportDisplay block. For syntax

184 Using Zen Reports

Using Zen Report Composites

details, including the correct use of namespaces when you make the reference, see the section *“Referencing a Composite
from a Zen Report.”

5.5.2 Creating a Composite to Define Layout

The following figure highlights key parts of a %ZEN.Report.Display.composite class whose purpose is to define a <pagefooter>
within a <report>. A detailed description follows this figure.

Figure 5-2: Composite Class for Zen Report Display

Class Report.MINE.Conposites.FeportFooter Extends %ZEN.Report.Display.conposite
{
. Property class As %ZEN.Datatype.string;
class properties —=| Property timestaup As %ZEN.Datatype.string:
Property username As ZZEN.Datatype.string;

Parameter NAMESPACE = "http://uwr. intersystens.con/zen/report/display/my™;

Parameter DOMATIN = "MySaupleReports";:

*Data Display [XMLNamespace = "http:// v, intersystens. con/zens/report/display™]

{
£ocomposite xXmlns="http://umm. intersystens. con/zen//report/display”™
*xnlnsiny="http: /A Anm, intersystens. con/zen/report/display/my™ >
<pagefooters>
<line pattern="z0lid" width="100%"/>
r=<tabhle class="#(..class)#">
<block style="text-align:left”>
reference to | <item walue="[FfootertinelCreated on "/> -
class properties | — s <item field="#(..timestamnp)#"/>
:?Eem E?lllz:::g?ﬂﬂterh?@h?:; >;— localization with
—=<iten field= . sUSername —
</block> double-@ syntax
<block style="text-align:right™>
£iten value="[footerpagedPage” /> -———r!
<item special="page-number-of™/>
</blaock>
</table>
</pagefooter:>
</comnposites

}

4

» The basic characteristics of base class, name of XData block, value of XMLNamespace keyword, top-level container,
and xmlns attribute, are the same as described in the section *“Creating a Composite to Define Style.”

e The purpose of the composite class shown in the example is to define a layout to place at the location within a <report>
where you want a <pagefooter> to appear. The composite class offers three properties. All composite class properties
must be defined with Zen data types, as shown. If you simply define them, you work with them as attributes when
referencing the composite:

Property username As %ZEN.Datatype.string;

If you assign them an XMLPROJECTION of “element", you work with them as elements when referencing the com-
posite:

Property username As %ZEN.Datatype.string(XMLPROJECTION = "element™);

Using Zen Reports 185

Building Zen Report Classes

Regardless of how you project the property, inside the XData Display block in the composite class, each property ref-
erence takes this form:

#(. .property_name)#

The #()# syntax for containing this reference is not unique to composites; it indicates that this is a Zen reports expression.
For syntax details, see “Using Runtime Expressions in Zen Reports.” Inside the #()# container, double dot syntax
refers to a property of this class, where property_name is the name of the property. The complete line that references
the username property within the example composite class XData Display block is:

<item field="#(..username)#" />

When a composite class uses a runtime expression like this, it expects its caller, the Zen report, to send it a value for
the username property that works correctly as a value for the <item> field attribute. The next section, “Referencing
a Composite from a Zen Report,” shows a correct example of this relationship. If a property value sent to a composite
from the Zen report is wrong for that composite, the corresponding section of the report fails.

If you need to localize your Zen reports into other languages, you must enable localization for your composite by setting
the DOMAIN parameter to a non-empty value and by using localization syntax in text values where appropriate. For
details about the double-@ syntax shown in the example, see “Localizing Zen Reports.”

After you compile the composite class, its simple class name (ReportFooter in the example) becomes the name of
an XML element that you can place in the XData ReportDisplay block of any Zen report class. Doing so references
the composite and causes its contents to be substituted at that location in the XData ReportDisplay block. For syntax
details, including the correct use of namespaces and how to provide values for composite properties when you make
the reference, see the section “Referencing a Composite from a Zen Report.”

5.5.3 Referencing a Composite from a Zen Report

The following figure highlights the XData ReportDisplay block of a Zen report class that references several composites,
including those defined in the previous sections, *“Creating a Composite to Define Style” and “Creating a Composite to
Define Layout.” Following this is a detailed description with numbers to match the figure.

186

Using Zen Reports

Using Zen Report Composites

Figure 5-3: XData ReportDisplay with References to Composites

xData FeportDisplay [*MLNamespace = "http:// uwy. intersystens.condzen/report/display™]
i
<report Xmlns='http: / mnr. intersystens. con/Een/report/display’ name='MedRecCull’
¥mlns:imystyle="'http: /A, intersystens. con/zen/report/display/nysstyle!
¥mlns:imy="http: /e, intersystens. con/zen/sreport/display/my' >

marginLEft= ' 10mm ' marginRight= ' 10mm ' MNAMESPACE parameter for each
marginTop="'10nn' marginBottom="'15mnm' .
composite class referenced

footerHeight="'25nn' headerHeight='Z20mnm' >
<mystyle:nygroupheader /> = reference composite as XML element
LHYFSTYle! LYgroup SUnmary S using namespace prefix.
<mystyle:rmyhospitalheader />
<nystyle:mypageheader />
<mystyle:myparamneterheader />
<mystyle:myreporttitles>
<mystylermytablecolunn s
</document>

<my: PageHeader pagetitle="[pagetitle™ />

<my:ReportFooter class="table.nygroupheader™
timestamp="[Ftinestanp"
uzername="[usernans”™ />

reference to composite with
properties projected as XML attributes

» The <report> element must define an XML namespace prefix to match the NAMESPACE parameter value for each
composite class that it references. Do this using xmlns: attribute syntax. The example gives style composites the
namespace prefix mystyle and layout composites the namespace prefix my. This separation is arbitrary, but makes
sense as a way of organizing composite classes.

The URI values assigned to each namespace prefix must agree with the NAMESPACE and <composite> definitions
provided in the corresponding composite classes. Compare the values shown here with the values shown in “Creating
a Composite to Define Style” and “Creating a Composite to Define Layout.”

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
xmIns:mystyle="http://www. intersystems.com/zen/report/display/my/style"
xmIns:my="http://www. intersystems.com/zen/report/display/my"'>
<I-- CONTENTS OF REPORT HERE -->

</report>

» When referencing the composite, use its name as an XML element inside XData ReportDisplay. Prefix the composite
name with the namespace prefix and a colon character. The following example shows the namespace prefix mystyle
and the composite name mygroupheader. To review the syntax in the mygroupheader composite class, see the
section “Creating a Composite to Define Style.” This composite has no properties:

<mystyle:mygroupheader />

This reference causes all the code between <composite> and </composite> in the mygroupheader composite class
to be substituted at this location in the XData ReportDisplay block.

» Here we have the namespace name my and the composite name ReportFooter. To review the syntax in the
ReportFooter composite class, see the section “Creating a Composite to Define Layout.” This composite has three
properties, class, timestamp, and username.
<my:ReportFooter class="table.mygroupfooter"

timestamp=""@timestamp"
username="'@username" />

Using Zen Reports 187

Building Zen Report Classes

This reference causes all the code between <composite> and </composite> in the ReportFooter composite class to
be substituted at this location in the XData ReportDisplay block. During the ReportFooter substitution, anywhere
the class, timestamp, and username properties are referenced in the composite class, Zen substitutes the values that
you assigned in XData ReportDisplay.

» For any properties of the ReportFooter class that are projected as XML attributes, you must provide an attribute
of that name and set it to the value you want the property to have. For example:
<my:ReportFooter class="table._mygroupfooter"

timestamp=""@timestamp"
username="'@username' />

In this example, the class value is a literal string. Values for timestampand username come from attributes in the XML
generated by the XData ReportDefinition block in the same Zen report class, so they use XPath @ syntax. Alternatively,
you could use a Zen report runtime expression as the value of any attribute of a composite.

Composite class properties that you define with Zen data types automatically project themselves to XML as attributes.
If you want to project them as XML elements, this choice changes how you define them and how you reference them.
In the composite class, instead of this:

Property username As %ZEN.Datatype.string;

You would do this:

Property username As %ZEN.Datatype.string(XMLPROJECTION = "element');

The syntax for referencing the composite is different for properties projected as elements. Suppose the properties for
ReportFooter are:
Property class As %ZEN.Datatype.string;

Property timestamp As %ZEN.Datatype.string
Property username As %ZEN.Datatype. strlng(XMLPROJECTION = "element™);

Then the reference to the ReportFooter composite in XData ReportDisplay would look like this:

<my:ReportFooter class="table.mygroupfooter™ timestamp="@timestamp'>
<my:username>@username</my:username>
</my:ReportFooter>

5.6 Using Zen Report Templates

Note: The template feature described in this section is not related to XSLT templates. Compare the section *“Supplying
XSLT Templates to Zen Reports.”

This topic uses the term template to describe a block of Zen report syntax that you wish to define separately and then reference
repeatedly to provide consistency and reusability for your Zen reports. Like composites, templates can define any part of
the XData ReportDisplay block, including parts of the <document> block and parts of the <body> block. Unlike composites,
templates are entirely static; they cannot accept parameters. A template provides simple code substitution.

You can define a display element, such as a <header> or <footer>, as a template. Then you can reference that template
when you place the display element inside the <body> block of your XData ReportDisplay definition. The template definition
of the element entirely replaces any attributes or other children of the element.

188 Using Zen Reports

Using Zen Report Templates

5.6.1 Creating a Zen Report Template

A Zen report template is a subclass of %ZEN.Report.Display.reportTemplate that contains an XData block. Inside the XData
block is the template name and definition. The following is an example of a Zen report template class that defines a template
called Header1:

Class ZENApp.HeaderTemplate Extends %ZEN.Report.Display.reportTemplate

XData Headerl
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<template>
<header>
<p class="bannerl">HelpDesk Salesl Report</p>
<fo><line pattern="empty"/><line pattern="empty'/></fo>
<table orient="row" width="3.45in" class="tablel">
<item value="Sales by Sales Rep" width="2in">
<caption value="Title:" width="1_.35iIn"/>
</item>
<item field="@month" caption="Month:"/>
<item field="@author" caption=""Author:"/>
<item field="@runBy" caption="Prepared By:"/>
<item field="@runTime" caption="Time:"/>
</table>
</header>
</template>

3
b
Templates are only instantiated at runtime. You may use runtime expressions and data items in defining a template; however,
any runtime expressions or data items used in a template are evaluated in the context of the report or composite that invokes
the template, not the template class itself. The previous template example works only if the data items that it refers to

(@month, @author, @runBy, and @runTime) actually exist in the XML data generated by corresponding XData
ReportDefinition block.

5.6.2 Referencing a Zen Report Template

The following syntax example references the sample template from the previous section:

<header template=""ZENApp.HeaderTemplate:Headerl" />

Each element that contributes visible content to the report display — that is, each element that may appear within a <body>
block — supports the template attribute. To see a list of display elements, refer to the <report> and <body> sections in the
chapter “Formatting Zen Report Pages.” The following table describes the template attribute that all of these elements
support.

Attribute Meaning

template | Specifies the template that can be used to specify this element, rather than providing attributes
and other content directly in XData ReportDisplay. The format for the template value is:

templateClass :templateName
Where:

» templateClass is the name of the subclass of %ZEN.Report.Display.reportTemplate that defines
the template, for example:

ZENApp.HeaderTemplate

» templateName is the name of the specific XData block within the templateClass that provides
the template for this element, for example:

Headerl

Using Zen Reports 189

Building Zen Report Classes

Generally, when you reference a template, you do not provide any attributes other than template with the element, because
Zen ignores the values of any other attributes supplied along with the template attribute. Suppose the <header> element in
the previous example also provided a width attribute, as follows:

<header template="ZENApp.HeaderTemplate:Headerl"” width="7.25in" />

Zen would ignore the value of this width attribute, and instead use whatever width characteristics it found in the Headerl
template definition. If it found no width value in the template, it would use the Zen defaults for width, rather than the width
attribute provided with this <header> element.

The following sample XData ReportDisplay block shows this sample <header> element in its full context. This example
includes a <document> element because the desired output format is PDF:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmIns="http://www. intersystems.com/zen/report/display"
name="myReport" title="HelpDesk Sales Report® style="standard">
<document width="8.5in" height="11in"
marginLeft="1.25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0In"
referenceOrientation="0">
</document>
<body>
<header template=""ZENApp.HeaderTemplate:Headerl'/>
<!-- OTHER ELEMENTS OF THE REPORT DISPLAY -->
</body>
</report>

5.7 Supplying XSLT Templates to Zen Reports

Note: The features described in this section are specifically related to XSLT templates. For a more general feature that
allows you to reuse sections of Zen report syntax in various reports, see “Using Zen Report Templates” in
“Building Zen Report Classes.”

If you are already familiar with XSLT, you might have used <xs1 : cal I -temp late> syntax to invoke a specific template
within an XSLT transformation. <xsl :cal I-template> permits you to supply parameters and values to the template
when you invoke it. Display elements support a similar convention.

In addition to the XData blocks called ReportDefinition and ReportDisplay, Zen report classes support three XData blocks
that can contain XSLT templates. The following table lists them.

Use this case-sensitive XData block name... For XSLT templates that apply to...
XData HtmIXslt All XHTML output

XData XslFoXslt All XSL-FO for PDF output

XData AllXslt All output

If you need to use more than one <xsl:template>, you can enclose them in an <zenxslt> element. See the section XData
Blocks for <xslt> for more information on <zenxslt>. XData blocks that contain XSLT templates can be in the same report
class where they are used, or in a separate report class, where they can be used by a number of reports.

In the following excerpt from a Zen report class, the XSLT templates are empty, so they do not accomplish anything. The
example simply shows how to place an XSLT template inside an XData block. You can place any appropriate XSLT
statements inside the <xsl:template> container:

190 Using Zen Reports

Supplying XSLT Templates to Zen Reports

XData HtmIXslt {
<xsl:template name="htmExample" >
</xsl:template>

¥

XData XslFoXslt {
<xsl:template name="pdfExample" >
</xsl:template>

3

XData AllXslt {
<xsl:template name="allExample" >
</xsl:template>

}

The name provided for the <xsl:template> container in XData HtmIXslt and XData XsIFoXslt can be the same name,
because these two XData blocks are never used together. If there is an XSLT template that you need for both output formats,
place it in XData AllXslt.

5.7.1 Calling XSLT Templates to Apply Styles

One common use for XSLT templates is to call a template to apply styles. The appropriate XSLT template to call depends
on the output format. Define a template with the same name in both of the two output-specific blocks:

e For XHTML, name the block XData HtmlXslt
* For PDF, name the block XData XslFoXslt

For example:

XData HtmlXslt

<xsl:template name="redeven" >
<xsl:param name="num"/>
<xsl:if test="$num mod 2 = 0>
<xsl:attribute name="style">color:red</xsl:attribute>
</xsl:if>
</xsl:template>

XData XslFoXslt
{

<xsl:template name="redeven" >
<xsl:param name="num"/>
<xsl:if test="$num mod 2 = 0>
<xsl:attribute name="color">red</xsl:attribute>
</xsl:if>
</xsl:template>

With these templates defined, it is possible for the XData ReportDisplay block in the same Zen report class to have an
<item> defined as follows:
<item field="@id" width="_7in"

style="border:none;padding-right:4px"

stylecall="redeven" styleparams="@id"
styleparamNames=""num" > </item>

Where:
* The stylecall attribute identifies the <xs1 : template> name.

* The styleparamNames attribute identifies the <xsl - param> name as defined in the <xsl : template>. Additional
names may appear, separated by semicolons.

e The styleparams attribute provides an expression that identifies the value to assign to that parameter. A styleparams
expression can be a literal value, node set, XPath expression, or XSLT function call. Anything that is valid as a value
for <xsl:with-param> in XSLT is valid in styleparams. More than one expression may appear, separated by
semicolons. The number of styleparamNames and styleparams must match.

Using Zen Reports 191

Building Zen Report Classes

The result is that entries with even numbered IDs are colored red. See the table of attributes in the section “Report Display
Attributes” for more information on these attributes.

5.7.2 Calling XSLT Templates While Rendering Items

Note: The feature described in this section applies only to the <item> element.

To define the XSLT template, place it within an XData block called AllXslt, HtmIXslt, or XsIFoXslt in the Zen report class.
For example:

XData AllXslt

<xsl:template name="sum'>
<I-- Initialize nodes to empty node set -->
<xsl:param name="nodes"/>
<xsl:param name="result"” select="0"/>
<xsl:choose>
<xsl:when test="not($nodes)'>
<xsl:value-of select="$result"/>
</xsl:when>
<xsl:otherwise>
<xsl:variable name="value" select="$nodes[1]"/>

<I-- recursively sum the rest of the nodes -->
<xsl:call-template name="sum"> o
<xsl:with-param name="nodes" select="$nodes[position() != 1]"/>

<xsl:with-param name="result"” select="%$result + $value'/>
</xsl:call-template>
</xsl:otherwise>
</xsl:choose>
</xsl:template>

With this template defined, it is possible for the XData ReportDisplay block in the same Zen report class to have an <item>
defined as follows:
<item call="'sum" params="Sale/@amount™ paramNames="nodes''>

<caption value="Total Sales'/>
</item>

Where:
» The call attribute identifies the <xsl : template> name.

e The paramNames attribute identifies the <xs I : param> name as defined in the <xsl : temp late>. Additional names
may appear, separated by semicolons.

» The params attribute provides an expression that identifies the value to assign to that parameter. A params expression
can be a literal value, node set, XPath expression, or XSLT function call. Anything that is valid as a value for
<xsl:with-param> in XSLT is valid in params. More than one expression may appear, separated by semicolons.
The number of paramNames and params must match.

When you obtain the value for the <item> using call, you cannot use the formatNumber attribute to format the result inside
the <item> statement. Instead, use the XSLT format-number function inside the <xsl : template> that you are refer-
encing with the call attribute. The following example of an XData AllXslt block shows this convention:

192 Using Zen Reports

Conditionally Executing Methods in Zen Reports

XData AllXslt

<xsl:template name="mypct'>
<xsl:param name="num"/>
<xsl:param name="'denom' />
<xsl:variable name="v1" select="$num[1]"/>
<xsl:variable name="v2" select="$denom[1]"/>
<xsl:choose>
<xsl:when test="$v2 1= 0">
<xsl:value-of
select=""format-number(round(($v1l div $v2)*10000) div 10000, "##,###.00%")" />
</xsl:when>
<xsl:otherwise>
<xsl:value-of select="format-number (0, "##,###_.00%")" />
</xsl:otherwise>
</xsl:choose>
</xsl:template>

The properties call, paramNames, and params are supported only by the <item> element. See the table of attributes in the
section “<item>" for more information on these attributes.

5.8 Conditionally Executing Methods in Zen Reports

As described in the section “Zen Report Tutorial,” a Zen report class is also a CSP page. This means that, at runtime,
portions of its logic may execute on the server and portions in the browser, as is normal for CSP pages.

By default, Zen report classes process XSLT and generate XHTML output on the server, then ship the results to the browser
for display. This behavior is controlled by the XSLTMODE parameter, which is set to ""server" by default. You can set
XSLTMODE to ""browser"" if you prefer, but note that when the output format is PDF, processing happens on the server
side regardless of the XSLTMODE setting.

When the output format is XHTML and XSLTMODE is setto ""browser"*, the CSP instance for a Zen report communicates
twice with the browser, once to generate XML and a second time to generate XSLT. As a result, methods that fit the fol-
lowing description are automatically invoked twice each time you display the Zen report:

* Any callback methods, such as %OnPreHTTP() or % OnAfter Report(), that contain custom code in the Zen report
class.

» Any methods invoked by the InitialExpression for any class properties.

To prevent needless performance cost when XSLTMODE is set to ""browser"", you can program these methods so that
parts of them execute conditionally based on the current display mode of the Zen report. The following example accomplishes
this for the callback method % OnAfter Report(). This example uses a variety of conventions to check the current display
mode, as follows:

* The ObjectScript function $ZCONVERT ($ZCVT) with the option "'L** converts the characters in the given string to
all lowercase.

» The ObjectScript function $GET ($G) returns the data value of the specified variable, or the default for this variable
if no value has been set.

* %request.Data syntax retrieves the value of the $MODE parameter from the URL string that was supplied to invoke
the CSP page. See the section “%CSP.Request Object” in the book Using Caché Server Pages (CSP).

e The macro $$$SCGETPARAMETER (*"'DEFAULTMODE"") looks up the value of the DEFAULTMODE parameter from
the Zen report. If DEFAULTMODE is not defined there, the macro looks up the value from the Application class. The
application class is either specified in the APPLICATION parameter, or is %ZEN.Report.defaultApplication.

Using Zen Reports 193

Building Zen Report Classes

Method %OnAfterReport() As %Status
{
it $1sObject($G(%Urequest))

set tMode = $ZCVT($G(%request.Data("'$MODE™,1) ,$$SGETPARAMETER(*'DEFAULTMODE™)), L")
if (tMode=""tohtml")

; Place the callback logic for XSLT generation here
}
elseif (tMode="html™)

; Place the callback logic for XHTML generation here

else
; Place the callback logic for call from command line here

3 %uit $SSO0K

The following example shows a property with an InitialExpression that is set by calling a method:

Property testProp As %String [InitialExpression = {..initExprQ} 1;

The method itself could be defined as follows:

Method initExpr() As %String
{
if $1sObject($G(%request))

Set tMode = $ZCVT($G(%request.Data('$MODE",1), $SSGETPARAMETER(''DEFAULTMODE™)),"L")
if (tMode="xml"")

set initval="mode is xml"
elseif (tMode=""tohtml')

set initval="mode is toHtml"
glseif (tMode="html'")

set initval="mode is html"
else

set initvVal="all other modes, for completeness"

else
Set initval="called from command line, no potential second round-trip."

Quit initval
3

5.9 Executing Code Before or After Report Generation

A Zen report is a class that extends %ZEN.Report.reportPage. This base class offers callback methods that you can override
in your own Zen report class. Use these callback methods to add any statements that you want Zen to execute before or
after it receives the initial HTTP request, generates the XML data source, writes the XSLT stylesheets, creates the report
display, or outputs the report in the requested format.

The Zen report callback methods execute automatically as explained in the following table:

194 Using Zen Reports

Executing Code Before or After Report Generation

Table 5-1: Callback Methods in Zen Report Classes

Method
%OnPreHTTP()

%0OnBeforeReport()

OnAfterCreateDisplay()

%OnAfterReport()

Executes

After the Zen report receives the
initial HTTP request and before
%0OnBeforeReport().

After %OnPreHTTP() and
before Zen begins its main
processing sequence to
generate the XML data source,
write the XSLT stylesheets, and
create the report display.

Near the end of the main

processing sequence, after Zen
creates the report display object
but before it outputs the display
object in the requested format.

After Zen completes all report
processing and has output the
display in the requested format.

Purpose

Execute statements based on the
data in the initial HTTP request. If
your %OnPreHTTP() method
returns 0 (false) report execution
stops immediately.

Adjust input prior to the main
processing sequence.

Adjust display contents prior to out-
put.You can access individual items
using their id attributes with
%GetComponentByID(id). For an
example, see “The id Attribute” in
the chapter “Formatting Zen Report
Pages.”

Clean up after the main processing
sequence.

Returns

%Status

%Status

%Status

Using Zen Reports

195

Running Zen Reports

This chapter explains how to run a Zen report from a browser or command line, with several variations. Topics include:
» Invoking Zen Reports from a Web Browser

e Invoking Zen Reports from Zen Pages

* Environment Variables for Memory Configuration

» Configuring Zen Reports for PDF Output

» Configuring Zen Reports for Excel Spreadsheet Output

* Invoking Zen Reports from the Command Line

» Exposing Zen Report Data as a Web Service

For diagnostic information, see the chapter, “Troubleshooting Zen Reports.”

6.1 Invoking Zen Reports from aWeb Browser

A user can view reports in a browser by entering the URI of the Zen report .cls file. To specify the output format, the user
either relies on the DEFAULTMODE class parameter in the Zen report class, or provides a SMODE parameter in the query
string. The following examples illustrate the use of these parameters to generate an HTML report.

DEFAULTMODE in the Zen report class:

Parameter DEFAULTMODE = "html"

$MODE in the URI:

http://1ocalhost:57772/csp/myPath/myApp . myReport. cls?$MODE=html

Where 57772 is the port number assigned to the Caché server. The report displays in HTML format.
Both DEFAULTMODE and $MODE share the following set of possible values:

» displayxlsx — to generate a report as an Excel spreadsheet, using a ReportDisplay block to transform arbitrary
XML into the format required for Excel generation.

» excel —togenerate a report as an Excel spreadsheet. See the section “ Configuring Zen Reports for Excel Spreadsheet
Output.”

e fo2pdf — to render a report in PDF format directly from an FO file. This allows SVG to be stored in the database
and then rendered as part of a PDF.

Using Zen Reports 197

Running Zen Reports

» foandpdf — to first generate an FO file and then generate PDF from the FO file. Allows you to better store SVG in
the database and retrieve it for display in the PDF.

* html — to generate a report in HTML. This is the default.

* pdf — to generate a report in PDF. You must first use the instructions in the section “Configuring Zen Reports for
PDF Output.” Depending on your settings, the browser might first prompt you to save the file. If so, click Save to
view the PDF.

» pdfprint —to generate a report in PDF format and send it directly to a printer, without creating an intermediate
file. You must first follow the instructions in the section “Configuring Zen Reports for PDF Output.”

Because pdfprint does not write output to disk, you cannot use it with the split and merge features of PDF output
described in the section “ Splitting and Merging PDF Output.” As of Windows 7, Caché cannot start an external process,
so the Print Server is required to run pdfprint. See “The Print Server.”

e ps — to generate a report in PDF format and send it directly to a PostScript printer.

» tiff—to generate areport as a TIFF image file. You must install JAI Advanced Imaging 1/O to do TIFF generation.
TIFF generation is supported only through FOP not through RenderX. See “Configuring for TIFF Generation.”

» xIsx—to generate a report as an Excel spreadsheet, using the x I sx format which is native to Office 2007 and Office
2010. This is the preferred mode for these versions of Office. See the section “Configuring Zen Reports for Excel
Spreadsheet Output.”

e xml — to view raw data for a report in XML format. Colorized XML displays in the browser.

Note that Chrome as it is installed by default does not display XML correctly, including Zen reports displayed with
$MODE=xm1. You need to install the XML Tree Chrome extension. Search for “XML Tree” at
https://chrome.google.com/, or go directly to the following link:

https://chrome.google.com/extensions/detail/gbammbheopgpmaagmckhpjbfgdfkpadb
In addition, the following values are generally used in debugging. The section “Changing Output Mode to View Interme-
diate Files™ provides additional information.
e tohtml — to generate a to-HTML stylesheet in XSLT format.
» toxslfo —to generate a to-XSLFO stylesheet in XSLT format.
* xslfo— to display the XSL-FO file that is generated while producing PDF.

6.1.1 URI Query Parameters for Zen Reports

There are a number of URI query parameters available for use when invoking a Zen report class in a browser. You may
use these parameters freely in Firefox, and with care in Internet Explorer. Problems might occur, especially in IE, but they
can be overcome. If you run into trouble, see “Displaying XHTML with URI Query Parameters” in the chapter “Trou-
bleshooting Zen Reports.”

The following table lists Zen report URI query parameters and their Zen report class parameter equivalents. You can find
additional details about any parameter using the links provided in the table, or consult the section “Zen Report Class
Parameters.” Note that by convention, the names of these parameters begin with dollar sign (“$”).

Table 6-1: URI Query Parameters for Zen Reports

URI Query Parameter Class Parameter Equivalent Description

$DATASOURCE DATASOURCE The URI of an XML document that contains
the data for the Zen report. Relative URIs
are handled with respect to the current URI.

198 Using Zen Reports

https://chrome.google.com/
https://chrome.google.com/extensions/detail/gbammbheopgpmaagmckhpjbfgdfkpadb

Invoking Zen Reports from a Web Browser

URI Query Parameter
$EMBEDXSL

$LOG

$MODE

SNAMESPACEDECLARATIONS

$NODELETE

$PS

$REPORTNAME

Class Parameter Equivalent

EMBEDXSL

DEFAULTMODE; also see
STYLESHEETDEFAULTMODE

NAMESPACEDECLARATIONS

PS

Description

1 (true) or O (false). When true, Zen reports
generates XSLT instructions embedded
within the output XHTML. When false, Zen
reports generates a separate XSLT file.
The default is O (false).

1 (true) or O (false). When true, use with
$MODE=html or SMODE=pdf to view one
of the intermediate files that Zen generates.

Basic information about $MODE appears
in the “Invoking Zen Reports from a Web
Browser " section.

You may also use $MODE with the values
that enable you to view intermediate files
that are usually deleted. This use is
described in the “Viewing Intermediate
Files” section of the chapter “Troubleshoot-
ing Zen Reports.”

Allows you to define namespace
declarations. The namespace declarations
are added to the root element of the
generated XML and also to the stylesheet
element of the generated XSL.

1 (true) or O (false). When true, save
intermediate files to the general Caché
temporary directory.

To send a report directly to a PostScript
printer, without creating an intervening PDF
file, use $MODE=ps in the URI string and
set $PS to the location of the PostScript
printer, such as:

$PS=\\devD630\BrotherH

You can also send the report directly to the
printer by setting the DEFAULTMODE class
parameter to "'ps'’, and use the PS class
parameter to set the PostScript printer
location.

The filename to use when saving
intermediate files for diagnostic purposes.
$REPORTNAME is not related to
REPORTNAME.

Using Zen Reports

199

Running Zen Reports

URI Query Parameter Class Parameter Equivalent Description

$STRIPPI — 1 (true) or O (false). When true, strip the
<?xml version="1.0"?> processing
instruction from the top of the set of XML
statements generated by this URI. For
details, see the <get> section.

$USETEMPFILES USETEMPFILES 1 (true) or O (false). When true, save
generated XSLT files in the CSP directory
for your application.

$USEHTMLS USEHTML5 1 (true), O (false), or **** (null). When null
(the default), the report generates HTML5
only if the browser supports it. True and
false force generation (non-generation)
regardless of browser support.

$XSLT XSLTMODE “browser" or ""server". Causes the
XSLT to be processed, and output to be
generated, on the browser or server,
respectively. The default is "'server".

$XSLTVERSION XSLTVERSION "1.0" or ""2.0" causes XSLT for this
report to be processed as XSLT 1.0 or
XSLT 2.0, respectively. The default is
"1.0".

6.1.2 Setting Zen Report Class Properties from the URI

A Zen report class supports the data type parameter ZENURL. This parameter enables you to set Zen report class properties
dynamically, from the URI string that you supply to the browser when you display a Zen report.

For example, suppose you define a property in a Zen report class as follows:

Property employeelD As %ZEN.Datatype.string(ZENURL="1D");

When this Zen report is invoked by passing a URI string to a browser, any value specified for the ID query parameter is
assigned to the class property employeelD. The following example assigns employeelD the value 48:

MyApp -MyPage.cls?1D=48
Internally, this causes the following code to run before the report is displayed:

Set %page.employeelD = $GET(%request.Data(’'ID",1))

If the URI parameter assigned to a property does not pass the property’s validation test for any reason, such as a value
greater than the property’s MAXVAL, Zen reports displays an error message instead of displaying the page.

If XSLT processing takes place on the server, there are no restrictions on your use of ZENURL. The class parameter
XSLTMODE has a default value of “server”, which directs XSLT processing to take place on the server. You can set
XSLTMODE to “browser”, or use the URI query parameter $XSLT=browser, to direct XSLT processing to the browser.

XSLT processing is done on the server regardless of the XSLTMODE setting if you have instructed Zen reports to generate
the report as PDF with one of the following parameters:

* URI query parameter $MODE is set to "pdf"
e Class parameter DEFAULTMODE is set to "pdf" and $MODE does not override DEFAULTMODE

200 Using Zen Reports

Invoking Zen Reports from Zen Pages

XSLT processing is done in the browser regardless of the XSLTMODE setting if you have instructed Zen reports to embed
XSLT instructions with one of the following parameters:

* URI query parameter SEMBEDXSL is set to 1

e Class parameter EMBEDXSL is set to 1 and $SEMBEDXSL does not override EMBEDXSL

In order to provide consistent behavior across browsers, Zen reports does not pass URI parameters in the generated XML
in the xml-stylesheet processing instruction. Zen reports generates an xml-stylesheet processing instruction only when you
are generating an HTML report on the browser and it is not embedding XSLT instructions in the generated HTML, which
is the default behavior. For this reason, any code in the XData ReportDisplay block that relies on a property value passed
as a ZENURL may produce unexpected results. The property has the initial value set with InitialExpression, if there is one,

oritis null. This limitation is an especially important consideration any time you use %report in the ReportDisplay block
to access report properties.

If you use %report in a way that relies on a property value passed as a ZENURL in the URI that invokes the report, you
may see unexpected results if XSLT processing takes place in the browser.

6.2 Invoking Zen Reports from Zen Pages

To display a Zen report on a Zen page, place an <iframe> in the Zen page XData Contents block with the src value set to
the Zen report class name. The Zen report class must exist in the same InterSystems namespace as the Zen class that contains
the <iframe>.

For details about <iframe>, see the “Framed Content” section in the “Other Zen Components” chapter of Using Zen
Components.

6.3 Environment Variables for Memory Configuration

The generation of PDF or Excel report output can be memory intensive. Zen reports provides several environment variables
that allow you to configure the amount of memory available for these operations. The default value for all of these variables
is 512mb. You can change the values of these environment variables to allocate more memory. These memory values
change the -Xmx memory maximum value passed to the JVM.

» EXCELMEMSIZE — memory available for generation of Zen reports as Excel spread sheets.
» EXCELSERVERMEMSIZE — memory available to the Excel Server.

» FOPMEMSIZE — memory available to the FOP PDF renderer.

* RENDERSERVERMEMSIZE — memory available to the Render Server.

* PRINTSERVERMEMSIZE - memory available to the Print Server.

SAXMEMSIZE — memory available to the SAX processor.

» PDFMERGEMEMSIZE - memory available to the PDF merge operation.

Using Zen Reports 201

Running Zen Reports

6.4 Configuring Zen Reports for PDF Output

When you load a Zen report class into a browser with a request to view the output as PDF, Caché uses Java to call out to
a third-party PDF rendering tool. The rendering tool applies the XSLT stylesheet to the XML data and transforms the XML
into XSL-FO. Finally, the tool transforms the XSL-FO into PDF. For information on how to run a Zen report from the
browser, see the section Invoking Zen Reports from a \Web Browser.

The Caché installation provides a version of Apache FOP that Zen reports uses as the PDF rendering engine. You can also
use another rendering engine, such as XEP PDF from RenderX, or download and install FOP from Apache.

6.4.1 Using the Built-in PDF Rendering Engine

The PDF rendering process works only if you have performed the required configuration steps. This section discusses
configuration for the built-in FOP. For information on configuring alternate PDF renderers, see the section “Using Other
Rendering Engines.”

1. If you do not already have a Java Virtual Machine (JVM) and Java Developers Kit (JDK) version 1.7 or later installed,
download and install these tools on your system. In order for Cache to find Java, you need to define the JAVA_HOME
environment variable and set it to the location where you have installed Java. JAVA_HOME is described in the Java
documentation.

2. You must ensure that user privileges are set correctly, even if your Zen report does not use security features. To run a
report with PDF output, the user must be logged into a user account that has the %System_CallOut:USE privilege.

If the Zen report is part of a Zen application, and you have enabled Unauthenticated access using the Allowed Authen-
tication Methods field on the web Applications page (System Administration > Security > Applications > Web Applica-
tions), the UnknownUser account must have the %System_CallOut:USE privilege.

To configure Zen application settings of all types, see the “Zen Application Configuration” section in the “Zen
Applications” chapter of Developing Zen Applications. For information about privileges such as %System_CallOut:USE,
see the “Assets and Resources” chapter in the Caché Security Administration Guide.

You can use the Zen reports class-parameter RESOURCE to impose additional privilege requirements.

3. Ifyou are printing PDF directly via Foxit or Adobe Reader, you need to tell Zen reports where the executable file
resides on the server. You can provide this information from the Management Portal Zen Report Settings page (System
Administration > Configuration > Zen Reports > Settings) using the field Foxit / Adobe Path for Pdfprint. Type the path
to the executable, or click Browse to locate and select the file.

Alternatively, you can enter commands to set the corresponding Caché global at the Terminal prompt, for example:

ZN "%SYS"
SET ~%SYS(''zenreport',adobepath'™)="C:\Program Files\Adobe\Reader\AcroRd32.exe"

4. You can create custom configuration files for the built-in FOP as described in materials on the Apache FOP Web site:
http://xmlgraphics.apache.org/fop

If you want the Caché callout to FOP to use a custom configuration file, you can set the global
~"pSYS('zenreport', "transformerconfig') to the path of the configuration file. Configuration files are
important for adding fonts to FOP. You must first create font metrics, and then register them with FOP. The process
is described on the Apache FOP Web site.

If you modify the FOP configuration file fop.xconf, then a Caché install does not copy over it. The FOP configuration
file that comes with your Caché distribution is named fop.xconf_dist. If your fop.xconf file becomes corrupted for any
reason (such as running RenderX, which truncates the file if the parameter USEINSTALLEDFOP is not set to zero),
you can revert to the file as distributed with Caché by copying fop.xconf_dist to fop.xconf.

202 Using Zen Reports

http://xmlgraphics.apache.org/fop

Configuring Zen Reports for PDF Output

Note: PDF rendering can consume a lot of memory. If you run into trouble, you might want to modify the FOP.bat or
XEP.bat file to increase the amount of memory available to the Java Virtual Machine. The respective products
provide documentation that explains how to do this.

6.4.2 Using Other Rendering Engines
A version of Apache FOP is installed with Caché. If you chose to use another PDF rendering tool, you must perform the
following additional configuration steps.
1. Install the XSL-FO to PDF rendering tool. Two of the available options are:
e Anopen source project from Apache called FOP. You can download it from the following Web site:
http://xmlgraphics.apache.org/fop
To install, simply extract the files from the kit.

* The XEP product from RenderX. You can download a free trial version that produces a RenderX watermark on
each output page, or you can buy the XEP product. See this Web site for details:

http://www.renderx.com/tools/xep.html
To install, follow the instructions in the kit.

» To configure Zen Reports to work with RenderX XEP, you need to define a %JAVA_HOME% and a
%XEP_HOME% environment variable. %JAVA _HOME% is described in the Java documentation. %XEP_HOME%
is an environment variable specifying the location where you have installed XEP.

2. Configure Zen reports with the full pathname of the command file that invokes the rendering tool. For XEP or FOP
on Windows or UNIX®, once you have installed the tool as instructed in Step 1, this command file is present on your
system under the installation directory for the tool, for example C:\fop-0.95\fop.bat for Window or /fop-0.95/fop on
UNIX®.

You can configure Zen reports from the Management Portal zen Report Settings page (System Administration > Con-
figuration > Zen Report Settings) as follows:

e Path and File Name For PDF Generation: — Enter the path to the executable file. Click Browse to locate and select
the command file.

* Foxit / Adobe Path for Pdfprint: — Enter the path to the Foxit or Adobe Reader executable file on the server. Click
Browse to locate and select the file. Required to print PDF directly.

* Configuration File For PDF Rendering Engine: — This field is optional. Select Use or None. If you select Use, enter
the path to the FOP configuration file. If you do not specify a FOP configuration file, the FOP renderer uses the
configuration file supplied with the built-in FOP.

Do not enter a path in this field if you are using an XEP renderer. The XEP renderer truncates any file specified
here to 0 length. Click Browse to locate and select the configuration file.

You can create custom configuration files as described by the tool provider’s Web site. To provide XEP with a
custom configuration file, you need to follow the manual for XEP.

* Default HotJVM Render Server Port — Enter the port number where the HotJVM Render Server is running. If you
specify a port number, all Zen reports use the HotJVM running on this port.

» Verify Now — Click this button to test whether or not the rendering tool is configured correctly.

Alternatively, you can enter commands to set the corresponding Caché global at the Terminal prompt.

To set the configuration file, set "%SYS(*'zenreport","transformerconfig") to the path of the configuration
file.

Using Zen Reports 203

http://xmlgraphics.apache.org/fop
http://www.renderx.com/tools/xep.html

Running Zen Reports

The default behavior of the Zen reports system is to use the installed FOP to render reports if you have not set an
alternative renderer on the Management Portal Zen Report Settings page (System Administration > Configuration > Zen
Reports > Settings). If you want Zen reports to generate an error if you have not specified a renderer, set the class-
parameter USEINSTALLEDFOP to 0 from its default value of 1 in each Zen report, or in the Zen report's Application.
To apply this change to all Zen reports at once, you can set the parameter in the default Application for Zen reports:
%ZEN.Report.defaultApplication.

For FOP version 0.94 or earlier

If you are using FOP version 0.94 or earlier, you must set a flag to tell Zen reports that an older FOP version is the
rendering tool. To do this, enter the following commands at the Terminal prompt:

ZN "%SYS™
SET "SYS(*'zenreport","oldfop')=1

Even with this measure in place, the following elements do not support percentage widths when FOP 0.94 or earlier
is the rendering engine: <block> <caption> and <p>. For alternate syntax that you can use to specify widths
for these elements, or for any other Zen report display elements, see *“Dimension and Size” in the chapter “Formatting
Zen Report Pages™

For rendering engines other than XEP or FOP

Usually the choice of PDF rendering engine is XEP or FOP, each of which supports the same set of command line
options for the transformation from XSL-FO to PDF. If you have completed the previous steps in this list, no further
configuration work is necessary to make the XEP or FOP engines work with Zen reports.

If you want Zen reports to use a PDF rendering engine other than XEP or FOP, this engine might require different
command line options when it is invoked. In this case, you must specify the correct option syntax using class parameters
in your Zen report class.

The following table lists each relevant class parameter and describes the value it must have to use Zen reports with
various PDF rendering engines. If the engine you are using is not listed here, check its documentation to verify which
values you should use for these parameters.

Class This Command Line Zen Reports XEP FOP Antenna House XSL
Parameter Option Identifies the... DefaultValue Value Value Formatter Value
PDFSWITCH PDF output file -pdf -pdf -pdf -0

XMLSWITCH XSL-FO data file -xml -xml -xml -d

XSLSWITCH XSL-FO stylesheet file | -xsl -xsl -xsl -s

For details, see “Class Parameters for General Use” in the appendix “Zen Report Class Parameters.”

6.4.3 Splitting and Merging PDF Output

The PDF output for a very large report may exceed the memory restrictions of the FOP rendering engine. In this case, you
can split the report into several smaller sections. Each section is written to disk as a separate temporary file, and merged
into a single PDF file once the entire report has been processed. You need to set the following parameters in your report:

SPLITANDMERGE: Set this parameter to true, to generate multiple intermediate files. The default value is false.

REPEATINGELEMENT: Specifies the report element in the generated XML on which to divide the report. This element
must be a direct child of the root element in the XML generated by the report.

COUNTREPEATINGELEMENT: Specifies the number of the repeating elements set in REPEATINGELEMENT to
put in each of the intermediate files. The default value is 100, but that could be too high if the report output for each
repeating element is large.

204

Using Zen Reports

Configuring Zen Reports for PDF Output

Computed page counts may not be valid in the merged report because there is no logic in the merge process to recalculate
or change page counting. Any <masterreference> elements defined for specialized formatting of first or last pages are
applied to each split section independently. Also be aware that elements that are not contained within a repeating element,
such as final aggregates, may not appear in the final report.

Each of the parameters described previously has a corresponding property that you can also use to split and merge reports.
The following example illustrates setting these properties when using Gener ateReport to split and merge a report at the
Caché terminal.

zn "SAMPLES"

do ##class(ZENDemo.Home) .CreateDemoData()

s rptl=##class(ZENApp.-MyReport) .%New()

s rptl.RepeatingElement=""SalesRep"

s rptl.CountRepeatingElement=5

s rptl.SplitAndMerge=1

s rptl.Month=1

s Status=rptl.GenerateReport(‘'c:\temp\MyReportl.pdf'",0)
d
w

$System.Status.DisplayError(Status)
$System.Status.DisplayError(Status)

You can also set these parameters in the URL of the report by appending a $ in front of the symbol name: $SPLITAND-
MERGE, $REPEATINGELEMENT and $COUNTREPEAINGELEMENT,

The following sample URI illustrates passing these parameters in the URL. It contains a line break for typesetting purposes
only; a correct URI is all on one line.
http://localhost:57772/csp//samples/ZENApp.MyReport.cls

?$MODE=pdf&$SPL | TANDMERGE=1&$REPEAT INGELEMENT=SalesRep
&$COUNTREPEAT INGELEMENT=5

You can also use SPLITANDMERGE to generate a report as several PDF files. You would use this approach in a situation
such as a billing application where you need to generate an individual PDF file for each customer bill from a large master
XML file. You must set the three parameters described previously, and in addition, you must set the property SplitOnly to
true. The default value is fal se. When SplitOnly is true, the PDF files are generated and written to disk, but they are
not merged at the end. The names of the individual PDF files are returned in the property %SplitReturnedPDFs. There may
be situations, such as debugging, in which you want to specify the directory and filename of the generated PDF files. The
property SplitDir specifies the directory, and SplitRootName specifies the root name for the generated files, to which a
sequential integer is appended for each file.

6.4.4The HotJVM Render Server

Zen reports provides HotJVM Render Server capability to improve PDF rendering performance. The HotJVM Render
Server is a Java Virtual Machine process which runs in the background and renders Zen reports as PDF files. By running
as a background process, HotJVM eliminates the overhead of starting the Java Virtual Machine, and allows faster PDF
rendering.

The Management Portal Render Servers page (System Administration > Configuration > Zen Reports > Render Servers)
lists currently configured Render Servers. When Caché is first installed, there are no Render Servers configured. Because
the Render Server consumes system memory, you should not configure and run a Render Server unless you need the
improved rendering performance. If you have configured a Render Server, it starts automatically when you try to generate
a report using the Render Server port.

6.4.4.1 Creating a HotJVM Render Server

The New Render Server button opens the New Zen Report Render Server page, which lets you configure a new Render
Server. The first three fields are required, the remaining fields are optional.

e Name: A unique name for the Render Server.

* Port: The TCP port that the Render Server uses to receive reports to render.

Using Zen Reports 205

Running Zen Reports

* Ping Port: The TCP port that the Render Server uses for all other communication, such as status queries and shutdown
requests.

* NumThreads: If the Render Server is using multi-threaded Java, this field supplies the number of threads used by the
Render Server for report rendering.

* Num Ping Threads: If the Render Server is using multi-threaded Java, this field supplies the number of threads used
by the Render Server for other communication.

* PDF Renderer: The renderer used by the Render Server for PDF rendering of Zen reports. The value FOP is the default
and refers to the version of Apache FOP that is installed with Caché. If you select RenderX XEP, you must specify
the location of the configuration file, xep.xml by providing an XEP_HOME environment variable.

e Renderer Configuration File: A file that contains configuration information for the built-in FOP renderer. This field is
automatically filled with the name of the default file, C-\MyCache\fop\conf\fop.xconf. This file is supplied
with the built-in FOP. You can use it as a template for a custom file. The file
C:\MyCache\fop\conf\fop.xconf_dist is a backup copy. If you want to use a different configuration file,
provide the file name here.

This field does not appear on the form if you select the RenderX XEP PDF renderer. You must use the XEP_HOME
environment variable to specify the location of the xep.xml, the RenderX XEP configuration file.

* Log Level: Standard Java parameters to control logging. If you choose to enable logging, the following three items
appear on the form:

— Log File: By default, the Render Server log file is created in your home directory. You can specify an alternate
location here. On Unix systems, in order to avoid privilege issues, specify a location where the user has appropriate
permissions.

Each time you stop and restart the Render Server, it begins a new log file. The Render Server also starts a new
log file when the file size exceeds the limit set by Max. File Size. The log file names have a numeric suffix. The
file ending in .0 is the most recent, and as new files are created, the previous ones are renamed with larger suffix
numbers, until the number of files reaches the limit set by Rotation Count. Then the names recycled and older
information is lost. This field supplies the path and base file name of the log file.

If you configure more than one Render Server, providing log file names makes it easy for you to match log files
with the Render Server that created them.

— Max. File Size: Maximum size of the Render Server log file. The Render Server creates a new log file when the
size of the current log file reaches this limit.

— Rotation Count: The maximum number of log files. The Render Server recycles file names, losing older information,
when the number of log files reaches this limit.
* Initialization Timeout: The amount of time in seconds that Zen reports waits for the Render Server to start up. An error

occurs if the Render Server fails to start in this time.

* Connection Timeout: The amount of time in seconds that Zen reports waits for the Render Server to connect when
rendering a report. You normally expect connection to take less time than initialization. An error occurs if the Render
Server fails to connect in this time.

e Initial Queue Size: The initial size of rendering queue.

* Memory Threshold: The number of bytes that define the memory usage threshold. For example, 1,000,000 means one
million bytes. You cannot use short cut notation such as 1000K to mean a million bytes.

* Threshold Polling Period (ms): The number of milliseconds to wait before polling the memory threshold.

For additional information on Initial Queue Size, Memory Threshold, and Threshold Polling Period (ms) see Memory Man-
agement for the HotJVM Render Server.

206 Using Zen Reports

Configuring Zen Reports for PDF Output

If you configure a Render Server to use RenderX XEP, additional fields appear on the configuration page:

* How Often To Clean (XEP): The interval in seconds the RenderServer uses to check whether RenderX has processed
enough files to require cleaning. The default value is 300 seconds (5 minutes).

* Num. Files Before Clean (XEP): The number of files RenderX can process before the Render Server initiates a cleaning
operation. The default value is 100.

e XEP_HOME Environment Variable: The path to the XEP installation directory.

RenderX can consume memory as it runs, so a cleaning operation needs to be performed periodically. Cleaning also consumes
resources, so fields are provided to let you set the parameters that determine when cleaning takes place. The need for
cleaning is determined by the number of files RenderX has processed. Use the field Num. Files Before Clean (XEP) to set
this number. The value set in How Often To Clean (XEP) determines how often the Render Server checks whether RenderX
has reached the file limit.

Once you have saved your changes, use the Cancel button to return to the Render Servers page, where you see that the new
Render Server has been added to the list.

6.4.4.2 Using a HotJVM Render Server

The Manage button, which is located to the right of each listing on the Render Servers page (System Administration >
Configuration > Zen Reports > Render Servers), lets you edit values and perform additional tasks:

» Delete: Removes the Render Server. You cannot edit or delete a Render Server while it is running.

o start: Starts the Render Server. Asks for confirmation and provides some information on its status. Note that the Render
Server starts automatically when you generate a report using the Render Server port.

* Stop: Stops the Render Server. Asks for confirmation and provides some information on its status.

» Verify: Checks status of ports assigned to the Render Server. You expect the ports to be in use if the Render Server is
running, and not in use if it is not.

e Activity: Summarizes activity on this server since the last shutdown.

* Log: Opens the log file.

In your Zen report you can set the RENDERSERVER class parameter to the port the Render Server is listening on. Then
load the page with the mode set to PDF. You can also set RENDERSERVER class parameter for an entire Zen Application.
Another alternative is to pass the port number in the URL using the reserved keyword $SRENDERSERVER. You can also
use this keyword to run a report on the server from the command line to generate a report into a user defined output file
like the sample outlined below:

zn “'SAMPLES"

set rptl=##class(ZENApp.MyReport) .%New()

set rptl._Month=1

set Status=rptl.GenerateReport(''c:\temp\MyReport.pdf',2,0,57777)
do $System.Status.DisplayError(Status)

The fourth parameter to GenerateReport gives the port of the HotJVM rendering server.

The Zen report property RenderTimeOut controls the length of time the report waits for the Render Server before timing
out. A positive integer specifies the number of seconds to wait before timing out. A value of 0 means timeout immediately,
and a value of —1 means never timeout. You can also pass the timeout interval in the URL using SRENDERTIMEOUT.
The default value is null (**** in Caché), which means never timeout.

6.4.4.3 Communicating with the HotJVM Render Server

The class %ZEN.Report.Ping provides the ping method that you can use to communicate with the HotJVM Render Server.

Using Zen Reports 207

Running Zen Reports

In addition to the port and server type, ping returns the maximum memory available, the committed memory, and the
amount of memory used. The Render Server attempts to use the Java tenured generation pool to get information about
memory and return this information to ping. If the Render Server cannot find the Java tenured generation pool, it returns
a blank string (") for the value of maximum memory and used memory.

The ping method also returns the runtime name in the form pid@hostname. You can use $PIECE to process the string and
get the process id.

The following example shows how to use ping:

set
Status=t#class(%ZEN.Report.Ping) .ping(*'1234",30, .port, . servertype, .memMax, .memCommitted, .memUse, . runtimeName)

write !,"port="_port

write !,"servertype="_servertype
write I,"memMax=""_memMax

write !1,"memCommitted="_memCommitted
write !,"memUse="_memUse

write !,"runtimeName=""_runtimeName

6.4.4.4 Memory Management for the HotJVM Render Server

PDF rendering can be very memory intensive, especially if you are producing very large reports. If the rendering engine
exhausts available physical memory, degraded performance and out of memory errors result. The most robust solution to
out of memory errors is to put enough physical memory on the machine running the Render Server so that out of memory
errors do not occur. The book Java Performance by Charlie Hunt and Binu John describes how to set up the JVM so that
it logs out of memory errors. You can then test the system with what you anticipate to be a maximum load, and use the log
to determine when out of memory errors occur. Add additional memory until the machine has enough memory to render
all reports.

Zen reports has features that help to manage memory usage during report rendering. The first is a queuing discipline on
the Render Server. Instead of directly processing rendering requests, the Render Server stores them in a queue. The Render
Server queue gates rendering in the following manner:

* Areport enters the queue.

» Ifthe queue size is less than the initial queue size, render the report.

» If the queue size is greater than the initial queue size, hold the report in the queue.
» Athread renders a report in the queue.

» The thread is removed from the queue, decreasing queue size.

Using a queuing size allows you to decrease the number of reports sent to threads and queue up rendering requests until a
thread is available to process the request. The field Initial Queue Size on the Render Servers page (System Administration
> Configuration > Zen Reports > Render Servers) lets you set the maximum size of the queue. The default value for the
queue size is the number of Render threads, and you usually set it to a value less than or equal to the number of threads. A
smaller queue size means that fewer reports are rendered simultaneously. You must determine the optimal queue size by
benchmarking. Making the number of threads greater than the number of cores or processors probably results in little per-
formance gain. Note that having a finite number of threads already causes queuing when there are more requests to render
that arrive at the Render Server than there are available threads to perform rendering.

The Render Server queueing discipline helps prevent out of memory caused by trying to render too many reports at once
but cannot solve all memory use problems, because you can still send a single report to the Render Server, which is large
enough to cause out of memory errors.

An additional memory management feature allows you to define a threshold size for the tenured generation pool. When
the Render Server receives a rendering request and the threshold size is exceeded the Render Server sleeps for the specified
number of milliseconds. The Render Server polls the size of the tenured generation pool until memory usage is below the
threshold size then performs the requested rendering. This algorithm allows the Render Server to adapt to low memory
conditions by delaying rendering until used memory falls below a threshold you have set. The field Memory Threshold on

208 Using Zen Reports

Configuring Zen Reports for PDF Output

the Render Servers page (System Administration > Configuration > Zen Reports > Render Servers) lets you set the memory
threshold. For information on setting the Memory Threshold and other memory management parameters through the Man-
agement Portal, see Creating a HotJVM Render Server.

The Render Server does a System.exit(1) whenever it encounters an out of memory condition. This allows the Render
Server to behave more deterministically when out of memory conditions occur.

6.4.5The Print Server

Zen reports provides Print Server capability to improve PDF printing performance. The Print Server is a Java Virtual
Machine process which runs in the background and prints Zen report PDF files. As of Windows 7, Caché cannot start an
external process, so the Print Server is required to run pdfprint. By running as a background process, the Print Server
eliminates the overhead of starting the Java Virtual Machine.

The Management Portal Print Servers page (System Administration > Configuration > Zen Reports > Print Servers) lists
currently configured Print Servers. When Caché is first installed, there are no Print Servers configured. If you have configured
a Print Server, it starts automatically when you try to print a report using the Print Server port.

Tip: Inaddition to using the instructions here, make sure that the user under whose name the Caché instance is running
has adequate permissions to access the printer.

6.4.5.1 Creating a Print Server

The New Print Server button opens the New Zen Report Print Server page, which lets you configure a new Print Server. The
first three fields are required, the remaining fields are optional.

e Name: A unique name for the Print Server.
e Port: The TCP port that the Print Server uses to receive reports to print.

* Ping Port: The TCP port that the Print Server uses for all other communication, such as status queries and shutdown
requests.

* NumThreads: If the Print Server is using multi-threaded Java, this field supplies the number of threads used by the
Print Server for report rendering.

e Num Ping Threads: If the Print Server is using multi-threaded Java, this field supplies the number of threads used by
the Print Server for other communication.

* Print Engine: The print engine used by the Print Server for printing Zen reports. The choices are jPDFPrint from Qoppa
Software, Foxit from Foxit Software, or Adobe. See “Print Engines.”

» Key: The license key provided when you purchased Qoppa jPDFPrint. This field is not visible if you are not using
Qoppa.

* Log Level: Standard Java parameters to control logging. If you choose to enable logging, the following three items
appear on the form:

— Log File: By default, the Print Server log file is created in your home directory. You can specify an alternate
location here. On Unix systems, in order to avoid privilege issues, specify a location where the user has appropriate
permissions.

Each time you stop and restart the Print Server, it begins a new log file. The Print Server also starts a new log file
when the file size exceeds the limit set by Max. File Size. The log file names have a numeric suffix. The file ending
in .0 is the most recent, and as new files are created, the previous ones are renamed with larger suffix numbers,
until the number of files reaches the limit set by Rotation Count. Then the names recycled and older information
is lost. This field supplies the path and base file name of the log file.

Using Zen Reports 209

Running Zen Reports

If you configure more than one Print Server, providing log file names makes it easy for you to match log files with
the Print Server that created them.

— Max. File Size: Maximum size of the Print Server log file. The Print Server creates a new log file when the size of
the current log file reaches this limit.

— Rotation Count: The maximum number of log files. The Print Server recycles file names, losing older information,
when the number of log files reaches this limit.
* Initialization Timeout: The amount of time in seconds that Zen reports waits for the Print Server to start up. An error
occurs if the Print Server fails to start in this time.

* Connection Timeout: The amount of time in seconds that Zen reports waits for the Print Server to connect when printing
a report. You normally expect connection to take less time than initialization. An error occurs if the Print Server fails
to connect in this time.

Use the save button to save your changes, or the Cancel button to return to the zen Report Print Servers page. Once you
have saved your changes, you see that the new Print Server has been added to the list.

6.4.5.2 Print Engines

The Print Server print engines available are jPDFPrint from Qoppa Software, Foxit, and the Adobe Reader print engine.
All are third-party products. On Windows 7, background jobs cannot interact with the desktop, and the Print Server works
around this problem. Note that on Windows 7, the Caché service under system services must be logged in as a real user
with administrative privileges for pdfprint or the Print Server to work.

Adobe requires that you create a PrintServer .properties file in the directory
<cacheinstall>/1ib/PrintServer. This file allows the Print Server to know the location of Adobe. Here is an
example PrintServer.properties file:

adobe=C:/Program Files (x86)/Adobe/Reader 11.0/Reader/AcroRd32.exe

Note that forward-slashes are used in this file because a Java program is interpreting the file path name and backslash (“\")
is an escape character in Java.

If you select Qoppa, you need to define an environment variable that shows the location of the jPDFPrint jar file. On
Windows, this variable is in System Environment variables. For example, set the environment variable JPDFPRINT_HOME
to c:\Program Files\jPDFPrint

6.4.5.3 Managing the Print Server

The Manage button, which is located to the right of each listing on the Print Servers page (System Administration > Config-
uration > Zen Reports > Print Servers), lets you edit values and perform additional tasks:

» Delete: Removes the Print Server. You cannot edit or delete a Print Server while it is running.

» start: Starts the Print Server. Asks for confirmation and provides some information on its status. Note that the Print
Server starts automatically when you generate a report using the Print Server port.

e Stop: Stops the Print Server. Asks for confirmation and provides some information on its status.

e Verify: Checks status of ports assigned to the Print Server. You expect the ports to be in use if the Print Server is running,
and not in use if it is not.

e Activity: Summarizes activity on this Print Server since the last shutdown.

* Log: Opens the log file. Maximum file size displayed in the browser is 1 megabyte, and files larger than this limit are
truncated.

210 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

In your Zen report you can set the PRINTSERVER class parameter to the port the Print Server is listening on. Then load
the page with the mode set to pdfprint. You can also set PRINTSERVER class parameter for an entire Zen Application.

The Zen report property PrintTimeOut controls the length of time the report waits for the Print Server before timing out.
A positive integer specifies the number of seconds to wait before timing out. A value of 0 means timeout immediately, and
a value of —1 means never timeout. You can also pass the timeout interval in the URL using $PRINTTIMEOUT. The
default value is null (**** in Caché), which means never timeout.

6.4.5.4 Communicating with the Print Server
The class %ZEN.Report.Ping provides the ping method that you can use to communicate with the Print Server.

In addition to the port and server type, ping returns the maximum memory available, the committed memory, and the
amount of memory used. The Print Server attempts to use the Java tenured generation pool to get information about memory
and return this information to ping. If the Print Server cannot find the Java tenured generation pool, it returns a blank string
("") for the value of maximum memory and used memory.

The ping method also returns the runtime name in the form pid@hostname. You can use $PIECE to process the string and
get the process id.

The following example shows how to use ping:

set
Status=##class(%ZEN.Report.Ping).ping(*'1234",30, .port, .servertype, .memMax, .memCommitted, .memUse, . runtimeName)

write !,"port="_port

write !,"servertype="_servertype
write 1,"memMax=""_memMax

write I,"memCommitted=""_memCommitted
write !,"memUse="_memUse

write !,"runtimeName="_runtimeName

6.5 Configuring Zen Reports for Excel Spreadsheet Output

You can use Zen reports to generate an Excel spreadsheet from data in a Caché database. You need to instruct Zen reports
to generate an Excel spreadsheet by setting the parameter DEFAULTMODE to "‘excel"", or setting the URI query
parameter $MODE=exce I. You must have Excel 2003 or later installed on your computer, or have a plugin or program
registered to read the Microsoft XML file format for Office 2003. You must also have a Java Virtual Machine (JVM) and
Java Developers Kit (JDK) version 1.7 or later installed.

If you are using Office 2007 or Office 2010, you should set DEFAULTMODE to "x1sx", or set the URI query parameter
$MODE=x1sx. This value instructs Zen reports to generate a spreadsheet using the Excel x1sx format, which is native to
Office 2007 and Office 2010.

Even though you are not using the ReportDisplay block for report output, it must be defined, and the name attribute must
be identical to the name attribute in the ReportDefinition.

In order to generate an Excel spread sheet, the ReportDefinition block must have a very specific structure. Zen reports uses
elements in the ReportDefinition to generate XML, then uses that XML to generate the Excel spread sheet. The following
figure shows how elements in the ReportDefinition map to components of the Excel spread sheet. Following sections
illustrate this process in more detail.

Using Zen Reports 211

Running Zen Reports

Cefines an exceal workboolk.

Defines a sheet in the excel
<report> //workbook_ excelSheetMame
<group> specifies the name of the sheet.

<element />

<glement />

<element />
</group>

Defines a column in the sheet.
“~name or excellame specifies

the column name.
</report>

Starting with Caché version 2015.1, Zen reports supports setting DEFAULTMODE to "'displayxlsx'. This mode
enables you to use the ReportDisplay block to convert the output of an arbitrary ReportDefinition block into XML appro-
priate to generate an Excel spread sheet. See Generating Excel Spread Sheets from Arbitrary XML.

The following list summarizes the available modes for Excel spread sheet generation:

» excel - for Excel 2003 or later, but prior to Office 2007 and Office 2010.

» xlIsx - for Office 2007 and Office 2010.

» displayxlsx - for Office 2007 and Office 2010 when the ReportDefinition output is not in the required format.

6.5.1 Including Data in the Spreadsheet

By default, only data in <element> elements is used in the spreadsheet. The following <report> block uses <element> for
TheaterName and AdultPrice, but <attribute> for ChildPrice:

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""ReportExample"
sql="Select Top 2 TheaterName, AdultPrice, ChildPrice from Cinema.Theater'>
<group name="Theater'>
<element name="TheaterName" field="TheaterName" />
<element name="AdultPrice" field="AdultPrice" />
<attribute name="ChildPrice" field="ChildPrice" />
</group>
</report>

It generates the following XML:

<ReportExample>
<Theater ChildPrice="5.75">
<TheaterName>General Cinema Cambridge</TheaterName>
<AdultPrice>7.25</AdultPrice>
</Theater>
<Theater ChildPrice="4.75">
<TheaterName>Boston Multiplex</TheaterName>
<AdultPrice>6.25</AdultPrice>
</Theater>
</ReportExample>

Which produces the following Excel spreadsheet. Note that only values from <element> elements appear in the spreadsheet.

A B
1 TheaterMame AdultPrice
2 General Cinema Cambridge 7.25
3 Boston Multiplex '5.25

The class parameter EXCELMODE determines whether values in the spreadsheet come from <element> or <attribute>
elements. The default value is ""element". If you set EXCELMODE = "‘attribute", this <report> block:

212 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""ReportExample"
sql="Select Top 10 TheaterName, AdultPrice, ChildPrice from Cinema.Theater'>
<group name="Theater'>
<attribute name="TheaterName" field="TheaterName" />
<element name="AdultPrice" field="AdultPrice" />
<attribute name="ChildPrice" field="ChildPrice" />
</group>
</report>

Generates the following XML:

<ReportExample>
<Theater TheaterName='"General Cinema Cambridge"™ ChildPrice="5.75">
<AdultPrice>7.25</AdultPrice>
</Theater>
<Theater TheaterName='Boston Multiplex" ChildPrice="4_75">
<AdultPrice>6.25</AdultPrice>
</Theater>
</ReportExample>

Which produces the following Excel spreadsheet. Note that only values from <attribute> elements appear in the spreadsheet.

A B
1 TheaterMame ChildPrice
2 General Cinema Cambridge '5.75
3 Boston Multiplex .75
Use of EXCELMODE = "attribute" is not recommended, because it is inflexible and unable to carry Excel metadata.

For instance, because you cannot specify isExcelNumber or isExcelDate on an attribute, all data is treated as text.
This can cause aggregates to malfunction if Excel is attempting to perform arithmetic operations on text. In addition, under
some circumstances, columns appear in the spreadsheet in attribute name alphabetical order, rather than in the order specified
in the report. This can lead to a mismatch with aggregates if the aggregates are not organized in the same alphabetical order
as the attributes. The relevant circumstances are:

e If mode ="excel" and EXCELMULTISHEET is its default value of 0, then EXCELMODE = "attribute' produces
columns from attributes in the order specified in the XML, not alphabetically.

e Ifmode ="xIsx" or EXCELMULTISHEET is 1, then EXCELMODE = "attribute produces columns from attributes
in attribute name alphabetical order.

6.5.2 Numbers, Dates and Aggregates

In the examples provided in the previous section, numeric values are interpreted as text in both Excel spreadsheets. Zen
reports also enables you to instruct Excel to interpret a value as a number, date, or time. This feature is available only when
EXCELMODE = "element™.

Zen reports supports number, date and time values in Excel spreadsheets in two ways, depending on whether you are gen-
erating the spreadsheet in excel (Excel 2003) or xIsx (Excel 2007 and 2010) mode. In excel mode, You can use
isExcelNumber, isExcelDate or isExcelTime to specify that the value supplied by an <element> should be treated as a
number, date or time in the spreadsheet. For spreadsheets generated in xIsx mode, Zen reports also lets you provide additional
formatting information with excelNumberFormat.

If the runtimeMode of the group that contains the time element is 1 (ODBC) or 2 (display), the time expression needs to

be in display format, for example $ztime($P($h,",",2)). If the runtimeMode is 0 (logical), the time expressions needs to be
in logical format, for example, $P($h,",",2).

The supported number, date and time formats used with excelNumberFormat are taken from the 1SO standard that defines
the Microsoft Excel file format, as described in the document c051463_ISOIEC 29500-1_2008(E).pdf. You can find this
document at:

Using Zen Reports 213

Running Zen Reports

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
Search for 29500, part 1.

The following example produces a spreadsheet in excel mode that contains numbers, dates, and times.

<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" runonce=""true" >
<group name="'Persons’
sql=""SELECT top 5 name,Home_City as city,age,dob from Sample.Person
order by Home_City" runtimeMode=""1"
excelSheetName=""Sample People" >
<group name="Person' >
<element field="age" name="age" excelName="'Age"
isExcelNumber=""true"/>
<element field="dob" name="dob" excelName="Date of Birth"
isExcelDate=""true'"/>
<element name="time"
expression="$ztime($P($h,",",2))" excelName="Time"
isExcelTime=""true"/>
</group>
</group>
</report>

It produces the following output in Excel:

A B C

1 |Age _lDate of Birth Time

2 11 10/18/2001 0:00 03:27:51 PM
3 86 10/9/1926 0:00 03:27:51 PM
4 42 3/28/19710:00 03:27:51PM
5
6
7

63 12/18/19490:00 03:27:51 PM
14 5/24/1999 0:00 03:27:51 PM

i 4 » »| Sample People 52 {JHIL_u 1

The next example illustrates several number formats supported in xIsx mode:

<report xmlns="http://www.intersystems.com/zen/report/definition”
name=""MyReport' runonce="true" >
<group name="'Cinemas"
sql="SELECT top 10 TheaterName,AdultPrice,ChildPrice from
Cinema.Theater order by TheaterName" >
<group name="'Cinema''>
<element field="AdultPrice" excelName="NO"
isExcelNumber="true" excelNumberFormat="0"/>
<element field="AdultPrice" excelName="N1"
isExcelNumber="true" excelNumberFormat="0.00"/>
<element field="AdultPrice"” excelName="N2"
isExcelNumber=""true" excelNumberFormat=""#,##0"/>
<element field="AdultPrice" excelName="N3"
isExcelNumber=""true" excelNumberFormat=""#,##0.00"/>
<element field="AdultPrice" excelName="N4"
isExcelNumber="true" excelNumberFormat=""0%"/>
<element field="AdultPrice"” excelName="N5"
isExcelNumber="true" excelNumberFormat="0.00%"/>
<element field="AdultPrice" excelName="N6"
isExcelNumber=""true" excelNumberFormat="0.00E+00"/>
<element field="AdultPrice" excelName="N7"
isExcelNumber="true" excelNumberFormat="# ?2/?"/>
<element field="AdultPrice"” excelName="N8"
isExcelNumber="true" excelNumberFormat="# ??/??"/>
<element field="AdultPrice" excelName="N9"
isExcelNumber=""true" excelNumberFormat="#,##0 ;(#,##0)"/>
<element field="AdultPrice" excelName="N10"
isExcelNumber=""true" excelNumberFormat=""[Blue]#,##0 ;[Red](#,##0)"/>
<element field="AdultPrice" excelName="N11"
isExcelNumber=""true" excelNumberFormat=""#,##0.00; (#,##0.00)"/>
<element field="AdultPrice" excelName="N12"
isExcelNumber=""true" excelNumberFormat=""[Blue]#,##0.00; [Red] (#,##0.00)""/>
</group>
</group>
</report>

214

Using Zen Reports

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Configuring Zen Reports for Excel Spreadsheet Output

It produces the following output:

A B C D E F G H |] K L M
1 ND_Nl N2 N3 N4 N5 NB N7 N& N9 N10N11 N12
2 6 6.00 6 6.00 600% 600.00% 6.00E+00 6 b b &6 6.00 6.00
3 6 6.00 6 6.00 600% 600.00% 6.00E+00 6 b b &6 6.00 6.00
4 7 6.50 7 6.50 650% 650.00% 6.50E+00 61/2 6 1/2 7 7 6.50 6.50
5 8 7.75 8 7.75 775% 775.00% 7.75E+00 73/4 7 3/4 8 8 7.75 7.75
b 6 6.00 6 6.00 600% 600.00% 6.00E+00 6 b b &6 6.00 6.00
7 7 675 7 6.75 675% 675.00% 6.75E+00 63/4 6 3/4 7 7 6.75 6.75
8 6 6.00 6 6.00 600% 600.00% 6.00E+00 6 b b &6 6.00 6.00
9 6 6.25 6 6.25 625% 625.00% 6.25E+00 61/4 6 1/4 b 6 6.25 6.25
10 6 6.25 6 6.25 625% 625.00% 6.25E+00 61/4 6 1/4 b 6 6.25 6.25
M 4 » M| Sheetl %] 0 | m
The following example shows several different date formats supported in xlsx mode.
<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" runonce="true" >
<group name="‘Persons’
sql="SELECT top 5 name,Home_City as city,age,dob from Sample.Person"
runtimeMode="1" excelSheetName="Sample People" >
<group name="Person’ >
<element field="dob" excelName="Date"
isExcelDate=""true" excelNumberFormat="mm-dd-yy"/>
<element field="dob" excelName="Datel"
isExcelDate=""true" excelNumberFormat=""d-mmm-yy"/>
<element field="dob" excelName="Date2"
isExcelDate=""true" excelNumberFormat="'d-mmm"/>
<element field="dob" excelName="Date3"
isExcelDate=""true" excelNumberFormat="mmm-yy"/>
<element field="dob" excelName="Date4"
isExcelDate=""true" excelNumberFormat="m/d/yy h:mm"/>
</group>
</group>
</report>
It produces the following output in Excel:
A B C D E T

Date ! Datel Date2 Date3 Dated H

1

2 | 12-03-76 3-Dec-76 3-Dec Dec-76 12/3/76 0:00
3 03-29-49 29-Mar-49 29-Mar Mar-48 3/29/49 0:00
4 01-30-75 30-lan-75 30-Jan lan-75 1/30/75 0:00
5 | 12-25-47 25-Dec-47 25-Dec Dec-47 12/25/47 0:00
6 | 08-22-52 22-Aug-52 22-Aug Aug-52 8/22/52 0:00

M 4 » » | Sample People <72

The following example shows several different time formats supported in xIsx mode.

Using Zen Reports 215

Running Zen Reports

<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport’ runonce=""true'>
<group name="Time">
<group name="TimeFormats'>
<element name="base" expression="$ztime($P($h,",",2))" />
<element name=""timel" expression="$ztime($P($h,”,",2))"
isExcelTime=""true" excelNumberFormat="h AM/PM" />
<element name=""time2" expression="%ztime($P($h,",",2))"
isExcelTime=""true" excelNumberFormat="h:mm AM/PM" />
<element name="time3" expression="$ztime($P($h,",",2))"
isExcelTime=""true" excelNumberFormat="h:mm:ss A/P" />
<element name=""time4" expression="$ztime($P($h,”,",2))"
isExcelTime=""true" excelNumberFormat="h:mm:ss.00" />
</group>
</group>
</report>

It produces the following output in Excel:

A B C D E '
1 base timel time2 time3 timed Lal
2 [13:33:22] 1 PM 1:33PM 1:33:22 P 13:33:22.00
4 4 » | Sheet1 ¥ [B M |

6.5.2.1 Aggregates

If you set the class parameter AGGREGATETAG, you can also add aggregates to the spreadsheet. A popular value for
AGGREGATETAG is ""aggregate', but you can use any value that is a valid name for an XML attribute. The value of
AGGREGATETAG is used to create an attribute in the generated XML that identifies items as coming from an <aggregate>
element in the report. The attribute exce lFormula specifies that the value supplied by this aggregate should be an Excel
formula in the spreadsheet. exce lFormula must be an Excel formula that matches the value of the type attribute for the
<aggregate>. The Excel formulas you can generate are limited to those equivalent to the computations you can specify with
the aggregate type attribute, see <aggregate>.

Aggregates also support excelNumberFormat for xIsx mode.

When using aggregates, you must provide an <aggregate> element for each column in the generated Excel spreadsheet.
You can set type=""PLACEHOLDER" in <aggregate> elements where you do not wish to calculate an aggregate. With
AGGREGATETAG=""aggregate", the following <report> block generates an Excel spreadsheet in xIsx mode that treats
the values for AdultPrice and ChildPrice as numbers, and includes formulas to average those columns.

<report xmIns="http://www. intersystems.com/zen/report/definition"
name=""ReportExample"
sql="Select Top 3 TheaterName, AdultPrice, ChildPrice from Cinema.Theater">
<group name="Theater"'>
<element name="TheaterName" field="TheaterName'/>
<element name="AdultPrice" field="AdultPrice" isExcelNumber="true"/>
<element name="ChildPrice" field="ChildPrice" isExcelNumber="true"/>
</group>
<aggregate type="PLACEHOLDER" />
<aggregate field="AdultPrice" type="AVG" excelFormula="AVERAGE"
excelNumberFormat="0.00"/>
<aggregate fTield="ChildPrice" type="AVG" excelFormula=""AVERAGE"
excelNumberFormat="0.00"/>
</report>

The following is the XML generated by the preceding report. Note that i sExce INumber=""true" in the report generates
isExcelNumber="1"in the XML. The attribute aggregate=""1"" marks the items as aggregates, and the attribute
excelFormula specifies the formula to use in the generated spreadsheet.

<ReportExample>

<Theater>
<TheaterName isExcelNumber="0">General Cinema Cambridge</TheaterName>
<AdultPrice iskExcelNumber="1">7_25</AdultPrice>
<ChildPrice isExcelNumber="1">5_75</ChildPrice>

</Theater>

<Theater>

<TheaterName isExcelNumber="0">Boston Multiplex</TheaterName>

216 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

<AdultPrice isExcelNumber="1">6.25</AdultPrice>
<ChildPrice isExcelNumber="1">4_75</ChildPrice>
</Theater>
<Theater>
<TheaterName isExcelNumber="0">Loews Downtown</TheaterName>
<AdultPrice isExcelNumber="1">7_50</AdultPrice>
<ChildPrice isExcelNumber="1">6.00</ChildPrice>
</Theater>
<item aggregate="1" placeholder="1"/>
<item aggregate="1" excelFormula="AVERAGE"
excelNumberFormat="0.00">6.083333333333333333</i1tem>
<item aggregate="1" excelFormula="AVERAGE"
exce INumberFormat="0.00">4.583333333333333333</item>
</ReportExample>

The following image shows the resulting Excel spreadsheet, with the formula visible for the average ChildPrice.

cs - (£« | =AVERAGE(C2:C4) |
A B C
1 TheaterName AdultPrice ChildPrice
2 |General Cinema Cambridge 6 4.5
3 |Boston Multiplex 6 4.5
4 | Loews Downtown 6.25 4.75
5 6.08' 4n58|

4 4 » ¥ ReportExample %0 4/ _u 0

6.5.3 Multi-sheet Reports

You can create multiple Excel worksheets from a single Zen reports class. When you set the class parameter EXCELMUL-
TISHEET to 1, Zen uses each group that is a direct child of <report> to create a worksheet in the Excel spreadsheet. The
content of each group must create a valid Excel worksheet.

Zen reports does not support XSLTMODE="browser" or $XSLT=browser when EXCELMULTISHEET is 1. The reason
is that export of the report to Excel is done primarily by an external Java program. Temporary files generated during export
of a multiple-worksheet report are stored in the report's REPORTDIR. If REPORTDIR is null, they are stored where Caché
keeps temporary files, which is C:\MyCache\Mgr\Temp by default. See the section *Setting a File Name for Intermediate
and Final Files™.

By default, Zen reports follows the excel convention of naming multiple worksheets Sheet1, Sheet2, and so forth. For
example, with EXCELMULT ISHEET=1, the following <report> block generates an Excel spreadsheet containing two
worksheets, named Sheetl, and Sheet2:

<report xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" runonce=""true'>
<group name="'Persons"
sql=""SELECT top 2 name,Home_City as city,age,dob from Sample.Person order by Home City"
runtimeMode="1">
<group name="Person'>
<element field=""name" name='"name'/>
<element field="city" name='city'/>
<element field="age" name="age' isExcelNumber="true"/>
<element field="age" name="agel" isExcelNumber="true"/>
<element field="dob" name="dob" isExcelDate="1"/>
</group>
<aggregate type="PLACEHOLDER" excelName="A1"/>
<aggregate name="‘city" field="'city" type="CUSTOM"
class="%ZEN.Report.Aggregate.CountDistinct” excelName="A2"/>
<aggregate field="age" type="SUM" excelFormula="SUM" excelName="A3"/>
<aggregate fTield="age" type=""SUM" excelFormula=""SUM" excelName="A4"/>
<aggregate type="PLACEHOLDER" excelName="A5"/>
</group>
<group name="'Cinemas"
sql="SELECT top 2 TheaterName,AdultPrice,ChildPrice from Cinema.Theater order by TheaterName'>
<group name="'Cinema''>
<element field="TheaterName'" name="TheaterName' excelName="Theater Name'/>
<element field="AdultPrice"” name="AdultPrice" isExcelNumber="true" excelName="Adult Price"/>
<element field="ChildPrice" name="ChildPrice" isExcelNumber="true" excelName="Child Price"/>

Using Zen Reports 217

Running Zen Reports

</group>
<aggregate type=""PLACEHOLDER'/>
<aggregate name="TotalAdultPrice" field="AdultPrice" type="SUM" excelFormula="SUM"/>
</group>
</report>

The following images show the two resulting worksheets in the Excel spreadsheet.

A B C D E
1 |name !city age agel dob
2 |lanes,Peter G. Albany 11 11 2001-10-18
3 | lenkinsJulie A. Albany 86 86 1926-10-09
4 o7 o7 2

5
4 4 » M| Sheetl ~Sheet?2 %3

A B C D E
1 |Theater Name |Adult Price Child Price
2 |Boston Multiplex 7 5.5
3 | Cambridge Multiplex 6.75 5.25
4 13.75
5

4 4 » M| Sheetl @ Sheet2 7]

You can use the property excelSheetName on <report> or <group> to specify a name for the excel worksheet.

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name="myReport”
sql=""SELECT ID,Customer,Num,SalesRep,SaleDate

FROM ZENApp_Report.Invoice

WHERE (Month(SaleDate) = ?) OR (? IS NULL)

ORDER BY SalesRep,SaleDate'>

<parameter expression="._Month"/>

<parameter expression="__Month"/>

<group name="SalesRep” breakOnField="SalesRep*
excelSheetName=""SalesRep'>
<group name="'record">
<element name="salesrep” field="SalesRep" excelName="Sales Rep'/>
<element name="id" field="ID" isExcelNumber="true"/>
<element name="number® field="Num"”
isExcelNumber="true" excelName="Amount"/>
<element name="date" field="SaleDate"
isExcelDate=""true" excelName='"Date of Sale'/>
<element name="customer® field="Customer® excelName="Customer'/>
</group>
</group>
</report>

The following image shows the first four of the six generated worksheets. Note that the report sets the value of
excelSheetName on the group that is an immediate child of <report>. That value is used in generating sequential names for
the worksheets.

218 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

A B C D E
1 |Sales Rep !id Amount Date of Sale Customer
2 |lack 3 9 2005-01-12 XenaSystems.com
3 |lack 969 0 2005-01-20 CyberData Group Ltd.
4 Jack 95 9 2005-01-21 SynerTech Associates
5 |Jack 461 8 2005-01-30 MicroPedia.com
6 Jack 953 7 2005-02-01 TeleMatix Associates
7 |lack 391 3 2005-02-04 IntraSys Associates
8 Jack 27 7 2005-02-08 AccuNet.com
9 |Jack 213 2 2005-02-10 XenaComp Inc.

4 4 » M| SalesRep - SalesRep (2) SalesRep (3) SalesRep (4) Sa

You can also use a runtime expression as the value of excelSheetName. The next example uses that feature to use the names
of the sales reps to name the sheet containing their sales information:

<report xmIns="http://www. intersystems.com/zen/report/definition”
name="myReport*”
sql="SELECT ID,Customer,Num,SalesRep,SaleDate

FROM ZENApp_Report.Invoice

WHERE (Month(SaleDate) = ?) OR (? IS NULL)

ORDER BY SalesRep,SaleDate>

<parameter expression="__Month"/>

<parameter expression="_._Month"/>

<group name="SalesRep” breakOnField="SalesRep”
excelSheetName="1__GetName() ">
<group name="‘record">
<element name="salesrep” field="SalesRep" excelName="Sales Rep"/>
<element name="id" field="ID" isExcelNumber="true"/>
<element name="number® Ffield="Num®
isExcelNumber=""true" excelName=""Amount'/>
<element name="date" field="SaleDate"
isExcelDate=""true" excelName="Date of Sale'/>
<element name="customer® field="Customer® excelName="Customer'/>
</group>
</group>
</report>

This report requires the following method:

Method GetName()

quit %val('SalesRep™)

It produces the following report, with each worksheet named for the corresponding sales rep.

A B C D
1 [id !Amcunt Date of Sale Customer
2 3 9 2005-01-12 XenaSystems.com
3 969 0 2005-01-20 CyberData Group Ltd.
4 95 9 2005-01-21 SynerTech Associates
5 461 8 2005-01-30 MicroPedia.com
6 953 7 2005-02-01 TeleMatix Associates
7 391 3 2005-02-04 IntraSys Associates
8 27 7 2005-02-08 AccuNet.com
9 213 2 2005-02-10 XenaComp Inc.

M 4 » M| Jack ~Jen ~ Jll ~Jim ~Joanne ~John %]

If you need further control over the way sheet names are generated, you can override the method
% getUniqueExcel SheetName. The following code sample shows the method as it is defined in %ZEN.Report.reportPage.

Using Zen Reports 219

Running Zen Reports

Method %getUniqueExcelSheetName(excelSheetName As %String) As %String
Set count=%i (%excelSheetNames(excelSheetName))

if count>1 {

quit excelSheetName_ " (*'_count_")"

else

quit excelSheetName

6.5.4 Generating Excel Spread Sheets from Arbitrary XML

Prior to Caché version 2015.1, Excel spread sheets could be generated only from a report having a ReportDefinition block
with a specific structure, which generated XML suitable for conversion into a spread sheet. With version 2015.1 and higher,
you can use the ReportDisplay block to convert the XML output of an arbitrary ReportDefinition block into the structure

required to generate an Excel spread sheet. The following figure shows how elements in the ReportDisplay map to components

of the spread sheet.
/ Defines an excel wiorkbook.
<report> Defines a sheet in the excel

<body> / wiorkbook. excelSheetMName

<tablex> specifies the name of the sheet.
<item />
<item /> _ _
<item />~ Defines a columrj_m the shest.
</table> excelName specifies the
2hLE column name.
</body>
</report>

Each table in the ReportDisplay corresponds to a sheet in the Excel workbook. Tables cannot be nested. The parameter
EXCELMULTISHEET is ignored in displayxlsx mode. The <item> element supports the attributes isExcelNumber and
excelNumberFormat. These attributes are used like the similarly-named attributes in the ReportDefinition to control inter-
pretation of the output in Excel. The <table> element uses the attribute excelSheetName to supply a name for the corresponding
sheet in the spread sheet.

Note: When generating Excel output in displayxIsx mode, dates must be in Excel format. You need to call the
ToExcel Date method to convert dates in $HORLOG format to the Excel date format. Convert from other date
formats to Excel date format by first converting to $SHORLOG format and then calling ToExcelDate.

The following code sample shows a ReportDefinition that generates XML.

<report
xmIns="http://www. intersystems.com/zen/report/definition”
name=""MyReport" runonce=""true'>
<group name="'Persons"
sql="SELECT top 10 name,age from Sample.Person ™
runtimeMode="1" >
<group name="Person' >
<attribute name="name'" field="Name'/>
<attribute name="age" field="Age"/>
</group>
</group>
<aggregate name="avgage" field=""Age" type="AVG"/>
<group name="'Cinemas"
sql="SELECT TheaterName,AdultPrice,ChildPrice
from Cinema.Theater order by TheaterName' >
<group name="'Cinema'>
<element field="TheaterName' name='"TheaterName" />
<element field=""AdultPrice" name="AdultPrice" />
<element field="ChildPrice" name="ChildPrice" />
</group>
<aggregate name="TotalAdultPrice"

220 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

field="AdultPrice" type="SUM" />
</group>
</report>

The next sample shows a ReportDisplay that configures the XML for Excel report generation. Note that it references the
ReportDefinition groups “Persons/Person” and “Cinemas/Cinema”, and generates additional XML in the ReportDisplay.

<report
xmIns="http://www. intersystems.com/zen/report/display"
name=""MyReport''>
<body>
<table group="Persons/Person’ excelSheetName="Persons"
width="100%" oldSummary=""false'>
<item field="@name" excelName=""Name" width=""25%"/>
<item field="@age" isExcelNumber="true"
excelName=""Age" width=""10%"">
<summary value=" " isExcelAggregate=""true" />
<summary field="avgage"
FformatNumber="### ,### ,##0.00; (#) "
isExcelAggregate=""true"
excelFormula="AVERAGE"/>
</item>
</table>
<table group="Cinemas/Cinema"
excelSheetName=""Cinemas" >
<item field="TheaterName"/>
<item field="AdultPrice" isExcelNumber="true"/>
</table>
<table staticTable="true"
excelSheetName=""SuperHeroes" >
<tr>
<item value="Superman' excelName='"Name'/>
<item value="Clark Kent" excelName="Secret ldentity'/>
</tr>
<tr>
<item value="Batman" excelName="Name'/>
<item value="Bruce Wayne' excelName="Secret ldentity"/>
</tr>
<tr>
<item value="Green Lantern" excelName="Name"/>
<item value="Hal Jordan" excelName="Secret ldentity'/>
</tr>
</table>
</body>
</report>

The following three figures show the Excel output.

A B C

1 Name Age

2 Houseman,Xavier I. 3
3 Tillem,Jane F. 85
4 |Nelson,Bab K. 73
5 Jaynes,Lola l. 24
6 JonesAngelo P. 34
7 Alton,Filomena Z. 2
8 Xenia,lLiza P. 68
9 XiangGreta O. 55
10 |Vivaldi,Mark V. 85
11 | Xavier,Michael J. 27

12 | 46.1!

4 4 » M| Persons < Cnemas SuperHerpes

Using Zen Reports

221

Running Zen Reports

A B cﬁ

1 [|item |item

2 Boston Multiplex 7.25
3 Cambridge Multiplex 6.5
4 | Downtown Multiplex 6.75 =
5 |General Cinema Boston

6 General Cinema Cambridge

7 |General Cinema Downtown 7
8 Loews Boston 7.25
9 Loews Cambridge 6
10 Loews Downtown 6.25
11

12

M4 4 » M| Persons | Cinemas -~ SuperHeroes

A B C i
1 [Name |Secret Identity
2 |Superman Clark Kent
3 |Batman Bruce Wayne

4 | Green Lantern Hal Jordan

M4 4 » M| “Cnemas | SuperHeroes /1]

6.5.5The Excel Server

Zen reports provides Excel Server capability to improve performance when creating Excel spread sheets. The Excel Server
is a Java Virtual Machine process which runs in the background and creates Zen report Excel output. By running as a
background process, the Excel Server eliminates the overhead of starting the Java Virtual Machine.

The Management Portal Excel Servers page (System Administration > Configuration > Zen Reports > Excel Servers) lists
currently configured Excel Servers. When Caché is first installed, there are no Excel Servers configured. If you have con-
figured an Excel Server, it starts automatically when you create a report as an Excel spread sheet.

6.5.5.1 Creating a Excel Server

The New Excel Server button opens the New Zen Report Excel Server page, which lets you configure a new Excel Server.
The first three fields are required, the remaining fields are optional.

* Name: A unique name for the Excel Server.

» Port: The TCP port that the Excel Server uses to receive reports.

222 Using Zen Reports

Configuring Zen Reports for Excel Spreadsheet Output

Ping Port: The TCP port that the Excel Server uses for all other communication, such as status queries and shutdown
requests.

Num Threads: If the Excel Server is using multi-threaded Java, this field supplies the number of threads used by the
Excel Server for report rendering.

Num Ping Threads: If the Excel Server is using multi-threaded Java, this field supplies the number of threads used by
the Excel Server for other communication.

Log Level: Standard Java parameters to control logging. If you choose to enable logging, the following three items
appear on the form:

— Log File: By default, the Excel Server log file is created in your home directory. You can specify an alternate
location here. On Unix systems, in order to avoid privilege issues, specify a location where the user has appropriate
permissions.

Each time you stop and restart the Excel Server, it begins a new log file. The Excel Server also starts a new log
file when the file size exceeds the limit set by Max. File Size. The log file names have a numeric suffix. The file
ending in -0 is the most recent, and as new files are created, the previous ones are renamed with larger suffix
numbers, until the number of files reaches the limit set by Rotation Count. Then the names recycled and older
information is lost. This field supplies the path and base file name of the log file.

If you configure more than one Excel Server, providing log file names makes it easy for you to match log files
with the Excel Server that created them.

— Max. File Size: Maximum size of the Excel Server log file. The Excel Server creates a new log file when the size
of the current log file reaches this limit.

— Rotation Count: The maximum number of log files. The Excel Server recycles file names, losing older information,
when the number of log files reaches this limit.

Initialization Timeout: The amount of time in seconds that Zen reports waits for the Excel Server to start up. An error
occurs if the Excel Server fails to start in this time.

Connection Timeout: The amount of time in seconds that Zen reports waits for the Excel Server to connect when ren-
dering a report. You normally expect connection to take less time than initialization. An error occurs if the Excel Server
fails to connect in this time.

Use the save button to save your changes, or the Cancel button to return to the Zen Report Excel Servers page. Once you
have saved your changes, you see that the new Excel Server has been added to the list.

6.5.5.2 Managing the Excel Server

The Manage button, which is located to the right of each listing on the Excel Servers page (System Administration > Config-
uration > Zen Reports > Excel Servers), lets you edit values and perform additional tasks:

Delete: Removes the Excel Server. You cannot edit or delete a Excel Server while it is running.

Start: Starts the Excel Server. Asks for confirmation and provides some information on its status. Note that the Excel
Server starts automatically when you generate a report using the Excel Server port.

Stop: Stops the Excel Server. Asks for confirmation and provides some information on its status.

Verify: Checks status of ports assigned to the Excel Server. You expect the ports to be in use if the Excel Server is
running, and not in use if it is not.

Activity: Summarizes activity on this Excel Server since the last shutdown.

Log: Opens the log file. Maximum file size displayed in the browser is 1 megabyte, and files larger than this limit are
truncated.

Using Zen Reports 223

Running Zen Reports

In your Zen report you can set the EXCELSERVER class parameter or the ExcelServer property to the port the Excel Server
is listening on. Then load the page with the mode set to excel. You can also set EXCELSERVER class parameter for an
entire Zen Application.

The Zen report property ExcelServerTimeOut controls the length of time the report waits for the Excel Server before timing
out. A positive integer specifies the number of seconds to wait before timing out. A value of 0 means timeout immediately,
and a value of —1 means never timeout. You can also pass the timeout interval in the URL using $SEXCELSERVERTIME-
OUT. The default value is null ("*** in Caché), which means never timeout.

6.5.5.3 Communicating with the Excel Server
The class %ZEN.Report.Ping provides the ping method that you can use to communicate with the Excel Server.

In addition to the port and server type, ping returns the maximum memory available, the committed memory, and the
amount of memory used. The Excel Server attempts to use the Java tenured generation pool to get information about
memory and return this information to ping. If the Excel Server cannot find the Java tenured generation pool, it returns a
blank string ("*") for the value of maximum memory and used memory.

The ping method also returns the runtime name in the form pid@hostname. You can use $PIECE to process the string and
get the process id.

The following example shows how to use ping:

set
Status=t#class(%ZEN.Report.Ping).ping(*'1234",30, .port, . servertype, .memMax, .memCommitted, .memUse, . runtimeName)
write !,"port="_port

write !,"servertype="_servertype

write I,"memMax=""_memMax

write !,"memCommitted="_memCommitted

write !,"memUse="_memUse

write I,"runtimeName=""_runtimeName

6.6 Invoking Zen Reports from the Command Line

There are three methods that you can invoke to run a Zen report from the command line:
» GenerateReport generates the report and saves it to a file.
* GenerateReportToStream generates the report and returns it as a stream object.

» GenerateToFile generates the report and saves it to a file. Unlike the other two methods, GenerateToFileis a class
method, so you can call it without instantiating the report object as is necessary for GenerateReport and
GenerateReportToStream.

A Zen report class also has properties that you can use with any of the command line methods to provide input to the report
via stream objects. These properties are xmlstream, toexcelstream, tohtmlstream, and toxslfostream. They are all discussed
in the section “Zen Report Class Properties.”

6.6.1 The GenerateReport Method

The command to run a report called MyReport in the SAMPLES namespace using GenerateReport looks like this. You
can set any properties of the report before generating it, as shown for report.Month in this example:

ZN "SAMPLES™

SET rptl=##class(ZENApp.-MyReport) . %New()

SET rptl.Month=1

SET Status=rptl.GenerateReport(‘'c:\temp\MyReport2.pdf",2)
DO $system.Status.DisplayError(Status)

224 Using Zen Reports

Invoking Zen Reports from the Command Line

The parameters in the call to GenerateReport are as follows:

outputfile is a string that gives the pathname of the output file.
mode is an integer that tells Zen which type of report output to generate.
Possible values include:

- 0—XML

- 1—HTML

— 2 — PDF, works only if you have already used the instructions in the section “Configuring Zen Reports for PDF
Output.”

— 3 —ToHTML stylesheet

— 4 —ToXSLFO stylesheet

— 5 — XSD schema

— 6 — PrintPS, send PostScript to the printer whose location is identified by the PS class parameter

— 7 — Excel spreadsheet

- 8—XSLFO

— 10 — xlsx, Excel spreadsheet, in native format

— 11 —tiff image format, requires installation of JAl Advanced Imaging 1/O, see *“Configuring for TIFF Generation.”

— 12— Generate a report in PDF format, and send it directly to a printer via the Print Server, see “The Print Server.”
Equivalent to the DEFAULTMODE and $MODE value “pdfprint”.

— 13 —displayxlsx, Excel spreadsheet, using a ReportDisplay block to transform arbitrary XML into the format
required for Excel generation.

— 14 — fo2pdf, direct rendering of PDF from an FO file. This allows SVG to be stored in the database and then
rendered as part of a PDF.

— 15— foandpdf, first generates an FO file and then generates PDF from the FO file. Allows you to better store
SVG in the database and retrieve it for display in the PDF.
log is an optional third parameter:

Do report.GenerateReport("'C:\Temp\mySamplePDF.log",2,1)

If the value of log is 1 (true), the output file contains the transformation log rather than the report. This log is similar
to the result in the browser when you supply the query parameter $LOG=L1. If you omit this parameter, the default is
false, and no log file is created.

renderServer is an optional fourth parameter:

Do report.GenerateReport(*'C:\Temp\mySamplePDF",2,0,57777)

This argument is renderServer, which is the port number of the HotJVM rendering server to render PDF files.
ExcelMode is an optional fifth parameter:

Do report.GenerateReport(*'C:\Temp\mySampleEXC",7,0,"","attribute')

This argument determines whether an Excel spreadsheet is generated from data in elements or attributes. It is used
infrequently, because you generally control this attribute of the report by setting the EXCELMODE parameter in the
report itself.

Using Zen Reports 225

Running Zen Reports

The following example generates a PDF:

ZN “'SAMPLES™

SET %request=##class(%CSP.Request) .%New()

SET %request.URL = "/csp/samples/myZenReportClass.xml*

SET %request.CgiEnvs(*'SERVER_NAME')="127.0.0.1"

SET %request.CgiEnvs(''SERVER_PORT"")=57777

SET report = ##class(myZenReportClass).%New()

SET report._Month = 3

SET report.City = "Burlington"”

SET report.Client = "Fessenden Tools™

SET Status = report.GenerateReport(''C:\perforce\Users\me\P62204\X.PDF",2)
IF "Status DO $system.Status.DecomposeStatus(Status, .Err) WRITE !,Err(Err) ;-
WRITE !,Status

It sets up a %request, which you may need to do under special circumstances, for instance, if your report uses %request
in some of its methods. The example also includes error handling following the call to GenerateReport. In the example,
Status is a %Status object that contains information about the call, and Err is the text message associated with Status.

The following example generates PostScript:

SET %request=##class(%CSP.Request) .%New()

SET %request.URL = "/t69/trak/app/web/ZENReports.CurrentAdmissions.cls™

SET %request.CgiEnvs(''SERVER_NAME'")="127.0.0.1"

SET %request.CgiEnvs('SERVER_PORT")=57772

SET report=##class(ZENReports.CurrentAdmissions) .%New()

SET %request.Data(""$PS",1)="\\traksydfpl\ESTUDI04511"

SET Status=report.GenerateReport(*'C:\temp\output.txt',6)

IF "Status DO $system.Status.DecomposeStatus(Status, -Err) WRITE !,Err(Err) ;-
WRITE !,Status

In order to generate files in TIFF image format, you must install JAI Advanced Imaging I/O. TIFF generation is supported
only through FOP not through RenderX. See “Configuring for TIFF Generation.”

The following example generates a TIFF file:

zn "SAMPLES™

s rptl=##class(ZENApp-MyReport) . %New()

s rptl.Month=1

s Status=rptl.GenerateReport(‘'c:\temp\MyReport.tiff',11)

i "Status d $SYSTEM.Status.DecomposeStatus(Status, -Err) w !,Err(Err) ;"
w I,Status

6.6.2 The GenerateToFile Method

GenerateToFile works just like GenerateReport except that it is a class method, so you can call it without instantiating
the report object.

6.6.3 The GenerateReportToStream Method

There is a method called Gener ateReportToStream that works just like GenerateReport except that its first parameter
is not a file name; it is a %Stream.Object passed by reference. When the method returns, this %Stream.Object contains the
report. If the logging parameter was set to true, the %Stream.Object contains the log file instead of the report.

6.6.4 Zen Report Class Properties

The typical strategy is to allow your Zen report to generate an XML data source and different types of XSLT stylesheet
for you, but you can provide them to Zen from external files or as stream objects. A Zen report class has properties that
you can use with any of the command line methods to input stream objects to the report.

The following are some examples of setting these properties. You can only set these properties programmatically or from
the command line, not from a URI. In the examples, each call to httprequest.Get would normally appear all on one ling;
the lines are broken for typesetting purposes. Each of these stream object properties is of type %Library.RegisteredObject:

xmistream is a stream object that provides the XML data source. For example:

226 Using Zen Reports

Exposing Zen Report Data as a Web Service

ZN "'SAMPLES™

Set httprequest=##class(%Net.HttpRequest) .%New()

Set httprequest.Server="localhost"

Set httprequest.Port="57777"

Set sta=httprequest.Get(

"'/csp/my/my ._mine.cls?$MODE=xml&CacheUserName=_SYSTEM&CachePassword=SYS')
If $system.Status.IsError(sta) Do $system.OBJ.DisplayError(sta)

Set rpt=##class(jsl-MyReportDisplay) .%New()

Set rpt.Month=1

Set rpt.xmlstream=httprequest.HttpResponse.Data

Set tSC=rpt.GenerateReport(*'C:\TEMP\MyReportDisplay.pdf",b2)

If "tSC Do $system.Status.DecomposeStatus(tSC, .Err) Write !,Err(Err) ;-
Write !,tSC

tohtmistream is a stream object that provides the XSLT stylesheet for XHTML output. For example:

ZN "'SAMPLES™

Set httprequest=##class(%Net.HttpRequest).%New()

Set httprequest.Server="localhost"

Set httprequest.Port="57777"

Set sta=httprequest.Get(

"'/csp/my/my .mine .cls?$MODE=tohtml&CacheUserName=_SYSTEM&CachePassword=SYS')
If $system.Status.IsError(sta) Do $system.OBJ.DisplayError(sta)

Set rpt=##class(ZENApp.MyReport).%New()

Set rpt.tohtmlstream=httprequest.HttpResponse.Data

Write !,httprequest._HttpResponse.Data

Set rpt.Month=1

Set tSC=rpt.GenerateReport(''C:\TEMP\MyReport.html",1)

If "tSC Do $system.Status.DecomposeStatus(tSC, .Err) Write !,Err(Err) ;-
Write !1,tSC

toexcelstream is a stream object that provides the XSLT stylesheet for Excel spreadsheet output. Its use is similar to
tohtmistream.

toxslfostream is a stream object that provides the XSLT stylesheet for translation to XSL-FO for PDF output. For example:

ZN "'SAMPLES™

Set httprequest=##class(%Net.HttpRequest) .%New()

Set httprequest.Server="localhost"

Set httprequest.Port="57777"

Set sta=httprequest.Get(
""/csp/my/my._mine.cls?$MODE=toxs I fo&CacheUserName=_SYSTEM&CachePassword=SYS'")
If $system.Status.IsError(sta) Do $system.OBJ.DisplayError(sta)

Set rpt=##class(ZENApp-MyReport) .%New()

Set rpt.toxslfostream=httprequest.HttpResponse.Data

Write !,httprequest.HttpResponse.Data

Set rpt.Month=1

Set tSC=rpt.GenerateReport("'C:\TEMP\MyReport.pdf",2)

If "tSC Do $system.Status.DecomposeStatus(tSC, .Err) Write !,Err(Err) ;-
Write !1,tSC

6.7 Exposing Zen Report Data as aWeb Service

If the viewers of your Zen report are interested in acquiring the underlying XML data for the report, you can expose the
data as a Web service.

By definition, a Web service has an associated WSDL — a service description written in the Web Services Description
Language — that describes the contents of a SOAP request and response. If viewers want the data from your Zen report,
you can create this WSDL and give the viewers its URI. The viewers can use their preferred tool to consume this Web
service and do what they want with the data.

You can expose Zen report data as a Web service programmatically or from the command line as follows:

1. Create an instance of the data class generator %ZEN.Report.reportDataClasses. This generator class has two features,
which you can control independently:

» It can create a package of data classes that represent the XML data generated by a Zen report.

Using Zen Reports 227

Running Zen Reports

» It can generate a Web service through which a user can issue a SOAP request for the XML data represented by
data classes.

2. ldentify inputs to and outputs from the data class generator:

To set this value... Set this property of the Default value is...
generator class...

Zen report package and class name ZenReport —

Package name for output data classes DataPackage —

Package name for output Web service WebServicePackage —

SOAP namespace for the Web service Namespace http://tempuri.org

Boolean flag that indicates whether or not the UseClassNamespaces 1 (true)

namespaces of the referenced classes are used

in the WSDL

3. Tell the data class generator what you want it to do:

To generate this output... Invoke this method of the generator class...
Web service and data classes generateWebService()
Data classes only generateDataClasses()

Web service only generateWebServiceShell(zenReportPackageAndClassName)

4. Check for any errors returned by the class method.

For example:

ZN "'SAMPLES™

Set gen=##class(%ZEN.Report.reportDataClasses) .%New()

Set gen.ZenReport=""ZENApp.MyReport"

Set gen.DataPackage="ReportDatal"

Set gen.WebServicePackage="WebServicel"

Set Status=gen.generateWebService()

IT "Status Do $system.Status.DecomposeStatus(Status, -Err) Write ',Err(Err) ;-
Write !,Status

Kill

228 Using Zen Reports

Using Callback Charts in Zen Reports

Zen reports callback charts reproduce the functionality of Zen charts in Zen reports. All of the chart types and a majority

of chart properties available in Zen are also supported by Zen reports callback charts. For information on Zen charts, see

the “Zen Charts” chapter of the book Using Zen Components, especially the section “Types of Chart”, which describes

all the chart types supported by Zen and Zen reports. Documentation for an earlier charting implementation, called XPath
charts, is available in the section “Using XPath Charts in Zen Reports” in this book.

Topics include:

* Zen Reports Chart Properties

» Zen Reports Charts Callback Methods
e Providing Data for Zen Report Charts
+ Xmlfile

7.1 Zen Reports Chart Properties

A small number of properties are handled differently by Zen pages and Zen reports. In general, because Zen reports are
not interactive, callback charts do not support Zen chart properties that rely on the interactive nature of Zen applications.

The following table lists properties that are unique to Zen reports, or behave differently from their Zen page equivalents.

Using Zen Reports 229

Using Callback Charts in Zen Reports

Attribute
bandLeft

bandLeftStyle
bandRight

bandRightStyle

ongetData

ongetLabelX

ongetLabelY

ongetSeriesName

passChartObject

seriesCount

seriesSize

Description

Decimal value. If defined, the chart displays a vertical colored band on the plot area
covering the range lower than this value. bandLeftStyle defines the style of this band.
bandLeft and bandRight are applicable only to charts that have a value axis as the
X axis, such as <xyChart>.

SVG CSS style definition for the band defined by bandLeft.

Decimal value. If defined, the chart displays a vertical colored band on the plot area
covering the range higher than this value. bandRightStyle defines the style of this
band. bandLeft and bandRight are applicable only to charts that have a value axis
as the x axis, such as <xyChart>.

SVG CSS style definition for the band defined by bandRight.

Specifies a callback method which provides data for Zen reports callback charts.
Zen pages also support ongetData, but the method you supply is different for Zen
reports. See the section “Providing Data for Zen Report Charts” following this table.

Specifies a callback method which provides labels for the x-axis. Zen pages also
support ongetLabelX, but the method you supply is different for Zen reports. See the
section “Zen Reports Callback Methods™ following this table.

Specifies a callback method which provides labels for the y-axis. Zen pages also
support ongetLabelY, but the method you supply is different for Zen reports. See the
section “Zen Reports Callback Methods” following this table.

Specifies a callback method which the chart calls to get names for the data series.
The chart passes the method an argument that contains the 0-based ordinal number
of the series. See the section “Zen Reports Callback Methods” following this table.

Controls whether the chart passes the chart object to the ongetData callback method.
Should be used only to provide backward compatibility for code written for earlier
versions that did not pass the chart object.

This attribute has the underlying data type %ZEN.Datatype.boolean. See “Zen Reports
Attribute Data Types.”

In Zen pages, you must provide values for the property seriesCount if the chart does
not get its data from a data controller. Zen reports do not use data controllers, and
handle seriesCount differently. If you do not specify this parameter, it is calculated
from the data provided by the ongetData callback method. If you do supply a value,
the chart uses it to determine how much of the available data to use in the chart.

In Zen pages, you must provide values for the properties seriesSize if the chart does
not get its data from a data controller. Zen reports do not use data controllers, and
handle seriesSize differently. If you do not specify this parameter, it is calculated
from the data provided by the ongetData callback method. If you do supply a value,
the chart uses it to determine how much of the available data to use in the chart.

230

Using Zen Reports

Zen Reports Charts Callback Methods

7.2 Zen Reports Charts Callback Methods

Zen reports charts have several attributes that specify callback methods used to provide information to the chart. ongetData,
ongetLabelX, and ongetLabelY are also supported by Zen pages, but ongetSeriesName is unique to Zen reports. See “Plot
Area” for a discussion of ongetLabelX and ongetLabelY in Zen pages. The section “Providing Data for Zen Reports Charts”
discusses ongetData in detail.

Callback methods for Zen pages are written in JavaScript and executed on the client. Callback methods for Zen reports are
written in ObjectScript or another suitable language and executed on the server. All of these methods also accept the chart
object as a second parameter, which enables the callback method to use information from the chart. You can set
passChartObject=""false" to provide backward compatibility with callback methods written for previous versions
that did not pass the chart object.

The following code example illustrates all of the callback methods. The methods for ongetLabelX and ongetLabelY use the
chart object to determine whether the chart is pivoted and supply labels to the correct axis.

/// This XML defines the logical contents of this report.
XData ReportDefinition [XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlIns="http://www. intersystems.com/zen/report/definition”
name=""test" runonce="true'>
</report>

/// This XML defines the display for this report.

/// This is used to generate the XSLT stylesheets for both HTML and XSL-FO.

XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]
{

<report xmlIns="http://www. intersystems.com/zen/report/display"
name=""test'">

<document width="8.5in" height="11in"

marginLeft="1.25in" marginRight="1.25in"

marginTop="1.0in" marginBottom="1.0In"

headerHeight=""1in" >

</document>

<body>

<cpercentbarChart
id=""chartlb™
appearance="2D"
chartPivot="false"
ongetSeriesName ="getSeriesName"
valuelLabelsVisible="true"
ongetlLabelX=""getSeriesNameX"
ongetlLabelY=""getSeriesNameY"
width="500" height="400"
seriesCount=""4" seriesSize="3"
ongetData=""getChartData" >
<yAxis majorGridLines="true'></yAxis>
</cpercentbarChart>

</body>

</report>

/// Get chart data
Method getChartData(ByRef data, chartObject)
{

for i=1:1:3 Set data(l-1,i-1) = $LI($LB(34, 18, 27),i)
for 1=1:1:3 Set data(2-1,i-1) = $LI($LB(43, 14, 24),1)
for i=1:1:3 Set data(3-1,i-1) = $LI($LB(43, 16, 27),1i)
for i=1:1:3 Set data(4-1,i-1) = $LI($LBC 45, 13, 34),1)

}

/// Get X axis label name
Method getSeriesNameX(value, chartObject)

if chartObject.chartPivot {
quit value

else {
quit $LI($LB(1991,1992,1993,1994),value+l)

Using Zen Reports 231

Using Callback Charts in Zen Reports

/// Get Y axis label name
Method getSeriesNameY(value, yAxisNo, chartObject)

if chartObject.chartPivot
quit $LI($LB(1991,1992,1993,1994),value+l)

else {
quit value

}

/// Get series name
Method getSeriesName(sno, chartObject)

quit $LI($LB('Oats', "Barley", "Wheat'"),sno+1)

7.3 Providing Data for Zen Report Charts

The primary difference between charts in Zen reports and Zen pages is the way they provide data to the chart. Both use the
ongetData attribute to specify a callback method that supplies the data. Zen pages provide a callback method written in
JavaScript and executed on the client, which returns an array. For more information, see the section “Providing Data for
Zen Page Charts™ in the book Using Zen Components. Zen reports provide a callback method written in ObjectScript or
another suitable language and executed on the server. Because ObjectScript does not allow methods to return arrays, the
two-dimensional, 0-based array is passed by reference and filled in by the method. In addition to the array reference, the
chart object is passed to the ongetData callback method. If the method signature does not include the chart object, you get
an error. You can set passChartObject="false" to provide backward compatibility with callback methods written
for previous versions that did not pass the chart object.

In Zen pages, the value of the ongetData attribute is a complete JavaScript statement, such as this: ongetData=""return
zenPage.getChartData(series) ;" For this reason, you can specify the arguments to the callback method from in
the chart. In Zen reports, the attribute value is simply the name of the method, such as this: ongetData=""getChartData".
You cannot specify arguments for the method's parameters. The parameters are filled in automatically by internal code,
which is why requirements for the method signature are more stringent in Zen reports.

Note that all data acquisition and processing for the chart takes place in the ongetData callback method. For this reason,
the chart content does not reflect any structure or data organization that may be present in the XData ReportDefinition or
XData ReportDisplay sections of the report.

The following code samples illustrate different approaches to creating Zen reports callback charts. Both produce the same
bar chart as output:

232 Using Zen Reports

Providing Data for Zen Report Charts

Figure 7-1: Callback Bar Chart

Callback Chart Example
8
BB
m2
o -3-
| EEE
u-3-
-6
-7
£
m -0
Adult Price Child Price

7.3.1 Getting Data from SQL

In the first example, the XData ReportDefinition is essentially a place holder. The real work is done in XData ReportDisplay,
which defines the <cbarChart>, and in the ongetData callback method getchartdata, which uses SQL to get data from
the database. The callback then uses the result set to fill the array passed by reference.

Class MyApp.getchartdata Extends %ZEN.Report.reportPage {

Parameter APPLICATION;

Parameter DEFAULTMODE = "html";

XData ReportDefinition [XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""test" runonce="true'>
</report>

by
XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]
{

<report xmlIns="http://www. intersystems.com/zen/report/display"
name=""test’'">
<document width="8.5in" height="11in" marginLeft="1.25in" marginRight="1.25in"
marginTop="1.0in" marginBottom="1.0in" headerHeight="1in">
</document>
<body>
<cbarChart
plotAreaStyle="fill: #eeeeee;"
ongetData=""getchartdata"
title=""Callback Chart Example"
height="400px" width="400px"
seriesColorScheme="solid"
ongetLabelX=""getName" >
<yAxis majorGridLines="true" minvalue="4" />
<xXAxis majorGridLines="true" />
</cbarChart>
</body>
</report>

}
Method getName(val, yseries)
quit $LG(SLB('Adult Price”,"Child Price™), (val+l))
Method getchartdata(ByRef var, chart)
{

SET myquery =
"SELECT TheaterName,AdultPrice,ChildPrice FROM Cinema.Theater ORDER BY TheaterName"
SET tStatement = ##class(%SQL.Statement) .%New()
SET tStatement.%ObjectSelectMode=1
SET tStatus = tStatement.%Prepare(myquery)
SET rset = tStatement.%Execute()
Set Count=0

Using Zen Reports 233

Using Callback Charts in Zen Reports

WHILE rset.%Next()

Set var(Count,0)=rset.AdultPrice
Set var(Count,l)=rset.ChildPrice
Set Count=Count+1

¥
quit $$$0K

7.3.2 Getting Data from XML

In the next example, the XData ReportDisplay block and the method getName are identical to the previous example, and
have been deleted. This example takes an approach similar to that used by the older, XPath charts. The XData ReportDefi-
nition uses SQL to get data from the database, and uses the result set to create an intermediate XSLT document. The callback
method accesses that document and stores data from it in the array. For more information, see “Evaluating XPath Expres-
sions” in the book Using Caché XML Tools.

Include (%occSAX, %occXSLT)
Class MyApp.CBarChartXSLT Extends %ZEN.Report.reportPage

Parameter APPLICATION;
Parameter DEFAULTMODE = "html';
XData ReportDefinition [XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report xmlns="http://www. intersystems.com/zen/report/definition”
name=""test" sql="SELECT ID,TheaterName,AdultPrice,ChildPrice
FROM Cinema.Theater ORDER BY TheaterName" >
<group name="Theater" breakOnField="TheaterName'>
<attribute name="TheaterName" field="TheaterName" />
<attribute name="TheaterID" field="ID" />
<element name="Adult" field="AdultPrice" />
<element name="Child" field="ChildPrice" />
</group>
</report>
3
///
/// XData ReportDisplay and Method getName deleted

///
Method getchartdata(ByRef var, chart)

Set tSC=$$$0K
do
{
Set tSC=##class(%XML.XPATH.Document) .CreateFromFile(..xmlfile, .tDoc)
if $$SISERR(LSC) {Do $System.OBJI.DisplayError(tSC) Quit}
Set tSC=tDoc.EvaluateExpression(‘''/test", " Theater", .tResults)
iT $$SISERR(LSC) {Do $System.OBJ.DisplayError(tSC) Quit}
For tl=1:1:tResults.Count()
{
Set tResult=tResults.GetAt(tl)
Set index=$i(var(0))
while (tResult.Read())

{
if (tResult_Name="Adult™)

do tResult.Read()
Set var(index-1,0)=tResult.Value

T
if (tResult_Name="Child")

do tResult.Read()
Set var(index-1,1)=tResult.Value
Set index=$i(var(0))
b
}

}
} while(0)

234 Using Zen Reports

Xmilfile

7.4 Xmlfile

xmlfile is a Zen report property that contains a string which is the fully qualified name of the generated file containing
XML. It should not be set by the user. It can be used by callback charts as a source of data that can be manipulated through
the XML XPATH and XSLT processors. xmlfile is defined when processing takes place on the server. It is not defined
when processing takes place on the browser. The section Setting Zen Report Class Properties from the URI includes an
overview of when processing occurs on the browser or the server.

The code sample in the section Getting Data from XML illustrates the use of xmlfile as a source of data.

Using Zen Reports 235

Using XPath Charts in Zen Reports

Zen reports XPath charts is an older charting system which does not support the full functionality now available through
Zen page charts. Zen reports continues to support it for backward compatibility. Callback charts provide a charting mechanism
that fully duplicates the functionality of charts in Zen pages. See the section “Zen Reports Callback Charts™. The syntax
for placing XPath charts in Zen reports is similar to the syntax for placing charts on Zen pages. See the “Zen Charts”
chapter of Using Zen Components. Zen reports XPath charts differ from both Zen pages charts and Zen reports callback
charts in the way they provide data to the chart. The section Providing Data for Zen Report XPath Charts describes how
XPath charts acquire data. Note that XPath charts do not support the chartStacked attribute, and are not interactive.

Important: If you combine xpath charts and call back charts in the same ZEN Report you can get unexpected results
when using default colors because of CSS precedence.

Topics include:

e XPath Chart Attributes in Zen Reports

e Providing Data for Zen Report XPath Charts

e Chart Axes in Zen Reports

» dataGroup and seriesGroup

o Examples of Zen Report XPath Charts

8.1 XPath Chart Attributes in Zen Reports

When used in Zen reports, XPath chart elements support the following attributes.

Attribute Description

General For descriptions of style, width, class, and other attributes, see the “Report Display Attributes”
display section in the chapter “Displaying Zen Report Data.”
attributes

Using Zen Reports 237

Using XPath Charts in Zen Reports

Attribute

Shared
display
attributes

Data
source
attributes

Chart

type
attributes

height

Description

Zen charts and Zen report XPath charts use nearly identical syntax. Therefore, you can find most
of the information you need about chart display attributes in the “Chart Layout, Style, and
Behavior” section of the “Zen Charts” chapter of Using Zen Components.

When you refer to Using Zen Components to verify the correct syntax for charts for Zen reports,
ignore any documentation links to other sections for descriptions of SVG attributes or data
gathering attributes. These do not apply to Zen report charts. Use only the attributes described
in the section “Chart Layout, Style, and Behavior.” Zen report XPath charts do not support all
the attributes supported by Zen charts.

The topic, “Providing Data for Zen Report XPath Charts,” describes the chart attributes that
identify the data to be displayed in a Zen report chart. These attributes work by identifying fields
in the XML source data for the report.

In addition to attributes described in “Chart Layout, Style, and Behavior” and “Providing Data
for Zen Report XPath Charts,” some attributes apply only to charts of a specific type. For Zen
report charts, these attributes are as follows:

* <lineChart> — chartFilled and chartPivot as described for <lineChart> in the “Zen Charts”
chapter of Using Zen Components

« <diffChart> — chartPivot and refLineStyle as described for <diffChart> in the “Zen Charts”
chapter of Using Zen Components

e <barChart>— chartPivot as described for <barChart> in the “Zen Charts” chapter of Using
Zen Components

» <hilowChart> — chartPivot as described for <hilowChart> in the “Zen Charts” chapter of
Using Zen Components

» <pieChart> — labelValues, a comma-separated list of labels to use for the pie slices in the
chart. If no value is supplied for labelValues, the seriesNames value for the <pieChart>
applies. Otherwise, a sequential number labels each pie slice: 1, 2, 3, etc. outputPercentage
appends the calculated percentage to slice label. onlyPercentage replaces label rather than
appends, if outputPercentage is also true. formatPercentage formats the percentage using
the same syntax as formatNumber, see the attributes list for <item>.

HTML length value that specifies how much vertical space to allow to display this chart in the
report.

"2in", "5cm"”, "12px", "14pt", "3em", or "75%" are all valid formats for HTML length values. A
percentage is relative to the parent element for the chart. Note that for pie charts, the height and
width of the chart must be the same for the chart to be round.

8.2 Providing Data for Zen Report XPath Charts

This section describes the attributes that identify the data displayed by a Zen report chart. You can apply these attributes
to the chart elements in the XData ReportDisplay block of a Zen report class. If the attribute value begins with an exclamation
mark (1), it provides an XPath expression that identifies a value in the XML data source. Values that do not begin with !
supply literal values.

The following code example shows dataFields and seriesNames specified as XPath expressions:

238

Using Zen Reports

Providing Data for Zen Report XPath Charts

<barChart

dataFields="1@AdultPrice, !@ChildPrice"
seriesGroup="Theater"
seriesNames="1@TheaterName" />

For details on how to gather XML source data, see the chapter “Gathering Zen Report Data”. For examples that show
XData ReportDefinition and XData ReportDisplay working together to provide data for a Zen report chart, see the
“Examples of Zen Report XPath Charts” section, later in this chapter.

Note: Charts in Zen pages do not support the attributes described in this section. The attributes in this section apply only
to charts in Zen reports. For the corresponding information that applies to Zen charts, see “Providing Data for
Zen Page Charts™ in the “Zen Charts” chapter of Using Zen Components.

Within a Zen report XData ReportDisplay block, the chart elements support the following attributes for specifying a data
source for a Zen report chart.

Table 8-1: Data Source Attributes for Zen Report Charts

Attribute Description

dataFields All charts: Comma-separated list of one or more XPath expressions. These expressions
identify nodes in the XML data source which are used to create the chart. Each XPath
expression must be preceded by a ! character.

Pie charts: A pie chart uses only the first data field in the dataFields list. It totals the values
in this field, then makes the size of the pie slice for each value proportional to its percentage
of the total.

dataGroup Line chart and bar chart: Specifies an XPath expression that identifies a node in the XML
data source that contains the nodes identified by dataFields. The value cannot be preceded
by a ! character. dataGroup and seriesGroup are mutually exclusive.

For an explanation of the differences between dataGroup and seriesGroup, see the section
“dataGroup and seriesGroup” in this chapter.

Pie charts, difference charts, high/low charts, scatter charts: Not a valid option, seriesGroup
is required.

seriesColors | seriesColors provides a comma-separated list of one or more CSS color values to use when
plotting the chart. The colors can be literal color names, or they can be provided as an XPath
expression. XPath expressions must be preceded by a ! character. If you do not supply a
seriesColors value, the default is:

"blue,red,green,yellow,orange,plum,purple"
If a chart needs more colors than seriesColors provides, the list of colors automatically repeats.
seriesCount | Number of data series to display on this chart. The number can be a literal value, or an XPath

expression beginning with a ! character. If seriesCount is not provided or is set to a blank
string ("), the count is computed automatically from the chart’s data source.

Using Zen Reports 239

Using XPath Charts in Zen Reports

Attribute Description

seriesGroup | All charts: Specifies an XPath expression that identifies a node in the XML data source that
contains the nodes identified by dataFields. The value cannot be preceded by a ! character.

Bar charts and line charts: can use seriesGroup or dataGroup. dataGroup and seriesGroup
are mutually exclusive.

Pie charts, difference charts, high/low charts, scatter charts: seriesGroup is required.
For an explanation of the differences between dataGroup and seriesGroup, see the section
“dataGroup and seriesGroup” in this chapter.

seriesNames | All charts: Provides names used to label each data series in the legend box. If you specify a
seriesGroup, you can use either an XPath expression beginning with a ! character, or a
comma-separated list of literal values. Do not mix XPath expressions and literal values. If
you specify a dataGroup, use literal values for seriesNames.

Pie charts: If you do not set labelValues, seriesNames provides labels for the pie slices and
the legend box.

seriesSize Number of items within each data series to display on this chart. The number can be a literal
value, or an XPath expression beginning with a ! character. If seriesSize is not provided or
is set to a blank string ("), the chart computes this number automatically from its data source.

8.3 Chart Axes in Zen Reports

Charts in a Zen report may contain <xaxis> and <yaxis> elements. The syntax for these elements is nearly identical to that
used on Zen pages. The majority of Zen reports charts are plotted using two axes as follows:

e <xaxis> is the category axis; it names the categories in which data is being displayed.
e <yaxis> is the value axis; it displays the value of the data in each category.

These relationships are reversed in the case of a pivoted chart. The <xyChart>, also called a scatter chart, uses value axis
for both the <xaxis> and <yaxis> elements. A <pieChart> does not have axes.

CAUTION: Capitalization is important. On Zen pages the elements are <xAxis> and <yAxis>, but in Zen reports the
elements are <xaxis> and <yaxis>. Studio catches typographical differences like these as you type and
compile your classes.

When used in Zen reports, <xaxis> and <yaxis> support the following attributes:

Attribute Description

Shared axis attributes General-purpose attributes for chart axes. For descriptions, see the section “Chart
Axes” in the “Zen Charts” chapter of Using Zen Components.

The exception is that when chartPivot is true, it is not possible to rotate label text
for Zen report axis labels, so in this case labelAngle has no effect.

240 Using Zen Reports

Chart Axes in Zen Reports

Attribute Description

labelDisplacement Decimal value that specifies the amount of extra space to allow between the row
of text labels and the axis itself. A labelDisplacement value is useful to make extra
vertical space for text labels between the <xaxis> and the plot area. This space
becomes important when a labelAngle is set to rotate the text labels.

When chartPivot is true, you can create extra horizontal space for text labels
between the <yaxis> and the plot area by increasing the marginLeft value for the
chart. In this case, labelDisplacement does not apply.

If labelDisplacement is missing or blank ("), no extra space is allowed.

labelGroup Specifies an XPath expression that identifies a node in the XML data source that
contains the nodes identified by labelValue. Use with labelValue. For an example,
see the section “Line Chart with Multiple Data Points.”

If you supply a value for labelValues, labelGroup and labelValue are ignored. If
you supply no value for labelGroup, labelValue, or labelValues, a sequential
number labels each item on the category axis: 1, 2, 3, etc.

Specifying a labelGroup and labelValue on a value axis suppresses normal numeric
labeling of the axis.

labelValue An XPath expression that identifies a node in the XML data source that provides
label values for the category axis (this is the x-axis, unless the chart is pivoted).
The node specified provides a set of label values that are applied one to each
item on the category axis. If labelValue does not identify as many values as there
are points on the category axis, then the remaining items are not labeled. Use
with labelGroup. For an example, see the section “Line Chart with Multiple Data
Points.”

If you supply a value for labelValues, labelGroup and labelValue are ignored. If
you supply no value for labelGroup, labelValue, or labelValues, a sequential
number labels each item on the category axis: 1, 2, 3, etc.

Specifying a labelGroup and labelValue on a value axis suppresses normal numeric
labeling of the axis.

labelValues Comma-separated list of one or more label values for the category axis. Should
not contain an XPath expression that begins with 1. Provides literal values for
slice names in a pieChart.

For examples using labelValues, see the sections “Bar Chart with One Data
Series” and “Pivoted Bar Chart with Multiple Data Points.”

If you supply a value for labelValues, labelGroup and labelValue are ignored. If
you supply no value for labelGroup, labelValue, or labelValues, a sequential
number labels each item on the category axis: 1, 2, 3, etc.

Using Zen Reports 241

Using XPath Charts in Zen Reports

Attribute Description

maxValueDisplacement | Positive or negative floating point number that permits fine adjustments to the
maximum value represented on this axis. The number provided for
maxValueDisplacement may or may not end with a percentage symbol (%).

When the maxValue for this axis:
« Is specified, Zen ignores maxValueDisplacement.

e |s automatically calculated based on the data for the chart, Zen adds the
maxValueDisplacement value to the maximum value found in the data and
uses the result as the maximum value represented on this axis.

When using the maxValueDisplacement value, Zen calculates the maximum value
represented on this axis as follows
¢ maxValueDisplacement is simply a number:
(maximum value found in data) + maxValueDisplacement
« maxValueDisplacement ends with a percentage symbol (%):

(maximum value found in data) + (((maximum value found in data) - (minimum
value found in data)) * maxValueDisplacement / 100.0)

minValueDisplacement Positive or negative floating point number that permits fine adjustments to the
minimum value represented on this axis. The number provided for
minValueDisplacement may or may not end with a percentage symbol (%).

When the minValue for this axis:
* Is specified, Zen ignores minValueDisplacement.

« Is automatically calculated based on the data for the chart, Zen adds the
minValueDisplacement value to the minimum value found in the data and
uses the result as the minimum value represented on this axis.

When using the minValueDisplacement value, Zen calculates the minimum value
represented on this axis as follows
* minValueDisplacement is simply a number:
(minimum value found in data) + minValueDisplacement
* minValueDisplacement ends with a percentage symbol (%):

(minimum value found in data) + (((maximum value found in data) - (minimum
value found in data)) * minValueDisplacement / 100.0)

textAnchor When you supply a value for labelAngle, the textAnchor value determines the
rotation point for the text string that forms each axis label.

If you set no textAnchor value, the default is **'middle" which rotates the labels
around the center of each text string. You can also set textAnchor to “"start"
which rotates the labels around the start of each text string, or to "'end"* which
rotates the labels around the end of each text string.

For information about labelAngle and other axis settings shared by Zen and Zen
reports, see “Chart Axes” in the “Zen Charts” chapter of Using Zen Components.

242 Using Zen Reports

dataGroup and seriesGroup

8.4 dataGroup and seriesGroup

Both <barChart> and <lineChart> allow you to use either a dataGroup or a seriesGroup attribute to provide an XPath
expression that identifies the node in the XML data source that supplies values to the chart. All other chart types require
seriesGroup. A chart using dataGroup organizes and displays the data differently from a chart that uses seriesGroup. The
following examples illustrate these differences.

8.4.1 <lineChart> using dataGroup

The following XData ReportDisplay block:

XData ReportDisplay [XMLNamespace = "http://www. intersystems.com/zen/report/display"]
{

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>
<lineChart
title="Adult Price, Child Price: Data Group"
dataGroup ="Theater"
dataFields="1@AdultPrice, !@ChildPrice"
seriesNames ="Adult Price, Child Price"”
width ="450px"
height=""500px"
marginTop="20"
marginBottom="45"
marginLeft=""15"
marginRight="10"
legendVisible=""true"
legendWidth="18"
legendX=""70"
legendY=""10"
>
<xaxis
labelGroup="Theater" labelValue="@TheaterName"
labelAngle="90" textAnchor="begin"
title=""Theaters" />
<yaxis title="Price in Dollars" />
</lineChart>
</body>
</report>

Defines the following line chart:

Using Zen Reports 243

Using XPath Charts in Zen Reports

Adult Price, Child Price: Data Group
MCHld Price

Frice in Collars

X

¥R MW Logsog
TILMA a0

20
20

VLM

o~

o=

x

LK

BLIBUD [BEUED

N 0P| guUEeT
50

LIWT0

=CDLJLUE

g ELUELD) [E.BUED

X3 M L

Lo S
i 4
xad

@
mll
!.'1_|
0
i
@

]
E
E:_
g

LML

Theaters

The primary difference between dataGroup and seriesGroup is in how the data is grouped for presentation. You can see
that this chart presents the values specified by Y@AdultPrice in the dataFields attribute as one line, and the values
specified by '@Chi IdPrice as a second line. If additional data is available in the data set, you can use it to label the cat-
egory (x) axis. In this example, the values from the 1@TheaterName attribute label the x axis.

The following illustration shows how a chart usingdataGroup groups values in the XML data source.

yntIrid Adull_'l}rlt:e-“? 25"]
Adultpnce—“ﬁ 25" ChildP
.. AdultPrice="6.25" ~
= AdultPrice="6. I:‘.Iﬂ"
" AdultPrice="7.00"
_ AdultPrice="7.50" i
"_.T = AdultPrice="7. DD"J
AdultPrice="6.75" | 11

Pu:lultP rice="6.75" (Ll

244 Using Zen Reports

dataGroup and seriesGroup

8.4.2 <lineChart> using seriesGroup

The following XData ReportDisplay block:

XData ReportDisplay [XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>
<lineChart title="Adult Price, Child Price: Series Group"

seriesGroup="Theater"

dataFields="1@AdultPrice, !@ChildPrice"”

seriesNames="1@TheaterName"

seriesColors ="red,blue,green,yellow,orange,plum,purple,navy,maroon™

width ="450px"

height=""400px""

marginTop="10"
marginLeft=""10"
marginRight="45"

legendVisible=""true"
legendWidth="35"
legendX="60"
legendY=""14"

>

<xaxis
labelValues=""Adult Price, Child Price”
textAnchor="begin" />
</lineChart>
</body>
</report>

Defines the following line chart:

Adult Price, Child Price:

M Eoston Multiplex

BLcews Downtown

| lGeneral Grema Boston
FlDovntown Multiples
[CLoews Cam bridoe

B Gereral Orema Downtown
W Cam bridoge Multiplex
BLcews Boston

Adut Price Child Price

You can see that this chart draws a line for each of the 1@AdultPrice/ 1@Chi ldPrice pairs in the data set. In this
example, you cannot see all of the lines, because some of them have duplicate values. If additional data is available in the

Using Zen Reports 245

Using XPath Charts in Zen Reports

data set, you can use it to identify the lines by color in the chart legend. In this example, the values from the '@TheaterName
attribute identify the lines.

The following illustration shows how a chart usingseriesGroup groups values in the XML data source.

| <Theater TheaterName="General Cinema Cambridge" AdultPrice="7.25" ChildPrice

8.4.3 <barChart> using dataGroup

The following XData ReportDisplay block:

XData ReportDisplay [XMLNamespace = "http://www. intersystems.com/zen/report/display"]
{

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'>
<body>
<barChart title="Adult Price, Child Price: Data Group"

dataGroup=""Theater"

dataFields="1@AdultPrice, !@ChildPrice"

seriesNames="Adult Price, Child Price"

width ="450px"

height="400px""

marginTop=""20"

marginBottom="10"

marginLeft=""45"

marginRight="5"

chartPivot=""true"

legendVisible=""true"

legendWidth="18"

legendX="76"

legendY=""10"

>

<yaxis
labelGroup="Theater""
labelValue="@TheaterName"
title="Theaters"
textAnchor="end"
/>
<xaxis title="Price in Dollars™ minValueDisplacement="-25%" majorGridLines="true'/>
</barChart>
</body>
</report>

Defines the following line chart:

246 Using Zen Reports

dataGroup and seriesGroup

Adult Price, Child Price: Data Group

W Adult Price
B Child Frice

General Cinema Cambidge
Boston Multiplex
Lioe Dot awn

Gereral dnema Boston

Dowvritoawn Multigex
Loews Cambyidge
General nema Downkown
Cambridge Multipex
Loews Boston

> 5> 6

Price in Dollars

You can see that this chart presents the values specified by '@AdultPrice in the dataFields attribute as one set of bars,
and the values specified by '@Chi IdPrice as a second set. The pairs of bars are grouped by data node, as the points are
grouped in the corresponding <lineChart>. If additional data is available in the data set, you can use it to label the category

axis, which is the y axis in this example because the chart is pivoted. In this example, the values from the Y@TheaterName
attribute label the category axis.

8.4.4 <barChart> using seriesGroup

The following XData ReportDisplay block:

XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'>
<body>
<barChart title="Adult Price, Child Price: Series Group"

seriesGroup="Theater"

dataFields="1@AdultPrice, !@ChildPrice"

seriesNames="1@TheaterName"

seriesColors ="red,blue,green,yellow,orange,plum,purple,navy,maroon™

width ="450px"

height="400px""

marginTop=""10"

marginBottom="10"

marginLeft=""15"

marginRight="45"

legendVisible=""true"

legendWidth=""35"

legendX="60""

legendY="15"

>

<yaxis

title="Price in Dollars"

minValueDisplacement=""-25%" majorGridLines=""true'"/>
<xaxis

labelValues="Adult Price, Child Price"
title=""Theaters"

/>
</barChart>

Using Zen Reports 247

Using XPath Charts in Zen Reports

</body>
</report>

Defines the following line chart:

M Eoston Multiplex

BLcews Downtown

| lGeneral Grema Boston
FlDovntown Multiples
[CLoews Cam bridoe

B Gereral Orema Downtown
W Cam bridoge Multiplex
BLcews Boston

:'.J'J
]
=
[
|
@
o

Adut Price Child Frice
Theaters

You can see that this chart draws a bar for each of the '@AdultPrice/ '@Chi ldPrice pairs in the data set. The bars
representing Y@Adu I tPrice values are grouped together, as are the bars representing !@Chi IdPrice values. If additional
data is available in the data set, you can use it to identify the bars by color in the chart legend. In this example, the values
from the '@TheaterName attribute identify the bars.

8.5 Examples of Zen Report XPath Charts

This section provides several examples of line charts and bar charts. Each chart presents information from the same source
in a different way. The information comes from the Cinema application in the SAMPLES database. If you want to use this
code, place it in a Zen report class that resides in the SAMPLES namespace. You can also adjust the example so that it
matches the data in your own Caché application.

The following XData ReportDefinition block provides data for all of the example charts:

248 Using Zen Reports

Examples of Zen Report XPath Charts

XData ReportDefinition
[XMLNamespace = "http://www. intersystems.com/zen/report/definition”]

<report

xmIns="http://www. intersystems.com/zen/report/definition”

name=""test"

sql="Select Top 10 TheaterName, AdultPrice, ChildPrice from Cinema.Theater"
>

<group name="Theater'>
<attribute name="TheaterName" field="TheaterName" />
<attribute name="AdultPrice" field="AdultPrice" />
<attribute name="ChildPrice" field="ChildPrice" />
</group>
</report>

It produces the following XML output:

<test>
<Theater TheaterName='"General Cinema Cambridge"
AdultPrice="7.25" ChildPrice="5.75"/>
<Theater TheaterName='Boston Multiplex"
AdultPrice="7.75" ChildPrice="6.25"/>
<Theater TheaterName="'Loews Downtown"
AdultPrice="7.00" ChildPrice="5.50"/>
<Theater TheaterName='"General Cinema Boston"
AdultPrice="7.00" ChildPrice="5.50"/>
<Theater TheaterName='"Downtown Multiplex"
AdultPrice="7.00" ChildPrice="5.50"/>
<Theater TheaterName=''Loews Cambridge"
AdultPrice="6.25" ChildPrice="4.75"/>
<Theater TheaterName='General Cinema Downtown'
AdultPrice="6.25" ChildPrice="4.75"/>
<Theater TheaterName='Cambridge Multiplex"
AdultPrice="6.75" ChildPrice="5.75"/>
<Theater TheaterName="'Loews Boston"
AdultPrice="6.75" ChildPrice="5.75"/>
</test>

This XData ReportDefinition block supports the XData ReportDisplay syntax shown in the following examples.

8.5.1 Bar Chart with One Data Series

The following XData ReportDisplay block:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'>
<body>
<barChart title="1 Field with 9 Data Points = 1 Series"

dataFields="1@AdultPrice"
seriesGroup="Theater"
seriesNames=""1@TheaterName"

width ="450px"
height="400px"
marginTop=""10"
marginLeft=""15"
marginRight="5"

legendVisible=""true"
legendWidth="38"
legendX="56"
legendY=""11"

>

<xaxis labelValues="Adult Price" />
</barChart>
</body>
</report>

Defines the following bar chart:

Using Zen Reports 249

Using XPath Charts in Zen Reports

M General Cinema Cambridge
M E oston Multiplex

M Loews Downtown

|1 General Cinema B oston

= Drowntown Multiples

[l Loews Cambridge

M General Cinema D owntown
M Cambridge M ultiplex

M Loews Boston

Adult Price

For the XData ReportDefinition block that supplies the data, see the Examples of Zen Report XPath Charts. To learn more
about specific <barChart> attributes, see the section *“XPath Chart Attributes in Zen Reports.”

The data series for this chart comes from the values of the AdultPrice attribute in the XData ReportDefinition block.
There are 9 theaters that have Adul tPrice values, so there are 9 data points to display in the series. The reason that this
is considered a series, rather than a set of data points, is that the <barChart> identifies its data source using the seriesGroup
attribute in combination with the dataFields attribute.

The seriesNames attribute gives a text label to each legend entry in this chart. As the legend shows, these labels apply to
the individual data points in the series. There is one series in this chart, so the <xaxis> labelValues attribute provides one
label for the entire data series. A later example, Bar Chart with Two Data Series, shows two series, one for AdultPrice
and one for ChildPrice.

Because this chart is based on a series, varying colors for the bars are assigned automatically using a set of 7 default colors.
Since there are more than 7 bars, the colors repeat for the eighth and ninth bars. You can use the seriesColors attribute to
specify a different set of colors.

See Legends for information on the legendX and legendY attributes.

8.5.2 Line Chart with Multiple Data Points

The following XData ReportDisplay block:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlIns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>
<lineChart title="9 Data Points From 1 Field = 9 Data Points"

dataGroup=""Theater"
dataFields="1@AdultPrice"
seriesNames="Adult Price"
seriesColors="red"

250 Using Zen Reports

Examples of Zen Report XPath Charts

plotStyle="stroke-width:0.8"
plotToEdge=""false"

width ="450px"
height="400px""
marginTop=""10"
marginBottom=""25"
marginLeft=""15"
marginRight="5"

bandUpper="7_5"
bandUpperStyle="fill:orange"
bandLower="6.5"
bandLowerStyle="Ffill:purple"

legendVisible=""true"
legendWidth="18"
legendX="76"
legendY=""27"

>

<xaxis
labelAngle="45"
labelGroup="Theater" labelValue="@TheaterName"
title=""Theaters'/>
</lineChart>
</body>
</report>

Defines the following bar chart:

9 Data Points From 1 Field = @ Data Points

For the XData ReportDefinition block that supplies the data, see the Examples of Zen Report XPath Charts. To learn more
about specific <lineChart> attributes, see the section “XPath Chart Attributes in Zen Reports.”

The 9 individual data points for this chart come from the values of the Adul tPrice attribute in the XData ReportDefinition
block. There are 9 theaters that have AdultPrice values, so there are 9 data points to display. The reason this is not
considered a series is that the <lineChart> does not use the seriesGroup attribute to identify its data source. Instead, it
identifies a dataGroup and dataFields.

Using Zen Reports 251

Using XPath Charts in Zen Reports

A single seriesColors value specifies which color to use when charting the 9 data points in this chart. plotStyle specifies
more styling details such as the line width. Setting plotToEdge to false tells the chart to keep all values inside the plot area,
rather than plotting the last value at the outside edge. For added visual interest, bandUpper and bandLower define solid
bands of background color above and below the typical range of values in this chart.

The seriesNames attribute is required to give a text label to the legend in this chart. This label applies to the full set of
individual data points, so its color matches the single seriesColors value for the chart. The x-axis provides one label for
each data point in the set. The report generates labels for each entry along the x-axis by using the <xaxis> labelGroup and
labelValue attributes to get the appropriate text strings from the data source.

The <xaxis> title attribute provides the title shown at the bottom of the display. The marginBottom value for this chart is
larger than usual to create the extra space needed at the bottom of the plot area above the x-axis title; this makes room for
the rotated text strings that label the x-axis. The labelAngle specifies the clockwise angle of rotation for text labels, which
in this case is 45 degrees. The rotation occurs around the center of the text string. If you wish to create more vertical space
for these strings, you can add a labelDisplacement value, but this example does not do so.

See Legends for information on the legendX and legendY attributes.

8.5.3 Pivoted Bar Chart with Multiple Data Points

The following XData ReportDisplay block:

XData ReportDisplay
[XMLNamespace = "http://www. intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>
<barChart title="9 Data Points From 1 Field = 9 Data Points"

dataGroup=""Theater"
dataFields="1@AdultPrice"
seriesNames="Adult Price"

width ="450px"
height=""400px""

marginTop=""10"
marginLeft=""25"
marginRight="5"

chartPivot=""true"

legendVisible=""true"
legendWidth="18"
legendX="76"
legendY="84"

>

<yaxis
labelValues=""GenCinCam,BosMulti,LoewsDown,GenCinBos,
DownMulti,LoewsCam,GenCinDown,CamMulti,LoewsBos,"
title="Theaters"
/>
</barChart>
</body>
</report>

Defines the following bar chart:

252 Using Zen Reports

Examples of Zen Report XPath Charts

9 Data Points From 1 Field = 9 Data Points

GenCinCarr

BoshMult

GenCinDown

Camhulti

For the XData ReportDefinition block that supplies the data, see Examples of Zen Report XPath Charts. To learn more
about specific <barChart> attributes, see the section *“XPath Chart Attributes in Zen Reports.”

The 9 individual data points for this chart come from the values of the Adul tPrice attribute in the XData ReportDefinition
block. There are 9 theaters that have Adul tPrice values, so there are 9 data points to display. The reason this is not
considered a series is that the <barChart> does not use the seriesGroup attribute to identify its data source. Instead, it
identifies a dataGroup and dataFields.

A single seriesColors value would be required to specify which color to use when charting the 9 data points in this chart.
Since no seriesColors value is supplied, the chart uses the first color in its list of default charting colors, which is blue. The
seriesNames attribute is required to give a text label to the legend in this chart. This label applies to the full set of individual
data points, so its color matches the single seriesColors value for the chart.

Because chartPivot is set to true, the chart is pivoted so the x-axis, rather than the y-axis, displays the Adul tPrice values.
This design decision gives the y-axis the responsibility of providing one label for each data point in the set. This chart
assigns literal labels to each entry along the y-axis by using the <yaxis> labelValues attribute with a comma-separated list
of names. The <yaxis> title attribute provides the axis title shown at farthest left in the display.

See Legends for information on the legendX and legendY attributes.

8.5.4 Pie Chart with One Data Series

The following XData ReportDisplay block:

XData ReportDisplay [XMLNamespace = "http://www.intersystems.com/zen/report/display"]

<report xmlns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>

<pieChart title="Adult Price"
dataFields="1@AdultPrice"
seriesGroup ="Theater"
seriesNames ="!@TheaterName"
seriesColors ="blue,red,green,yellow,orange,plum,purple,brown,navy"
width ="400px"

Using Zen Reports 253

Using XPath Charts in Zen Reports

height="400px"
marginTop="10"
marginBottom="10"
marginLeft=""10"
marginRight="10"
legendVisible="false"
labelStyle="font-family:arial"
>
</pieChart>
</body>
</report>

Defines the following bar chart:

Adult Price

Downtown M uHiplex
Loews Carrbridge __ pm

Gangia Clnerra Bosion

For the XData ReportDefinition block that supplies the data, see the Examples of Zen Report XPath Charts. To learn more
about specific <pieChart> attributes, see the section “XPath Chart Attributes in Zen Reports.”

The data series for this chart comes from the values of the AdultPrice attribute in the XData ReportDefinition block.
There are 9 theaters that have Adul tPrice values, so there are 9 data points to display in the series. The <pieChart>
identifies its data source using the seriesGroup attribute in combination with the dataFields attribute.

The seriesNames attribute gives a text label to each of the pie slices in this chart. The labeling of objects in the chart is a
unique feature of <pieChart> that is not available for other charts. You should not use literal values for seriesNames.
However, as for all types of chart, the seriesNames attribute also provides the same set of text labels for the chart legend.

The legend is not visible by default. If you set the labelValues attribute for the <pieChart> to a comma-separated list of
labels, the chart uses labelValues to label the pie slices, and seriesNames to fill in the legend box. In this case, you can use
legendVisible to display both the legend and the pie slice labels.

Providing values for the seriesColors attribute for this <pieChart> makes the chart easier to read. The default color set for
series provides only 7 values, after which the colors repeat. In a <pieChart>, the repetition of colors 1 and 2 for slices 8
and 9 can be confusing when the circle wraps around to slices 1 and 2.

254 Using Zen Reports

Examples of Zen Report XPath Charts

8.5.5 Bar Chart with Two Data Series

The following XData ReportDisplay block:

XData ReportDisplay
[XMLNamespace = *http://www. intersystems.com/zen/report/display”]

<report xmIns="http://www. intersystems.com/zen/report/display"
name=""test'">
<body>
<barChart title="2 Fields with 9 Data Points Each = 2 Series"

dataFields="1@AdultPrice, 1@ChildPrice"

seriesGroup ="Theater"

seriesNames ="!@TheaterName"

seriesColors ="blue,red,green,yellow,orange,plum,purple,brown, navy"

width ="450px"
height=""400px""
marginTop=""10"
marginLeft=""15"
marginRight="5"

legendVisible=""true"
legendWidth=""38"
legendX="56"
legendY=""11"

>

<xaxis labelValues="Adult Price,Child Price" title="Theaters'/>
</barChart>
</body>
</report>

Defines the following bar chart:

2 Fields with 9 Data Points Each = 2 Series

M General Cinema Cambridge
Il B oston Multiples

Il Loews Downtown

[l General Cinema Boston

[D owntown M ultiplex

[l Loews Cambridge

M G eneral Cinema D owntown
Il Cambridge Multiplex

M Loews Boston

Adult Price Child Price

Theaters

For the XData ReportDefinition block that supplies the data, see the Examples of Zen Report XPath Charts. To learn more
about specific <barChart> attributes, see the section *“XPath Chart Attributes in Zen Reports.”

Using Zen Reports 255

Using XPath Charts in Zen Reports

The data series for this chart comes from the values of the AdultPrice and Chi ldPrice attributes in the XData
ReportDefinition block. There are 9 theaters, so there are 9 data points to display in each series. The <barChart> identifies
its data source using the seriesGroup attribute in combination with the dataFields attribute.

The seriesNames attribute gives a text label to each legend entry in this chart. As the legend shows, these labels apply to
the individual data points in each series. As a counterpoint to the legend, the x-axis provides one label for each series, rather
than for each data point. There are two series in this chart, so the <xaxis> labelValues attribute provides one label for each
series in a comma-separated list.

It is useful to provide a seriesColors attribute for this <barChart> because the default color set for series provides only 7
values, after which the colors repeat. Defining an eighth and ninth color makes the chart easier to read because every color
in the chart is unique. It is also possible to simply let the 7 default colors repeat, as shown in the example of a bar chart
with only one series.

See Legends for information on the legendX and legendY attributes.

256 Using Zen Reports

Troubleshooting Zen Reports

This section provides instructions for troubleshooting Zen reports. Topics include:
e Changing Character Sets

e Displaying XHTML with URI Query Parameters

» Solving PDF Generation Problems

* Viewing Intermediate Files

» Debugging XHTML Seen in the Browser

» Troubleshooting the <call> element

9.1 Changing Character Sets

The Zen report class parameter ENCODING contributes an encoding attribute to the xsl zoutput instruction in the
generated XSLT for the report; for example:

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="no"/>

The default ENCODING for all Zen reports is ""'UTF-8"". If you need to use a character set other than the UTF-8 character
set, for example the Latin-1 set, provide an alternate value for ENCODING in the Zen report class. For example:

Parameter ENCODING="1S0-8859-1";

9.2 Displaying XHTML with URI Query Parameters

Sometimes you want to display XHTML in the browser, but all you see is the XSLT data for the Zen report. This can occur
for anumber of reasons, including a DEFAULTMODE setting of "xml™ in the Zen report class. However, there are situations
that causes problems when you have correctly set DEFAULTMODE to "html" or SMODE=html, yet you still cannot see
the XHTML output as you expect. This section describes what to do in those cases.

When invoked in the browser, a Zen report generates XML, sends this XML to the client, then transforms this XML to
XHTML on the client by following an xml -stylesheet processing instruction. The attributes for this instruction appear
as query parameters in a URI string sent to the browser. Internet Explorer only understands URI instructions that have one
parameter after the ? question mark. Problems can occur when the generated xml-stylesheet instructions for a Zen
report class contains multiple parameters and the browser is Internet Explorer.

Using Zen Reports 257

Troubleshooting Zen Reports

For this reason, many of the Zen report class parameters provide the information needed in xml-stylesheet processing
instructions, so that this information does not need to appear in the URI query string. Once you have correctly configured
the class parameters, Zen handles these instructions appropriately, regardless of the browser.

Even if the user enters only one parameter, such as SMODE, when entering the URI string for a Zen report, the subsequent
processing for the report may invisibly add more parameters, or the browser may have difficulty understanding additional
parameters, as in the following cases:

» The Zen report class has its CSP class parameter PRIVVATE set to 1. This makes the page private. A private page can
only be navigated to from another page within the same CSP session. In this case Caché automatically adds the CSP-
Token parameter to the query parameter string in the URI, so on Internet Explorer the string cannot support additional
query parameters.

» The Caché namespace and database associated with your Zen report has been configured with the Allowed Authentication
Methods field on the Excel Servers page set to Unauthenticated access.

Unauthenticated access causes a problem that Password authentication does not. Password access requires a user to
enter a username and password before running a Zen report that is associated with a particular Caché namespace and
database. This login transaction gives Zen the opportunity to detect that the browser supports cookies, so that when
the user subsequently enters the URI of a Zen report, multiple parameters in the query string work well.

Without a login transaction, Zen has no opportunity to detect that the browser supports cookies, so that when the user
subsequently enters the URI of a Zen report, additional parameters in this query string do not work on Internet Explorer.
There are several options to handle these situations. Any one of them solves the problem:

» Use the web Applications page (System Administration > Security > Applications > Web Applications) to configure the
Caché namespace and database that contains the Zen report class with a Use Cookie for Session value of Always.

* Use class parameter EMBEDXSL=1 in the Zen report class.
e Use class parameter STYLESHEETDEFAULTMODE=""tohtml"" in the Zen report class.

e Use the Web Applications page (System Administration > Security > Applications > Web Applications) to configure the
Caché namespace and database that contains the Zen report class with an Allowed Authentication Methods value of
Password, and verify that the class parameter XSLTMODE=""server"" in the Zen report class. XSLTMODE=""server"
is the default if the parameter is not set.

9.3 Solving PDF Generation Problems

Zen reports generally requires Java in order to generate HTML and PDF output. If you are not using the default installed
FOP, or are generating HTML reports with XSLTMODE=""browser"*, Java may not be involved in report generation. If
Java is not installed, or is configured incorrectly, Zen reports generates an error. The solution is:

» Install Java if it is not installed.

» Ensure that the JAVA_HOME environment variable is set. This variable is used by FOP in generating PDFs.

» Ensure that the Java installation directory is on the path used by Caché Server Pages, or the path the Caché user uses.
If you are having trouble using Zen reports to generate PDF output, the problem may arise from one of the following
sources:

» Changes that you know you have made to the Zen report class do not appear in the PDF output when you view your
Zen report. This can happen due to caching of previously displayed pages, especially in Firefox. To overcome this

258 Using Zen Reports

Solving PDF Generation Problems

problem you must fully exit Firefox and start a new Firefox session before viewing the revised Zen report. It is not
necessary for you to restart Caché.

Incorrect configuration of Caché to point to the XSL-FO to PDF rendering tool (FOP or RenderX). For correct
instructions, see the section “Configuring Zen Reports for PDF Output.”

Broken installation of the renderer (FOP or RenderX).

An XSL-FO command that the rendering engine does not understand. Zen generates XSL-FO following the XSL-FO
standard, but not all rendering engines are complete implementations of the XSL-FO standard. FOP, which is free of
charge, is known to be incomplete.

Syntax errors in XData ReportDisplay. The rendering engine (FOP or RenderX) can report these as errors when Zen
does not catch them on the server side.

The following sample troubleshooting session explores problems with displaying a Zen report in PDF format. In this
example:

Zen is running on Caché for Macintosh

The browser is running on Windows

The Caché installation directory is /Applications/Cach81
The Web Server is configured on the default port, 80

The name of the Caché for Macintosh server machine is mypro

These instructions assume that FOP is the XSL-FO to PDF rendering tool, but similar instructions apply to RenderX:

1.

Use these Caché Terminal commands to point Caché to the FOP execution script on the Macintosh machine, for
example:

zn ""%SYS"
Set M"SYS(''zenreport", transformerpath')="/Applications/fop-0.94/fop.bat"

Run the report from the browser on Windows; for example:
http://mypro.local :80/csp/app/ZENApp -MyRep . cIs?$MODE=pdF
The PDF report should display.

If the PDF report does not display, you can test for problems in the FOP installation as follows:

1.
2.

Make sure the ZApplications/Cach81/mgr/temp directory on the Caché server is empty.
Enter the following URI in the browser on Windows:

http://mypro.local :80/csp/app/ZENApp -MyRep . c1s?$MODE=pd F&$LOG=1&$NODELETE=1

Rename the XML and XSLT output files from this run by entering the following commands on the Macintosh where
Caché is installed:

cd /Applications/Cache81/mgr/temp
mv *_xsl test.xsl
mv *.xml test.xml

While still in the /Applications/Cach81/mgr/temp directory, run FOP with the files test.xml and test.xsl, by
entering the following command:

/Applications/fop-0.94/fop -xml test.xml -xsl test.xsl -pdf test.pdf

Examine the console output for any errors. If there are so many errors that they run off the console screen, you can
redirect the console output to the file test.log as follows:;

Using Zen Reports 259

Troubleshooting Zen Reports

/Applications/fop-0.94/fop -xml test.xml -xsl test.xsl -pdf test.pdf > test.log

6. Try to view the output file test.pdf.

9.4Viewing Intermediate Files

Several URI query parameters are available to help in troubleshooting Zen reports. These parameters allow you to view
and save the intermediate and final files generated by the transformation pipeline. These files might include generated
XSLT or XSL-FO files, text files containing error messages from the XML parser, or the final XHTML or PDF files that
result from the completed pipeline.

Note: For information about how to supply report options as URI query parameters, and how to handle side effects that
may occur in some browsers, see the section “Invoking Zen Reports from a Web Browser.” In that section, the
table URI Query Parameters for Zen Reports lists all possible URI query parameters. This section lists only a few
of them.

The diagnostic query parameters are:

¢ $LOG — Use with $SMODE=html or SMODE=pdf to view diagnostic messages.

* $MODE — Choose one of the values listed in “Changing Output Mode to View Intermediate Files” to view one of
the intermediate files.

 3$NODELETE — Save intermediate files to the general Caché temporary directory.
 3$REPORTNAME — Save intermediate files with the name and location of your choice.

* $USETEMPFILES — Save generated XSLT files in the CSP directory for your application.

9.4.1 Adding Saxon Messages to Log Files

To enable diagnostic query parameters to produce a text file listing errors detected by the Saxon parser while it generates
XHTML output, you must configure Zen reports with the location of the Saxon .jar file. Zen reports can produce useful
diagnostic information from the XHTML generation process without this command, but they do not produce the additional
messages from the Saxon parser unless you provide one of the commands described here.

You can issue these commands from the Caché Terminal command prompt. Depending on the version number for the
Saxon parser, the required command may be:

set "SYS(''zenreport','saxjar'')="c:\saxon65\saxon. jar"

Or:

set MSYS(''zenreport',''saxjar'')="c:\saxon\saxon8. jar"

Or:

set M"SYS(''zenreport','saxjar'')="c:\saxon9\saxon9. jar"

9.4.2 Logging Messages from the XSL-FO Parser

When specifying SMODE=html or $SMODE=pdf as described in “Invoking Zen Reports from a Web Browser,” you can
also set the query parameter $LOG=1. This allows you to view the output of the transformation from XML to XHTML or
the transformation from XML via XSLT to XSL-FO to PDF, respectively. For example:

260 Using Zen Reports

Viewing Intermediate Files

http://1ocalhost:57772/csp/myPath/myApp . myReport. cl1s?$MODE=pd F&$LOG=1

Where 57772 is the port number assigned to the Caché server. The following figure shows an example where
$MODE=pdf&$LOG=1. Here the volume of output from $LOG=1 is significant because the document contains many
pages and the rendering engine is RenderX. Sometimes there is little or no output from $LOG=1. The number of messages
depends on the parser in use (FOP or RenderX) and how that parse is configured for logging (quiet or verbose).

{document [system-id file:/C:/EnsembleSys/Mgr/Temp/4644B9¥i9.xml]
(validate [validation OK])
{compile
(masters
(sequence-master [master-name main]))
(sequence [master-reference main]
(title)
(flow [flow-name xsl-region-body]
[warning] could not find any font family matching "Arial”; replaced by Helvetica
m
(format
{sequence [master-reference main]
(flow [L1][21[2][41[S1[ET[TI[E] (91 [10][L1] [12] [13][14] [1S][1&]1[17][18][19][20] [21][22][23] [24]]
(static-content [1][2][3]1([4]([S][6]1[7]1[&]([9][10][11][12][13][14][15][16]([17]1[18][18][20][21][2Z
{generate [output-format pdf] [1]([2][3]1[4]1[5]1 (€] (71[81[9](10][11][12][13](14]1([15](16][17][1B](18] [

9.4.3 Changing Output Mode to View Intermediate Files

As an alternative to $LOG, you can display diagnostic information for a Zen report by providing a special value for the

$MODE query parameter when you supply the .cls URI to the browser. These special values include:

e tohtml — To view the XSLT stylesheet that turns XML into XHTML.:
http://1ocalhost:57772/csp/myPath/myApp.myReport.cls?$MODE=tohtml

» toxslfo — To view the XSLT stylesheet that turns XML into XSL-FO:
http://1ocalhost:57772/csp/myPath/myApp . myReport. cls?$MODE=toxs I fo

» xslfo - To view the XSL-FO stylesheet before PDF rendering:
http://1ocalhost:57772/csp/myPath/myApp . myReport. cls?$MODE=xs 1 fo

Where 57772 is the port number assigned to the Caché server. The following figure shows an example where $SMODE=xslfo.

The message “This XML file does not appear to have any style information associated with it” displays at the top of the
page because the output is neither XHTML nor PDF.

Using Zen Reports 261

Troubleshooting Zen Reports

This XML file does not appear to have any style information associated with it. The document tree is shown below.

—<fo:root>
—<fo:layout-master-set>
—<fo:simple-page-master master-name="main" margin-right="1 25in" margin-left="1 23in" margin-
top="1.0m" margin-bottom="1.0in" reference-orientation="0" page-width="8 5in" page-height="11in">
<fo:region-body margin-b "()" margin-top="0"/>
<fo:region-before extent="0.0pt" display-align="mherit"/>
<fo:region-after extent="0.0pt" display-align="after"/>
</fo:simple-page-master>
</fo:layout-master-set>

— <fo:page-sequence master-reference="main">
<fo:title>HelpDesk Sales Report</fo:title>
—<fo:flow flow-name="xsl-region-body">
—<fo:block>
—<fo:block>
<fo:block color="darkble" font-family="Arial" border-bottom="1px solid darkblue"
font-size="24pt" font-weight="bold"> HelpDesk Sales Report</fo:block>
— <fo:block>
<fo:leader leader-pattern="space"/>
</fo:block>
—<fo:block>
<fo:leader leader-pattern="space"/>
</fo:block>
— <fo:block>
— <fo:table border="none" table-layout="fixed" width="3.45in">
<fo:table-column column-width="1 33in"/>
<fo:table-column column-width="2in"/>
— <fo:table-body>
— <fo:table-row>
—<fo:table-cell text-align="right" font-weight="bold" width="1.35in">
— <fo:block>
<foinline> Title: </fo:inline>
</fo:block=>
</fo:table-cell>
— <fo:table-cell text-align="lcft" width="2mn"> 3

9.4.4 Preserving Intermediate Files for Later Viewing

$LOG and $MODE each display only one form of output at a time, and do not save the files for later viewing. When your
processing pipeline for report output has multiple intermediate files of various types, you can add the query parameter
called SNODELETE to save all intermediate and final output files for later viewing. Zen assigns these output files arbitrarily
generated names such as 2037g4XM9. xs1. You can identify the specific file you need by its time stamp and filename
extension.

Zen stores SNODELETE files in the following location, where C:\MyCache is the name of your installation directory:
C:\MyCache\Mgr\Temp

You can reset this location using the Startup page (System Administration > Configuration > Additional Settings > Startup).
In the TempDirectory row, click Edit. Enter a subdirectory name other than Temp. Caché creates a subdirectory of this
name under the Mgr subdirectory in the Caché installation directory, as shown for Temp in the previous example.

Important: When you change the Caché temporary directory, it changes for all Caché applications, not just for appli-
cations that use Zen reports.

You can use $NODELETE during regular processing, when $MODE=html| or $MODE=pdf, or you can combine it with
special values of $LOG or $MODE to save the output for further study.

For example, suppose you turn on logging and avoid deleting files for a Zen report by entering the following URL in
Firefox:

http://localhost:57772/csp/myns/jsl _MyReport.cls?$MODE=html&$LOG=1&SNODELETE=1

The set of files has names like the following:
e 2172nQ1_2.xsl

* 2172PhA_4.htm

262 Using Zen Reports

Viewing Intermediate Files

e 2172UgbS3.txt
o 2172UZ9x1.xml
Internet Explorer users are limited in the number of URI query parameters they can use when invoking a Zen report from

the browser. If you need to set SNODELETE but cannot spare a URI query parameter to do it, you can set an equivalent
option from the Terminal prompt, as follows:

1. Setyour Caché namespace to the one in which you are running the report, for example:

zn "‘myNameSpace"

2. Enable the “no delete” option for intermediate files:

Set ~CacheTemp.ZEN(*'DebugZen®,*'NoDelete')=1

9.4.5 Setting a File Name for Intermediate and Final Files
The $SREPORTNAME query parameter allows you to save all files generated by the transformation pipeline with the name
and location of your choice.

The REPORTDIR class parameter specifies the location for these files in the local file system on the Caché server. If you
do not supply a value for REPORTDIR, Zen stores SREPORTNAME files in the Caché temporary directory, which by
default is:

C:\MyCache\Mgr\Temp

This default may be changed, as explained in the section “Preserving Intermediate Files for Later Viewing.” To ensure
that output files are well organized, InterSystems recommends that you set a value for REPORTDIR if you plan to use
$REPORTNAME.

Important: Unlike most parameters that share a name except for the $ (dollar sign), there is no relationship between

the REPORTNAME class parameter and the $SREPORTNAME query parameter.

The following is a sample SREPORTNAME session:

1. Specify the following line in the Zen report class:

Parameter REPORTDIR = "c:\zenout"

2. Enter a line like the following in the browser address field:
http://1ocalhost:57772/csp/rpt/Re._Rptl.cls?$MODE=htmI&$REPORTNAME=teste
Where:

e 57772 is the port number assigned to the Caché server
* Re.Rptl.clsisyour Zen report class name
* rptisthe namespace where your application resides

» teste is the filename you wish to use for the output

3. Change to the directory you specified in step 1, and list the generated files as follows:

Using Zen Reports 263

Troubleshooting Zen Reports

C:\> cd zenout

C:\zenout> dir

Volume in drive C has no label.
Volume Serial Number is 6035-CA91

Directory of C:\zenout

06/19/2008 02:55 PM <DIR>

06/19/2008 02:55 PM <DIR> ..
06/19/2008 02:55 PM 6,320 teste.htm
06/19/2008 02:55 PM 559 teste.txt
06/19/2008 02:55 PM 753 teste.xml
06/19/2008 02:55 PM 4,892 teste.xsl

4 File(s) 12,524 bytes
2 Dir(s) 17,536,151,552 bytes free

You can run a session like this without setting the Saxon .jar location as described at the beginning of this section. You still
see the intermediate files, but you see no error messages in the browser and no .txt file is generated, so you have no infor-
mation about syntax errors from the parser.

This sample session also works with SMODE=pdf. Because the FOP and RenderX rendering engines always produce a
syntax analysis, in the PDF case the browser always reports on error messages, and you always see a .txt file that contains
a syntax report. As a commercial product, RenderX has better syntax analysis than FOP, so it is useful to be able to run
RenderX to analyze PDF generation errors. If you are generating XML, for instance by setting $SMODE=xml, you save
only the .xml file.

9.4.6 Saving the Intermediate XSLT Transformation File

Important: The purpose of the SUSETEMPFILES and USETEMPFILES options discussed in this section is to work
around a limitation in the xml-stylesheet processing instruction on Internet Explorer. This limitation causes
display problems, particularly when the Zen report class has its CSP class parameter PRIVATE set to 1
(True) or session cookies are turned off. The problems arise only when report processing is done in the
browser. For this reason, SUSETEMPFILES is only valid when XSLTMODE=""browser"* or
$XSLT=browser. SUSETEMPFILES does not work when XLSTMODE=""server" or $XSLT=server.

A Zen report class generates an XSLT stylesheet. It subsequently uses the generated XSLT stylesheet to generate the output
XHTML. There is a URI parameter called SUSETEMPFILES that you can use to save this interim XSLT stylesheet as a
file. The default for SUSETEMPFILES is 0 (false). In this case Zen generates and uses XSLT but does not save it to a file.
When the SUSETEMPFILES query parameter is set to 1 (true) Zen saves the intermediate XSLT stylesheet to a file so that
you can view it for diagnostic purposes.

There are several reasons why you might use SUSETEMPFILES to save the generated XSLT stylesheet, when SNODELETE
and $SREPORTNAME are also available and provide more flexibility. The reasons for using SUSETEMPFILES are as
follows:

» SUSETEMPFILES addresses display problems that occur when the browser is Internet Explorer, report processing is
occurring in the browser (it happens on the server by default), and the Zen report class has its CSP class parameter
PRIVATE set to 1 (True) or session cookies are turned off.

* Zen saves the .xsl files for SUSETEMPFILES in a different location for each Caché namespace. SNODELETE saves
all intermediate files in the same Caché temporary directory.

» Internet Explorer users are limited in the number of URI query parameters they can use when invoking a Zen report
from the browser. These users might not be able to supply $SNODELETE or SREPORTNAME as a URI query
parameter in the browser address field. Unlike SNODELETE and $REPORTNAME, $USETEMPFILES has a Zen
report class parameter equivalent called USETEMPFILES, which you can set to 1 in the Zen report class to enable the
$USETEMPFILES feature without using a URI query parameter.

Important: A SUSETEMPFILES query parameter supplied to the browser overrides any value set for the class
parameter USETEMPFILES in the Zen report class.

264 Using Zen Reports

Debugging XHTML Seen in the Browser

e When you are diagnosing style issues, the .xsl file may be the only file of interest. SUSETEMPFILES only saves the
xsl file.

When USETEMPFILES=1, after running a report Zen stores .xs! stylesheet files in specific locations, which it records as
strings in the following global node:

"SYS('zenreport™, tmpdir')

To find out the current temporary file names and locations, issue the ZWRITE command with
~pSYS(M'zenreport',"tmpdir'™) at the Terminal prompt. The resulting list of files is something like the following,
where C:\MyCache is the name of your installation directory, ZENApp.MyReport is the full package and class hame of a Zen
report class residing in the SAMPLES namespace and a report residing in the ENSEMBLE namespace, and Cinema.MyReport
is the full package and class name of another report residing in the SAMPLES namespace. The resulting list of files is
something like the following (line endings added for typesetting):

SAMPLES>zw ~%SYS(''zenreport')

NRSYS(M'zenreport”, tmpdir',"ENSEMBLE" , ""ZENApp - MyReport",

""C:\MyCache\CSP\ensemble\ jnSi7x6mbFXHDg.xsl"")="""

~pSYS('zenreport', "tmpdir',""SAMPLES", ""Cinema.MyReport",

""C:\MyCache\CSP\samples\PhaRNCLC1ZZJzg.xsl')="""

~"pSYS(*'zenreport',"tmpdir',""SAMPLES", "ZENApp -MyReport",
""C:\MyCache\CSP\samples\T4XLVtQaHJUuNA_ xsl*)="""

If you have not run any reports with XSLTMODE=""browser"* and USETEMPFILES=1 then
~NESYS(M'zenreport', tmpdir') is empty.

Periodically you might want to delete the generated .xsl files that Zen has saved as a result of the SUSETEMPFILES option.
You can do so by issuing the following command at the Terminal prompt, or from within an ObjectScript routine. In this
example, ZENApp.MyReport is the full package and class name of the Zen report class:

SAMPLES>do ##class(ZENApp.MyReport) .%DeleteTempFiles()

After issuing this command, the list of files is as follows:

SAMPLES>zw MSYS(*'zenreport'™)
~"pSYS(*'zenreport', "tmpdir'',""ENSEMBLE" , ""ZENApp -MyReport',
""C:\MyCache\CSP\ensemble\JnSi7x6mbFXHDg.xsl*)="""
NpSYS(M'zenreport”, "tmpdir™,"SAMPLES",""Cinema.MyReport",
""C:\MyCache\CSP\samples\PhaRNCLC1ZZJzg.xsl')="""

Note that this command deletes only those temporary files related to the Zen report class specified in the command, in the
namespace where the command is run. The default value for SUSETEMPFILES is 0 (false).

9.5 Debugging XHTML Seen in the Browser

It can be difficult to debug the Zen report output that appears in browsers. Some of the difficulties arise because when you
use XML+XSLT in your browser, asking to View Page Source presents you with the original XML file, not the XHTML
that you might have expected. This makes debugging XSLT transformations somewhat difficult.

Often what is needed to understand a Zen report problem or debug the XSLT is not a full-fledged XSLT debugger like
<oXygen/> or XMLSpy, but a representation of the XHTML that corresponds to the browser's rendering decisions. This
section describes how to achieve this in Firefox and Internet Explorer.

Internet Explorer and Firefox have different XSLT rendering engines and do not render some Zen reports in the same way.
For example, consider the following Zen report fragment:
<item field="Q@author" />

<item value=" " />
<item field="@author" />

Using Zen Reports 265

Troubleshooting Zen Reports

Internet Explorer renders the following XHTML:

BOB

BOB

Firefox renders the following XHTML.:

BOBBOB

There are XSLT debugging tools available for IE which you can find by searching the Web for “debug XSL output in IE”.
InterSystems does not recommend a specific tool, but there are many available.

For Firefox:

1. Follow the instructions in the previous sections, such as “Logging Messages from the XSL-FO Parser” and *“Preserving
Intermediate Files for Later Viewing,” to enable logging and avoid deleting files. For example:

http://localhost:57772/csp/myns/jsl _MyReport.cls?$MODE=html&$LOG=1&$SNODELETE=1

The files that you can use for debugging are output in the general Caché temporary directory with names like
2172nQ1_2.xsl and 2172UZ9x1.xml.

When you save intermediate files in this way, the generated .htm file is generated by the Saxon parser, and does not
render in the Firefox browser in the same way as the XHTML produced by Firefox’s built-in XSLT renderer.

2. To generate the XHTML that corresponds to Firefox’s rendering decisions, run the following JavaScript in Firefox.
Be sure to substitute the names of your .xsl and .xml intermediate files. This script opens a new window so you need
to turn off popup blocking to use it:
var oXmlDom = document. implementation.createDocument(null,null,null);
var oXslDom = document.implementation.createDocument(null,null,null);
oXmlDom.async = false;
oXmlDom. load(*'2172UZ9x1 . xml'") ;
oXslDom.async = false;
oXslDbom. load(*'2172nQ1_2.xsl'")
var oProcessor = new XSLTProcessor();
oProcessor.importStersheet(oXleom);
var oResultDom = oProcessor.transformToDocument(oXmlDom) ;
var xml_out = (new XMLSerlaIlzer()) serlal|zeTOStr|ng(0ResultD0m)
var newWindow = window.open(*"

newWindow.document.write(xml out)
newWindow.document.close();

3. In the newly opened window, ask to View Page Source. You can now see the XHTML that corresponds to Firefox’s
rendering decisions.

9.6 Troubleshooting the <call> element

In order for Zen report generation to work correctly, the generated XSLT must be able to locate the elements in the generated
XML. Zen reports that use the <call> element can be more complex in terms of the matching between XML and XSLT.
The following information on the attributes used when calling subreports from the ReportDisplay block may be helpful in
resolving problems.

The subreport attribute provides the mode attribute of some instances of xsl1 zapply-templates and xsl :template.

The subreportname attribute provides the value of the match attribute of some instances of xs 1 : temp late and contributes
to the value of the select attribute of some xsl :apply-templates elements.

Also see the section “Viewing Intermediate Files” for information on using $SREPORTNAME to view generated XSLT.

266 Using Zen Reports

Zen Report Class Parameters

A class parameter is an ObjectScript convention that you can use in Zen report classes. For an overview, see “Class
Parameters” in the “Caché Classes” chapter of Using Caché Objects.

A Zen report class supplies the class parameters described in the following sections:

* “Class Parameters for General Use” provide processing instructions for a Zen report. These parameters include the
APPLICATION, DEFAULTMODE, and REPORTXMLNAMESPACE parameters, which the Zen Report Wizard
automatically provides when you create a new Zen report class in Studio.

» “Class Parameters for XSLT Stylesheets™ contribute additional, specialized XSLT processing instructions. This set
of parameters addresses problems that can occur when the browser is Internet Explorer and the Zen report class is
marked as private by setting its CSP class parameter PRIVATE to 1 (True). If this is not your situation, you do not
need these additional class parameters.

A.l Class Parameters for General Use

This section lists the Zen report class parameters that provide essential processing instructions for a Zen report.

Note: A Zen report class is not a Zen page class. Therefore, none of the “Zen Page Class Parameters” described in the
book Developing Zen Applications apply to Zen report classes. However, a Zen report class is a Caché Server
Page (CSP) class. Therefore, in addition to the Zen report class parameters described in this section, a Zen report
class supports all of the CSP class parameters described in the online class documentation for %CSP.Page.

APPLICATION

Associates the Zen report with a Zen application. A Zen report's application provides the default values for built-
in class parameters. A value specified in the Zen Report itself takes priority over the value from the application.
If you do not specify an application, the Zen report uses %ZEN.Report.defaultApplication.

If you define a new class parameter on the Zen report, there is no automatic logic to inherit the value from the
Application. You need to define the parameter in both the report and the application. You can then use the macro
$$SGETPARAMETER to get the value from the application, as illustrated in the following example:

Using Zen Reports 267

Zen Report Class Parameters

/// User-defined parameter. Defined on Report and on Application.
Parameter COPYFROMAPP = "FromRpt";

Property CopyFromApp As %String(ZENURL = "‘CopyFromApp');

/// This callback is invoked after this report is instantiated
/// and before it is run.

Method %OnBeforeReport() As %Status

Set:..CopyFromApp=""" ..CopyFromApp=$$$GETPARAMETER("'COPYFROMAPP"")
Quit $$$0K

The application and the report must use the same name for the parameter. You cannot use the macro $$$GETPA-
RAMETER to coalesce values from parameters with different names. The user-specified Application should extend
%ZEN.Report.defaultApplication.

AGGREGATESIGNORENLS

Setting this parameter to true causes aggregates causes Zen reports to ignore National Language Settings (NLS)
for aggregates. If it is set to false, NLS works transparently with Zen reports aggregates when the runtime mode
is DISPLAY (2). The default value is true.

AGGREGATETAG

Setting this parameter enables support for aggregates in generated Excel spreadsheets. You can set it to any value
that is a valid XML attribute name. The value becomes the name of an attribute that tags items in the generated
XML as coming from an <aggregate> in the report. Used with DEFAULTMODE=""excel”” and
DEFAULTMODE=""x1sx™.

CONTENTTYPE

Contributes a type attribute to the xml-stylesheet instruction in the generated XSLT for the report; for
example:

<?xml-stylesheet type="text/xsl"?>

The default CONTENTTYPE is text/xml.

DATASOURCE
Identifies an XML document that contains the data for the Zen report. See the section “DATASOURCE” in the
chapter “Gathering Zen Report Data.”

DEFAULTMODE

Identifies the default output mode for the report. The user can override this parameter by setting $MODE in the
URI.

If DEFAULTMODE is set to ps, you must also use the class parameter PS or the URI parameter $PS to provide
the location of the PostScript printer.

A user can override the current DEFAULTMODE setting for the report class by providing a SMODE parameter
in the URI when invoking the Zen report from a browser. Basic information about SMODE appears at the beginning
of the section “Invoking Zen Reports from a Web Browser.” For additional information, also see “Changing
Output Mode to View Intermediate Files™ in the chapter *“Troubleshooting Zen Reports.”

ENCODING

Contributes an encoding attribute to the xsl :output instruction in the generated XSLT for the report; for
example:

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="no"/>

268 Using Zen Reports

Class Parameters for General Use

The default ENCODING is ""UTF-8"". If you need to display characters outside the UTF-8 character set, for
example in the Latin-1 set, provide an alternate value for ENCODING such as:

Parameter ENCODING="1S0-8859-1";

EXCELMODE
Specifies whether the data for an Excel spreadsheet should come from <attribute> or <element> tags. By default,
data comes from <element> tags. Use of EXCELMODE = "attribute' is not recommended, because it is
inflexible and unable to carry Excel metadata. Used with DEFAULTMODE=""excel”” and DEFAULTMODE=""xIsx”’.
EXCELMULTISHEET

Specifies whether a Zen report that generates an Excel spreadsheet generates a spreadsheet that contains multiple
worksheets. If EXCELMULTISHEET = 1, the report generates a worksheet for each <group> element that is a
direct child of <report>.

EXCELSTYLESHEET

Identifies the to-excel stylesheet that controls XHTML output for the Zen report. If a Zen report class has both a
non-empty, valid EXCELSTYLESHEET string and an XData ReportDisplay block, the EXCELSTYLESHEET
parameter takes precedence over the XData block.

This string can be any of the following:

* The URI of any valid XSLT stylesheet. You can use any URI that returns appropriate XSLT. Relative URIs
are handled with respect to the current URI.

For general information about query parameters, see the “URI Query Parameters for Zen Reports™ section
in the chapter “Running Zen Reports.”

» The name of a file containing a valid XSLT stylesheet. The file must reside in the directory specified in the
CSP Files Physical Path for the Web Application definition for the Zen report. For example, if the URI for
the Zen report class is:

http://localhost:57772/csp/myNamespace/mine.MyReport.cls

Then the syntax for the EXCELSTYLESHEET parameter is:

Parameter EXCELSTYLESHEET="data.xsl";

And the file data.xsl must reside in the directory specified as the CSP Files Physical Path. The default value
for this directory is: /csp/myNamespace.

* Anempty string. In this case, the class generates a to-EXCEL stylesheet using the specification in its XData
ReportDisplay block.

WARNING! Do notuse a URI string that refers to the Zen report class in which the EXCELSTYLESHEET
parameter appears. Doing so results in infinite recursion, which leads to an <UNDEFINED>
error and the creation of hundreds of processes.

The XSLFOSTYLESHEET parameter performs the same function in reports that generate PDF output, and
theHTMLSTYLESHEET parameter performs the same function in reports that generate HTML output.

HTMLSTYLESHEET

Identifies the to-HTML stylesheet that controls XHTML output for the Zen report. If a Zen report class has both
a non-empty, valid HTMLSTYLESHEET string and an XData ReportDisplay block, the HTMLSTYLESHEET
parameter takes precedence over the XData block.

Using Zen Reports 269

Zen Report Class Parameters

This string can be any of the following:

» The URI of any valid XSLT stylesheet. You can use any URI that returns appropriate XSLT. Relative URIs
are handled with respect to the current URI.

The URI string can refer to a to-HTML stylesheet created by another Zen report class in the same namespace.
Use the $MODE=tohtml query parameter to specify that you want to use the to-HTML output from that class,
as follows:

Parameter HTMLSTYLESHEET="MyApp.Report.cls?$MODE=tohtml";

For general information about query parameters, see the “URI Query Parameters for Zen Reports™ section
in the chapter “Running Zen Reports.”

» The name of a file containing a valid XSLT stylesheet. The file must reside in the directory specified in the
CSP Files Physical Path for the Web Application definition for the Zen report. For example, if the URI for
the Zen report class is:

http://localhost:57772/csp/myNamespace/mine.MyReport.cls

Then the syntax for the HTMLSTYLESHEET parameter is:

Parameter HTMLSTYLESHEET="data.xsl";

And the file data.xsl must reside in the directory specified as the CSP Files Physical Path. The default value
for this directory is: /csp/myNamespace.

* Anempty string. In this case, the class generates a to-HTML stylesheet using the specification in its XData
ReportDisplay block.

WARNING! Do notuse a URI string that refers to the Zen report class in which the HTMLSTYLESHEET
parameter appears. Doing so results in infinite recursion, which leads to an <UNDEFINED>
error and the creation of hundreds of processes.

The XSLFOSTYLESHEET parameter performs the same function in reports that generate PDF output, and the
EXCELSTYLESHEET parameter performs the same function in reports that generate Excel spreadsheet output.
INDENT

Contributes an indent attribute to the xsl zoutput instruction in the generated XSLT for the report; for
example:

<xsl:output method="xml" version="1.0" encoding=""UTF-8" indent="no"/>

INDENT may be "yes' or "'no"". The default is "'yes"".

NAMESPACEDECLARATIONS
Allows you to define namespace declarations, for example:
“"xmIns="http://mydefault® xmlns:nsl="http://namespacel""
The namespace declarations are added to the root element of the generated XML and also to the stylesheet element
of the generated XSL.
PDFSWITCH

Like XMLSWITCH and XSLSWITCH, PDFSWITCH helps Zen to format the command line it uses to invoke a
third-party PDF rendering engine to produce PDF output. For details about PDF output, see the section “Config-
uring Zen Reports for PDF Output.”

270 Using Zen Reports

Class Parameters for General Use

Usually the choice of PDF rendering engine is XEP or FOP, each of which supports the following command line
option to introduce the name of the PDF output file for the transformation from XSL-FO to PDF:

-pdf
This is the default value for PDFSWITCH.

If you want Zen reports to use a PDF rendering engine other than XEP or FOP, this engine might require a different
command line option to identify its PDF output file. You must specify the correct option syntax using the PDF-
SWITCH class parameter in your Zen report class. For example:

Parameter PDFSWITCH = "-0";

PRESERVESPACE

Contributes an xsl : preserve-space instruction to the generated XSLT for the report; for example, if
PRESERVESPACE="literal layout" the instruction is:

<xsl:preserve-space elements=""literallayout/>
The value of PRESERVESPACE can be a comma-separated list of element names.

There is no default PRESERVESPACE value. If none is supplied, Zen does not generate the instruction.

PRIVATE

PS

As described in the section “Zen Report Tutorial,” a Zen report class is also a Caché Server Page (CSP) class.
Therefore, a Zen report class supports the same class parameters as a CSP page class, including the PRIVATE
parameter, which plays an important role in Zen reports.

When PRIVATE is set to 1, the page is private. This means it can only be navigated to from another page within
the same CSP session. For further details, see “ Authentication and Encryption™ in the “ CSP Session Management”
chapter in the book Using Caché Server Pages (CSP).

Specifies the location of a PostScript printer, such as:
Parameter PS = "\\devD630\BrotherH";
To send a report directly to the specified PostScript printer, without creating an intervening PDF file, set the

DEFAULTMODE class parameter to''ps™". You can also set SMODE=ps in the URI string and set the URI query
parameter $PS to the location of the PostScript printer.

REPORTNAME

(Firefox only) Controls the filename suggested by the browser when you choose File > Save As to save the final
output of running a Zen report in XHTML or PDF format. If you do not supply a value for the REPORTNAME
class parameter, the browser uses the Zen report class name as the suggested filename.

The location for saved Zen report output is as follows:
C:\MyCache\CSP\myApp\

Where C:\MyCache is the name of your installation directory and myApp is the namespace where the Zen report
class resides.

REPORTNAME does not work with Internet Explorer, Chrome, or Safari. In these cases the <report> must have
a title attribute set; that title is used in the File > Save As prompt. REPORTNAME works with Firefox when
XHTML is generated on the server side. Server-side generation takes place when the output format is PDF, when
XSLTMODE or $XSLT is set to "server" (the default), or when you have instructed Zen reports to embed XSLT
instructions within the output XHTML by setting EMBEDXSL or $EMBEDXSL to 1.

Using Zen Reports 271

Zen Report Class Parameters

Unlike most parameters that share a name except for the $ (dollar sign), there is no relationship between
REPORTNAME and the URI query parameter SREPORTNAME.

REPORTDIR

Controls the directory for output files specified by “The $SREPORTNAME Query Parameter,” as described in
the “Troubleshooting Zen Reports™ section of the chapter “Running Zen Reports.”

REPORTDIR works with SREPORTNAME only. It does not interact with the REPORTNAME class parameter.

RESOURCE

Name of a system Resource for which the current user must hold USE privileges in order to view this page or to
invoke any of its server-side methods from the client.

RESOURCE may be a comma-delimited list of resource names. In this case, the user must hold USE privileges
on at least one of the given Resources in order to use the page.

For further details, see the section “Application Resources” in the “ Assets and Resources” chapter of the Caché
Security Administration Guide.
SQLCACHE

The correct processing of sibling groups and elements requires caching of SQL queries. By default, Zen reports
cache SQL queries (SQLCACHE=1). If you prefer not to cache queries while running Zen reports (SQLCACHE=0),
then you cannot use sibling groups and elements without generating an error when compiling the Zen report class.

STRIPSPACE

Contributes an xs1 : strip-space instruction to the generated XSLT for the report; for example, if
STRIPSPACE="*" the instruction is:

<xsl:strip-space elements="*"/>

There is no default STRIPSPACE value. If none is supplied, Zen does not generate the instruction.

SUPPRESSEXCELHEADERS

Set suppressExce lHeaders=""true" to suppress all headers that are normally generated when you create an
Excel spreadsheet from a Zen report.

TABLEALTCOLOR

Lets you set a color for alternate table rows on a report-wide basis, instead of specifying the <table> attribute
altcolor on each table. You can use the corresponding TableAltColor property when using GenerateReport. If
you specify altcolor on a table, the table setting overrides TABLEALTCOLOR.

USEHTML5
Lets you override the default behavior, which is to generate HTML5 when the browser supports it.

When UseHTMLS5 is **** (null), which is the default value, a report rendering in a browser generates HTMLS5 if it
has determined that the browser supports HTML5. When UseHTMLS5 is non-null, the boolean value determines
whether to generate HTML5 or not regardless of whether the browser supports HTML5. You can use the corre-
sponding UseHTML5 property when using Gener ateReport.

272 Using Zen Reports

Class Parameters for General Use

USEINSTANCEHOSTNAMEONRELATIVEURLS

When a Zen report is shared among several servers for load balancing purposes, and when the Zen report uses
elements such as <xslinclude> that refer to other Zen or CSP pages, the external PDF rendering engine needs a
way to come back to the Caché CSP Gateway instead of going all the way back to the virtual IP. The attempt to
go back to the virtual IP results in an error, since the gateway does not recognize that address.

It is possible to configure a Zen report class so that it substitutes the configured instance host name for the CSP
Gateway whenever it constructs a full URL from the relative paths contained in <xslinclude> and other elements
that supply URLs. To enable this feature, set the USEINSTANCEHOSTNAMEONRELATIVEURLS class
parameter to 1 (true). The default is O (false).

You can enable or disable USEINSTANCEHOSTNAMEONRELATIVEURLS without knowing or setting the
instance host name for the CSP Gateway:. It is rarely necessary to configure an instance host name other than the
default, which identifies the local Caché server and its Web server port. For more details, see the “Configuring
Default Parameters” section in the “CSP Gateway Operation and Configuration” chapter of CSP Gateway Con-
figuration Guide.

XMLSTYLESHEET
Identifies the XSL stylesheet that transforms XML provided by the ReportDefinition into a form appropriate for
input to the ReportDisplay.

XMLSWITCH

Like XSLSWITCH and PDFSWITCH, XMLSWITCH helps Zen to format the command line it uses to invoke a
third-party PDF rendering engine to produce PDF output. For details about PDF output, see the section “Config-
uring Zen Reports for PDF Output.”

Usually the choice of PDF rendering engine is XEP or FOP, each of which supports the following command line
option to introduce the name of the XSL-FO data file for the transformation from XSL-FO to PDF:

-xml
This is the default value for XMLSWITCH.

If you want Zen reports to use a PDF rendering engine other than XEP or FOP, this engine might require a different
command line option to identify its XSL-FO data file. You must specify the correct option syntax using the
XMLSWITCH class parameter in your Zen report class. For example:

Parameter XMLSWITCH = *'-d"';

XSLFOSTYLESHEET

Identifies the to-XSLFO stylesheet that controls XHTML output for the Zen report. If a Zen report class has both
a non-empty, valid XSLFOSTYLESHEET string and an XData ReportDisplay block, the XSLFOSTYLESHEET
parameter takes precedence over the XData block.

This string can be any of the following:

* The URI of any valid XSLT stylesheet. You can use any URI that returns appropriate XSLT. Relative URIs
are handled with respect to the current URI.

The URI string can refer to a to-XSLFO stylesheet created by another Zen report class in the same namespace.
Use the $MODE=toxs I fo query parameter to specify that you want to use the to-XSLFO output from that
class, as follows:

Parameter XSLFOSTYLESHEET="MyApp.Report.cls?$MODE=toxslfo";

For general information about query parameters, see the “URI Query Parameters for Zen Reports” section
in the chapter “Running Zen Reports.”

Using Zen Reports 273

Zen Report Class Parameters

* The name of a file containing a valid XSLT stylesheet. The file must reside in the Web Application directory
for the namespace in which the Zen report class resides. For example, if the URI for the Zen report class is:

http://localhost:57772/csp/myNamespace/mine .MyReport.cls

Then the syntax for the XSLFOSTYLESHEET parameter is:

Parameter XSLFOSTYLESHEET='"'data.xsl';

And the file data.xsl must reside in the directory specified as the CSP Files Physical Path. The default value
for this directory is: /csp/myNamespace.

e Anempty string. In this case, the class generates a to-XSLFO stylesheet using the specification in its XData
ReportDisplay block.

WARNING! Do notuse a URI string that refers to the Zen report class in which the XSLFOSTYLESHEET
parameter appears. Doing so results in infinite recursion, which leads to an <UNDEFINED>
error and the creation of hundreds of processes.

The HTMLSTYLESHEET parameter performs the same function in reports that generate HTML output, and the
EXCELSTYLESHEET parameter performs the same function in reports that generate Excel spreadsheet output.

XSLSWITCH

Like XMLSWITCH and PDFSWITCH, XSLSWITCH helps Zen to format the command line it uses to invoke a
third-party PDF rendering engine to produce PDF output. For details about PDF output, see the section “Config-
uring Zen Reports for PDF Output.”

Usually the choice of PDF rendering engine is XEP or FOP, each of which supports the following command line
option to introduce the name of the XSL-FO stylesheet file for the transformation from XSL-FO to PDF:

-xsl
This is the default value for XSLSWITCH.

If you want Zen reports to use a PDF rendering engine other than XEP or FOP, this engine might require a different
command line option to identify its XSL-FO stylesheet file. You must specify the correct option syntax using the
XSLSWITCH class parameter in your Zen report class. For example:

Parameter XSLSWITCH = "-s";

XSLTVERSION

A value of ""1.0" or ""2.0" causes the XSLT for this report to be processed as XSLT Version 1.0 or XSLT
Version 2.0, respectively. **1.0" is the default. The XSLTVERSION value affects the XSLT that a Zen report
generates as well as any that it encounters in <xslt> sections, XData blocks, or external files. A user can override
the current XSLTVERSION setting for the report class by providing an $XSLTVERSION parameter in the URI
when invoking the Zen report from a browser.

XSLT 1.0 is the default, and requires no special preparation. XSLT 2.0 represents significant changes from XSLT
1.0, including more careful type checking and more options for controlling the flow of logic within the transfor-
mation. XSLT 2.0 transformations are not likely to work if they are interpreted as XSLT 1.0. Problems in the other
direction occur less frequently: XSLT 1.0 transformations often work when interpreted as XSLT 2.0. However,
they can produce different output than when interpreted as XSLT 1.0, or fail to work. There are no compatibility
guarantees.

274

Using Zen Reports

Class Parameters for XSLT Stylesheets

A.2 Class Parameters for XSLT Stylesheets

This section lists the Zen report class parameters that contribute specialized XSLT processing instructions. These class
parameters address problems that can occur when the browser is Internet Explorer and the Zen report class is marked as
private by setting its CSP class parameter PRIVATE to 1 (True). If this is not your situation, you do not need these additional
class parameters.

When invoked in the browser to generate XHTML, a Zen report generates XML, sends this XML to the client, then transforms
this XML to XHTML on the client by following an xml-stylesheet processing instruction. The attributes for this
instruction appear as query parameters in a URI string sent to the browser. Internet Explorer only understands URI
instructions that have one parameter after the ? question mark. Problems can occur when the generated xml-stylesheet
instructions for a Zen report class contains multiple parameters and the browser is Internet Explorer. This is particularly
true if the Zen report class is marked as private by setting its CSP class parameter PRIVATE to 1 (True).

For this reason, many of the Zen report class parameters provide the information needed in xml-stylesheet processing
instructions, so that this information does not need to appear in the URI query string. Once you have correctly configured
the class parameters, Zen handles these instructions appropriately, regardless of the browser. The following list describes

the Zen report class parameters of this type.

Note: For information about how to supply report options as URI query parameters, and how to handle side effects that
may occur in some browsers, see the “Invoking Zen Reports from a \Web Browser” section of the chapter
“Running Zen Reports.”

EMBEDXSL

When EMBEDXSL=1 (true) Zen generates XSLT instructions embedded within the output XHTML. The default
for EMBEDXSL is 0 (false), in which case Zen generates a separate XSLT file, rather than embedding the
instructions in the XHTML file.

Embedding the XSLT instructions brings up the issue of uniqueness for XML elements in the output file. The
default namespace http://www.w3.0org/1999/xhtml cannot be the namespace for all the generated XML
elements if the generated XML and XSLT are combined in a single HTTP response. To ensure fully qualified
XML names, InterSystems recommends when you set EMBEDXSL=1 you also provide a namespace name and
prefix by providing values for REPORTXMLNAMESPACE and REPORTXMLNAMESPACEPREFIX in the
Zen report class, for example:

Parameter EMBEDXSL=1;
Parameter REPORTXMLNAMESPACE="http://www.example.com";
Parameter REPORTXMLNAMESPACEPREFIX="'SR";

Then the generated XML looks like the following example and the XSLT is updated to work with this XML.:

<SR:myReport xmIns:SR="http://www.example.com"
runTime="2008-03-27 00:01:49*
runBy="_SYSTEM" author="BOB" month="Jan">
<SR:SalesRep name="Jack">

<SR:record id="331" number="5">
<SR:date>2005-01-20</SR:date>
<SR:customer>Yoyomo Inc.</SR:customer>
</SR:record>

<SR:record id="537" number="9">
<SR:date>2005-01-20</SR:date>
<SR:customer>XenaData.com</SR:customer>
</SR:record>

<I-- more records omitted -->

</SR:SalesRep>
</SR:myReport>

Using Zen Reports 275

Zen Report Class Parameters

You can omit the REPORTXMLNAMESPACE or REPORTXMLNAMESPACEPREFIX parameters from the
Zen report class. When EMBEDXSL=1 and these parameters are not set, they default as follows:

REPORTXMLNAMESPACE defaults to:
http://www. intersytems.com/mydefaultnamespace
* REPORTXMLNAMESPACEPREFIX defaults to:
my
When an external DATASOURCE is identified, EMBEDXSL is ignored.

A user can override the current EMBEDXSL setting for the report class by providing a SEMBEDXSL parameter
in the URI when invoking the Zen report from a browser.

REPORTXMLNAMESPACE

Specifies the XML namespace to be used in the generated XML report. This is especially important if you are
using EMBEDXSL=1. There is a default name, http://www. intersytems.com/mydefaultnamespace,
but you can specify your own choice. For details, see EMBEDXSL.

REPORTXMLNAMESPACEPREFIX

Specifies the XML namespace prefix to be used in the generated XML report. This is especially important if you
are using EMBEDXSL=1. There is a default prefix, my, but you can specify your own choice. For details, see
EMBEDXSL.

STYLESHEETDEFAULTMODE

Allows you to specify the processing mode to use if the URI parameter SMODE is not specified. DEFAULTMODE
serves this same purpose, but cannot be used if the Zen report class is marked as private by setting its CSP class
parameter PRIVATE to 1 (True). STYLESHEETDEFAULTMODE is provided to help in this case. Otherwise it
is not needed.

If your Zen report uses both DEFAULTMODE and STYLESHEETDEFAULTMODE, you must set them carefully.
Be aware that if both are set and the URI parameter $MODE is not specified, then STYLESHEETDEFAULTMODE
overrides DEFAULTMODE as the default style mode.

If you want to use the STYLESHEETDEFAULTMODE, and your desired output format is:
» Excel spreadsheet, use this combination of settings and values:

— Class parameter DEFAULTMODE may have any value

— Class parameter STYLESHEETDEFAULTMODE=""toexcel"

— URI query string parameter $MODE=""excel"* or $MODE=""xIsx"*

e XHTML, use this combination of settings and values:
— Class parameter DEFAULTMODE may have any value
— Class parameter STYLESHEETDEFAULTMODE=""tohtml"

— URI query string parameter $MODE=""html""

* PDF, use this combination:
— Class parameter DEFAULTMODE may have any value
— Class parameter STYLESHEETDEFAULTMODE=""toxslfo"

276

Using Zen Reports

Class Parameters for XSLT Stylesheets

— URI query string parameter $MODE=""pdf"*

» XML, use this combination:
— Class parameter DEFAULTMODE may have any value
— Omit the class parameter STYLESHEETDEFAULTMODE
— Omit $MODE, or use $MODE=""xmI"*

The full list of possible values for STYLESHEETDEFAULTMODE is:
e "tohtml" — To-HTML stylesheet in XSLT format
* "toxslfo" — To-XSLFO stylesheet in XSLT format

USETEMPFILES

When USETEMPFILES=1 (true) Zen writes its generated XSLT stylesheet to a file. It subsequently uses the
generated XSLT stylesheet in the file to generate the output XHTML. The default for USETEMPFILES is O (false).
In this case Zen generates and uses XSLT but does not save it to a file.

For further details, including the file locations for the generated XSLT stylesheet file, see “The SUSETEMPFILES
Query Parameter” in the “Troubleshooting Zen Reports” section of the chapter “Running Zen Reports.”
$USETEMPFILES is the equivalent URI query parameter for USETEMPFILES.

XSLTMODE

Allows you to specify where XSLT transformation occurs, without adding to the number of query parameters in
the URI string for the Zen report. XSLTMODE can have the value "'browser" or "'server"". This causes the
XSLT to be processed, and XHTML to be generated, on the server or browser, respectively.

XSLT processing is expensive; it could compromise the scalability of the application to shift XSLT processing to
the server. However, the XSLTMODE option is provided to allow that flexibility. The default XSLTMODE is
"server". Also see USETEMPFILES.

A user can override the current XSLTMODE setting for the report class by providing a $XSLT parameter in the
URI when invoking the Zen report from a browser.

When the output mode is PDF, some processing always occurs on the server, because the third-party PDF gener-
ator engine (RenderX or FOP) runs on the server.

Using Zen Reports 277

Default Format and Style

If you set style=""none"" for the top-level <report> element in XData ReportDisplay, the standard Zen stylesheet is
ignored and there are no predefined styles for Zen reports. However, if you omit the style attribute for <report>, your reports
use the standard stylesheet for Zen reports. This stylesheet is a collection of predefined style classes with the following
names:

e p.bannerl

* inline.bannerl

 table

 table.tablel, .. table.table5

e table.grid, table.invisible, table_numeric
e ud

e td.tablel, .. td.table5

e td.grid, td.invisible, td.numeric

e th

* th.tablel, .. th_table5

e th.grid, th.invisible, th_.numeric

The following <table> element uses the class attribute to apply a predefined style called table.grid to a table in a Zen
report:

<table class="grid" group="Step'>

<item width="0.8in" field="@Number" />
<item width="0.8in" field="_/AllSet" />
<item field="_./DemoText" />

</table>

You may also define custom style classes using the <class> element and apply these custom styles using the class attribute.
A set of <class> elements may optionally appear inside the single <document> element that defines high level page layout
for the <report>. For details, see the <class> subsection of the <document> section in the chapter “Formatting Zen Report
Pages.”

To view details of the predefined style definitions, see the following sections:
o Default CSS Styles for Zen Reports in HTML Format
o Default XSL-FO Styles for Zen Reports in PDF Format

Using Zen Reports 279

Default Format and Style

B.1 Default CSS Styles for Zen Reports in HTML Format

Default styles for Zen reports use the following CSS statements to control the appearance of HTML output. You can apply
these style class names to <p>, <inline>, or <table> elements while laying out the Zen <report> in the XData ReportDisplay

block, as shown in the discussion of the <report> style attribute.

th {
text-align:left

p-bannerl {
color:darkblue;
font-family:Arial;
border-bottom:1px solid darkblue;
font-size:24pt;

) font-weight:bold;

inline_bannerl {
color:darkblue;
font-family:Arial;
border-bottom:1px solid darkblue;
font-size:24pt;
font-weight:bold;

3

table.tablel {
border:none;

}

th_tablel {
text-align:right;
font-weight:bold;

b

td.tablel {
text-align:left;

3

th.table2 {
border:1px solid gray;
text-align:left;
background-color:#e0e0e0;
font-weight:normal;

1

td.table2 {
font-weight:bold;
border:1px solid gray;

}

table.table3 {
border:none;

b

th_table3 {
border:none;
text-align:left;
font-weight:bold;

}

td.table3 {
border:none;
text-align:left;
font-weight:normal;

}

table.tabled4 {
border:1px solid gray;

}

th_tabled {
border:none;
color:white;
background-color :#6f6Fff;
text-align:left;
font-weight:bold;

T

td.tabled {
border:none;
text-align:left;
font-weight:normal;

b
table.table5 {

280

Using Zen Reports

Default XSL-FO Styles for Zen Reports in PDF Format

border:none;

3

th_table5 {
border:none;
text-align:left;
font-weight:normal;
background-color :#bbbbff;
border-top:1.5px solid black;
border-bottom:1.5px solid black;

}

td.table5 {
border:none;
text-align:left;
font-weight:normal;
line-height:150%;

}

table.grid {
border:none;

by

th.grid {
border:1px solid black;
text-align:left;
font-weight:bold;

b

td.grid {
border:1px solid black;
text-align:left;
font-weight:normal;

}

table.invisible {
border:none;

}

th._invisible {
border:none;
text-align:left;

by

td.invisible {
border:none;
text-align:left;

3

th_numeric {
border:1px solid gray;
text-align:right;
background-color:#e0e0e0;
font-weight:normal;

td.numeric {
font-weight:bold;
text-align:right;
border:1px solid gray;
3

Whether or not you use the predefined styles, you may define custom style classes using the <class> element and apply
them to elements in a Zen report using the class attribute.

B.2 Default XSL-FO Styles for Zen Reports in PDF Format

Default styles for Zen reports in PDF format use the following XSL-FO attribute set definitions. You can apply these style
class names to <p>, <inline>, or <table> elements while laying out the Zen <report> in the XData ReportDisplay block,
as shown in the discussion of the <report> style attribute.

<xsl:attribute-set name="p.bannerli®>
<xsl:attribute name="color">darkblue</xsl:attribute>
<xsl:attribute name="font-family">Arial</xsl:attribute>
<xsl:attribute name="border-bottom">1pt solid darkblue</xsl:attribute>
<xsl:attribute name="font-size">24pt</xsl:attribute>
<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="inline.bannerl®>
<xsl:attribute name="color">darkblue</xsl:attribute>
<xsl:attribute name="font-family">Arial</xsl:attribute>

Using Zen Reports 281

Default Format and Style

<xsl:attribute name="border-bottom®">1pt solid darkblue</xsl:attribute>

<xsl:attribute name="font-size">24pt</xsl:attribute>

<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.tablel">
<xsl:attribute name="border">none</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.tablel">
<xsl:attribute name="text-align">right</xsl:attribute>
<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.tablel">
<xsl:attribute name="text-align">left</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.table2">
</xsl:attribute-set>
<xsl:attribute-set name="th.table2">
<xsl:attribute name="border”>1pt solid gray</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="background-color">#e0e0e0</xsl:attribute>
<xsl:attribute name="font-weight”>normal</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.table2">
<xsl:attribute name="font-weight”>bold</xsl:attribute>
<xsl:attribute name="border">1pt solid gray</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.table3">
<xsl:attribute name="border">none</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.table3">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.table3">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight”>normal</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.table4">
<xsl:attribute name="border">1pt solid gray</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.table4">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="color">white</xsl:attribute>
<xsl:attribute name="background-color*>#6f6Ffff</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.table4">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">normal</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.table5">
<xsl:attribute name="border">none</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.table5">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">normal</xsl:attribute>
<xsl:attribute name="background-color*>#bbbbff</xsl:attribute>
<xsl:attribute name="border-top*">1.5pt solid black</xsl:attribute>
<xsl:attribute name="border-bottom">1._.5pt solid black</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.table5">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">normal</xsl:attribute>
<xsl:attribute name="line-height">150%</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.grid">
<xsl:attribute name="border”>none</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.grid">
<xsl:attribute name="border®>1pt solid black</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">bold</xsl:attribute>
</xsl:attribute-set>

282

Using Zen Reports

Default XSL-FO Styles for Zen Reports in PDF Format

<xsl:attribute-set name="td.grid">
<xsl:attribute name="border">1pt solid black</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="font-weight">normal</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.invisible">
<xsl:attribute name="border">none</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="th.invisible">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.invisible">
<xsl:attribute name="border">none</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
</xsl:attribute-set>

<xsl:attribute-set name="table.numeric">
</xsl:attribute-set>
<xsl:attribute-set name="th.numeric">
<xsl:attribute name="text-align">right</xsl:attribute>
<xsl:attribute name="border">1pt solid gray</xsl:attribute>
<xsl:attribute name="text-align">left</xsl:attribute>
<xsl:attribute name="background-color">#e0e0e0</xsl:attribute>
<xsl:attribute name="font-weight”>normal</xsl:attribute>
</xsl:attribute-set>
<xsl:attribute-set name="td.numeric">
<xsl:attribute name="font-weight”>bold</xsl:attribute>
<xsl:attribute name="border">1pt solid gray</xsl:attribute>
<xsl:attribute name="text-align">right</xsl:attribute>
</xsl:attribute-set>

Whether or not you use the predefined styles, you may define custom style classes using the <class> element and apply

them to elements in a Zen report using the class attribute.

Using Zen Reports

283

Using an Alternative Version of Saxon

Zen reports comes installed ready to use the Saxon9he JAR file for XSLT 2.0 support. If you wish to use another Saxon
JAR, file, such as a commercial version of Saxon 9, then you can follow these steps to configure this other Saxon JAR file
for use with ZEN Reports.

1.
2.

Install the Saxon 9 or later parser.

If you are using RenderX XEP to produce PDF output, find the saxon.jar file in the XEP lib directory. Rename this file
so that it is no longer called saxon.jar. Otherwise, XEP automatically uses its own .jar file and becomes XSLT 1.0
compliant.

Configure Zen reports with the location of the Saxon .jar file. To do this, issue the following commands from the Ter-
minal prompt, using the actual .jar file location on the server:

zn "%SYS"
set "SYS(*'zenreport,saxjar')="c:\saxon9\saxon9.jar"

Set the XSLTVERSION class parameter in the Zen report class to **2.0"".

If you are using RenderX XEP to produce PDF output, edit the xep.bat file so that it references the .jar file that you
identified in step 3, rather than some other parser or version.

If you are using FOP to produce PDF output, configure FOP to work with Saxon instead of Xalan as follows:
e Copy the Saxon .jar files saxon9.jar and saxon9-dom.jar to the FOP lib directory. For example:

copy c:\saxon9\saxon9.jar c:\fop-0.95\1ib
copy c:\saxon9\saxon9-dom.jar c:\fop-0.95\lib

* Modify fop.bat to set JAVAOPTS to use Saxon. The revised line in fop.bat should look like the following example,
but all on one line:

set JAVAOPTS=-Denv.windir=%WINDIR%
-Djavax.xml .transform.TransformerFactory=net.sf.saxon.TransformerFactorylmpl

» Modify fop.bat to comment out Xalan and add the Saxon jar files to the classpath. For example:

REM set LOCALCLASSPATH=%LOCALCLASSPATH%;%LIBDIR%\xalan-2.7.0.jar
set LOCALCLASSPATH=%LOCALCLASSPATH%;%L IBDIR%\saxon9. jar
set LOCALCLASSPATH=%LOCALCLASSPATH% ;%L IBDIR%\saxon9-dom.jar

Note: To return from using XSLT 2.0 back to using XSLT 1.0, you can reconfigure FOP or XEP to use an older .jar file

from Saxon, for example saxon65.jar instead of saxon9.jar.

Using Zen Reports 285

Generated XSL-FO and HTML

The following table summarizes the XSL-FO and HTML generated by Zen reports elements, and indicates whether the

XSL-FO is block or inline.

Zen reports Block or
element Inline XSL-FO
output

<bidioverride> | Inline

 Block
<block> Inline
<__ chart> Block
<container> Block
<div> Block
<foblock> Block
<footer> Block
<header> Block
 Block
<inline> Inline
<inlinecon- Inline
tainer>

<item> Inline
<line> Block

Generated XSL-FO

fo:bidi-override (requires inline-
children)

fo:block (empty)
fo:inline

fo:block, fo:instream-foreign-
object

fo:block-container (requires block-
children)

fo:block
fo:block
fo:block
fo:block
fo:block fo:external-graphic
fo:inline

fo:inline-container (requires block-
children)

fo:inline

fo:block, fo:leader

Generated HTML

<bdo>

<div> <svg:svg /></div>

<div>

<div>

(no wrapper)
(no wrapper)
(no wrapper)

<inline>

<div>

<hr>

Using Zen Reports

287

Generated XSL-FO and HTML

<link> Inline fo:basic-link <a>

<list> Block fo:list-block, fo:list-item-label, or , and
fo:list-item-body

<p> Block fo:block <p>
<pagebreak> Block fo:block break-after="page" <div>
</div>
<table> Block fo:block and fo:table etc. <table> etc.

288 Using Zen Reports

Configuring for TIFF Generation

In order to generate .TIFF files from Zen reports, the FOP rendering engine provided with Caché must have access to Java
Advanced Imaging tools (JAI). You can provide access by placing the required Java archive (JAR) file in the fop/lib
subdirectory below the Caché installation directory. The following steps describe this process in detail.

e Download the JAI distribution file.

Go to the following link:

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-
419417 .html#jaiio-1.0_01-oth-JPR

This page provides downloads for a number of Java client technologies, including Java Advanced Imaging at a number
of revision levels. You must select version 1.0_01. More recent versions are not compatible with Zen reports TIFF
generation. For Linux and Solaris systems, download the CLASSPATH archive file appropriate for your operating
system. A later item in this list discusses Windows systems. The following figure shows the correct download selection
for Linux.

Using Zen Reports 289

http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html#jai-1_1_2_01-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html#jaiio-1.0_01-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html#jai-1_1_2_01-oth-JPR
http://www.oracle.com/technetwork/java/javasebusiness/downloads/java-archive-downloads-java-client-419417.html#jaiio-1.0_01-oth-JPR

Configuring for TIFF Generation

Figure V-1: Download the JAI

Java Advanced Imaging Image /O Tools 1.0_01

You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.

I Accept License Agreement @ Decline License Agreement

Product/ File Description File Size Download
(Linux CLASSPATH Install 1.48 MB # jai_imageio-1_0_01-lib-linux-iS86.tar.gz
Linux JOK Install 1.53MB ¥ jai_imageio-1_0_01-lib-linux-i586-jdk.bin
Linux JRE Install 153 MB # jai_imageio-1_0_01-lis-linux-iS86-jre.bin
Linux Signed Auto-Install 150 MB # jai_imageio-1_0_01-linux-i586-jarzip
Solaris SPARC CLASSPATH 6.43MB # jai_imageio-1_0_01-lib-solaris-sparctar.gz
Solaris SPARC JDK Install 6.50 MB # jai_imageio-1_0_01-lib-solaris-sparc-jdk.bin
Solaris SPARC JRE Install 6.50 MB # jai_imageio-1_0_01-li-solaris-sparc-jre.bin
Solaris SPARC Signed Auto-Install 643 MB # jai_imageio-1_0_01-solaris-sparc-arzip
Solaris x86 CLASSPATH 1.322MB # jai_imageio-1_0_01-lib-solaris-i586.tar.oz
Solaris x86 JDK Install 1.39MB ¥ jai_imageio-1_0_01-lib-solaris-i586-jdk.bin
Solaris x86 JRE Install 1.20MB # jai_imageio-1_0_01-lib-solaris-i586-jre.bin
Solaris x86 Signed Auto-Install 1.35MB # jai_imageio-1_0_01-solaris-i586-jarzip
Windows CLASSPATH Install 6.24 MB # jai_imageio-1_0_01-lib-windows-i586.axe
Windows JDK Install 6.24 MB ¥ jai_imageio-1_0_01-lib-windows-i586-jdk.exe
Windows JRE Install 6.24 MB # jai_imageio-1_0_01-lib-windows-i586-jre.exe
Windows Signed Auto-Install 577MB ¥ jai_imageio-1_0_01-windows-i586-jar.zip

Back to top

The downloaded file is a . tar.gz archive file. Expand the file and extract the jai_imageio. jar file, which is

located in the 'ib subdirectory.

Copy the jai_imageio. jar file to the fop/ lib subdirectory below the Caché installation directory.

If you are configuring a Windows system, you can also extract the required JAR file from a Linux or Solaris CLASS-
PATH archive file. Download and expand the file, and extract the jai_imageio. jar file. Utilities such as 7-zip
enable you to expand and extract files from . tar.gz archive files on Windows systems. You can download 7-zip
from www.7-zip.org, Just as for Linux and Solaris systems, copy the jai_imageio. jar file to the fop/lib sub-

directory below the Caché installation directory.

290

Using Zen Reports

http://www.7-zip.org/

	Table of Contents
	About This Book
	Zen Reports Attribute Data Types

	1 Introducing Zen Reports
	1.1 Background Reading
	1.2 Zen Report Tutorial

	2 Gathering Zen Report Data
	2.1 XData ReportDefinition
	2.2 The %val Variable
	2.2.1 Where %val is Supported
	2.2.2 Multidimensional Values of %val

	2.3 <report> and <group>
	2.3.1 <report> and <group> Attributes
	2.3.2 Building the <report> or <group> Query
	2.3.3 Break On Field or Expression
	2.3.4 Nested Groups
	2.3.5 Sibling Groups
	2.3.6 Conditionally Generated Groups

	2.4 Value Nodes
	2.4.1 Handling White Space
	2.4.2 Value Node Attributes
	2.4.3 <element>
	2.4.4 <attribute>
	2.4.5 <aggregate>

	2.5 DATASOURCE
	2.6 Including an XML Data Source
	2.6.1 Writing XML Statements From a Class Method
	2.6.2 <call>
	2.6.3 <callelement>
	2.6.4 <include>
	2.6.5 <macrodef>
	2.6.6 <get>

	2.7 Generating a Report from a Class Query
	2.8 Restructuring the ReportDefinition XML
	2.9 Gathering Data in the ReportDisplay Block

	3 Formatting Zen Report Pages
	3.1 XData ReportDisplay
	3.2 Finding Data with XPath Expressions
	3.3 The id Attribute
	3.4 Dimension and Size
	3.5 International Number Formats
	3.6 Default Format and Style
	3.7 Pagination and Layout
	3.7.1 The <document> element and Page Layout
	3.7.2 Conditional Page Margins and Regions
	3.7.3 Resetting the Page Count for Each Element of a Group
	3.7.4 Multiple Display Layouts
	3.7.5 Keeping Display Components Together
	3.7.6 Conditionally Including a Group’s Elements
	3.7.7 Writing Mode

	3.8 Supported Fonts for Complex Scripts
	3.8.1 Arabic
	3.8.2 Devanagari

	3.9 Conditional Expressions for Displaying Elements
	3.9.1 ifexpression
	3.9.2 ifxpath
	3.9.3 includeColIfExpression
	3.9.4 includeColUnlessExpression
	3.9.5 includeColIfXPath
	3.9.6 includeColUnlessXPath
	3.9.7 unlessexpression

	3.10 Conditional Expressions for Displaying Values
	3.11 <report>
	3.12 <init>
	3.13 <xslt>
	3.13.1 <xslt> and its Attributes
	3.13.2 XData Blocks for <xslt>
	3.13.3 Setting XSLT Global Variables with <xslt>

	3.14 <section>
	3.15 <pagemaster>
	3.16 <masterreference>
	3.17 <document>
	3.17.1 <class>
	3.17.2 <cssinclude>
	3.17.3 <xslinclude>

	3.18 <pageheader>
	3.19 <pagefooter>
	3.20 <pagestartsidebar>
	3.21 <pageendsidebar>
	3.22 <body>
	3.22.1 <call>
	3.22.2 <fo>
	3.22.3 <foblock>
	3.22.4 <html>
	3.22.5 <write>

	4 Displaying Zen Report Data
	4.1 Report Display Attributes
	4.2 Conditionally Applying CSS Styles
	4.3 <barcode>
	4.4 <barcodeOptions>
	4.5 <block>
	4.6 <bidioverride>
	4.7

	4.8 <container>
	4.9 <div>
	4.10 <group>
	4.11 <header> and <footer>
	4.12
	4.13 <inline>
	4.14 <inlinecontainer>
	4.15 <item>
	4.15.1 field
	4.15.2 special
	4.15.3 suppressDuplicates
	4.15.4 Page Numbering in Multi-section Reports

	4.16 <line>
	4.17 <link>
	4.18 <list>
	4.19 <p>
	4.20 <pagebreak>
	4.21 <small-multiple>
	4.22 <table>
	4.22.1 The orderby Attribute in ReportDisplay
	4.22.2 Centering a <table> for PDF Output
	4.22.3 Displaying Elements in a <table>
	4.22.4 <caption>
	4.22.5 <summary>
	4.22.6 Using Complex Headers for a <table>
	4.22.7 Embedding a <table> within a <table>
	4.22.8 Zen Reports Cross Tab Tables
	4.22.9 Creating Type 2 Cross Tab Tables
	4.22.10 Creating Type 1 Cross Tab Tables
	4.22.11 Creating Tables with a Callback Method
	4.22.12 Creating Tables From Class Queries
	4.22.13 Creating Tables with SQL
	4.22.14 Creating Tables with onCreateResultSet

	4.23 <timeline>

	5 Building Zen Report Classes
	5.1 Controlling Zen Reports with Parameters
	5.1.1 Class Parameters
	5.1.2 SQL Query Parameters
	5.1.3 Data Type Parameters
	5.1.4 XSLT Stylesheet Parameters
	5.1.5 URI Query Parameters

	5.2 Using Runtime Expressions in Zen Reports
	5.3 Localizing Zen Reports
	5.3.1 Adding Entries to the Message Dictionary
	5.3.2 Localization for Excel Output

	5.4 Organizing Zen Reports to Reuse Code
	5.5 Using Zen Report Composites
	5.5.1 Creating a Composite to Define Style
	5.5.2 Creating a Composite to Define Layout
	5.5.3 Referencing a Composite from a Zen Report

	5.6 Using Zen Report Templates
	5.6.1 Creating a Zen Report Template
	5.6.2 Referencing a Zen Report Template

	5.7 Supplying XSLT Templates to Zen Reports
	5.7.1 Calling XSLT Templates to Apply Styles
	5.7.2 Calling XSLT Templates While Rendering Items

	5.8 Conditionally Executing Methods in Zen Reports
	5.9 Executing Code Before or After Report Generation

	6 Running Zen Reports
	6.1 Invoking Zen Reports from a Web Browser
	6.1.1 URI Query Parameters for Zen Reports
	6.1.2 Setting Zen Report Class Properties from the URI

	6.2 Invoking Zen Reports from Zen Pages
	6.3 Environment Variables for Memory Configuration
	6.4 Configuring Zen Reports for PDF Output
	6.4.1 Using the Built-in PDF Rendering Engine
	6.4.2 Using Other Rendering Engines
	6.4.3 Splitting and Merging PDF Output
	6.4.4 The HotJVM Render Server
	6.4.5 The Print Server

	6.5 Configuring Zen Reports for Excel Spreadsheet Output
	6.5.1 Including Data in the Spreadsheet
	6.5.2 Numbers, Dates and Aggregates
	6.5.3 Multi-sheet Reports
	6.5.4 Generating Excel Spread Sheets from Arbitrary XML
	6.5.5 The Excel Server

	6.6 Invoking Zen Reports from the Command Line
	6.6.1 The GenerateReport Method
	6.6.2 The GenerateToFile Method
	6.6.3 The GenerateReportToStream Method
	6.6.4 Zen Report Class Properties

	6.7 Exposing Zen Report Data as a Web Service

	7 Using Callback Charts in Zen Reports
	7.1 Zen Reports Chart Properties
	7.2 Zen Reports Charts Callback Methods
	7.3 Providing Data for Zen Report Charts
	7.3.1 Getting Data from SQL
	7.3.2 Getting Data from XML

	7.4 Xmlfile

	8 Using XPath Charts in Zen Reports
	8.1 XPath Chart Attributes in Zen Reports
	8.2 Providing Data for Zen Report XPath Charts
	8.3 Chart Axes in Zen Reports
	8.4 dataGroup and seriesGroup
	8.4.1 <lineChart> using dataGroup
	8.4.2 <lineChart> using seriesGroup
	8.4.3 <barChart> using dataGroup
	8.4.4 <barChart> using seriesGroup

	8.5 Examples of Zen Report XPath Charts
	8.5.1 Bar Chart with One Data Series
	8.5.2 Line Chart with Multiple Data Points
	8.5.3 Pivoted Bar Chart with Multiple Data Points
	8.5.4 Pie Chart with One Data Series
	8.5.5 Bar Chart with Two Data Series

	9 Troubleshooting Zen Reports
	9.1 Changing Character Sets
	9.2 Displaying XHTML with URI Query Parameters
	9.3 Solving PDF Generation Problems
	9.4 Viewing Intermediate Files
	9.4.1 Adding Saxon Messages to Log Files
	9.4.2 Logging Messages from the XSL-FO Parser
	9.4.3 Changing Output Mode to View Intermediate Files
	9.4.4 Preserving Intermediate Files for Later Viewing
	9.4.5 Setting a File Name for Intermediate and Final Files
	9.4.6 Saving the Intermediate XSLT Transformation File

	9.5 Debugging XHTML Seen in the Browser
	9.6 Troubleshooting the <call> element

	Appendix A: Zen Report Class Parameters
	A.1 Class Parameters for General Use
	A.2 Class Parameters for XSLT Stylesheets

	Appendix B: Default Format and Style
	B.1 Default CSS Styles for Zen Reports in HTML Format
	B.2 Default XSL-FO Styles for Zen Reports in PDF Format

	Appendix C: Using an Alternative Version of Saxon
	Appendix D: Generated XSL-FO and HTML
	Appendix E: Configuring for TIFF Generation
	Index

