
Using the Caché Callin API

Version 2017.2
2020-06-25

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using the Caché Callin API
Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
+1-617-621-0700Tel:
+44 (0) 844 854 2917Tel:
support@InterSystems.comEmail:

Table of Contents

About This Book .. 1

1 The Callin Interface .. 3
1.1 The callin.h Header File ... 3
1.2 8-bit and Unicode String Handling .. 4

1.2.1 8-bit String Data Types .. 4
1.2.2 2–byte Unicode Data Types ... 5
1.2.3 4–byte Unicode Data Types ... 5
1.2.4 System-neutral Symbol Definitions ... 6

1.3 Using Caché Security Functions .. 6
1.4 Using Callin with Multithreading .. 6

1.4.1 Threads and UNIX® Signal Handling ... 7
1.5 Callin Programming Tips ... 9

1.5.1 Tips for All Callin Programs .. 9
1.5.2 Tips for Windows ... 10
1.5.3 Tips for UNIX®, Linux, and Mac OS .. 11

1.6 Running Sample Programs on Windows .. 11
1.7 Running Sample Programs on UNIX® and Linux .. 12

2 Using the Callin Functions ... 13
2.1 Process Control .. 13

2.1.1 Session Control .. 13
2.1.2 Running ObjectScript ... 14

2.2 Functions and Routines .. 14
2.3 Transactions and Locking ... 15

2.3.1 Transactions ... 15
2.3.2 Locking .. 15

2.4 Managing Objects .. 16
2.4.1 Orefs ... 16
2.4.2 Methods .. 16
2.4.3 Properties ... 17

2.5 Managing Globals .. 17
2.6 Managing Strings ... 17

2.6.1 Long String Functions .. 17
2.6.2 Standard String Functions .. 18

2.7 Managing Other Datatypes ... 18

3 Callin Function Reference ... 21
3.1 Alphabetical Function List ... 21
3.2 CacheAbort ... 24
3.3 CacheAcquireLock ... 25
3.4 CacheBitFind .. 26
3.5 CacheBitFindB ... 26
3.6 CacheChangePasswordA .. 27
3.7 CacheChangePasswordH .. 27
3.8 CacheChangePasswordW ... 28
3.9 CacheCloseOref ... 28
3.10 CacheContext ... 29
3.11 CacheConvert ... 29

Using the Caché Callin API iii

3.12 CacheCtrl .. 31
3.13 CacheCvtExStrInA ... 31
3.14 CacheCvtExStrInW .. 32
3.15 CacheCvtExStrInH ... 33
3.16 CacheCvtExStrOutA .. 34
3.17 CacheCvtExStrOutW ... 35
3.18 CacheCvtExStrOutH .. 36
3.19 CacheCvtInA .. 37
3.20 CacheCvtInH .. 38
3.21 CacheCvtInW ... 39
3.22 CacheCvtOutA ... 40
3.23 CacheCvtOutH ... 41
3.24 CacheCvtOutW .. 42
3.25 CacheDoFun ... 43
3.26 CacheDoRtn ... 43
3.27 CacheEnd ... 44
3.28 CacheEndAll .. 44
3.29 CacheErrorA ... 45
3.30 CacheErrorH ... 45
3.31 CacheErrorW .. 46
3.32 CacheErrxlateA .. 47
3.33 CacheErrxlateH .. 47
3.34 CacheErrxlateW ... 48
3.35 CacheEvalA .. 49
3.36 CacheEvalH .. 49
3.37 CacheEvalW ... 50
3.38 CacheExecuteA .. 51
3.39 CacheExecuteH .. 52
3.40 CacheExecuteW ... 52
3.41 CacheExStrKill ... 53
3.42 CacheExStrNew ... 54
3.43 CacheExStrNewW .. 54
3.44 CacheExStrNewH .. 54
3.45 CacheExtFun .. 55
3.46 CacheGetProperty .. 55
3.47 CacheGlobalData ... 56
3.48 CacheGlobalGet ... 56
3.49 CacheGlobalGetBinary .. 57
3.50 CacheGlobalIncrement ... 58
3.51 CacheGlobalKill ... 59
3.52 CacheGlobalOrder .. 59
3.53 CacheGlobalQuery ... 60
3.54 CacheGlobalRelease ... 61
3.55 CacheGlobalSet .. 61
3.56 CacheIncrementCountOref ... 61
3.57 CacheInvokeClassMethod .. 62
3.58 CacheInvokeMethod ... 62
3.59 CacheOflush ... 63
3.60 CachePop .. 63
3.61 CachePopCvtH ... 63
3.62 CachePopCvtW .. 64

iv Using the Caché Callin API

3.63 CachePopDbl .. 64
3.64 CachePopExStr ... 65
3.65 CachePopExStrCvtW ... 65
3.66 CachePopExStrCvtH .. 66
3.67 CachePopExStrW ... 66
3.68 CachePopExStrH .. 66
3.69 CachePopInt ... 67
3.70 CachePopInt64 ... 67
3.71 CachePopList ... 68
3.72 CachePopOref .. 68
3.73 CachePopPtr ... 68
3.74 CachePopStr ... 69
3.75 CachePopStrH .. 69
3.76 CachePopStrW ... 70
3.77 CachePromptA ... 70
3.78 CachePromptH ... 71
3.79 CachePromptW .. 72
3.80 CachePushClassMethod ... 72
3.81 CachePushClassMethodH .. 73
3.82 CachePushClassMethodW ... 74
3.83 CachePushCvtH ... 75
3.84 CachePushCvtW ... 75
3.85 CachePushDbl .. 76
3.86 CachePushExStr ... 77
3.87 CachePushExStrCvtW ... 77
3.88 CachePushExStrCvtH .. 78
3.89 CachePushExStrW ... 78
3.90 CachePushExStrH .. 79
3.91 CachePushFunc .. 79
3.92 CachePushFuncH ... 80
3.93 CachePushFuncW .. 81
3.94 CachePushFuncX ... 82
3.95 CachePushFuncXH .. 83
3.96 CachePushFuncXW ... 84
3.97 CachePushGlobal ... 85
3.98 CachePushGlobalH .. 85
3.99 CachePushGlobalW ... 86
3.100 CachePushGlobalX .. 87
3.101 CachePushGlobalXH ... 87
3.102 CachePushGlobalXW ... 88
3.103 CachePushIEEEDbl ... 89
3.104 CachePushInt .. 89
3.105 CachePushInt64 .. 89
3.106 CachePushList .. 90
3.107 CachePushLock .. 90
3.108 CachePushLockH ... 91
3.109 CachePushLockW .. 92
3.110 CachePushLockX ... 92
3.111 CachePushLockXH .. 93
3.112 CachePushLockXW ... 94
3.113 CachePushMethod .. 94

Using the Caché Callin API v

3.114 CachePushMethodH ... 95
3.115 CachePushMethodW .. 96
3.116 CachePushOref ... 96
3.117 CachePushProperty .. 97
3.118 CachePushPropertyH ... 97
3.119 CachePushPropertyW ... 98
3.120 CachePushPtr ... 99
3.121 CachePushRtn .. 99
3.122 CachePushRtnH ... 100
3.123 CachePushRtnW ... 101
3.124 CachePushRtnX ... 102
3.125 CachePushRtnXH ... 103
3.126 CachePushRtnXW .. 104
3.127 CachePushStr ... 105
3.128 CachePushStrH ... 105
3.129 CachePushStrW .. 106
3.130 CachePushUndef .. 107
3.131 CacheReleaseAllLocks ... 107
3.132 CacheReleaseLock ... 107
3.133 CacheSecureStartA ... 108
3.134 CacheSecureStartH ... 109
3.135 CacheSecureStartW .. 111
3.136 CacheSetDir ... 113
3.137 CacheSetProperty ... 113
3.138 CacheSignal .. 113
3.139 CacheSPCReceive .. 114
3.140 CacheSPCSend ... 114
3.141 CacheStartA ... 115
3.142 CacheStartH ... 116
3.143 CacheStartW ... 118
3.144 CacheTCommit .. 120
3.145 CacheTLevel ... 120
3.146 CacheTRollback ... 120
3.147 CacheTStart .. 121
3.148 CacheType .. 121
3.149 CacheUnPop ... 121

vi Using the Caché Callin API

List of Tables

Table 2–1: Session control functions ... 14
Table 2–2: ObjectScript command functions .. 14
Table 2–3: Functions for performing function and routine calls ... 15
Table 2–4: Transaction functions ... 15
Table 2–5: Locking functions .. 16
Table 2–6: Oref functions .. 16
Table 2–7: Method functions ... 16
Table 2–8: Property functions .. 17
Table 2–9: Functions for managing globals .. 17
Table 2–10: Long string functions ... 18
Table 2–11: Standard string functions ... 18
Table 2–12: Other datatype functions .. 18

Using the Caché Callin API vii

About This Book

This book describes how to use the Caché Callin API, which offers an interface that you can use from within C or C++
programs to execute Caché commands and evaluate Caché expressions.

Who This Book Is For
In order to use this book, you should be reasonably familiar with your operating system, and have significant experience
with C, C++, or another language that can use the C/C++ calling standard for your operating system.

Organization of This Book
This book is organized as follows:

• The chapter “The Callin Interface” describes the Callin interface, which you can use from within C programs to execute
Caché commands and evaluate Caché expressions.

• The chapter “Using the Callin Functions” provides a quick summary of the Callin functions (with links to the full
description of each function) catagorized according to the tasks they perform.

• The chapter “Callin Function Reference” contains detailed descriptions of all Caché Callin functions, arranged in
alphabetical order.

Related Information
The Callin functions provide a very low-level programming interface. In many cases, you will be able to accomplish your
objectives much more easily by using one of the standard Caché language bindings. For details, see the following sources:

• Using C++ with Caché

• Using the Caché Managed Provider for .NET

• Using Java with Caché

The Caché Callout Gateway is a programming interface that allows you to create a shared library with functions that can
be invoked from Caché. Callout code is usually written in C or C++, but can be written in any language that supports C/C++
calling conventions.

• Using the Caché Callout Gateway

Using the Caché Callin API 1

1
The Callin Interface

Caché offers a Callin interface you can use from within C programs to execute Caché commands and evaluate Caché
expressions. This chapter describes this interface and includes the following sections:

• The callin.h Header File

• 8-bit and Unicode String Handling

• Using Caché Security Functions

• Using Callin with Multithreading

• Callin Programming Tips

• Running Sample Programs on Windows

• Running Sample Programs on UNIX® and Linux

The Callin interface permits a wide variety of applications. For example, you can use it to make ObjectScript available
from an integrated menu or GUI. If you gather information from an external device, such as an Automatic Teller Machine
or piece of laboratory equipment, the Callin interface lets you store this data in a Caché database. Although Caché currently
supports only C and C++ programs, any language that uses the calling standard for that platform (UNIX®, Windows) can
invoke the Callin functions.

See Using the Callin Functions for a quick review of Callin functions. For detailed reference material on each Callin function,
see the Callin Function Reference.

1.1 The callin.h Header File
The callin.h header file defines prototypes for these functions, which allows your C compiler to test for valid parameter
data types when you call these functions within your program. You can add this file to the list of #include statements in
your C program:

#include "callin.h"

The callin.h file also contains definitions of parameter values you use in your calls, and includes various #defines that
may be of use. These include operating-system–specific values, error codes, and values that determine how Caché behaves.

You can translate the distributed header file, callin.h. However, callin.h is subject to change and you must track any changes
if you create a translated version of this file. InterSystems Worldwide Support Center does not handle calls about unsupported
languages.

Using the Caché Callin API 3

Return values and error codes
Most Callin functions return values of type int, where the return value does not exceed the capacity of a 16-bit integer.
Returned values can be CACHE_SUCCESS, a Caché error, or a Callin interface error.

There are two types of errors:

• Caché errors — The return value of a Caché error is a positive integer.

• Interface errors — The return value of an interface error is 0 or a negative integer.

callin.h defines symbols for all Caché and interface errors, including CACHE_SUCCESS (0) and CACHE_FAILURE (-1).
You can translate Caché errors (positive integers) by making a call to the Callin function CacheErrxlate.

1.2 8-bit and Unicode String Handling
Caché Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use a suffix character
to indicate the type of string that they handle:

• Names with an “A” suffix or no suffix at all (for example,CacheEvalA or CachePopStr) are versions that operate on
local 8-bit encoded character strings.

• Names with a “W” suffix (for example,CacheEvalW or CachePopStrW) are versions for Unicode character strings
on platforms that use 2–byte Unicode characters.

• Names with an “H” suffix (for example,CacheEvalH or CachePopStrH) are versions for Unicode character strings
on platforms that use 4–byte Unicode characters.

For best performance, use the kind of string native to your installed version of Caché.

1.2.1 8-bit String Data Types

Caché supports the following data types that use local 8-bit string encoding:

• CACHE_ASTR — counted string of 8-bit characters

• CACHE_ASTRP — Pointer to an 8-bit counted string

The type definition for these is:

#define CACHE_MAXSTRLEN 32767
typedef struct {
 unsigned short len;
 Callin_char_t str[CACHE_MAXSTRLEN];
} CACHE_ASTR, *CACHE_ASTRP;

The CACHE_ASTR and CACHE_ASTRP structures contain two elements:

• len — An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

• str — A input or output string.

CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

4 Using the Caché Callin API

The Callin Interface

1.2.2 2–byte Unicode Data Types

Caché supports the following Unicode-related data types on platforms that use 2–byte Unicode characters:

• CACHEWSTR — Unicode counted string

• CACHEWSTRP — Pointer to Unicode counted string

The type definition for these is:

typedef struct {
 unsigned short len;
 unsigned short str[CACHE_MAXSTRLEN];
} CACHEWSTR, *CACHEWSTRP;

The CACHEWSTR and CACHEWSTRP structures contain two elements:

• len — An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

• str — A input or output string.

CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of Caché, there is also the data type CACHE_WSTRING, which represents the native string
type on 2–byte platforms. CacheType returns this type. Also, CacheConvert can specify CACHE_WSTRING as the data
type for the return value; if this type is requested, the result is passed back as a counted Unicode string in a CACHEWSTR

buffer.

1.2.3 4–byte Unicode Data Types

Caché supports the following Unicode-related data types on platforms that use 4–byte Unicode characters:

• CACHEHSTR — Extended Unicode counted string

• CACHEHSTRP — Pointer to Extended Unicode counted string

The type definition for these is:

typedef struct {
 unsigned int len;
 wchar_t str[CACHE_MAXSTRLEN];
} CACHEHSTR, *CACHEHSTRP;

The CACHEHSTR and CACHEHSTRP structures contain two elements:

• len — An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

• str — A input or output string.

CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of Caché, there is also the data type CACHE_HSTRING, which represents the native string
type on 4–byte platforms. CacheType returns this type. Also, CacheConvert can specify CACHE_HSTRING as the data
type for the return value; if this type is requested, the result is passed back as a counted Unicode string in a CACHEHSTR

buffer.

Using the Caché Callin API 5

8-bit and Unicode String Handling

1.2.4 System-neutral Symbol Definitions

The allowed inputs and outputs of some functions vary depending on whether they are running on an 8-bit system or a
Unicode system. For many of the “A” (ASCII) functions, the arguments are defined as accepting a CACHESTR, CACHE_STR,
CACHESTRP, or CACHE_STRP type. These symbol definitions (without the “A” , “W”, or “H”) can conditionally be
associated with either the 8-bit or Unicode names, depending on whether the symbols CACHE_UNICODE and CACHE_WCHART
are defined at compile time. This way, you can write source code with neutral symbols that works with either local 8-bit
or Unicode encodings.

The following excerpt from callin.h illustrates the concept:

#if defined(CACHE_UNICODE) /* Unicode character strings */
#define CACHESTR CACHEWSTR
#define CACHE_STR CACHEWSTR
#define CACHESTRP CACHEWSTRP
#define CACHE_STRP CACHEWSTRP
#define CACHE_STRING CACHE_WSTRING

#elif defined(CACHE_WCHART) /* wchar_t character strings */
#define CACHESTR CACHEHSTR
#define CACHE_STR CACHEHSTR
#define CACHESTRP CACHEHSTRP
#define CACHE_STRP CACHEHSTRP
#define CACHE_STRING CACHE_HSTRING

#else /* 8-bit character strings */
#define CACHESTR CACHE_ASTR
#define CACHE_STR CACHE_ASTR
#define CACHESTRP CACHE_ASTRP
#define CACHE_STRP CACHE_ASTRP
#define CACHE_STRING CACHE_ASTRING
#endif

1.3 Using Caché Security Functions
Two functions are provided for working with Caché passwords:

• CacheSecureStart — Similar to CacheStart, but with additional parameters for password authentication. The
CacheStart function is now deprecated. If used, it will behave as if CacheSecureStart has been called with NULL
for Username, Password, and ExeName. You cannot use CacheStart if you need to use some form of password
authentication.

• CacheChangePassword — This function will change the user's password if they are using Caché authentication (it
is not valid for LDAP/DELEGATED/Kerberos etc.). It must be called before a Callin session is initialized.

There are CacheSecureStart and CacheChangePassword functions for ASCII "A", Unicode "W", and Unicode "H"
installs. The new functions either narrow, widen or "use as is" the passed in parameters, store them in the new Callin data
area, then eventually call the CacheStart entry point.

CacheStart and CacheSecureStart pin and pout parameters can be passed as NULL, which indicates that the platform's
default input and output device should be used.

1.4 Using Callin with Multithreading
Caché has been enhanced so that Callin can be used by threaded programs running under some versions of Windows and
UNIX® (see “Other Supported Features” in the online InterSystems Supported Platforms document for this release for a
list). A program can spawn multiple threads (pthreads in a UNIX® environment) and each thread can establish a separate

6 Using the Caché Callin API

The Callin Interface

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

connection to Caché by calling CacheSecureStart. Threads may not share a single connection to Caché; each thread which
wants to use Cache must call CacheSecureStart. If a thread attempts to use a Callin function and it has not called
CacheSecureStart, a CACHE_NOCON error is returned.

A threaded application must link against cachet.o or the shared library, cachet.so. On UNIX® and Linux they may alterna-
tively load the shared library dynamically. On Windows, due to the implementation of thread local storage the cachet.dll

library cannot be dynamically loaded. The program should be careful not to exit until all of the threads which have entered
Caché have called CacheEnd to shut down their connections. Failure to shut down each connection with CacheEnd may
hang the instance, requiring a restart.

If CacheSecureStart is being used, to specify credentials as part of the login, each thread must call CacheSecureStart
and provide the correct username/password for the connection, since credentials are not shared between the threads. There
is a performance penalty within Caché using threads because of the extra code the C compiler has to generate to access
thread local storage (which uses direct memory references in non-threaded builds).

A sample program, sampcallint.c, is provided on all platforms where this feature is supported. The vc8 project, and the
UNIX® Makefiles, include instructions to build a sample threaded Callin application on the relevant platforms.

1.4.1 Threads and UNIX® Signal Handling

On UNIX®, Caché uses a number of signals. If your application uses the same signals, you should be aware of how Caché
deals with them. All signals have a default action specified by the OS. Applications may choose to leave the default action,
or can choose to handle or ignore the signal. If the signal is handled, the application may further select which threads will
block the signal and which threads will receive the signal. Some signals cannot be blocked, ignored, or handled. Since the
default action for many signals is to halt the process, leaving the default action in place is not an option. The following
signals cannot be caught or ignored, and terminate the process:

DISPOSITIONSIGNAL

terminate process immediatelySIGKILL

stop process for later resumptionSIGSTOP

The actions that an application establishes for each signal are process-wide. Whether or not the signal can be delivered to
each thread is thread-specific. Each thread may specify how it will deal with signals, independently of other threads. One
thread may block all signals, while another thread may allow all signals to be sent to that thread. What happens when a
signal is sent to the thread depends on the process-wide handling established for that signal.

1.4.1.1 Caché Signal Processing

Caché integrates with application signal handling by saving application handlers and signal masks, then restoring them at
the appropriate time. Caché processes signals in the following ways:

Generated signals

Caché installs its own signal handler for all generated signals. It saves the current (application) signal handler. If
the thread catches a generated signal, the Caché signal handler disconnects the thread from Caché, calls the
applications signal handling function (if any), then does pthread_exit.

Since signal handlers are process-wide, threads not connected to Caché will also go into the Caché handler. If
Caché detects that the thread is not connected, it calls the application handler and then does pthread_exit.

Synchronous Signals

Caché establishes signal handlers for all synchronous signals, and unblocks these signals for each thread when
the thread connects to Caché (see “Synchronous Signals” for details).

Using the Caché Callin API 7

Using Callin with Multithreading

Asynchronous Signals

Caché handles all asynchronous signals that would terminate the process (see “Asynchronous Signals” for details).

Save/Restore Handlers

The system saves the signal state when the first thread connects to it. When the last thread disconnects, Caché
restores the signal state for every signal that it has handled.

Save/Restore Thread Signal Mask

The thread signal mask is saved on connect, and restored when the thread disconnects.

1.4.1.2 Synchronous Signals

Synchronous signals are generated by the application itself (for example, SIGSEGV). Caché establishes signal handlers for
all synchronous signals, and unblocks these signals for each thread when it connects to Caché.

Synchronous signals are caught by the thread that generated the signal. If the application has not specified a handler for a
signal it has generated (for example, SIGSEGV), or if the thread has blocked the signal, then the OS will halt the entire
process. If the thread enters the signal handler, that thread may exit cleanly (via pthread_exit) with no impact to any
other thread. If a thread attempts to return from the handler, the OS will halt the entire process. The following signals cause
thread termination:

DISPOSITIONSIGNAL

process abort signalSIGABRT

bus errorSIGBUS

EMT instructionSIGEMT

floating point exceptionSIGFPE

illegal instructionSIGILL

access violationSIGSEGV

bad argument to system callSIGSYS

trace trapSIGTRAP

CPU time limit exceeded (setrlimit)SIGXCPU

1.4.1.3 Asynchronous signals

Asynchronous signals are generated outside the application (for example, SIGALRM, SIGINT, and SIGTERM). Caché
handles all asynchronous signals that would terminate the process.

Asynchronous signals may be caught by any thread that has not blocked the signal. The system chooses which thread to
use. Any signal whose default action is to cause the process to exit must be handled, with at least one thread eligible to
receive it, or else it must be specifically ignored.

The application must establish a signal handler for those signals it wants to handle, and must start a thread that does not
block those signals. That thread will then be the only one eligible to receive the signal and handle it. Both the handler and
the eligible thread must exist before the application makes its first call to CacheStart. On the first call to CacheStart, the
following actions are performed for all asynchronous signals that would terminate the process:

• Caché looks for a handler for these signals. If a handler is found, Caché leaves it in place. Otherwise, Caché sets the
signal to SIG_IGN (ignore the signal).

8 Using the Caché Callin API

The Callin Interface

• Caché blocks all of these signals for connected threads, whether or not a signal has a handler. Thus, if there is a handler,
only a thread that is not connected to Caché can catch the signal.

The following signals are affected by this process:

DISPOSITIONSIGNAL

timerSIGALRM

blocked by threadsSIGCHLD

ignore if unhandledSIGDANGER

ignore if unhandledSIGHUP

ignore if unhandledSIGINT

ignore if unhandledSIGPIPE

ignore if unhandledSIGQUIT

If SIGTERM is unhandled, Cache will handle it. On receipt of a SIGTERM signal, the Cache
handler will disconnect all threads and no new connections will be permitted. Handlers for
SIGTERM are not stacked.

SIGTERM

inter-process communicationSIGUSR1

inter-process communicationSIGUSR2

virtual timerSIGVTALRM

Caché asynchronous thread rundownSIGXFSZ

1.5 Callin Programming Tips
Topics in this section include:

• Tips for All Callin Programs

• Tips for Windows

• Tips for UNIX®, Linux, and Mac OS

1.5.1 Tips for All Callin Programs

Your external program must follow certain rules to avoid corrupting Caché data structures, which can cause a system hang.

• Limits on the number of open files

Your program must ensure that it does not open so many files that it prevents Caché from opening the number of
databases or other files it expects to be able to. Normally, Caché looks up the user's open file quota and reserves a
certain number of files for opening databases, allocating the rest for the Open command. Depending on the quota,
Caché expects to have between 6 and 30 Caché database files open simultaneously, and from 0 to 36 files open with
the Open command.

• Maximum Directory Length for Callin Applications

Using the Caché Callin API 9

Callin Programming Tips

The directory containing any Callin application must have a full path that uses fewer than 232 characters. For example,
if an application is in the C:\CacheApps\Accounting\AccountsPayable\ directory, this has 40 characters in
it and is therefore valid.

• Call CacheEnd after CacheStart before halting

If your Caché connection was established by a call to CacheStart, then you must call CacheEnd when you are done
with the connection. You can make as many Callin function calls in between as you wish.

You must call CacheEnd even if the connection was broken. The connection can be broken by a call to CacheAbort
with the RESJOB parameter.

CacheEnd performs cleanup operations which are necessary to prepare for another call to CacheStart. Calling
CacheStart again without calling CacheEnd (assuming a broken connection) will return the code CACHE_CONBRO-
KEN.

• Wait until ObjectScript is done before exiting

If you are going to exit your program, you must be certain ObjectScript has completed any outstanding request. Use
the Callin function CacheContext to determine whether you are within ObjectScript. This call is particularly important
in exit handlers and Ctrl-C or Ctrl-Y handlers. If CacheContext returns a non-zero value, you can invoke CacheAbort.

• Maintaining Margins in Callin Sessions

While you can set the margin within a Callin session, the margin setting is only maintained for the rest of the current
command line. If a program (as with direct mode) includes the line:

:Use 0:10 Write x

the margin of 10 is established for the duration of the command line.

Certain calls affect the command line and therefore its margin. These are the calls are annotated as "calls into Caché"
in the function descriptions.

• Avoid signal handling when using CacheStart()

CacheStart sets handlers for various signals, which may conflict with signal handlers set by the calling application.

1.5.2 Tips for Windows

These tips apply only to Windows.

• Limitations on building Callin applications using the cache shared library (cache.dll)

If Callin applications are built using the shared library (cache.dll) rather that the static object (cache.obj), users who
have large global buffer pools may see the Callin fail to initialize (in CacheStart) with an error:

<Cache Startup Error: Mapping shared memory (203)>

The explanation for this lies in the behavior of system DLLs loading in Windows. Applications coded in the Win 32
API or with the Microsoft Foundation Classes (the chief libraries that support Microsoft Visual C++ development)
need to have the OS load the DLLs for that Windows code as soon as they initialize. These DLLs get loaded from the
top of virtual storage (higher addresses), reducing the amount of space left for the heap. On most systems, there are
also a number of other DLLs (for example, DLLs supporting the display graphics) that load automatically with each
Windows process at locations well above the bottom of the virtual storage. These DLLs have a tendency to request a
specific address space, most commonly 0X10000000 (256MB), chopping off a few hundred megabytes of contiguous
memory at the bottom of virtual memory. The result may be that there is insufficient virtual memory space in the Callin
executable in which to map the Cache shared memory segment.

10 Using the Caché Callin API

The Callin Interface

1.5.3 Tips for UNIX®, Linux, and Mac OS

These tips apply only to UNIX®, Linux, and Mac OS.

• Do not disable interrupt delivery on UNIX®

UNIX® uses interrupts. Do not prevent delivery of interrupts.

• Use the correct version of XCode

Versions of Caché for Mac OS X (32–bit) previous to 2010.2 were built using the Xcode 2.5 compiler. Callin programs
for these versions of Caché must be built using the same compiler. If your development platform is Mac OS X 10.5
(Leopard) or later, you would have to load and use Xcode 2.5 in place of the default Xcode 3.0 compiler.

• Avoid using reserved signals

On UNIX®, Caché uses a number of signals. If possible, application programs linked with Caché should avoid using
the following reserved signals:

SIGVTALRMSIGTERMSIGQUITSIGILLSIGDANGERSIGABRT

SIGXCPUSIGTRAPSIGSTOPSIGINTSIGEMTSIGALRM

SIGXFSZSIGUSR1SIGSEGVSIGKILLSIGFPESIGBUS

SIGUSR2SIGSYSSIGPIPESIGHUPSIGCHLD

If your application uses these signals, you should be aware of how Caché deals with them. See Threads and UNIX®
Signal Handling for details.

1.6 Running Sample Programs on Windows
The \dev\cache\callin directory contains source files, header files, and project directories for building Caché Callin applications.
These projects provide a simple demonstration of how to use some high level Caché call-in functions.

In order to build these projects, open any of the .vcproj files (for Visual C++ 2005), or .dsp files (for Visual C++ 2003).
Double-click on the file, or run your Visual C++ application and select File>Open>Project/Solution to open the
project file.

Note: You can run call-in programs on Windows 2000, but you have to compile them on Windows XP or newer, since
Visual Studio 2008 and the Windows 2008 SDK only go back to Windows XP. The Visual Studio 2008 redis-
tributables are supported on Windows 2000, but there does not appear to be a compatible compiler that is supported
on Windows 2000.

The shdir.c file has been already initialized with the path to your Caché mgr directory. For a default installation, the shdir.c

file will look like this:

char shdir[256] = "c:\\cachesys\\mgr";

The Callin interface provides the CACHESETDIR entry point to dynamically set the name of the manager directory at
runtime. The shared library version of cache requires the use of this interface to find the installation’s manager’s directory.

Two sample C programs are provided. The sampcallin.c program is the standard Callin application example, and sampcallint.c

is the thread-safe Callin application example.

There are two projects for sampcallin.c and a project for sampcallint.c. These projects are:

Using the Caché Callin API 11

Running Sample Programs on Windows

• callin — builds a statically linked Callin application using cache.obj.

• callinsh — builds a dynamically linked Callin application using cache.dll.

• callint — builds a dynamically linked thread-safe Callin application, using cachet.dll.

After each of the projects is built, it may be run in the Visual C++ environment.

When a project is built from the cache shared library, using cache.dll, the location of cache.dll must be defined in the user's
PATH environment variable, except when the file is located in the current directory.

1.7 Running Sample Programs on UNIX® and Linux
The directory dev/cache/callin/samples contains a complete Makefile to build Callin samples. This replaces the clink file
found in previous releases.

A shared library version of cache is now provided in addition to the cache object file. The UNIX® Makefiles build two
Callin sample applications: one using the cache object, and one using the libcache shared library.

Run make in the dev/cache/callin/samples directory. The supplied Makefile will build a cache using the czf interface, a
standard Callin application, and a shared library Callin application.

The file shdir.c is set to the appropriate value during installation, so no editing is required.

The Callin interface provides the CACHESETDIR entry point to dynamically set the name of the manager directory at
runtime.

Using Makefiles on UNIX®
The UNIX® Makefiles for building Callin samples and customer Callin programs are run by the make command. make
automatically finds the file called Makefile in the current directory. Thus, running make in the samples directory produces
a sample Callin executable.

When invoking make, use the SRC variable to specify the name of the source program. The default is sampcallin. To change
the name of the source file being built, override the SRC variable on the command line. For example, with a Callin program
called mycallin.c, the command is:

 make SRC=mycallin

Setting Permissions for Callin Executables on UNIX®
Caché executables, files, and resources such as shared memory and operating system messages, are owned by a user selected
at installation time (the installation owner) and a group with a default name of cacheusr (you can choose a different name
at installation time). These files and resources are only accessible to processes that either have this user ID or belong to
this group. Otherwise, attempting to connect to Caché results in protection errors from the operating system (usually spec-
ifying that access is denied); this occurs prior to establishing any connection with Caché.

A Callin program can only run if its effective group ID is cacheusr. To meet this condition, one of the following must be
true:

• The program is run by a user in the cacheusr group (or an alternate run-as group if it was changed from cacheusr to
something else).

• The program sets its effective user or group by manipulating its uid or gid file permissions (using the UNIX® chgrp
and chmod commands).

12 Using the Caché Callin API

The Callin Interface

2
Using the Callin Functions

This section provides a quick summary of the Callin functions, with links to the full description of each function. The fol-
lowing categories are discussed:

• Process Control

These functions start and stop a Callin session, and control various settings associated with the session.

• Functions and Routines

These functions execute function or routine calls. Stack functions are provided for pushing function or routine references.

• Transactions and Locking

These functions execute the standard Caché transaction commands (TSTART, TCOMMIT, and TROLLBACK) and
the LOCK command.

• Managing Objects

These functions manipulate the Oref counter, perform method calls, and get or set property values. Stack functions are
also included for Orefs, method references, and property names.

• Managing Globals

These functions call into Caché to manipulate globals. Functions are provided to push globals onto the argument stack.

• Managing Strings

These functions translate strings from one form to another, and push or pop string arguments.

• Managing Simple Datatypes

These stack functions are used to push and pop arguments that have int, double, $list, or pointer values.

The following sections discuss the individual functions in more detail.

2.1 Process Control
These functions start and stop a Callin session, control various settings associated with the session, and provide a high-level
interface for executing ObjectScript commands and expressions.

2.1.1 Session Control

These functions start and stop a Callin session, and control various settings associated with the session.

Using the Caché Callin API 13

Table 2–1: Session control functions

Tells Caché to terminate the current request.CacheAbort

Changes the user's password if Caché authentication is used. Must be
called before a Callin session is initialized.

CacheChangePasswordA[W][H]

Returns an integer indicating whether you are in a $ZF callback session,
in the Caché side of a Callin call, or in the user program side.

CacheContext

Determines whether or not Caché ignores CTRL-C.CacheCtrl

Terminates a Caché session and, if necessary, cleans up a broken
connection. (Calls into Caché).

CacheEnd

Disconnects all Callin threads and waits until they terminate.CacheEndAll

Flushes any pending output.CacheOflush

Returns a string that would be the programmer prompt.CachePromptA[W][H]

Dynamically sets the name of the manager's directory (CacheSys\Mgr) at
runtime. On Windows, the shared library version of Caché requires this
function.

CacheSetDir

Reports a signal detected by the user program to Caché for handling.CacheSignal

Initiates a Caché process.CacheSecureStartA[W][H]

(Deprecated. Use CacheSecureStart instead) Initiates a Caché process.CacheStartA[W][H]

2.1.2 Running ObjectScript

These functions provide a high-level interface for executing ObjectScript commands and expressions.

Table 2–2: ObjectScript command functions

Executes an ObjectScript command. (Calls into Caché).CacheExecuteA[W][H]

Evaluates an ObjectScript expression. (Calls into Caché).CacheEvalA[W][H]

Returns the value of the Caché expression returned by CacheEval.CacheConvert

Returns the datatype of an item returned by CacheEval.CacheType

Returns the most recent error message, its associated source string, and
the offset to where in the source string the error occurred.

CacheErrorA[W][H]

Returns the Caché error string associated with error number returned from
a Callin function.

CacheErrxlateA[W][H]

2.2 Functions and Routines
These functions call into Caché to perform function or routine calls. Functions are provided to push function or routine
references onto the argument stack.

14 Using the Caché Callin API

Using the Callin Functions

Table 2–3: Functions for performing function and routine calls

Perform a routine call (special case). (Calls into Caché).CacheDoFun

Perform a routine call. (Calls into Caché).CacheDoRtn

Perform an extrinsic function call. (Calls into Caché).CacheExtFun

Pops a value off argument stack.CachePop

Restores the stack entry from CachePopCacheUnPop

Pushes an extrinsic function reference onto the argument stack.CachePushFunc[W][H]

Push an extended function reference onto argument stackCachePushFuncX[W][H]

Push a routine reference onto argument stackCachePushRtn[W][H]

Push an extended routine reference onto argument stackCachePushRtnX[W][H]

2.3 Transactions and Locking
These functions execute the standard Caché transaction commands (TSTART, TCOMMIT, and TROLLBACK) and the
LOCK command.

2.3.1 Transactions

The following functions execute the standard Caché transaction commands.

Table 2–4:Transaction functions

Executes a Caché TCommit command.CacheTCommit

Returns the current nesting level ($TLEVEL) for transaction processing.CacheTLevel

Executes a Caché TRollback command.CacheTRollback

Executes a Caché TStart command.CacheTStart

2.3.2 Locking

These functions execute various forms of the Cache LOCK command. Functions are provided to push lock names onto the
argument stack for use by the CacheAcquireLock function.

Using the Caché Callin API 15

Transactions and Locking

Table 2–5: Locking functions

Executes a Caché LOCK command.CacheAcquireLock

Performs an argumentless Cache LOCK command to remove all locks
currently held by the process.

CacheReleaseAllLocks

Executes a Cache LOCK — command to decrement the lock count for
the specified lock name.

CacheReleaseLock

Initializes a CacheAcquireLock command by pushing the lock name on
the argument stack.

CachePushLock[W][H]

Initializes a CacheAcquireLock command by pushing the lock name and
an environment string on the argument stack.

CachePushLockX[W][H]

2.4 Managing Objects
These functions call into Caché to manipulate the Oref counter, perform method calls, and get or set property values. Stack
functions are also included for Orefs, method references, and property names.

2.4.1 Orefs

Table 2–6: Oref functions

Decrement the reference counter for an OREF. (Calls into Caché).CacheCloseOref

Increment the reference counter for an OREFCacheIncrementCountOref

Pop an OREF off argument stackCachePopOref

Push an OREF onto argument stackCachePushOref

2.4.2 Methods

Table 2–7: Method functions

Perform an instance method call. (Calls into Caché).CacheInvokeMethod

Push an instance method reference onto argument stackCachePushMethod[W][H]

Perform a class method call. (Calls into Caché).CacheInvokeClassMethod

Push a class method reference onto argument stackCachePushClassMethod[W][H]

16 Using the Caché Callin API

Using the Callin Functions

2.4.3 Properties

Table 2–8: Property functions

Obtain the value for a property. (Calls into Caché).CacheGetProperty

Store the value for a property. (Calls into Caché).CacheSetProperty

Push a property name onto argument stackCachePushProperty[W][H]

2.5 Managing Globals
These functions call into Caché to manipulate globals. Functions are provided to push globals onto the argument stack.

Table 2–9: Functions for managing globals

Obtains the value of the global reference defined by
CachePushGlobal[W][H] and any subscripts. The node value is pushed
onto the argument stack.

CacheGlobalGet

Obtains the value of the global reference like CacheGlobalGet, and also
tests to make sure that the result is a binary string that will fit in the provided
buffer.

CacheGlobalGetBinary

Stores the value of the global reference. The node value must be pushed
onto the argument stack before this call.

CacheGlobalSet

Performs a $Data on the specified global.CacheGlobalData

Performs a $Increment and returns the result on top of the stack.CacheGlobalIncrement

Performs a ZKILL on a global node or tree.CacheGlobalKill

Performs a $Order on the specified global.CacheGlobalOrder

Performs a $Query on the specified global.CacheGlobalQuery

Releases ownership of a retained global buffer, if one exists.CacheGlobalRelease

Pushes a global name onto argument stackCachePushGlobal[W][H]

Pushes an extended global name onto argument stackCachePushGlobalX[W][H]

2.6 Managing Strings
These functions translate strings from one form to another, and push or pop string arguments.

2.6.1 Long String Functions

Caché long string functions may be used for both long strings and standard strings. Functions are provided for local 8-bit
encoding, 2–byte Unicode, and 4–byte Unicode.

Using the Caché Callin API 17

Managing Globals

Table 2–10: Long string functions

Translates a string with specified external character set encoding to the
character string encoding used internally by Caché.

CacheCvtExStrInA[W][H]

Translates a string from the character string encoding used internally in
Caché to a string with the specified external character set encoding.

CacheCvtExStrOutA[W][H]

Releases the storage associated with a long string.CacheExStrKill

Allocates the requested amount of storage for a long string, and fills in the
EXSTR structure with the length and a pointer to the value field of the
structure.

CacheExStrNew[W][H]

Pops a string off the argument stack and translates it to a Unicode string.CachePopExStrCvtW[H]

Converts a Unicode string to local 8–bit encoding and pushes it onto the
argument stack.

CachePushExStrCvtW[H]

Pops a value off argument stack and converts it to a string of the desired
type.

CachePopExStr[W][H]

Pushes a string onto the argument stackCachePushExStr[W][H]

2.6.2 Standard String Functions

The following functions deal with standard Caché strings (limited to 32K). Functions are provided for local 8-bit encoding,
2–byte Unicode, and 4–byte Unicode.

Table 2–11: Standard string functions

Translates a string with the specified external character set encoding to
the character string encoding used internally in Caché.

CacheCvtInA[W][H]

Translates a string from the character string encoding used internally in
Caché to a string with the specified external character set encoding.

CacheCvtOutA[W][H]

Pops a value off argument stack and converts it to a string of the desired
type.

CachePopStr[W][H]

Pushes a string onto argument stackCachePushStr[W][H]

Translates a Unicode string to local and pushes it onto argument stackCachePushCvtW[H]

Pops a value off argument stack and translates it into the desired string
type.

CachePopCvtW[H]

2.7 Managing Other Datatypes
These functions are used to push and pop argument values with datatypes such as int, double, $list, or pointer, and to return
the position of specified bit values within a bitstring.

Table 2–12: Other datatype functions

Push an integer onto argument stackCachePushInt

18 Using the Caché Callin API

Using the Callin Functions

Pop a value off argument stack and convert it to an integerCachePopInt

Push a 64–bit (long long) value onto argument stackCachePushInt64

Pop a value off argument stack and convert it to a 64–bit (long long) valueCachePopInt64

Push a Caché double onto argument stackCachePushDbl

Push an IEEE double onto argument stack.CachePushIEEEDbl

Pops value off argument stack and converts it to a doubleCachePopDbl

Translates and pushes a $LIST object onto argument stackCachePushList

Pops a $LIST object off argument stack and translates itCachePopList

Pushes a pointer value onto argument stackCachePushPtr

Pops a pointer value off argument stackCachePopPtr

Pushes an Undefined value that is interpreted as an omitted function
argument.

CachePushUndef

Returns the position of specified bit values within a bitstring. Similar to
Caché $BITFIND.

CacheBitFind[B]

Using the Caché Callin API 19

Managing Other Datatypes

3
Callin Function Reference

This reference chapter contains detailed descriptions of all Caché Callin functions, arranged in alphabetical order. For an
introduction to the Callin functions organized by function, see Using the Callin Functions.

Note: Caché Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use a suffix
character to indicate the type of string that they handle:

• Names with an “A” suffix or no suffix at all (for example,CacheEvalA or CachePopStr) are versions for
8-bit character strings.

• Names with a “W” suffix (for example,CacheEvalW or CachePopStrW) are versions for Unicode character
strings on platforms that use 2–byte Unicode characters.

• Names with an “H” suffix (for example,CacheEvalH or CachePopStrH) are versions for Unicode character
strings on platforms that use 4–byte Unicode characters.

For convenience, the different versions of each function are listed together here. For example, CacheEvalA[W][H]
or CachePopStr[W][H].

3.1 Alphabetical Function List
This section contains an alphabetical list of all Callin functions with a brief description of each function and links to detailed
descriptions.

• CacheAbort — Tells Caché to cancel the current request being processed on the Caché side, when it is convenient to
do so.

• CacheAcquireLock — Executes a Cache LOCK command. The lock reference should already be set up with
CachePushLockX[W][H].

• CacheChangePasswordA[W][H] — Changes the user's password if Caché authentication is used (not valid for other
forms of authentication).

• CacheBitFind[B] — Returns the position of specified bit values within a bitstring (similar to Caché $BITFIND).

• CacheCloseOref — Decrements the system reference counter for an OREF.

• CacheContext — Returns true if there is a request currently being processed on the Caché side of the connection
when using an external Callin program.

• CacheConvert — Converts the value returned by CacheEvalA[W][H] into proper format and places in address
specified in its return value.

Using the Caché Callin API 21

• CacheCtrl — Determines whether or not Caché ignores CTRL-C.

• CacheCvtExStrInA[W][H] — Translates a string with specified external character set encoding to the local 8-bit
character string encoding used internally only in 8-bit versions of Caché.

• CacheCvtExStrOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in
the Caché 8-bit product to a string with the specified external character set encoding. (This is only available with 8-bit
versions of Caché.)

• CacheCvtInA[W][H] — Translates string with specified external character set encoding to the local 8-bit character
string encoding (used internally only in 8-bit versions of Caché) or the Unicode character string encoding (used internally
in Unicode versions of Caché).

• CacheCvtOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in the
Caché 8-bit product to a string with the specified external character set encoding. (This is only available with 8-bit
versions of Caché.)

• CacheDoFun — Performs a routine call (special case).

• CacheDoRtn — Performs a routine call.

• CacheEnd — Terminates a Caché process. If there is a broken connection, it also performs clean-up operations.

• CacheEndAll — Disconnects all Callin threads and waits until they terminate.

• CacheErrorA[W][H] — Returns the most recent error message, its associated source string, and the offset to where
in the source string the error occurred.

• CacheErrxlateA[W][H] — Translates an integer error code into a Cache error string.

• CacheEvalA[W][H] — Evaluates a string as if it were a Caché expression and places the return value in memory for
further processing by CacheType and CacheConvert.

• CacheExecuteA[W][H] — Executes a command string as if it were typed at the Caché programmer prompt.

• CacheExStrKill — Releases the storage associated with an EXSTR string.

• CacheExStrNew[W][H] — Allocates the requested amount of storage for a string, and fills in the EXSTR structure
with the length and a pointer to the value field of the structure.

• CacheExtFun — Performs an extrinsic function call where the return value is pushed onto the argument stack.

• CacheGetProperty — Obtains the value of the property defined by CachePushProperty[W][H]. The value is pushed
onto the argument stack.

• CacheGlobalData — Performs a $Data on the specified global.

• CacheGlobalGet — Obtains the value of the global reference defined by CachePushGlobal[W][H] and any subscripts.
The node value is pushed onto the argument stack.

• CacheGlobalIncrement — Performs a $INCREMENT and returns the result on top of the stack.

• CacheGlobalKill — Performs a ZKILL on a global node or tree.

• CacheGlobalOrder — Performs a $Order on the specified global.

• CacheGlobalQuery — Performs a $Query on the specified global.

• CacheGlobalRelease — Release ownership of a retained global buffer, if one exists.

• CacheGlobalSet — Stores the value of the global reference defined by CachePushGlobal[W][H] and any subscripts.
The node value must be pushed onto the argument stack before this call.

• CacheIncrementCountOref — Increments the system reference counter for an OREF.

22 Using the Caché Callin API

Callin Function Reference

• CacheInvokeClassMethod — Executes the class method call defined by CachePushClassMethod[W][H] and any
arguments. The return value is pushed onto the argument stack.

• CacheInvokeMethod — Executes the instance method call defined by CachePushMethod[W][H] and any arguments
pushed onto the argument stack.

• CacheOflush — Flushes any pending output.

• CachePop — Pops a value off argument stack.

• CachePopCvtW[H] — Pops a local 8-bit string off argument stack and translates it to Unicode. Identical to
CachePopStr[W][H] for Unicode versions.

• CachePopDbl — Pops a value off argument stack and converts it to a double.

• CachePopExStr[W][H] — Pops a value off argument stack and converts it to a long string.

• CachePopExStrCvtW[H] — Pops a value off argument stack and converts it to a long Unicode string.

• CachePopInt — Pops a value off argument stack and converts it to an integer.

• CachePopInt64 — Pops a value off argument stack and converts it to a 64-bit (long long) number.

• CachePopList — Pops a $LIST object off argument stack and converts it. String elements are copied or translated as
appropriate depending on whether this is a Unicode or 8-bit version.

• CachePopOref — Pops an OREF off argument stack.

• CachePopPtr — Pops a pointer off argument stack in internal format.

• CachePopStr[W][H] — Pops a value off argument stack and converts it to a string.

• CachePromptA[W][H] — Returns a string that would be the programmer prompt.

• CachePushClassMethod[W][H] — Pushes a class method reference onto the argument stack.

• CachePushCvtW[H] — Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to
CachePushStr[W][H] for Unicode versions.

• CachePushDbl — Pushes a Caché double onto the argument stack.

• CachePushExStr[W][H] — Pushes a long string onto the argument stack.

• CachePushExStrCvtW[H] — Translates a Unicode string to local 8-bit and pushes it onto the argument stack.

• CachePushFunc[W][H] — Pushes an extrinsic function reference onto the argument stack.

• CachePushFuncX[W][H] — Pushes an extended extrinsic function reference onto the argument stack.

• CachePushGlobal[W][H] — Pushes a global reference onto the argument stack.

• CachePushGlobalX[W][H] — Pushes an extended global reference onto the argument stack.

• CachePushIEEEDbl — Pushes an IEEE double onto the argument stack.

• CachePushInt — Pushes an integer onto the argument stack.

• CachePushInt64 — Pushes a 64-bit (long long) number onto the argument stack.

• CachePushList — Converts a $LIST object and pushes it onto the argument stack.

• CachePushLock[W][H] — Initializes a CacheAcquireLock command by pushing the lock name on the argument
stack.

• CachePushLockX[W][H] — Initializes a CacheAcquireLock command by pushing the lock name and an environment
string on the argument stack.

• CachePushMethod[W][H] — Pushes an instance method reference onto the argument stack.

Using the Caché Callin API 23

Alphabetical Function List

• CachePushOref — Pushes an OREF onto the argument stack.

• CachePushProperty[W][H] — Pushes a property reference onto the argument stack.

• CachePushPtr — Pushes a pointer onto the argument stack in internal format.

• CachePushRtn[W][H] — Pushes a routine reference onto the argument stack.

• CachePushRtnX[W][H] — Pushes an extended routine reference onto the argument stack.

• CachePushStr[W][H] — Pushes a byte string onto the argument stack.

• CachePushExStrCvtW[H] — Converts a Unicode string to local 8–bit encoding and pushes it onto the argument
stack.

• CachePushUndef — pushes an Undefined value that is interpreted as an omitted function argument.

• CacheReleaseAllLocks — Performs an argumentless Cache LOCK command to remove all locks currently held by
the process.

• CacheReleaseLock — Executes a Cache LOCK command to decrement the lock count for the specified lock name.
This command will only release one incremental lock at a time.

• CacheSecureStartA[W][H] — Calls into Cache to set up a Cache process.

• CacheSetDir — Dynamically sets the name of the manager's directory at runtime.

• CacheSetProperty — Stores the value of the property defined by CachePushProperty[W][H].

• CacheSignal — Passes on signals caught by user's program to Caché.

• CacheSPCReceive — Receive single-process-communication message.

• CacheSPCSend — Send a single-process-communication message.

• CacheStartA[W][H] — Calls into Caché to set up a Caché process.

• CacheTCommit — Executes a Cache TCommit command.

• CacheTLevel — Returns the current nesting level ($TLEVEL) for transaction processing.

• CacheTRollback — Executes a Cache TRollback command.

• CacheTStart — Executes a Cache TStart command.

• CacheType — Returns the native type of the item returned by CacheEvalA[W][H], as the function value.

• CacheUnPop — Restores the stack entry from CachePop.

3.2 CacheAbort
int CacheAbort(unsigned long type)

Arguments

Either of the following predefined values that specify how the termination occurs:type

• CACHE_CTRLC — Interrupts the Caché processing as if a CTRL-C had been processed
(regardless of whether CTRL-C has been enabled with CacheCtrl). A connection to Caché
remains.

• CACHE_RESJOB — Terminates the Callin connection.You must then call CacheEnd and
then CacheStart to reconnect to Caché.

24 Using the Caché Callin API

Callin Function Reference

Description
Tells Caché to cancel the current request being processed on the Caché side, when it is convenient to do so. This function
is for use if you detect some critical event in an AST (asynchronous trap) or thread running on the Callin side. (You can
use CacheContext to determine if there is a Caché request currently being processed.) Note that this only applies to Callin
programs that use an AST or separate thread.

Return Values for CacheAbort

The termination type is invalid.CACHE_BADARG

Connection has been broken.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

The Callin partner is not in Caché at this time.CACHE_NOTINCACHE

Connection formed.CACHE_SUCCESS

Example

rc = CacheAbort(CACHE_CTRLC);

3.3 CacheAcquireLock
int CacheAcquireLock(int nsub, int flg, int tout, int * rval)

Arguments

Number of subscripts in the lock reference.nsub

Modifiers to the lock command. Valid values are one or both of CACHE_INCREMENTAL_LOCK
and CACHE_SHARED_LOCK.

flg

Number of seconds to wait for the lock command to complete. Negative for no timeout. 0 means
return immediately if the lock is not available, although a minimum timeout may be applied if the
lock is mapped to a remote system.

tout

Optional pointer to an int return value: success = 1, failure = 0.rval

Description
Executes a Cache LOCK command. The lock reference should already be set up with CachePushLock.

Return Values for CacheAcquireLock

An unexpected error has occurred.CACHE_FAILURE

Successfully called the LOCK command (but the rval parameter must be
examined to determine if the lock succeeded).

CACHE_SUCCESS

Connection has been closed due to a serious error.CACHE_CONBROKEN

Argument stack overflow.CACHE_ERARGSTACK

Using the Caché Callin API 25

CacheAcquireLock

3.4 CacheBitFind
int CacheBitFind(int strlen, unsigned short *bitstr, int newlen, int srch, int revflg)

Arguments

Data length of the bitstring.strlen

Pointer to a Unicode bitstring.bitstr

0 to start at the beginning, otherwise 1–based starting positionnewlen

The bit value (0 or 1) to search for within the bitstring.srch

Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.

0 — Search backward from the position indicated by newlen.

revflg

Description
Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns 0 if there are no more bits of the specified value in the specified direction.

This function is similar to Caché $BITFIND (also see “General Information on Bitstring Functions”).

Return Values for CacheBitFind

The operation was successful.CACHE_SUCCESS

3.5 CacheBitFindB
int CacheBitFindB(int strlen, unsigned char *bitstr, int newlen, int srch, int revflg)

Arguments

Data length of the bitstring.strlen

Pointer to a bitstring.bitstr

0 to start at the beginning, otherwise 1–based starting position.newlen

The bit value (0 or 1) to search for within the bitstring.srch

Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.

0 — Search backward from the position indicated by newlen.

revflg

Description
Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns 0 if there are no more bits of the specified value in the specified direction.

This function is similar to Caché $BITFIND (also see “General Information on Bitstring Functions”).

26 Using the Caché Callin API

Callin Function Reference

Return Values for CacheBitFindB

The operation was successful.CACHE_SUCCESS

3.6 CacheChangePasswordA
Variants: CacheChangePasswordW, CacheChangePasswordH

int CacheChangePasswordA(CACHE_ASTRP username, CACHE_ASTRP oldpassword, CACHE_ASTRP newpassword)

Arguments

Username of the user whose password must be changed.username

User's old password.oldpassword

New password.newpassword

Description
This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Return Values for CacheChangePasswordA

An unexpected error has occurred.CACHE_FAILURE

Password changed.CACHE_SUCCESS

3.7 CacheChangePasswordH
Variants: CacheChangePasswordA, CacheChangePasswordW

int CacheChangePasswordH(CACHEHSTRP username, CACHEHSTRP oldpassword, CACHEHSTRP newpassword)

Arguments

Username of the user whose password must be changed.username

User's old password.oldpassword

New password.newpassword

Description
This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Using the Caché Callin API 27

CacheChangePasswordA

Return Values for CacheChangePasswordH

An unexpected error has occurred.CACHE_FAILURE

Password changed.CACHE_SUCCESS

3.8 CacheChangePasswordW
Variants: CacheChangePasswordA, CacheChangePasswordH

int CacheChangePasswordW(CACHEWSTRP username, CACHEWSTRP oldpassword, CACHEWSTRP newpassword)

Arguments

Username of the user whose password must be changed.username

User's old password.oldpassword

New password.newpassword

Description
This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Return Values for CacheChangePasswordW

An unexpected error has occurred.CACHE_FAILURE

Password changed.CACHE_SUCCESS

3.9 CacheCloseOref
int CacheCloseOref(unsigned int oref)

Arguments

Object reference.oref

Description
Decrements the system reference counter for an OREF.

Return Values for CacheCloseOref

Invalid OREF.CACHE_ERBADOREF

The operation was successful.CACHE_SUCCESS

28 Using the Caché Callin API

Callin Function Reference

3.10 CacheContext
int CacheContext()

Description
Returns an integer as the function value.

If you are using an external Callin program (as opposed to a module that was called from a $ZF function) and your program
employs an AST or separate thread, then CacheContext tells you if there is a request currently being processed on the
Caché side of the connection. This information is needed to decide if you must return to Caché to allow processing to
complete.

Return Values for CacheContext

Created in Caché via a $ZF callback.-1

No connection or not in Caché at the moment.0

In Caché via an external (i.e., not $ZF) connection. An asynchronous trap (AST), such as an exit-
handler, would need to return to Caché to allow Caché to complete processing.

1

Note: The information about whether you are in a $ZF function from a program or an AST is needed because, if you
are in an AST, then you need to return to Caché to allow processing to complete.

Example

rc = CacheContext();

3.11 CacheConvert
int CacheConvert(unsigned long type, void * rbuf)

Arguments

The #define'd type, with valid values listed below.type

Address of a data area of the proper size for the data type. If the type is CACHE_ASTRING,
rbuf should be the address of a CACHE_ASTR structure that will contain the result, and the len
element in the structure should be filled in to represent the maximum size of the string to be
returned (in characters). Similarly, if the type is CACHE_WSTRING, rbuf should be the address
of a CACHEWSTR structure whose len element has been filled in to represent the maximum
size (in characters).

rbuf

Description
Converts the value returned by CacheEval into proper format and places in address specified in its return value (listed
below as rbuf).

Valid values of type are:

• CACHE_ASTRING — 8-bit character string.

• CACHE_CHAR — 8-bit signed integer.

Using the Caché Callin API 29

CacheContext

• CACHE_DOUBLE — 64-bit floating point.

• CACHE_FLOAT — 32-bit floating point.

• CACHE_INT — 32-bit signed integer.

• CACHE_INT2 — 16-bit signed integer.

• CACHE_INT4 — 32-bit signed integer.

• CACHE_INT8 — 64-bit signed integer.

• CACHE_UCHAR — 8-bit unsigned integer.

• CACHE_UINT — 32-bit unsigned integer.

• CACHE_UINT2 — 16-bit unsigned integer.

• CACHE_UINT4 — 32-bit unsigned integer.

• CACHE_UINT8 — 64-bit unsigned integer.

• CACHE_WSTRING — Unicode character string.

Return Values for CacheConvert

Type is invalid.CACHE_BADARG

Connection has been closed due to a serious error.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

An unexpected error has occurred.CACHE_FAILURE

No connection has been established.CACHE_NOCON

No result whose type can be returned (no call to CacheEvalA preceded
this call).

CACHE_NORES

Success, but the type CACHE_ASTRING, CACHE_INT8, CACHE_UINT8
and CACHE_WSTRING resulted in a value that would not fit in the space
allocated in retval. For CACHE_INT8 and CACHE_UINT8, this means that
the expression resulted in a floating point number that could not be normal-
ized to fit within 64 bits.

CACHE_RETTRUNC

String is too long.CACHE_STRTOOLONG

Value returned by last CacheEval converted successfully.CACHE_SUCCESS

Note: Caché may perform division when calculating the return value for floating point types, CACHE_FLOAT and
CACHE_DOUBLE, which have decimal parts (including negative exponents), as well as the 64-bit integer types
(CACHE_INT8 and CACHE_UINT8). Therefore, the returned result may not be identical in value to the original.
CACHE_ASTRING, CACHE_INT8, CACHE_UINT8 and CACHE_WSTRING can return the status
CACHE_RETTRUNC.

Example

CACHE_ASTR retval;
/* define variable retval */

retval.len = 20;
/* maximum return length of string */

rc = CacheConvert(CACHE_ASTRING,&retval);

30 Using the Caché Callin API

Callin Function Reference

3.12 CacheCtrl
int CacheCtrl(unsigned long flags)

Arguments

Either of two #define'd values specifying how Caché handles certain keystrokes.flags

Description
Determines whether or not Caché ignores CTRL-C. flags can have bit state values of

• CACHE_DISACTRLC — Caché ignores CTRL-C.

• CACHE_ENABCTRLC — Default if function is not called, unless overridden by a BREAK or an OPEN command. In
Caché, CTRL-C generates an <INTERRUPT>.

Return Values for CacheCtrl

Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

CACHE_FAILURE

Control function performed.CACHE_SUCCESS

Example

rc = CacheCtrl(CACHE_ENABCTRLC);

3.13 CacheCvtExStrInA
Variants: CacheCvtExStrInW, CacheCvtExStrInH

int CacheCvtExStrInA(CACHE_EXSTRP src, CACHE_ASTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string with specified external character set encoding to the local 8-bit character string encoding used internally
only in 8-bit versions of Caché.

Using the Caché Callin API 31

CacheCtrl

Return Values for CacheCvtExStrInA

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for Unicode.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.14 CacheCvtExStrInW
Variants: CacheCvtExStrInA, CacheCvtExStrInH

int CacheCvtExStrInW(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string with specified external character set encoding to the 2–byte Unicode character string encoding used
internally in Unicode versions of Caché.

32 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtExStrInW

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.15 CacheCvtExStrInH
Variants: CacheCvtExStrInA, CacheCvtExStrInW

int CacheCvtExStrInH(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string with specified external character set encoding to the 4–byte Unicode character string encoding used
internally in Unicode versions of Caché.

Using the Caché Callin API 33

CacheCvtExStrInH

Return Values for CacheCvtExStrInH

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.16 CacheCvtExStrOutA
Variants: CacheCvtExStrOutW, CacheCvtExStrOutH

int CacheCvtExStrOutA(CACHE_EXSTRP src, CACHE_ASTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string from the local 8-bit character string encoding used internally in the Caché 8-bit product to a string with
the specified external character set encoding. (This is only available with 8-bit versions of Caché.)

34 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtExStrOutA

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for Unicode.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.17 CacheCvtExStrOutW
Variants: CacheCvtExStrOutA, CacheCvtExStrOutH

int CacheCvtExStrOutW(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string from the 2–byte Unicode character string encoding used internally in Unicode versions of Caché to a
string with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

Using the Caché Callin API 35

CacheCvtExStrOutW

Return Values for CacheCvtExStrOutW

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.18 CacheCvtExStrOutH
Variants: CacheCvtExStrOutA, CacheCvtExStrOutW

int CacheCvtExStrOutH(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments

Address of a CACHE_EXSTRP variable that contains the string to be converted.src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_EXSTRP variable that will contain the result.res

Description
Translates a string from the 4–byte Unicode character string encoding used internally in Unicode versions of Caché to a
string with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

36 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtExStrOutH

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.19 CacheCvtInA
Variants: CacheCvtInW, CacheCvtInH

int CacheCvtInA(CACHE_ASTRP src, CACHE_ASTRP tbl, CACHE_ASTRP res)

Arguments

The string in an external character set encoding to be translated (described using a counted
character string buffer). The string should be initialized, for example, by setting the value to the
number of blanks representing the maximum number of characters expected as output.

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_ASTR variable that will contain the counted 8-bit string result.res

Description
Translates string with specified external character set encoding to the local 8-bit character string encoding used internally
only in 8-bit versions of Caché.

Using the Caché Callin API 37

CacheCvtInA

Return Values for CacheCvtInA

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for Unicode.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.20 CacheCvtInH
Variants: CacheCvtInA, CacheCvtInW

int CacheCvtInH(CACHE_ASTRP src, CACHEHSTRP tbl, CACHEHSTRP res)

Arguments

The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHEHSTRP variable that will contain the counted Unicode string result.res

Description
Translates string with specified external character set encoding to the Unicode character string encoding used internally in
Unicode versions of Caché.

38 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtInH

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.21 CacheCvtInW
Variants: CacheCvtInA, CacheCvtInH

int CacheCvtInW(CACHE_ASTRP src, CACHEWSTRP tbl, CACHEWSTRP res)

Arguments

The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHEWSTR variable that will contain the counted Unicode string result.res

Description
Translates string with specified external character set encoding to the Unicode character string encoding used internally in
Unicode versions of Caché.

Using the Caché Callin API 39

CacheCvtInW

Return Values for CacheCvtInW

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.22 CacheCvtOutA
Variants: CacheCvtOutW, CacheCvtOutH

int CacheCvtOutA(CACHE_ASTRP src, CACHE_ASTRP tbl, CACHE_ASTRP res)

Arguments

The string in the local 8-bit character string encoding used internally in the Caché 8-bit product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalW).

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).

res

Description
Translates a string from the local 8-bit character string encoding used internally in the Caché 8-bit product to a string with
the specified external character set encoding. (This is only available with 8-bit versions of Caché.)

40 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtOutA

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for Unicode.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.23 CacheCvtOutH
Variants: CacheCvtOutA, CacheCvtOutW

int CacheCvtOutH(CACHEHSTRP src, CACHEHSTRP tbl, CACHE_ASTRP res)

Arguments

The string in the Unicode character string encoding used internally in the Caché Unicode product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalW).

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).

res

Description
Translates a string from the Unicode character string encoding used internally in Unicode versions of Caché to a string
with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

Using the Caché Callin API 41

CacheCvtOutH

Return Values for CacheCvtOutH

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.24 CacheCvtOutW
Variants: CacheCvtOutA, CacheCvtOutH

int CacheCvtOutW(CACHEWSTRP src, CACHEWSTRP tbl, CACHE_ASTRP res)

Arguments

The string in the Unicode character string encoding used internally in the Caché Unicode product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalW).

src

The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).

tbl

Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).

res

Description
Translates a string from the Unicode character string encoding used internally in Unicode versions of Caché to a string
with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

42 Using the Caché Callin API

Callin Function Reference

Return Values for CacheCvtOutW

Connection has been closed due to a serious error.CACHE_CONBROKEN

Not available for 8–bit systems.CACHE_ERRUNIMPLEMENTED

The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERVALUE

Input string could not be translated using the specified I/O translation
table.

CACHE_ERXLATE

No connection has been established.CACHE_NOCON

Result was truncated because result buffer was too small.CACHE_RETTRUNC

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

CACHE_FAILURE

Translation completed successfully.CACHE_SUCCESS

3.25 CacheDoFun
int CacheDoFun(unsigned int flags, int narg)

Arguments

Routine flags from CachePushRtn[XW]flags

Number of call arguments pushed onto the argument stack.Target must have a (possibly empty)
formal parameter list.

narg

Description
Performs a routine call (special case).

Return Values for CacheDoFun

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Argument stack overflow.CACHE_ERARGSTACK

Internal consistency error.CACHE_FAILURE

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.26 CacheDoRtn
int CacheDoRtn(unsigned int flags, int narg)

Using the Caché Callin API 43

CacheDoFun

Arguments

Routine flags from CachePushRtn[XW]flags

Number of call arguments pushed onto the argument stack. If zero, target must not have a formal
parameter list.

narg

Description
Performs a routine call.

Return Values for CacheDoRtn

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Argument stack overflow.CACHE_ERARGSTACK

Internal consistency error.CACHE_FAILURE

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.27 CacheEnd
int CacheEnd()

Description
Terminates a Caché process. If there is a broken connection, it also performs clean-up operations.

Return Values for CacheEnd

Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

CACHE_FAILURE

No connection has been established.CACHE_NOCON

Caché session terminated/cleaned up.CACHE_SUCCESS

CacheEnd can also return any of the Caché error codes.

Example

rc = CacheEnd();

3.28 CacheEndAll
int CacheEndAll()

Description
Disconnects all threads in a threaded Callin environment, then schedules the threads for termination and waits until they
are done.

44 Using the Caché Callin API

Callin Function Reference

Return Values for CacheEndAll

Caché session terminated/cleaned up.CACHE_SUCCESS

Example

rc = CacheEndAll();

3.29 CacheErrorA
Variants: CacheErrorW, CacheErrorH

int CacheErrorA(CACHE_ASTRP msg, CACHE_ASTRP src, int * offp)

Arguments

The error message or the address of a variable to receive the error message.msg

The source string for the error or the address of a variable to receive the source string the error
message.

src

An integer that specifies the offset to location in errsrc or the address of an integer to receive
the offset to the source string the error message.

offp

Description
Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for CacheErrorA

Connection has been broken.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

The length of the return value for either errmsg or errsrc was not of the
valid size.

CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHE_ASTR errmsg;
CACHE_ASTR srcline;
int offset;
errmsg.len = 50;
srcline.len = 100;
if ((rc = CacheErrorA(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf("\r\nfailed to display error - rc = %d",rc);

3.30 CacheErrorH
Variants: CacheErrorA, CacheErrorW

int CacheErrorH(CACHEHSTRP msg, CACHEHSTRP src, int * offp)

Using the Caché Callin API 45

CacheErrorA

Arguments

The error message or the address of a variable to receive the error message.msg

The source string for the error or the address of a variable to receive the source string the error
message.

src

The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.

offp

Description
Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for CacheErrorH

Connection has been broken.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

The length of the return value for either errmsg or errsrc was not of the
valid size.

CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHEHSTRP errmsg;
CACHEHSTRP srcline;
int offset;
errmsg.len = 50;
srcline.len = 100;
if ((rc = CacheErrorH(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf("\r\nfailed to display error - rc = %d",rc);

3.31 CacheErrorW
Variants: CacheErrorA, CacheErrorH

int CacheErrorW(CACHEWSTRP msg, CACHEWSTRP src, int * offp)

Arguments

The error message or the address of a variable to receive the error message.msg

The source string for the error or the address of a variable to receive the source string the error
message.

src

The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.

offp

Description
Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

46 Using the Caché Callin API

Callin Function Reference

Return Values for CacheErrorW

Connection has been broken.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

The length of the return value for either errmsg or errsrc was not of the
valid size.

CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHEWSTRP errmsg;
CACHEWSTRP srcline;
int offset;
errmsg.len = 50;
srcline.len = 100;
if ((rc = CacheErrorW(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf("\r\nfailed to display error - rc = %d",rc);

3.32 CacheErrxlateA
Variants: CacheErrxlateW, CacheErrxlateH

int CacheErrxlateA(int code, CACHE_ASTRP rbuf)

Arguments

The error code.code

Address of a CACHE_ASTR variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.

rbuf

Description
Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateA

The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.

CACHE_ERUNKNOWN

The associated error string was truncated to fit in the allocated area.CACHE_RETTRUNC

Connection formed.CACHE_SUCCESS

Example

CACHE_ASTR retval; /* define variable retval */
retval.len = 30; /* maximum return length of string */
rc = CacheErrxlateA(CACHE_ERSTORE,&retval);

3.33 CacheErrxlateH
Variants: CacheErrxlateA, CacheErrxlateW

Using the Caché Callin API 47

CacheErrxlateA

int CacheErrxlateH(int code, CACHEHSTRP rbuf)

Arguments

The error code.code

Address of a CACHEHSTRP variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.

rbuf

Description
Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateH

The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.

CACHE_ERUNKNOWN

The associated error string was truncated to fit in the allocated area.CACHE_RETTRUNC

Connection formed.CACHE_SUCCESS

Example

CACHEHSTR retval; /* define variable retval */
retval.len = 30; /* maximum return length of string */
rc = CacheErrxlateH(CACHE_ERSTORE,&retval);

3.34 CacheErrxlateW
Variants: CacheErrxlateA, CacheErrxlateH

int CacheErrxlateW(int code, CACHEWSTRP rbuf)

Arguments

The error code.code

Address of a CACHEWSTR variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.

rbuf

Description
Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateW

The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.

CACHE_ERUNKNOWN

The associated error string was truncated to fit in the allocated area.CACHE_RETTRUNC

Connection formed.CACHE_SUCCESS

Example

CACHEWSTR retval; /* define variable retval */
retval.len = 30; /* maximum return length of string */
rc = CacheErrxlateW(CACHE_ERSTORE,&retval);

48 Using the Caché Callin API

Callin Function Reference

3.35 CacheEvalA
Variants: CacheEvalW, CacheEvalH

int CacheEvalA(CACHE_ASTRP volatile expr)

Arguments

The address of a CACHE_ASTR variable.expr

Description
Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEvalA completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete. These
functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalA, CacheExecuteA, or CacheEnd will overwrite the existing return value.

Return Values for CacheEvalA

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHE_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String evaluated successfully.CACHE_SUCCESS

CacheEvalA can also return any of the Caché error codes.

Example

int rc;
CACHE_ASTR retval;
CACHE_ASTR expr;

strcpy(expr.str, "\"Record\"_^Recnum_\" = \"_$$^GetRec(^Recnum)");
expr.len = strlen(expr.str);
rc = CacheEvalA(&expr);
if (rc == CACHE_SUCCESS)
 rc = CacheConvert(CACHE_ASTRING,&retval);

3.36 CacheEvalH
Variants: CacheEvalA, CacheEvalW

int CacheEvalH(CACHEHSTRP volatile expr)

Arguments

The address of a CACHEHSTRP variable.expr

Using the Caché Callin API 49

CacheEvalA

Description
Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEvalH completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalH, CacheExecuteH, or CacheEnd will overwrite the existing return value.

Return Values for CacheEvalH

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHW_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String evaluated successfully.CACHE_SUCCESS

CacheEvalH can also return any of the Caché error codes.

Example

int rc;
CACHEHSTRP retval;
CACHEHSTRP expr;

strcpy(expr.str, "\"Record\"_^Recnum_\" = \"_$$^GetRec(^Recnum)");
expr.len = strlen(expr.str);
rc = CacheEvalH(&expr);
if (rc == CACHE_SUCCESS)
 rc = CacheConvert(ING,&retval);

3.37 CacheEvalW
Variants: CacheEvalA, CacheEvalH

int CacheEvalW(CACHEWSTRP volatile expr)

Arguments

The address of a CACHEWSTR variable.expr

Description
Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEvalW completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalW, CacheExecuteW, or CacheEnd will overwrite the existing return value.

50 Using the Caché Callin API

Callin Function Reference

Return Values for CacheEvalW

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHW_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String evaluated successfully.CACHE_SUCCESS

CacheEvalW can also return any of the Caché error codes.

Example

int rc;
CACHEWSTR retval;
CACHEWSTR expr;

strcpy(expr.str, "\"Record\"_^Recnum_\" = \"_$$^GetRec(^Recnum)");
expr.len = strlen(expr.str);
rc = CacheEvalW(&expr);
if (rc == CACHE_SUCCESS)
 rc = CacheConvert(ING,&retval);

3.38 CacheExecuteA
Variants: CacheExecuteW, CacheExecuteH

int CacheExecuteA(CACHE_ASTRP volatile cmd)

Arguments

The address of a CACHE_ASTR variable.cmd

Description
Executes the command string as if it were typed at the Caché programmer prompt.

CAUTION: The next call to CacheEvalA, CacheExecuteA, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteA

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String executed successfully.CACHE_SUCCESS

CacheExecuteA can also return any of the Caché error codes.

Using the Caché Callin API 51

CacheExecuteA

Example

int rc;
CACHE_ASTR command;
sprintf(command.str,"ZN \"USER\""); /* changes namespace */
command.len = strlen(command.str);
rc = CacheExecuteA(&command);

3.39 CacheExecuteH
Variants: CacheExecuteA, CacheExecuteW

int CacheExecuteH(CACHEHSTRP volatile cmd)

Arguments

The address of a CACHE_ASTR variable.cmd

Description
Executes the command string as if it were typed at the Caché programmer prompt.

If CacheExecuteH completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalH.

CAUTION: The next call to CacheEvalH, CacheExecuteH, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteH

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String executed successfully.CACHE_SUCCESS

CacheExecuteH can also return any of the Caché error codes.

Example

int rc;
unsigned short zname[] = {'Z','N',' ','"','U','S','E','R','"'};
CACHEHSTRP pcommand;
pcommand.str = zname;
pcommand.len = sizeof(zname) / sizeof(unsigned short);
rc = CacheExecuteH(pcommand);

3.40 CacheExecuteW
Variants: CacheExecuteA, CacheExecuteH

int CacheExecuteW(CACHEWSTRP volatile cmd)

52 Using the Caché Callin API

Callin Function Reference

Arguments

The address of a CACHE_ASTR variable.cmd

Description
Executes the command string as if it were typed at the Caché programmer prompt.

If CacheExecuteW completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalW.

CAUTION: The next call to CacheEvalW, CacheExecuteW, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteW

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

No connection has been established.CACHE_NOCON

String is too long.CACHE_STRTOOLONG

String executed successfully.CACHE_SUCCESS

CacheExecuteW can also return any of the Caché error codes.

Example

int rc;
unsigned short zname[] = {'Z','N',' ','"','U','S','E','R','"'};
CACHEWSTRP pcommand;
pcommand.str = zname;
pcommand.len = sizeof(zname) / sizeof(unsigned short);
rc = CacheExecuteW(pcommand);

3.41 CacheExStrKill
int CacheExStrKill(CACHE_EXSTRP obj)

Arguments

Pointer to the string.obj

Description
Releases the storage associated with an EXSTR string.

Return Values for CacheExStrKill

String is undefined.CACHE_ERUNIMPLEMENTED

String storage has been released.CACHE_SUCCESS

Using the Caché Callin API 53

CacheExStrKill

3.42 CacheExStrNew
Variants: CacheExStrNewW, CacheExStrNewH

unsigned char * CacheExStrNew(CACHE_EXSTRP zstr, int size)

Arguments

Pointer to a CACHE_EXSTR string descriptor.zstr

Number of 8–bit characters to allocate.size

Description
Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNew
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.43 CacheExStrNewW
Variants: CacheExStrNew, CacheExStrNewH

unsigned short * CacheExStrNewW(CACHE_EXSTRP zstr, int size)

Arguments

Pointer to a CACHE_EXSTR string descriptor.zstr

Number of 2–byte characters to allocate.size

Description
Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNewW
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.44 CacheExStrNewH
Variants: CacheExStrNew, CacheExStrNewW

unsigned short * CacheExStrNewH(CACHE_EXSTRP zstr, int size)

Arguments

Pointer to a CACHE_EXSTR string descriptor.zstr

Number of 4–byte characters to allocate.size

54 Using the Caché Callin API

Callin Function Reference

Description
Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNewH
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.45 CacheExtFun
int CacheExtFun(unsigned int flags, int narg)

Arguments

Routine flags from CachePushFunc[XW].flags

Number of call arguments pushed onto the argument stack.narg

Description
Performs an extrinsic function call where the return value is pushed onto the argument stack.

Return Values for CacheExtFun

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Argument stack overflow.CACHE_ERARGSTACK

Internal consistency error.CACHE_FAILURE

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.46 CacheGetProperty
int CacheGetProperty()

Description
Obtains the value of the property defined by CachePushProperty. The value is pushed onto the argument stack.

Using the Caché Callin API 55

CacheExtFun

Return Values for CacheGetProperty

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.47 CacheGlobalData
int CacheGlobalData(int narg, int valueflag)

Arguments

Number of call arguments pushed onto the argument stack.narg

Indicates whether the data value, if there is one, should be returned.valueflag

Description
Performs a $Data on the specified global.

Return Values for CacheGlobalData

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.48 CacheGlobalGet
int CacheGlobalGet(int narg, int flag)

56 Using the Caché Callin API

Callin Function Reference

Arguments

Number of subscript expressions pushed onto the argument stack.narg

Indicates behavior when global reference is undefined:flag

• 0 — returns CACHE_ERUNDEF

• 1 — returns CACHE_SUCCESS but the return value is an empty string.

Description
Obtains the value of the global reference defined by CachePushGlobal and any subscripts. The node value is pushed onto
the argument stack.

Return Values for CacheGlobalGet

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.49 CacheGlobalGetBinary
int CacheGlobalGetBinary(int numsub, int flag, int *plen, Callin_char_t **pbuf)

Arguments

Number of subscript expressions pushed onto the argument stack.numsub

Indicates behavior when global reference is undefined:flag

• 0 — returns CACHE_ERUNDEF

• 1 — returns CACHE_SUCCESS but the return value is an empty string.

Pointer to length of buffer.plen

Pointer to buffer pointer.pbuf

Description
Obtains the value of the global reference defined by CachePushGlobal[W][H] and any subscripts, and also tests to make
sure that the result is a binary string that will fit in the provided buffer. The node value is pushed onto the argument stack.

Using the Caché Callin API 57

CacheGlobalGetBinary

Return Values for CacheGlobalGetBinary

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.50 CacheGlobalIncrement
int CacheGlobalIncrement(int narg)

Arguments

Number of call arguments pushed onto the argument stack.narg

Description
Performs a $INCREMENT and returns the result on top of the stack.

Return Values for CacheGlobalIncrement

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

MAXINCREMENT system errorCACHE_ERMAXINCR

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

58 Using the Caché Callin API

Callin Function Reference

3.51 CacheGlobalKill
int CacheGlobalKill(int narg, int nodeonly)

Arguments

Number of call arguments pushed onto the argument stack.narg

A value of 1 indicates that only the specified node should be killed. When the value is 0, the
entire specified global tree is killed.

nodeonly

Description
Performs a ZKILL on a global node or tree.

Return Values for CacheGlobalKill

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.52 CacheGlobalOrder
int CacheGlobalOrder(int narg, int dir, int valueflag)

Arguments

Number of call arguments pushed onto the argument stack.narg

Direction for the $Order is 1 for forward, -1 for reverse.dir

Indicates whether the data value, if there is one, should be returned.valueflag

Description
Performs a $Order on the specified global.

Using the Caché Callin API 59

CacheGlobalKill

Return Values for CacheGlobalOrder

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.53 CacheGlobalQuery
int CacheGlobalQuery(int narg, int dir, int valueflag)

Arguments

Number of call arguments pushed onto the argument stack.narg

Direction for the $Query is 1 for forward, -1 for reverse.dir

Indicates whether the data value, if there is one, should be returned.valueflag

Description
Performs a $Query on the specified global.

Return Values for CacheGlobalQuery

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Protection violation.CACHE_ERPROTECT

Node has no associated value.CACHE_ERUNDEF

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

60 Using the Caché Callin API

Callin Function Reference

3.54 CacheGlobalRelease
int CacheGlobalRelease()

Description
Release ownership of a retained global buffer, if one exists.

Return Values for CacheGlobalRelease

The operation was successful.CACHE_SUCCESS

3.55 CacheGlobalSet
int CacheGlobalSet(int narg)

Arguments

Number of subscript expressions pushed onto the argument stack.narg

Description
Stores the value of the global reference defined by CachePushGlobal and any subscripts. The node value must be pushed
onto the argument stack before this call.

Return Values for CacheGlobalSet

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.56 CacheIncrementCountOref
int CacheIncrementCountOref(unsigned int oref)

Arguments

Object reference.oref

Description
Increments the system reference counter for an OREF.

Using the Caché Callin API 61

CacheGlobalRelease

Return Values for CacheIncrementCountOref

Invalid OREF.CACHE_ERBADOREF

The operation was successful.CACHE_SUCCESS

3.57 CacheInvokeClassMethod
int CacheInvokeClassMethod(int narg)

Arguments

Number of call arguments pushed onto the argument stack.narg

Description
Executes the class method call defined by CachePushClassMethod[W] and any arguments. The return value is pushed
onto the argument stack.

Return Values for CacheInvokeClassMethod

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.58 CacheInvokeMethod
int CacheInvokeMethod(int narg)

Arguments

Number of call arguments pushed onto the argument stack.narg

Description
Executes the instance method call defined by CachePushMethod[W] and any arguments pushed onto the argument stack.

62 Using the Caché Callin API

Callin Function Reference

Return Values for CacheInvokeMethod

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.59 CacheOflush
int CacheOflush()

Description
Flushes any pending output.

Return Values for CacheOflush

Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

CACHE_FAILURE

Control function performed.CACHE_SUCCESS

3.60 CachePop
int CachePop(void ** arg)

Arguments

Pointer to argument stack entry.arg

Description
Pops a value off argument stack.

Return Values for CachePop

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

3.61 CachePopCvtH
Variants: CachePopCvtW

Using the Caché Callin API 63

CacheOflush

int CachePopCvtH(int * lenp, wchar_t ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Pops a local 8-bit string off argument stack and translates it to 4–byte Unicode. Identical to CachePopStrH in Unicode
environments.

Return Values for CachePopCvtH

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.62 CachePopCvtW
Variants: CachePopCvtH

int CachePopCvtW(int * lenp, unsigned short ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Deprecated: The long string function CachePopExStrCvtW should be used for all strings.

Pops a local 8-bit string off argument stack and translates it to 2–byte Unicode. Identical to CachePopStrW in Unicode
environments.

Return Values for CachePopCvtW

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.63 CachePopDbl
int CachePopDbl(double * nump)

Arguments

Pointer to double value.nump

64 Using the Caché Callin API

Callin Function Reference

Description
Pops a value off argument stack and converts it to a double.

Return Values for CachePopDbl

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

3.64 CachePopExStr
Variants: CachePopExStrW, CachePopExStrH

int CachePopExStr(CACHE_EXSTRP sstrp)

Arguments

Pointer to long string pointer.sstrp

Description
Pops a value off argument stack and converts it to a string in local 8–bit encoding.

Return Values for CachePopExStr

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

Returned if sstrp has not been initialized to NULL.CACHE_EXSTR_INUSE

3.65 CachePopExStrCvtW
Variants: CachePopExStrCvtH

int CachePopExStrCvtW(CACHE_EXSTRP sstr)

Arguments

Pointer to long string pointer.sstr

Description
Pops a local 8-bit string off the argument stack and translates it to a 2–byte Unicode string. On Unicode systems, this is
the same as CachePopExStrW.

Return Values for CachePopExStrCvtW

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

Using the Caché Callin API 65

CachePopExStr

3.66 CachePopExStrCvtH
Variants: CachePopExStrCvtW

int CachePopExStrCvtW(CACHE_EXSTRP sstr)

Arguments

Pointer to long string pointer.sstr

Description
Pops a local 8-bit string off argument stack and translates it to a 4–byte Unicode string. On Unicode systems, this is the
same as CachePopExStrH.

Return Values for CachePopExStrCvtH

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.67 CachePopExStrW
Variants: CachePopExStr, CachePopExStrH

int CachePopExStrW(CACHE_EXSTRP sstrp)

Arguments

Pointer to long string pointer.sstrp

Description
Pops a value off argument stack and converts it to a 2–byte Unicode string.

Return Values for CachePopExStrW

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

Returned if sstrp has not been initialized to NULL.CACHE_EXSTR_INUSE

3.68 CachePopExStrH
Variants: CachePopExStr, CachePopExStrW

int CachePopExStrH(CACHE_EXSTRP sstrp)

66 Using the Caché Callin API

Callin Function Reference

Arguments

Pointer to long string pointer.sstrp

Description
Pops a value off argument stack and converts it to a 4–byte Unicode string.

Return Values for CachePopExStrH

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

Returned if sstrp has not been initialized to NULL.CACHE_EXSTR_INUSE

3.69 CachePopInt
int CachePopInt(int* nump)

Arguments

Pointer to integer value.nump

Description
Pops a value off argument stack and converts it to an integer.

Return Values for CachePopInt

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

3.70 CachePopInt64
int CachePopInt64(long long * nump)

Arguments

Pointer to long long value.nump

Description
Pops a value off argument stack and converts it to a 64–bit (long long) value.

Return Values for CachePopInt64

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

Using the Caché Callin API 67

CachePopInt

3.71 CachePopList
int CachePopList(int * lenp, Callin_char_t ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Pops a $LIST object off argument stack and converts it. String elements are copied or translated as appropriate depending
on whether this is a Unicode or 8-bit version.

Return Values for CachePopList

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.72 CachePopOref
int CachePopOref(unsigned int * orefp)

Arguments

Pointer to OREF value.orefp

Description
Pops an OREF off argument stack.

Return Values for CachePopOref

No result whose type can be returned has preceded this call.CACHE_NORES

Result is not an OREF.CACHE_ERNOOREF

The operation was successful.CACHE_SUCCESS

3.73 CachePopPtr
int CachePopPtr(void ** ptrp)

Arguments

Pointer to generic pointer.ptrp

68 Using the Caché Callin API

Callin Function Reference

Description
Pops a pointer off argument stack in internal format.

Return Values for CachePopPtr

No result whose type can be returned has preceded this call.CACHE_NORES

The entry is not a valid pointer.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

3.74 CachePopStr
Variants: CachePopStrW, CachePopStrH

int CachePopStr(int * lenp, Callin_char_t ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Pops a value off argument stack and converts it to a string.

Return Values for CachePopStr

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

3.75 CachePopStrH
Variants: CachePopStr, CachePopStrW

int CachePopStrH(int * lenp, wchar_t ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Pops a value off argument stack and converts it to a 4-byte Unicode string.

Using the Caché Callin API 69

CachePopStr

Return Values for CachePopStrH

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.76 CachePopStrW
Variants: CachePopStr, CachePopStrH

int CachePopStrW(int * lenp, unsigned short ** strp)

Arguments

Pointer to length of string.lenp

Pointer to string pointer.strp

Description
Pops a value off argument stack and converts it to a 2-byte Unicode string.

Return Values for CachePopStrW

No result whose type can be returned has preceded this call.CACHE_NORES

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.77 CachePromptA
Variants: CachePromptW, CachePromptH

int CachePromptA(CACHE_ASTRP rbuf)

Arguments

The prompt string. The minimum length of the returned string is five characters.rbuf

Description
Returns a string that would be the programmer prompt (without the “>”).

70 Using the Caché Callin API

Callin Function Reference

Return Values for CachePromptA

Connection has been broken.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

An unexpected error has occurred.CACHE_FAILURE

No connection has been established.CACHE_NOCON

rbuf must have a length of at least five.CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHE_ASTR retval; /* define variable retval */
retval.len = 5; /* maximum return length of string */
rc = CachePromptA(&retval);

3.78 CachePromptH
Variants: CachePromptA, CachePromptW

int CachePromptH(CACHEHSTRP rbuf)

Arguments

The prompt string. The minimum length of the returned string is five characters.rbuf

Description
Returns a string that would be the programmer prompt (without the “>”).

Return Values for CachePromptH

Connection has been broken.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

Request failed.CACHE_FAILURE

No connection has been established.CACHE_NOCON

rbuf must have a length of at least five.CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHEHSTRP retval; /* define variable retval */
retval.len = 5; /* maximum return length of string */
rc = CachePromptH(&retval);

Using the Caché Callin API 71

CachePromptH

3.79 CachePromptW
Variants: CachePromptA, CachePromptH

int CachePromptW(CACHEWSTRP rbuf)

Arguments

The prompt string. The minimum length of the returned string is five characters.rbuf

Description
Returns a string that would be the programmer prompt (without the “>”).

Return Values for CachePromptW

Connection has been broken.CACHE_CONBROKEN

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

Request failed.CACHE_FAILURE

No connection has been established.CACHE_NOCON

rbuf must have a length of at least five.CACHE_RETTOOSMALL

Connection formed.CACHE_SUCCESS

Example

CACHEWSTR retval; /* define variable retval */
retval.len = 5; /* maximum return length of string */
rc = CacheConvertW(&retval);

3.80 CachePushClassMethod
Variants: CachePushClassMethodW, CachePushClassMethodH

int CachePushClassMethod(int clen, const Callin_char_t * cptr,
 int mlen, const Callin_char_t * mptr, int flg)

Arguments

Class name length (characters).clen

Pointer to class name.cptr

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

72 Using the Caché Callin API

Callin Function Reference

Description
Pushes a class method reference onto the argument stack.

Return Values for CachePushClassMethod

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

3.81 CachePushClassMethodH
Variants: CachePushClassMethod, CachePushClassMethodW

int CachePushClassMethodH(int clen, const wchar_t * cptr,
 int mlen, const wchar_t * mptr, int flg)

Arguments

Class name length (characters).clen

Pointer to class name.cptr

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

Description
Pushes a 4-byte Unicode class method reference onto the argument stack.

Using the Caché Callin API 73

CachePushClassMethodH

Return Values for CachePushClassMethodH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.82 CachePushClassMethodW
Variants: CachePushClassMethod, CachePushClassMethodH

int CachePushClassMethodW(int clen, const unsigned short * cptr,
 int mlen, const unsigned short * mptr, int flg)

Arguments

Class name length (characters).clen

Pointer to class name.cptr

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

Description
Pushes a 2-byte Unicode class method reference onto the argument stack.

74 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushClassMethodW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.83 CachePushCvtH
Variants: CachePushCvtW

int CachePushCvtH(int len, const wchar_t * ptr)

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to CachePushStrH for Unicode
versions.

Return Values for CachePushCvtH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating the string.Any Caché error

3.84 CachePushCvtW
Variants: CachePushCvtH

Using the Caché Callin API 75

CachePushCvtH

int CachePushCvtW(int len, const unsigned short * ptr)

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Deprecated: The long string function CachePushExStrCvtW should be used for all strings.

Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to CachePushStrW for Unicode
versions.

Return Values for CachePushCvtW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating the string.Any Caché error

3.85 CachePushDbl
int CachePushDbl(double num)

Arguments

Double value.num

Description
Pushes a Caché double onto the argument stack.

Return Values for CachePushDbl

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

The operation was successful.CACHE_SUCCESS

76 Using the Caché Callin API

Callin Function Reference

3.86 CachePushExStr
Variants: CachePushExStrW, CachePushExStrH

int CachePushExStr(CACHE_EXSTRP sptr)

Arguments

Pointer to the argument value.sptr

Description
Pushes a string onto the argument stack.

Return Values for CachePushExStr

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.87 CachePushExStrCvtW
Variants: CachePushExStrCvtH

int CachePushExStrCvtW(CACHE_EXSTRP sptr)

Arguments

Pointer to the argument value.sptr

Description
Translates a Unicode string to local 8-bit and pushes it onto the argument stack.

Using the Caché Callin API 77

CachePushExStr

Return Values for CachePushExStrCvtW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating the string.Any Caché error

3.88 CachePushExStrCvtH
Variants: CachePushExStrCvtW

int CachePushExStrCvtH(CACHE_EXSTRP sptr)

Arguments

Pointer to the argument value.sptr

Description
Translates a 4–byte Unicode string to local 8-bit and pushes it onto the argument stack.

Return Values for CachePushExStrCvtH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating the string.Any Caché error

3.89 CachePushExStrW
Variants: CachePushExStr, CachePushExStrH

int CachePushExStrW(CACHE_EXSTRP sptr)

78 Using the Caché Callin API

Callin Function Reference

Arguments

Pointer to the argument value.sptr

Description
Pushes a long Unicode string onto the argument stack.

Return Values for CachePushExStrW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.90 CachePushExStrH
Variants: CachePushExStr, CachePushExStrW

int CachePushExStrH(CACHE_EXSTRP sptr)

Arguments

Pointer to the argument value.sptr

Description
Pushes a 4–byte Unicode string onto the argument stack.

Return Values for CachePushExStrH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.91 CachePushFunc
Variants: CachePushFuncW, CachePushFuncH

Using the Caché Callin API 79

CachePushExStrH

int CachePushFunc(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
 int nlen, const Callin_char_t * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tagptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes an extrinsic function reference onto the argument stack.

Return Values for CachePushFunc

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.92 CachePushFuncH
Variants: CachePushFunc, CachePushFuncW

int CachePushFuncH(unsigned int * rflag, int tlen, const wchar_t * tptr,
 int nlen, const wchar_t * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

80 Using the Caché Callin API

Callin Function Reference

Description
Pushes a 4-byte Unicode extrinsic function reference onto the argument stack.

Return Values for CachePushFuncH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.93 CachePushFuncW
Variants: CachePushFunc, CachePushFuncH

int CachePushFuncW(unsigned int * rflag, int tlen, const unsigned short * tptr,
 int nlen, const unsigned short * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 2-byte Unicode extrinsic function reference onto the argument stack.

Using the Caché Callin API 81

CachePushFuncW

Return Values for CachePushFuncW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.94 CachePushFuncX
Variants: CachePushFuncXW, CachePushFuncXH

int CachePushFuncX(unsigned int * rflag, int tlen, const Callin_char_t * tptr, int off,
 int elen, const Callin_char_t * eptr,
 int nlen, const Callin_char_t * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes an extended extrinsic function reference onto the argument stack.

82 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushFuncX

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.95 CachePushFuncXH
Variants: CachePushFuncX, CachePushFuncXW

int CachePushFuncXH(unsigned int * rflag, int tlen, const wchar_t * tptr, int off,
 int elen, const wchar_t * eptr, int nlen, const wchar_t * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 4-byte Unicode extended function routine reference onto the argument stack.

Using the Caché Callin API 83

CachePushFuncXH

Return Values for CachePushFuncXH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.96 CachePushFuncXW
Variants: CachePushFuncX, CachePushFuncXH

int CachePushFuncXW(unsigned int * rflag, int tlen, const unsigned short * tptr, int off,
 int elen, const unsigned short * eptr,
 int nlen, const unsigned short * nptr)

Arguments

Routine flags for use by CacheExtFun.rflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 2-byte Unicode extended function routine reference onto the argument stack.

84 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushFuncXW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.97 CachePushGlobal
Variants: CachePushGlobalW, CachePushGlobalH

int CachePushGlobal(int nlen, const Callin_char_t * nptr)

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Description
Pushes a global reference onto the argument stack.

Return Values for CachePushGlobal

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.98 CachePushGlobalH
Variants: CachePushGlobal, CachePushGlobalW

intCachePushGlobalH(int nlen, const wchar_t * nptr)

Using the Caché Callin API 85

CachePushGlobal

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Description
Pushes a 4-byte Unicode global reference onto the argument stack.

Return Values for CachePushGlobalH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.99 CachePushGlobalW
Variants: CachePushGlobal, CachePushGlobalH

int CachePushGlobalW(int nlen, const unsigned short * nptr)

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Description
Pushes a 2-byte Unicode global reference onto the argument stack.

Return Values for CachePushGlobalW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

86 Using the Caché Callin API

Callin Function Reference

3.100 CachePushGlobalX
Variants: CachePushGlobalXW, CachePushGlobalXH

int CachePushGlobalX(int nlen, const Callin_char_t * nptr,
 int elen, const Callin_char_t * eptr)

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Description
Pushes an extended global reference onto the argument stack.

Return Values for CachePushGlobalX

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.101 CachePushGlobalXH
Variants: CachePushGlobalX, CachePushGlobalXW

int CachePushGlobalXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Using the Caché Callin API 87

CachePushGlobalX

Description
Pushes a 4-byte Unicode extended global reference onto the argument stack.

Return Values for CachePushGlobalXH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTAC

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.102 CachePushGlobalXW
Variants: CachePushGlobalX, CachePushGlobalXH

int CachePushGlobalXW(int nlen, const unsigned short * nptr,
 int elen, const unsigned short * eptr)

Arguments

Global name length (characters).nlen

Pointer to global name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Description
Pushes a 2-byte Unicode extended global reference onto the argument stack.

Return Values for CachePushGlobalXW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTAC

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

88 Using the Caché Callin API

Callin Function Reference

3.103 CachePushIEEEDbl
int CachePushIEEEDbl(double num)

Arguments

Double value.num

Description
Pushes an IEEE double onto the argument stack.

Return Values for CachePushIEEEDbl

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

The operation was successful.CACHE_SUCCESS

3.104 CachePushInt
int CachePushInt(int num)

Arguments

Integer value.num

Description
Pushes an integer onto the argument stack.

Return Values for CachePushInt

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

The operation was successful.CACHE_SUCCESS

3.105 CachePushInt64
int CachePushInt64(long long num)

Using the Caché Callin API 89

CachePushIEEEDbl

Arguments

long long value.num

Description
Pushes a 64–bit (long long) value onto the argument stack.

Return Values for CachePushInt64

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

The operation was successful.CACHE_SUCCESS

3.106 CachePushList
int CachePushList(int len, const Callin_char_t * ptr)

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Converts a $LIST object and pushes it onto the argument stack. String elements are copied or translated as appropriate
depending on whether this is a Unicode or 8-bit version.

Return Values for CachePushList

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a string element.Any Caché error

3.107 CachePushLock
Variants: CachePushLockW, CachePushLockH

90 Using the Caché Callin API

Callin Function Reference

int CachePushLock(int nlen, const Callin_char_t * nptr)

Arguments

Length (in bytes) of lock name.nlen

Pointer to lock name.nptr

Description
Initializes a CacheAcquireLock command by pushing the lock name on the argument stack.

Return Values for CachePushLock

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.108 CachePushLockH
Variants: CachePushLock, CachePushLockW

int CachePushLockH(int nlen, const wchar_t * nptr)

Arguments

Length (number of 2–byte or 4–byte characters) of lock name.nlen

Pointer to lock name.nptr

Description
Initializes a CacheAcquireLock command by pushing the lock name on the argument stack.

Return Values for CachePushLockH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

Using the Caché Callin API 91

CachePushLockH

3.109 CachePushLockW
Variants: CachePushLock, CachePushLockH

int CachePushLockW(int nlen, const unsigned short * nptr)

Arguments

Length (number of 2–byte characters) of lock name.nlen

Pointer to lock name.nptr

Description
Initializes a CacheAcquireLock command by pushing the lock name on the argument stack.

Return Values for CachePushLockW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.110 CachePushLockX
Variants: CachePushLockXW, CachePushLockXH

int CachePushLockX(int nlen, const Callin_char_t * nptr, int elen, const Callin_char_t * eptr)

Arguments

Length (number of 8–bit characters) of lock name.nlen

Pointer to lock name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>^[<system>]^<directory>

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Description
Initializes a CacheAcquireLock command by pushing the lock name and an environment string on the argument stack.

92 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushLockX

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.111 CachePushLockXH
Variants: CachePushLockX, CachePushLockXW

int CachePushLockXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments

Length (number of 2–byte or 4–byte characters) of lock name.nlen

Pointer to lock name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>^[<system>]^<directory>

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Description
Initializes a CacheAcquireLock command by pushing the lock name and an environment string on the argument stack.

Return Values for CachePushLockXH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

Using the Caché Callin API 93

CachePushLockXH

3.112 CachePushLockXW
Variants: CachePushLockX, CachePushLockXH

int CachePushLockXW(int nlen, const unsigned short * nptr, int elen, const unsigned short * eptr)

Arguments

Length (number of 2–byte characters) of lock name.nlen

Pointer to lock name.nptr

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>^[<system>]^<directory>

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Description
Initializes a CacheAcquireLock command by pushing the lock name and an environment string on the argument stack.

Return Values for CachePushLockXW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.113 CachePushMethod
Variants: CachePushMethodW, CachePushMethodH

int CachePushMethod(unsigned int oref, int mlen, const Callin_char_t * mptr, int flg)

Arguments

Object reference.oref

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

94 Using the Caché Callin API

Callin Function Reference

Description
Pushes an instance method reference onto the argument stack.

Return Values for CachePushMethod

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

3.114 CachePushMethodH
Variants: CachePushMethod, CachePushMethodW

int CachePushMethodH(unsigned int oref, int mlen, const wchar_t * mptr, int flg)

Arguments

Object reference.oref

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

Description
Pushes a 4-byte Unicode instance method reference onto the argument stack.

Return Values for CachePushMethodH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

Using the Caché Callin API 95

CachePushMethodH

3.115 CachePushMethodW
Variants: CachePushMethod, CachePushMethodH

int CachePushMethodW(unsigned int oref, int mlen, const unsigned short * mptr, int flg)

Arguments

Object reference.oref

Method name length (characters).mlen

Pointer to method name.mptr

Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

flg

Description
Pushes a 2-byte Unicode instance method reference onto the argument stack.

Return Values for CachePushMethodW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.116 CachePushOref
int CachePushOref(unsigned int oref)

Arguments

Object reference.oref

Description
Pushes an OREF onto the argument stack.

96 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushOref

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

Invalid OREF.CACHE_ERBADOREF

The operation was successful.CACHE_SUCCESS

3.117 CachePushProperty
Variants: CachePushPropertyW, CachePushPropertyH

int CachePushProperty(unsigned int oref, int plen, const Callin_char_t * pptr)

Arguments

Object reference.oref

Property name length (characters).plen

Pointer to property name.pptr

Description
Pushes a property reference onto the argument stack.

Return Values for CachePushProperty

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

3.118 CachePushPropertyH
Variants: CachePushProperty, CachePushPropertyW

int CachePushPropertyH(unsigned int oref, int plen, const wchar_t * pptr)

Using the Caché Callin API 97

CachePushProperty

Arguments

Object reference.oref

Property name length (characters).plen

Pointer to property name.pptr

Description
Pushes a 4-byte Unicode property reference onto the argument stack.

Return Values for CachePushPropertyH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.119 CachePushPropertyW
Variants: CachePushProperty, CachePushPropertyH

int CachePushPropertyW(unsigned int oref, int plen, const unsigned short * pptr)

Arguments

Object reference.oref

Property name length (characters).plen

Pointer to property name.pptr

Description
Pushes a 2-byte Unicode property reference onto the argument stack.

98 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushPropertyW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

Invalid call argument.CACHE_BADARG

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.120 CachePushPtr
int CachePushPtr(void * ptr)

Arguments

Generic pointer.ptr

Description
Pushes a pointer onto the argument stack in internal format.

Return Values for CachePushPtr

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.121 CachePushRtn
Variants: CachePushRtnW, CachePushRtnH

int CachePushRtn(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
 int nlen, const Callin_char_t * nptr)

Using the Caché Callin API 99

CachePushPtr

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a routine reference onto the argument stack. See CachePushRtnX for a version that takes all arguments. This is a
short form that only takes a tag name and a routine name.

Return Values for CachePushRtn

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.122 CachePushRtnH
Variants: CachePushRtn, CachePushRtnW

int CachePushRtnH(unsigned int * rflag, int tlen, const wchar_t * tptr,
 int nlen, const wchar_t * nptr)

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

100 Using the Caché Callin API

Callin Function Reference

Description
Pushes a 4–byte Unicode routine reference onto the argument stack. See CachePushRtnXH for a version that takes all
arguments. This is a short form that only takes a tag name and a routine name.

Return Values for CachePushRtnH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.123 CachePushRtnW
Variants: CachePushRtn, CachePushRtnH

int CachePushRtnW(unsigned int * rflag, int tlen, const unsigned short * tptr,
 int nlen, const unsigned short * nptr)

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 2–byte Unicode routine reference onto the argument stack. See CachePushRtnXW for a version that takes all
arguments. This is a short form that only takes a tag name and a routine name.

Using the Caché Callin API 101

CachePushRtnW

Return Values for CachePushRtnW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.124 CachePushRtnX
Variants: CachePushRtnXW, CachePushRtnXH

int CachePushRtnX(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
 int off, int elen, const Callin_char_t * eptr,
 int nlen, const Callin_char_t * nptr)

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes an extended routine reference onto the argument stack. See CachePushRtn for a short form that only takes a tag
name and a routine name.

102 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushRtnX

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.125 CachePushRtnXH
Variants: CachePushRtnX, CachePushRtnXW

int CachePushRtnXH(unsigned int * rflag, int tlen, const wchar_t * tptr,
 int off, int elen, const wchar_t * eptr,
 int nlen, const wchar_t * nptr)

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 4–byte Unicode extended routine reference onto the argument stack. See CachePushRtnH for a short form that
only takes a tag name and a routine name.

Using the Caché Callin API 103

CachePushRtnXH

Return Values for CachePushRtnXH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.126 CachePushRtnXW
Variants: CachePushRtnX, CachePushRtnXH

int CachePushRtnXW(unsigned int * rflag, int tlen, const unsigned short * tptr,
 int off, int elen, const unsigned short * eptr,
 int nlen, const unsigned short * nptr)

Arguments

Routine flags for use by CacheDoRtnrflag

Tag name length (characters), where 0 means that the tag name is null ("").tlen

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

tptr

Line offset from specified tag, where 0 means that there is no offset.off

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

elen

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

eptr

Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.

nlen

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

nptr

Description
Pushes a 2–byte Unicode extended routine reference onto the argument stack. See CachePushRtnW for a short form that
only takes a tag name and a routine name.

104 Using the Caché Callin API

Callin Function Reference

Return Values for CachePushRtnXW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.127 CachePushStr
Variants: CachePushStrW, CachePushStrH

int CachePushStr(int len, const Callin_char_t * ptr)

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Pushes a byte string onto the argument stack.

Return Values for CachePushStr

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.128 CachePushStrH
Variants: CachePushStr, CachePushStrW

int CachePushStrH(int len, const wchar_t * ptr)

Using the Caché Callin API 105

CachePushStr

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Pushes a 4-byte Unicode string onto the argument stack.

Return Values for CachePushStrH

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

3.129 CachePushStrW
Variants: CachePushStr, CachePushStrH

int CachePushStrW(int len, const unsigned short * ptr)

Arguments

Number of characters in string.len

Pointer to string.ptr

Description
Pushes a 2-byte Unicode string onto the argument stack.

Return Values for CachePushStrW

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

106 Using the Caché Callin API

Callin Function Reference

3.130 CachePushUndef
int CachePushUndef()

Description
Pushes an Undefined value on the argument stack. The value is interpreted as an omitted function argument.

Return Values for CachePushUndef

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Argument stack overflow.CACHE_ERARGSTACK

The operation was successful.CACHE_SUCCESS

3.131 CacheReleaseAllLocks
int CacheReleaseAllLocks()

Description
Performs an argumentless Cache LOCK command to remove all locks currently held by the process.

Return Values for CacheReleaseAllLocks

The operation was successful.CACHE_SUCCESS

3.132 CacheReleaseLock
int CacheReleaseLock(int nsub, int flg)

Arguments

Number of subscripts in the lock reference.nsub

Modifiers to the lock command.Valid values are one or both of CACHE_IMMEDIATE_RELEASE
and CACHE_SHARED_LOCK.

flg

Description
Executes a Cache LOCK command to decrement the lock count for the specified lock name. This command will only
release one incremental lock at a time.

Return Values for CacheReleaseLock

An unexpected error has occurred.CACHE_FAILURE

Successful lock.CACHE_SUCCESS

Using the Caché Callin API 107

CachePushUndef

3.133 CacheSecureStartA
Variants: CacheSecureStartW, CacheSecureStartH

int CacheSecureStartA(CACHE_ASTRP username, CACHE_ASTRP password, CACHE_ASTRP exename,
 unsigned long flags, int tout, CACHE_ASTRP prinp, CACHE_ASTRP prout)

Arguments

Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

username

Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

password

Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

exename

One or more of the terminal settings listed below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Description
Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

108 Using the Caché Callin API

Callin Function Reference

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheSecureStartA

Authentication has failed. Check the audit log for the real authentication
error.

CACHE_ACCESSDENIED

Connection already existed. Returned if you call CacheSecureStartH
from a $ZF function.

CACHE_ALREADYCON

Password change required. This return value is only returned if you are
using Caché authentication.

CACHE_CHANGEPASSWORD

Connection was formed and then broken, and CacheEnd has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

3.134 CacheSecureStartH
Variants: CacheSecureStartA, CacheSecureStartW

int CacheSecureStartH(CACHEHSTRP username, CACHEHSTRP password, CACHEHSTRP exename,
 unsigned long flags, int tout, CACHEHSTRP prinp, CACHEHSTRP prout)

Using the Caché Callin API 109

CacheSecureStartH

Arguments

Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

username

Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

password

Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

exename

One or more of the terminal settings listed below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Description
Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

110 Using the Caché Callin API

Callin Function Reference

Return Values for CacheSecureStartH

Authentication has failed. Check the audit log for the real authentication
error.

CACHE_ACCESSDENIED

Connection already existed. Returned if you call CacheSecureStartH
from a $ZF function.

CACHE_ALREADYCON

Password change required. This return value is only returned if you are
using Caché authentication.

CACHE_CHANGEPASSWORD

Connection was formed and then broken, and CacheEnd has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

3.135 CacheSecureStartW
Variants: CacheSecureStartA, CacheSecureStartH

int CacheSecureStartW(CACHEWSTRP username, CACHEWSTRP password, CACHEWSTRP exename,
 unsigned long flags, int tout, CACHEWSTRP prinp, CACHEWSTRP prout)

Arguments

Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

username

Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

password

Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

exename

One or more of the terminal settings listed below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Using the Caché Callin API 111

CacheSecureStartW

Description
Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheSecureStartW

Authentication has failed. Check the audit log for the real authentication
error.

CACHE_ACCESSDENIED

Connection already existed. Returned if you call CacheSecureStartH
from a $ZF function.

CACHE_ALREADYCON

Password change required. This return value is only returned if you are
using Caché authentication.

CACHE_CHANGEPASSWORD

Connection was formed and then broken, and CacheEnd has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

112 Using the Caché Callin API

Callin Function Reference

3.136 CacheSetDir
int CacheSetDir(char * dir)

Arguments

Pointer to the directory name string.dir

Description
Dynamically sets the name of the manager's directory (CacheSys\Mgr) at runtime. On Windows, the shared library version
of Caché requires the use of this function to identify the managers directory for the installation.

Return Values for CacheSetDir

Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

CACHE_FAILURE

Control function performed.CACHE_SUCCESS

3.137 CacheSetProperty
int CacheSetProperty()

Description
Stores the value of the property defined by CachePushProperty. The value must be pushed onto the argument stack before
this call.

Return Values for CacheSetProperty

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

The operation was successful.CACHE_SUCCESS

3.138 CacheSignal
int CacheSignal(int signal)

Arguments

The operating system's signal value.signal

Description
Passes on signals caught by user's program to Caché.

Using the Caché Callin API 113

CacheSetDir

This function is very similar to CacheAbort, but allows passing of any known signal value from a thread or user side of
the connection to the Caché side, for whatever action might be appropriate. For example, this could be used to pass signals
intercepted in a user-defined signal handler on to Caché.

Example

rc = CacheSignal(CTRL_C_EVENT); // Windows response to Ctrl-C
rc = CacheSignal(CTRL_C_EVENT); // UNIX response to Ctrl-C

Return Values for CacheSignal

Connection has been broken.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

The Callin partner is not in Caché at this time.CACHE_NOTINCACHE

Connection formed.CACHE_SUCCESS

3.139 CacheSPCReceive
int CacheSPCReceive(int * lenp, Callin_char_t * ptr)

Arguments

Maximum length to receive. Modified on return to indicate number of bytes actually received.lenp

Pointer to buffer that will receive message. Must be at least lenp bytes.ptr

Description
Receive single-process-communication message. The current device must be a TCP device opened in SPC mode, or
CACHE_ERFUNCTION will be returned.

Return Values for CacheSPCReceive

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Current device is not TCP device or is not connected.CACHE_ERFUNCTION

The operation was successful.CACHE_SUCCESS

3.140 CacheSPCSend
int CacheSPCSend(int len, const Callin_char_t * ptr)

Arguments

Length of message in bytes.len

Pointer to string containing message.ptr

114 Using the Caché Callin API

Callin Function Reference

Description
Send a single-process-communication message. The current device must be a TCP device opened in SPC mode, or
CACHE_ERFUNCTION will be returned.

Return Values for CacheSPCSend

Connection has been closed due to a serious error.CACHE_CONBROKEN

No connection has been established.CACHE_NOCON

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERSYSTEM

Current device is not TCP device or is not connected.CACHE_ERFUNCTION

Argument stack overflow.CACHE_ERARGSTACK

String stack overflow.CACHE_ERSTRINGSTACK

The operation was successful.CACHE_SUCCESS

From translating a name.Any Caché error

3.141 CacheStartA
Variants: CacheStartW, CacheStartH

int CacheStartA(unsigned long flags, int tout, CACHE_ASTRP prinp, CACHE_ASTRP prout)

Arguments

One or more of the values listed in the description below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Description
Calls into Caché to set up a Caché process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in

Using the Caché Callin API 115

CacheStartA

closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheStartA

Connection already existed. Returned if you call CacheStartA from a $ZF
function.

CACHE_ALREADYCON

Connection was formed and then broken, and CacheEndA has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example
A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

CACHE_ASTR inpdev;
CACHE_ASTR outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup");
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,"");
outdev.len = strlen(outdev.str);
rc = CacheStartA(CACHE_TTALL|CACHE_TTNOUSE,0,inpdev,outdev);

3.142 CacheStartH
Variants: CacheStartA, CacheStartW

116 Using the Caché Callin API

Callin Function Reference

int CacheStartH(unsigned long flags,int tout,CACHEHSTRP prinp,CACHEHSTRP prout)

Arguments

One or more of the values listed in the description below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Description
Calls into Caché to set up a Caché process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Using the Caché Callin API 117

CacheStartH

Return Values for CacheStartH

Connection already existed. Returned if you call CacheStartH from a $ZF
function.

CACHE_ALREADYCON

Connection was formed and then broken, and CacheEndH has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example
A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

inpdev;
outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup");
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,"");
outdev.len = strlen(outdev.str);
rc = CacheStartH(CACHE_TTALL|CACHE_TTNOUSE,0,inpdev,outdev);

3.143 CacheStartW
Variants: CacheStartA, CacheStartH

int CacheStartW(unsigned long flags,int tout,CACHEWSTRP prinp,CACHEWSTRP prout)

Arguments

One or more of the values listed in the description below.flags

The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

tout

String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prinp

String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout

Description
Calls into Caché to set up a Caché process.

118 Using the Caché Callin API

Callin Function Reference

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

• CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

• CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

• CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

• CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

• CACHE_TTNEVER — Caché should not alter the terminal's settings.

• CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

• CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheStartW

Connection already existed. Returned if you call CacheStartW from a $ZF
function.

CACHE_ALREADYCON

Connection was formed and then broken, and CacheEndW has not been
called to clean up.

CACHE_CONBROKEN

An unexpected error has occurred.CACHE_FAILURE

prinp or prout is too long.CACHE_STRTOOLONG

Connection formed.CACHE_SUCCESS

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example
A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

Using the Caché Callin API 119

CacheStartW

inpdev;
outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup");
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,"");
outdev.len = strlen(outdev.str);
rc = CacheStartW(CACHE_TTALL|CACHE_TTNOUSE,0,inpdev,outdev);

3.144 CacheTCommit
int CacheTCommit()

Description
Executes a Cache TCommit command.

Return Values for CacheTCommit

TCommit was successful.CACHE_SUCCESS

3.145 CacheTLevel
int CacheTLevel()

Description
Returns the current nesting level ($TLEVEL) for transaction processing.

Return Values for CacheTLevel

TLevel was successful.CACHE_SUCCESS

3.146 CacheTRollback
int CacheTRollback(int nlev)

Arguments

Determines how many levels to roll back, (all levels if 0, one level if 1).nlev

Description
Executes a Cache TRollback command. If nlev is 0, rolls back all transactions in progress (no matter how many levels of
TSTART were issued) and resets $TLEVEL to 0. If nlev is 1, rolls back the current level of nested transactions (the one
initiated by the most recent TSTART) and decrements $TLEVEL by 1.

Return Values for CacheTRollback

TStart was successful.CACHE_SUCCESS

120 Using the Caché Callin API

Callin Function Reference

3.147 CacheTStart
int CacheTStart()

Description
Executes a Cache TStart command.

Return Values for CacheTStart

TStart was successful.CACHE_SUCCESS

3.148 CacheType
int CacheType()

Description
Returns the native type of the item returned by CacheEvalA, CacheEvalW, or CacheEvalH as the function value.

Return Values for CacheType

8-bit string.CACHE_ASTRING

Connection has been closed due to a serious error condition or RESJOB.CACHE_CONBROKEN

64-bit Caché floating point.CACHE_DOUBLE

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_ERSYSTEM

64-bit IEEE floating point.CACHE_IEEE_DBL

32-bit integer.CACHE_INT

No connection has been established.CACHE_NOCON

No result whose type can be returned (no call to CacheEvalA or
CacheEvalW preceded this call).

CACHE_NORES

Caché object reference.CACHE_OREF

Unicode string.CACHE_WSTRING

Example

rc = CacheType();

3.149 CacheUnPop
int CacheUnPop()

Description
Restores the stack entry from CachePop.

Using the Caché Callin API 121

CacheTStart

Return Values for CacheUnPop

No result whose type can be returned has preceded this call.CACHE_NORES

The operation was successful.CACHE_SUCCESS

122 Using the Caché Callin API

Callin Function Reference

	Table of Contents
	About This Book
	1 The Callin Interface
	1.1 The callin.h Header File
	1.2 8-bit and Unicode String Handling
	1.2.1 8-bit String Data Types
	1.2.2 2–byte Unicode Data Types
	1.2.3 4–byte Unicode Data Types
	1.2.4 System-neutral Symbol Definitions

	1.3 Using Caché Security Functions
	1.4 Using Callin with Multithreading
	1.4.1 Threads and UNIX® Signal Handling

	1.5 Callin Programming Tips
	1.5.1 Tips for All Callin Programs
	1.5.2 Tips for Windows
	1.5.3 Tips for UNIX®, Linux, and Mac OS

	1.6 Running Sample Programs on Windows
	1.7 Running Sample Programs on UNIX® and Linux

	2 Using the Callin Functions
	2.1 Process Control
	2.1.1 Session Control
	2.1.2 Running ObjectScript

	2.2 Functions and Routines
	2.3 Transactions and Locking
	2.3.1 Transactions
	2.3.2 Locking

	2.4 Managing Objects
	2.4.1 Orefs
	2.4.2 Methods
	2.4.3 Properties

	2.5 Managing Globals
	2.6 Managing Strings
	2.6.1 Long String Functions
	2.6.2 Standard String Functions

	2.7 Managing Other Datatypes

	3 Callin Function Reference
	3.1 Alphabetical Function List
	3.2 CacheAbort
	3.3 CacheAcquireLock
	3.4 CacheBitFind
	3.5 CacheBitFindB
	3.6 CacheChangePasswordA
	3.7 CacheChangePasswordH
	3.8 CacheChangePasswordW
	3.9 CacheCloseOref
	3.10 CacheContext
	3.11 CacheConvert
	3.12 CacheCtrl
	3.13 CacheCvtExStrInA
	3.14 CacheCvtExStrInW
	3.15 CacheCvtExStrInH
	3.16 CacheCvtExStrOutA
	3.17 CacheCvtExStrOutW
	3.18 CacheCvtExStrOutH
	3.19 CacheCvtInA
	3.20 CacheCvtInH
	3.21 CacheCvtInW
	3.22 CacheCvtOutA
	3.23 CacheCvtOutH
	3.24 CacheCvtOutW
	3.25 CacheDoFun
	3.26 CacheDoRtn
	3.27 CacheEnd
	3.28 CacheEndAll
	3.29 CacheErrorA
	3.30 CacheErrorH
	3.31 CacheErrorW
	3.32 CacheErrxlateA
	3.33 CacheErrxlateH
	3.34 CacheErrxlateW
	3.35 CacheEvalA
	3.36 CacheEvalH
	3.37 CacheEvalW
	3.38 CacheExecuteA
	3.39 CacheExecuteH
	3.40 CacheExecuteW
	3.41 CacheExStrKill
	3.42 CacheExStrNew
	3.43 CacheExStrNewW
	3.44 CacheExStrNewH
	3.45 CacheExtFun
	3.46 CacheGetProperty
	3.47 CacheGlobalData
	3.48 CacheGlobalGet
	3.49 CacheGlobalGetBinary
	3.50 CacheGlobalIncrement
	3.51 CacheGlobalKill
	3.52 CacheGlobalOrder
	3.53 CacheGlobalQuery
	3.54 CacheGlobalRelease
	3.55 CacheGlobalSet
	3.56 CacheIncrementCountOref
	3.57 CacheInvokeClassMethod
	3.58 CacheInvokeMethod
	3.59 CacheOflush
	3.60 CachePop
	3.61 CachePopCvtH
	3.62 CachePopCvtW
	3.63 CachePopDbl
	3.64 CachePopExStr
	3.65 CachePopExStrCvtW
	3.66 CachePopExStrCvtH
	3.67 CachePopExStrW
	3.68 CachePopExStrH
	3.69 CachePopInt
	3.70 CachePopInt64
	3.71 CachePopList
	3.72 CachePopOref
	3.73 CachePopPtr
	3.74 CachePopStr
	3.75 CachePopStrH
	3.76 CachePopStrW
	3.77 CachePromptA
	3.78 CachePromptH
	3.79 CachePromptW
	3.80 CachePushClassMethod
	3.81 CachePushClassMethodH
	3.82 CachePushClassMethodW
	3.83 CachePushCvtH
	3.84 CachePushCvtW
	3.85 CachePushDbl
	3.86 CachePushExStr
	3.87 CachePushExStrCvtW
	3.88 CachePushExStrCvtH
	3.89 CachePushExStrW
	3.90 CachePushExStrH
	3.91 CachePushFunc
	3.92 CachePushFuncH
	3.93 CachePushFuncW
	3.94 CachePushFuncX
	3.95 CachePushFuncXH
	3.96 CachePushFuncXW
	3.97 CachePushGlobal
	3.98 CachePushGlobalH
	3.99 CachePushGlobalW
	3.100 CachePushGlobalX
	3.101 CachePushGlobalXH
	3.102 CachePushGlobalXW
	3.103 CachePushIEEEDbl
	3.104 CachePushInt
	3.105 CachePushInt64
	3.106 CachePushList
	3.107 CachePushLock
	3.108 CachePushLockH
	3.109 CachePushLockW
	3.110 CachePushLockX
	3.111 CachePushLockXH
	3.112 CachePushLockXW
	3.113 CachePushMethod
	3.114 CachePushMethodH
	3.115 CachePushMethodW
	3.116 CachePushOref
	3.117 CachePushProperty
	3.118 CachePushPropertyH
	3.119 CachePushPropertyW
	3.120 CachePushPtr
	3.121 CachePushRtn
	3.122 CachePushRtnH
	3.123 CachePushRtnW
	3.124 CachePushRtnX
	3.125 CachePushRtnXH
	3.126 CachePushRtnXW
	3.127 CachePushStr
	3.128 CachePushStrH
	3.129 CachePushStrW
	3.130 CachePushUndef
	3.131 CacheReleaseAllLocks
	3.132 CacheReleaseLock
	3.133 CacheSecureStartA
	3.134 CacheSecureStartH
	3.135 CacheSecureStartW
	3.136 CacheSetDir
	3.137 CacheSetProperty
	3.138 CacheSignal
	3.139 CacheSPCReceive
	3.140 CacheSPCSend
	3.141 CacheStartA
	3.142 CacheStartH
	3.143 CacheStartW
	3.144 CacheTCommit
	3.145 CacheTLevel
	3.146 CacheTRollback
	3.147 CacheTStart
	3.148 CacheType
	3.149 CacheUnPop

	Index

