InterSystems:

Caché

Using the Caché Callin API

\ersion 2017.2
2020-06-25

Using the Caché Callin API

Caché Version 2017.2 2020-06-25
Copyright © 2020 InterSystems Corporation
All rights reserved.

InterSystems, InterSystems IRIS, InterSystems Caché, InterSystems Ensemble, and InterSystems HealthShare are registered trademarks
of InterSystems Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

W oo U Lo I g TS =T o TP 1
L THE CalliN TNEEIFACE ..ottt sttt ne e e se et e e eresaenae e 3
1.1 The callin.nh HEAAEBK Il ..c.voeeeieieeeeee ettt neens 3
1.2 8-bit and Unicode String HandliNgccccvvviiiiininieierceecese s 4
1.2.1 8-Dit String DAt TYPES .evevverreieieeeieieeseetes e sresre e stesteste e saessestesee e essesessesssssessessessenees 4
1.2.2 2-byte UNiCOde Dat@ TYPES ...veceeireriieieriieiesiesie s esteseesteseesresaesteesaesteesaesteessessaessesseenns 5
1.2.3 4—byte UNICOAE Data TYPES ...coveieeieieieieeetieiere sttt sttt et ebe s 5
1.2.4 System-neutral Symbol Definitionscoceoieriiniinereeee e 6

1.3 Using Caché SECUNity FUNCLIONScoocirieerieirieesieesie sttt 6
1.4 Using Callin with MUIItRIEAAING ...vevveeveieeriiieeee e 6
1.4.1 Threads and UNIX® Signal Handlingccccoveiviriiininnin e se e 7

1.5 Callin Programming TIPS ..ecueiceeieiieeieieesieseeste s e steseesteseeseesaesaesaesteesbesssesesssessesnsesseansessesnnes 9
1.5.1 Tips for Al Callin Programscoccoeierinenieneeie st s 9
1.5.2 TIPS FOr WINUOWSoveieiiieete ettt 10
1.5.3 Tips for UNIX®, Linux, and MacC OScccvivriiririnrenienene e ssese e see e seenees 11

1.6 Running Sample Programs 0N WINAOWScceverieeeirienesn e e e seeseesie e seesseseeessessesses 11
1.7 Running Sample Programs on UNIX® and LINUXcccccceierereieieieeieesiesesesese e e seenes 12
2USING the Callin FUNCLIONScoieieeceese ettt st sttt st et re et e sneeneennesneennas 13
2.1 PrOCESS CONTIOI ...uieiiiieieiiee ettt ettt b e bbbt b e b e b b et e et e e e beeneeneane s 13
2.1.1 SESSION CONIOL ...ttt et sttt se st sbesbesbesee e 13
2.1.2 RUNNING ODJECESCIIPL ..ottt 14

2.2 FUNCEIONS AN ROULINES ..viietiiieierieienieie ettt sttt b bbbttt 14
2.3 Transactions anNd LOCKINGccvcvieieiiiisiesesese st ee e e e e sre e sresrestesaesreste st seessenaeseenens 15
2.3.1 TFANSACTIONSveiieuietiiteete ettt sttt bbbttt ettt b st b e bbbt eb e b e st sb e b e e e e e e s ereene e 15
2.3.2 LOCKING vttt ettt bbbt bbbt bbbttt ae ke ek e bt b e be b bbb nren 15

2.4 MaNaGiNg ODJECEScueiuiiiuiiitirieicitei ettt b ettt bbbt nrne 16
O =1 £ PP 16
2.4.2 MEENOUS ..ottt bbbt et 16
B B o 0T 01T 1 TSRS 17

2.5 Managing GlODAIScccvcviiiiii et e e a e reeaenreens 17
2.6 MANAGING STIINGS .vitititetee ettt sttt st st b et e st b e e b e s b e ebesbesbesbesbesbesbenbesbenneneeneas 17
2.6.1 L.0NQg StriNG FUNCLIONSeitiieiiiiiieiiesie sttt sttt st ens 17
2.6.2 Standard String FUNCLIONScoueiiiiiiiiiieiseee e 18

2.7 Managing Other DAtatyPEScuccvierererirrerereseesseieseeseeeesessessessessessessesseseessesseseessessensesseneens 18
3 Callin FUNCLION REFEIENCE ..ottt st st bbbttt 21
3.1 Alphabetical FUNCLION LISEccviiiiieiii ettt sttt see e 21
I O Tod 117 AN o o] o OSSPSR 24
3.3 CACNBACGUITELOCK . .vieeiieciesieese ettt ettt snene s 25
R I @ o = T i o S 26
3.5 CAChEBITFINUBcviiiiieiieeiieee e bbbttt sttt ettt 26
3.6 CacheChangePasSWOITAccvceiiiireie ettt re b sre e e e aesae e e s eneeseeneens 27
3.7 CacheChangePasSWOITHcccoiiiiieieiieie et e bt et neenreennennas 27
3.8 CacheChangePaSSWOITWVcoiiueiiiieieieieieeies ettt bbb sttt b e 28
3.9 CACNECIOSEOIET ...ttt sttt bbbt e et neene e 28
3,10 CACNECONEEXL ..vevveveeieeeeetesiesiesteseeseeseesieseesee st eseeseeseesestessestesteseeseesteseeseenseneeseeneesenseaneasessessennens 29
3.11 CACNECONVEIT ...ttt bbbt b ettt sttt bbbt b b 29

Using the Caché Callin API

KT 2 O Tox [T 1 31

3.13 CAChECVIEXSIIINA ..ottt ettt et e e be e st e st e e sbe e e b e e sbeeeabe e sbeeenbeesbeesnbeesneeanras 31
3.14 CAChECVIEXSIIINWV .iveitii ittt ettt sttt et st s b st e et s aae e be s sabeenbeesabeesbeesareesbeas 32
I SR O ol g T=T A £ e 1L 33
3.16 CAChECVEEXSITOULAoveiiteeie ettt ettt ettt et a e s be e sr e s be e st e sbeesbeebbesbeeabesbeenbesbeenbesaeesrens 34
3.17 CAChECVIEXSITOULWV ...oviiiiiiiciecte ettt ettt sttt st sbe sttt sbesabesbe et e sbeebesaeesbesanesbesneens 35
3.18 CAChECVEEXSITOULHecvviiviiiiiiecie sttt ettt sr e sttt e st e et e st e sbeentesbeebesaeesreas 36
3,19 CACRECVEINA oottt et ebe e et e e s b e e st e e s beesabeebe e sabeenbeesabeesbeesareeteas 37
I O ol o T=TOA Y 1y SRRSO 38
KT OF: Tot o T=T O 2 1 39
3.22 CAChECVEOULA ...ttt ettt ettt et b e e be e b e e bt e sbesabesbeeatesbeebesaeesbesaeesbesreens 40
3.23 CAChECVEOULH .ottt et st b e et b e st e be e b e s beenbesaeesbesaeesbesreens 41
I N O Tod 1 T O] (O 111 1A RO 42
3.25 CACREDIOFUN ...vectii ittt ettt et et st e be e st st e e e be e et e e sbeeeabeesbeesnbeesbeesabeesneeenras 43
I 0% 1ol 1T B L] 2 1 o OO PSR 43
A O Tod o =T = o 44
3.28 CACNEENUALL ...ooveeiectece ettt ettt bbb e et e s be et e sbeebesbeesbesaeesbeereesbeesbesbeens 44
I O ol o [T = 1 (] ¢ NSRS OT PRSP 45
3.30 CACNEBEITONH ..ottt et be e s be e st e e s be e s tb e e sbeesabe e steesareesbeesnns 45
G O T o T=T = o o A A OSSP 46
R YA OF: (o] o 1= g Y = L1= A RO PRRORO 47
IR OF: (o] 1= g pYd =1 (=] U 47
3.34 CACNEEITXIALEWV ...ttt ettt ettt bttt et et e bbb e st e sbeeatesbeebesbeesbesreestesreens 48
3.35 CAChEEVAIA ...ttt b e et e b e et b e e ab e ebe et e abe et e areenaearees 49
3.36 CACNEEVAIH ..ottt e s e et e st e et e e st e e be e stee s beesaeeenras 49
3.37 CACNEEVAIW ...ttt bttt et b e sbe e st e s be e ebe e s ab e e beesabe e sbeeeareeteas 50
3.38 CACNBEXECULBA ...eveiitie ettt ettt ettt ettt et et st e e e be e st e e ebeesabe e sbeesabeesbessabeeabessabeenbeesareens 51
IR T S OF 1o] 1o (o1 =] = U 52
3.40 CACNEEXECULEWV ..ottt sttt sttt st s be et sttt e et e s be et e saeebesneesbeeaeesbeebesbeebesteens 52
341 CAChEEXSIIKIIL vttt bbb s be et e s be e b e sbsesbesarenas 53
342 CACNEEXSIINEW ...vviiviiitie ettt ettt ettt e s e s be e ste e st e e sbe e s abeesbeestbeeebaesabeesteesaseebeesreenrenes 54
3,43 CACNEEXSITNEWWV ..ottt ettt ettt ettt s b et s b e s be e sbe e s beesaeeeabeesbeesabeesbeesnreesreesnes 54
3,44 CACNBEXSIINEWH ...cviiviiiteccte ettt ettt b e st e e sbe e saae e sbeesareesbessabeenbeesabeens 54
R SR OF: 1o] 1= a1 U IR 55
KR OF: ol 1 T 1) o] o TSP 55
I O T [T €] (] T 1| D - RPN 56
3.48 CaCNEGIODAIGELcccviiiiieitie ettt ettt e sbe e st e e be e saae e sbe e staeebeesteeebeesaneens 56
3.49 CaCheGIODAIGEIBINGIYciiiiiiieieereiieieee ettt sttt bbb et ebe st sbesbesbesbe e 57
3.50 CacheGIODAIINCIEMENTveiiviiiiee ettt et et e s re et e s beesbeeenras 58
KR O ol o T=T] Fo oo | S| 59
3.52 CaChEGIODAIOIUELcoveeiiirieie ettt ettt st et e st e et e sbs e beeaeeebeensesbeennes 59
IR IC I O Tol 1T o] o =1 (@ =TSSR 60
3.54 CaChEGIODAIREIEASEveiivvieciieciee sttt ettt e s bbb e s be e steesareesbee e 61
3.55 CaChEGIONAISELvviieeeceee e ettt s sbe e st be e be e sabe e sbeeeareebeas 61
3.56 CachelnCrementCOUNTOTIETcccvi ittt bbb e e sbeesre e sbeeeens 61
3.57 CachelnVOKECIASSMETNOUc.eeiueiiciie ettt et e st sae e s ere e saeeenre s 62
3.58 CacChelINVOKEMETNOMcoviiiieiiiciecieee ettt sttt sbeeabeebeeabesbeenbesaeennes 62
3.59 CaACNEOTIUSI ..eviticiicte e et b e et b e e ab e ebe b ae b eas 63
K O O ot a1 o o TSRS 63
3.61 CAChEPOPCVEH ...ttt bbb bbb st b e ettt ae et be b b e 63
3.62 CACNEPOPCVIW ...tttk bbbttt 64

Using the Caché Callin API

KT R OF: ot o o1 o o] 0 o | SR 64

3,64 CACNBPOPEXSLE ...ttt ettt bt bbb bbb bbb e e e 65
3.65 CACNEPOPEXSIICVEW ...ttt sttt 65
3.66 CAChEPOPEXSIICVEHeiiiiiicieiieie ettt e bbbt 66
I G - Tol g L= 0T o] ot] 1 66
3.68 CaChEPOPEXSIIH ..ooieecicce et et sttt st neene e e e eneerenre e 66
KT I 0= Tod 1= =] o] 1| S S 67
3.70 CACNEPOPINIBA ...ttt ettt ettt b bbb sb e b e bbb et et et ebesbesbenbe s 67
371 CACNEPOPLUIST ...euvviteieiteet ettt bbbttt bbb 68
3.72 CaChEPOPOIET ...t bbbt b ettt 68
KT T O Vol 11 2o] S 68
KT O Tod 1= oo 0 | S 69
K AT O 1ol 1= o] o 1] 1 o SO SSUPRSN 69
3.76 CACNEPOPSIIVV ...ttt ettt et b bbbt sb e bbb e b sb e b et et e e ebeebesneabe s 70
377 CACNEPTOMPLA ..ottt bbbt b ettt ettt b bbbt bt nr e 70
3.78 CaCEPTOMPEH ...ttt bbbttt bbb 71
T4 O T 1 1= = (0] 1.1) 1 RS SPSSR 72
3.80 CaChePUSNCIASSIMIEINOMvecviiviiiiiieiite ettt ebe e sbe e s sresbe e b sbeesbesbeens 72
3.81 CachePuShCIaSSMELNOUHcceiiiiiiieciii ettt re e saeeebe e 73
3.82 CachePUShCIASSMELNOUWccoeiiiiiiiiecie ettt sttt ettt are e be e saveebeesaneens 74
3.83 CACNBPUSNCVIH ..o ettt st st e e sare e be s s beenbeesabeens 75
IR = Vo o [T U] a1 L 75
3.85 CACNEPUSNDDIccviiiiiitecie ettt st re st b e s be e st e ebbesbeeabesbeenbesbeebesaeesrens 76
3.86 CACNEPUSNEXSIT ...viivviiviceii ittt ettt sttt sttt sttt et st b e s bbb e et be s e e sbeentesbeebesbeesbesbeesbesbeens 77
3.87 CAaChEPUSNEXSIICVIW ...ttt ettt et e be e s are e ebe e s abeenbeesabeens 77
3.88 CaChEPUSNEXSIICVIHccviiiiii ettt ettt ettt ettt e s abe e sbeesaee e be e saaeenree e 78
3.89 CaACNBPUSNEXSIIWV ...ttt ettt ettt sttt st ettt ettt e e ebe e st e e sbeesaaeebe s saaeeabeesbbeanbeesaneans 78
IR OF To] 1o U 4 e 1 [79
3.91 CACNEPUSHIFUNG ..cuviivviiieiee ettt ettt et a e st sb e st et e et e s beebbesbeeabesbeenbesbeenresaeesrens 79
3.92 CAChEPUSNFUNCHviiiiiticie ettt sttt b e b e be et e sbe et e sbeesbesreesbesreens 80
3.93 CAChEPUSNFUNCWV ..ottt st ettt et e ebe e st e e ebe e sabe e sbeesareebeesraeenbee e 81
3.94 CaChEPUSHFUNCX ...ttt ettt sb e et st e e ebe e st e e sbeesaaeesbe s sabeebeesbaeenbeesaneens 82
3.95 CaChEPUSHFUNCXH ..ottt ettt ettt e ebe e sabe e beesaeeebe s saeeenbee e 83
3.96 CaChEPUSNFUNCXWV ...ttt sttt ettt e et e saae e ste e sreeebessaeeereesnbeens 84
3.97 CaChEPUSNGIONALcviiviiiiciececcce ettt sre e sbesreesbesreens 85
3.98 CaChEPUSNGIODAIHocviiviiiiciiicre et be e sbe s sbeeabesbe e 85
3.99 CaChePUSNGIODAIWVoiiieiei e sttt re e s be e ereesabeens 86
3.100 CaChePUSNGIODALXcccieiiiiiiiieecie ettt ettt ettt e e eteesabe e sbeesareebeesrneenbeees 87
3.101 CachePUSNGIODAIXHccviiieiiiie ettt sbe e sare e ebe e s reenbeesabeens 87
3.102 CachePUSNGIODAIXWVoooiueeiieectee ettt ettt ettt reesate e st e sareesresanes 88
3.103 CaChEPUSNIEEEDDIccviiuiiiieciicie ettt ere ettt st sbe st sttt enre s 89
3.104 CACNEPUSNINT 1...eiiveiii ettt s be e st b e s be e b e s be et e sbeesbesbsesbesnsesbeensesbeennes 89
3.105 CaChEPUSNINIBAoiieieiei ettt et ettt et e s be e sbe e s beesaeesabeesbeesabeeees 89
3,106 CACNEPUSILIST ...ccuviiiiecciii ettt ettt ettt ettt s be et e e s be e ebe e sabeenbeesabeesbeesareeteas 90
3.107 CAChEPUSNLOCK ...vviivicctei ettt ebe ettt e e sbeesareeres 90
3.108 CaChEPUSNLOCKHoeiieeiictie ettt ettt et sae s st e s re e ebe s s raeesaeesaee s 91
3.109 CaChEPUSNLOCKWYviiviiiieiie ettt ettt sttt be st beeabesbeenresbeenesbeesrens 92
3.110 CaChBPUSNLOCKX ...oiitiiiiiiteiii ittt sttt b et be e b e s sbe e sbeetesbeesbesbeesbesbeens 92
3.111 CaChEPUSNLOCKXH ..ottt ettt e be e st e be e stae s ebeesaneenbe e 93
3.112 CaChEPUSNLOCKXWVeviciiiiiee ettt ettt ettt et st esare e sbe e saaeebe e sabeebeesbaeenbeesaneans 94
3.113 CaChEPUSHIMELNOMcvieiiiiieectee ettt ettt et te e sbe e s be e b e s be e sbeesabe e e 94

Using the Caché Callin API

3.114 CaChEPUSNIMELNOUHo.vveeiiiie et e s s ba e e s sbre e 95

3.115 CaChePUSNIMELNOUWVooiiiiciiice ettt ettt e sbe e st e sbeesnre b 96
3,116 CaChBPUSNOIET ...ttt bbb e sbe e et e e sba e e be e sbeesabeesreeenras 96
3.117 CAChEPUSNPIOPEITY ...vieiiiieiiiteiesteiet ettt 97
3.118 CaChePUSNPIOPEITYHc..coveicicicece sttt s ene e 97
3.119 CaChePUSNPIOPEIYWveiiiciiiieiie sttt sttt ettt st be sttt e st st et et sn e enaeneeneens 98
3,120 CACNEPUSNPLE .ttt sttt ettt e be e s tb e e sbe e saae e sbeesaeeebeesabeenbeesabeens 99
3,121 CACREPUSNRIN 1cviiiiicctie ettt ettt e et be e ebe e s bt e e ebeesabeesbeesareebeesreeenreees 99
3.122 CAChEPUSNRINH ..ceveiiii ittt ettt e be e s b be e sbeesabe e saeesabeesteas 100
I G T O 1o] 1o U T 4 1A 101
3.124 CaChEPUSHRINX ...viiiiitieiecte ettt sttt st et esbe b e sbeenbesbeenbesreesbesaeesrens 102
3.125 CAChEPUSNRINXHveiiiiiieiiicie ettt sttt ettt sbe b e sbs e sbesaeesbeeneesbeenresreas 103
3.126 CaChEPUSHRINXWVuiiiitiiiieciec ittt ettt ettt stbe e beesave e sbeesabeebeesrbeenbeesnneens 104
3127 CACNEPUSNSET Lottt ettt s b e s be e sbeeebeesbeesbeesaneenbeesaeesnbeesteas 105
I 2 R 0% To] 1o U1 415 (= O RUO 105
I 2 B O 1ol T VT 415 YAV 106
3.130 CaChEPUSNUNGET ...ttt et st st e be e sbsebesae b ens 107
3.131 CaChEREIEASEAIILOCKS ..vveviivieirictiecte ettt ettt sttt et sbe e s be b sbeesbesneesbesneesreenresreas 107
3.132 CaChEREIEASELOCK ...veiviiieieeitie ittt ettt ettt et be s bve e be e st e e teesane e sbeesneeenbeenens 107
3.133 CACNESECUIBSTAITAveiiveectee ettt ettt bttt e b e s be e sbe e s be e sbe e sbeesbeesabeesbeesabeesbeesabeesreeas 108
3.134 CaChESECUIBSTAITHveiiiviiitieciee ettt ettt et et be e s be e sbeesabe e sbeesabeesbaesareesbeean 109
3.135 CACESECUIESTAIWVeeiviiieee ettt et ettt ste et e st e et e e sat e e steesaeeebessaeeenbessrbeenteesreeans 111
3.136 CAChESEIDIN ..viiviiiiiciecteee ettt ettt be st st e et e s b e e abeebeeabesbeenbesbeenbesbeestesreesrens 113
TN A OF: ol 4 [1=] 1 2 (] 011 1 RSSO 113
TR = O Tod 1= 1] o= | ST 113
3.139 CACNESPCRECEIVEveeiurieiteiitte et sttt et e sttt e et e e be e ebeesbe e sbeesbe e sbeesbeesbeseabeesbeesabeesbessnreesees 114
3,140 CACNESPCSENGoviicteeeie ettt ettt ettt e s b et e e st be e be s s tb e e beesabeesbeesateesbessaneebesns 114
IR R O 1ot g TN = o 7 AN 115
3,142 CAChESIAMTH ..ot be et e e be et e sbeebesbeebesreesbesreesrea 116
3,143 CACNESTAIWV ...oviiiiciecie ettt ettt st s b et e e ab e st e e st e s beenbesbsebeeaeesbeeneesbeearesrens 118
3,144 CaChET COMMIL 1.uviiitiiiie ettt et e e be e st e et e e sae e e ebe e sabeebe e sareebeesabeesbeesnreestes 120
Ol OF: 1ol T I] SO OU SRRSO 120
3.146 CAChETROIDACK ...veiiviiiericitii ettt ettt e ebe e s s be e saeeebe e sbeesareesees 120
IR A 0= Tod o Lo I - A 121
TN R O o 1 N Y/ o SRS 121
TN Ee T O Yol 11U o] o PRSP 121

vi

Using the Caché Callin API

List of Tables

Table 2—1: Session CONrol FUNCLIONScoiiiiiii e s 14
Table 2-2: ObjectScript command FUNCLIONScvieiiiiieie e 14
Table 2-3: Functions for performing function and routing Callsccoeoveiriiniiienie e 15
Table 2—4: Transaction FUNCLIONSccovrrireiirirccens s 15
Table 2-5: LOCKING TUNCLIONS ...icviiieiieieiieie ettt n e neenestesnesrenre e nnens 16
Table 2—6: OFef TUNCHIONSoveiiireiiireiirese et an e 16
Table 2—7: Method FUNCLIONSoiiiiiiriie ettt ettt sb bbb 16
Table 2—8: Property fUNCLIONSoiiiriiiieirieirieesie sttt 17
Table 2-9: Functions for managing globals ... 17
Table 2—10: Long String FUNCLIONSccvveiiiire et ne e enens 18
Table 2-11: Standard String FUNCLIONSciviiveiieieiecees s re e sne s 18
Table 2-12: Other datatype TUNCLIONSc.coiiiiiiiireie e e 18

Using the Caché Callin API vii

About This Book

This book describes how to use the Caché Callin API, which offers an interface that you can use from within C or C++
programs to execute Caché commands and evaluate Caché expressions.

Who This Book Is For

In order to use this book, you should be reasonably familiar with your operating system, and have significant experience
with C, C++, or another language that can use the C/C++ calling standard for your operating system.

Organization of This Book
This book is organized as follows:

» The chapter “The Callin Interface™ describes the Callin interface, which you can use from within C programs to execute
Caché commands and evaluate Caché expressions.

e The chapter “Using the Callin Functions™ provides a quick summary of the Callin functions (with links to the full
description of each function) catagorized according to the tasks they perform.

e The chapter “Callin Function Reference™ contains detailed descriptions of all Caché Callin functions, arranged in
alphabetical order.

Related Information

The Callin functions provide a very low-level programming interface. In many cases, you will be able to accomplish your
objectives much more easily by using one of the standard Caché language bindings. For details, see the following sources:

e Using C++ with Caché

* Using the Caché Managed Provider for NET

e Using Java with Caché

The Caché Callout Gateway is a programming interface that allows you to create a shared library with functions that can

be invoked from Caché. Callout code is usually written in C or C++, but can be written in any language that supports C/C++
calling conventions.

e Using the Caché Callout Gateway

Using the Caché Callin API 1

The Callin Interface

Caché offers a Callin interface you can use from within C programs to execute Caché commands and evaluate Caché
expressions. This chapter describes this interface and includes the following sections:

* The callin.h Header File

e 8-bitand Unicode String Handling

e Using Caché Security Functions

e Using Callin with Multithreading

» Callin Programming Tips

* Running Sample Programs on Windows

e Running Sample Programs on UNIX® and Linux

The Callin interface permits a wide variety of applications. For example, you can use it to make ObjectScript available
from an integrated menu or GUI. If you gather information from an external device, such as an Automatic Teller Machine
or piece of laboratory equipment, the Callin interface lets you store this data in a Caché database. Although Caché currently

supports only C and C++ programs, any language that uses the calling standard for that platform (UNIX®, Windows) can
invoke the Callin functions.

See Using the Callin Functions for a quick review of Callin functions. For detailed reference material on each Callin function,
see the Callin Function Reference.

1.1 The callin.h Header File

The callin.h header file defines prototypes for these functions, which allows your C compiler to test for valid parameter
data types when you call these functions within your program. You can add this file to the list of #include statements in
your C program:

#include "callin.h"

The callin.h file also contains definitions of parameter values you use in your calls, and includes various #defines that
may be of use. These include operating-system-specific values, error codes, and values that determine how Caché behaves.

You can translate the distributed header file, callin.h. However, callin.h is subject to change and you must track any changes
if you create a translated version of this file. InterSystems Worldwide Support Center does not handle calls about unsupported
languages.

Using the Caché Callin API 3

The Callin Interface

Return values and error codes

Most Callin functions return values of type int, where the return value does not exceed the capacity of a 16-bit integer.
Returned values can be CACHE_SUCCESS, a Caché error, or a Callin interface error.

There are two types of errors:
e Caché errors — The return value of a Caché error is a positive integer.
» Interface errors — The return value of an interface error is O or a negative integer.

callin.h defines symbols for all Caché and interface errors, including CACHE_SUCCESS (0) and CACHE_FAILURE (-1).
You can translate Caché errors (positive integers) by making a call to the Callin function CacheErrxlate.

1.2 8-bit and Unicode String Handling

Caché Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use a suffix character
to indicate the type of string that they handle:

» Names with an “A” suffix or no suffix at all (for example,CacheEvalA or CachePopStr) are versions that operate on
local 8-bit encoded character strings.

e Names with a “W” suffix (for example,CacheEvalW or CachePopStrW) are versions for Unicode character strings
on platforms that use 2-byte Unicode characters.

* Names with an “H” suffix (for example,CacheEvalH or CachePopStrH) are versions for Unicode character strings
on platforms that use 4-byte Unicode characters.

For best performance, use the kind of string native to your installed version of Caché.

1.2.1 8-bit String Data Types

Caché supports the following data types that use local 8-bit string encoding:
e CACHE_ASTR — counted string of 8-bit characters

* CACHE_ASTRP — Pointer to an 8-bit counted string

The type definition for these is:

#define CACHE_MAXSTRLEN 32767
typedef struct {

unsigned short len;

Callin_char_t str[CACHE_MAXSTRLEN];
} CACHE_ASTR, *CACHE_ASTRP;

The CACHE_ASTR and CACHE_ASTRP structures contain two elements:

» len— An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

e str — A input or output string.

CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

4 Using the Caché Callin API

8-bit and Unicode String Handling

1.2.2 2-byte Unicode Data Types

Caché supports the following Unicode-related data types on platforms that use 2-byte Unicode characters:
* CACHEWSTR — Unicode counted string

e CACHEWSTRP — Pointer to Unicode counted string

The type definition for these is:

typedef struct {

unsigned short len;

unsigned short str[CACHE_MAXSTRLEN];
} CACHEWSTR, *CACHEWSTRP;

The CACHEWSTR and CACHEWSTRP structures contain two elements:

» len—An integer. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

* str— A input or output string.
CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of Caché, there is also the data type CACHE_WSTRING, which represents the native string
type on 2-byte platforms. CacheType returns this type. Also, CacheConvert can specify CACHE_WSTRING as the data
type for the return value; if this type is requested, the result is passed back as a counted Unicode string in a CACHEWSTR
buffer.

1.2.3 4-byte Unicode Data Types

Caché supports the following Unicode-related data types on platforms that use 4-byte Unicode characters:
* CACHEHSTR — Extended Unicode counted string

* CACHEHSTRP — Pointer to Extended Unicode counted string

The type definition for these is:

typedef struct {

unsigned int len;

wchar_t str[CACHE_MAXSTRLEN];
} CACHEHSTR, *CACHEHSTRP;

The CACHEHSTR and CACHEHSTRP structures contain two elements:

« len— Aninteger. When used as input, this element specifies the actual length of the string whose value is supplied
in the str element. When used as output, this element specifies the maximum allowable length for the str element;
upon return, this is replaced by the actual length of str.

e str— A input or output string.

CACHE_MAXSTRLEN is the maximum length of a string that is accepted or returned. A parameter string need not be of
length CACHE_MAXSTRLEN nor does that much space have to be allocated in the program.

On Unicode-enabled versions of Caché, there is also the data type CACHE_HSTRING, which represents the native string
type on 4-byte platforms. CacheType returns this type. Also, CacheConvert can specify CACHE_HSTRING as the data
type for the return value; if this type is requested, the result is passed back as a counted Unicode string in a CACHEHSTR
buffer.

Using the Caché Callin API 5

The Callin Interface

1.2.4 System-neutral Symbol Definitions

The allowed inputs and outputs of some functions vary depending on whether they are running on an 8-bit system or a
Unicode system. For many of the “A” (ASCII) functions, the arguments are defined as accepting a CACHESTR, CACHE_STR,
CACHESTRP, or CACHE_STRP type. These symbol definitions (without the “A™ , “W™”, or “H™) can conditionally be
associated with either the 8-bit or Unicode names, depending on whether the symbols CACHE_UN I CODE and CACHE_WCHART
are defined at compile time. This way, you can write source code with neutral symbols that works with either local 8-bit
or Unicode encodings.

The following excerpt from callin.h illustrates the concept:

#if defined(CACHE_UNICODE) /* Unicode character strings */

#define CACHESTR CACHEWSTR
#define CACHE_STR CACHEWSTR
#define CACHESTRP CACHEWSTRP

#define CACHE_STRP CACHEWSTRP
#define CACHE_STRING CACHE_WSTRING

#elif defined(CACHE_WCHART) /* wchar_t character strings */

#define CACHESTR CACHEHSTR
#define CACHE_STR CACHEHSTR
#define CACHESTRP CACHEHSTRP

#define CACHE_STRP CACHEHSTRP
#define CACHE_STRING CACHE_HSTRING

#else /* 8-bit character strings */
#define CACHESTR CACHE_ASTR
#define CACHE_STR CACHE_ASTR
#define CACHESTRP CACHE_ASTRP

#define CACHE_STRP CACHE_ASTRP
#define CACHE_STRING CACHE_ASTRING
#endif

1.3 Using Cacheé Security Functions

Two functions are provided for working with Caché passwords:

e CacheSecureStart — Similar to CacheStart, but with additional parameters for password authentication. The
CacheStart function is now deprecated. If used, it will behave as if CacheSecureStart has been called with NULL
for Username, Password, and ExeName. You cannot use CacheStart if you need to use some form of password
authentication.

e CacheChangePassword — This function will change the user's password if they are using Caché authentication (it
is not valid for LDAP/DELEGATED/Kerberos etc.). It must be called before a Callin session is initialized.

There are CacheSecureStart and CacheChangePassword functions for ASCII "A", Unicode "W", and Unicode "H"
installs. The new functions either narrow, widen or "use as is" the passed in parameters, store them in the new Callin data
area, then eventually call the CacheStart entry point.

CacheStart and CacheSecureStart pin and pout parameters can be passed as NULL, which indicates that the platform's
default input and output device should be used.

1.4 Using Callin with Multithreading

Caché has been enhanced so that Callin can be used by threaded programs running under some versions of Windows and
UNIX® (see “Other Supported Features™ in the online InterSystems Supported Platforms document for this release for a
list). A program can spawn multiple threads (pthreads in a UNIX® environment) and each thread can establish a separate

6 Using the Caché Callin API

https://www.intersystems.com/support-learning/support/current-platform-information-release-notes/

Using Callin with Multithreading

connection to Caché by calling CacheSecureStart. Threads may not share a single connection to Caché; each thread which
wants to use Cache must call CacheSecureStart. If a thread attempts to use a Callin function and it has not called
CacheSecureStart, a CACHE_NOCON error is returned.

A threaded application must link against cachet.o or the shared library, cachet.so. On UNIX® and Linux they may alterna-
tively load the shared library dynamically. On Windows, due to the implementation of thread local storage the cachet.dll
library cannot be dynamically loaded. The program should be careful not to exit until all of the threads which have entered
Caché have called CacheEnd to shut down their connections. Failure to shut down each connection with CacheEnd may
hang the instance, requiring a restart.

If CacheSecureStart is being used, to specify credentials as part of the login, each thread must call CacheSecureStart
and provide the correct username/password for the connection, since credentials are not shared between the threads. There
is a performance penalty within Caché using threads because of the extra code the C compiler has to generate to access
thread local storage (which uses direct memory references in non-threaded builds).

A sample program, sampcallint.c, is provided on all platforms where this feature is supported. The vc8 project, and the
UNIX® Makefiles, include instructions to build a sample threaded Callin application on the relevant platforms.

1.4.1Threads and UNIX® Signal Handling

On UNIX®, Caché uses a number of signals. If your application uses the same signals, you should be aware of how Caché
deals with them. All signals have a default action specified by the OS. Applications may choose to leave the default action,
or can choose to handle or ignore the signal. If the signal is handled, the application may further select which threads will
block the signal and which threads will receive the signal. Some signals cannot be blocked, ignored, or handled. Since the
default action for many signals is to halt the process, leaving the default action in place is not an option. The following
signals cannot be caught or ignored, and terminate the process:

SIGNAL DISPOSITION
SIGKILL terminate process immediately
SIGSTOP stop process for later resumption

The actions that an application establishes for each signal are process-wide. Whether or not the signal can be delivered to
each thread is thread-specific. Each thread may specify how it will deal with signals, independently of other threads. One
thread may block all signals, while another thread may allow all signals to be sent to that thread. What happens when a
signal is sent to the thread depends on the process-wide handling established for that signal.

1.4.1.1 Cache Signal Processing

Caché integrates with application signal handling by saving application handlers and signal masks, then restoring them at
the appropriate time. Caché processes signals in the following ways:

Generated signals

Caché installs its own signal handler for all generated signals. It saves the current (application) signal handler. If
the thread catches a generated signal, the Caché signal handler disconnects the thread from Caché, calls the
applications signal handling function (if any), then does pthread_exit.

Since signal handlers are process-wide, threads not connected to Caché will also go into the Caché handler. If
Caché detects that the thread is not connected, it calls the application handler and then does pthread_exit.
Synchronous Signals

Caché establishes signal handlers for all synchronous signals, and unblocks these signals for each thread when
the thread connects to Caché (see “Synchronous Signals” for details).

Using the Caché Callin API 7

The Callin Interface

Asynchronous Signals

Caché handles all asynchronous signals that would terminate the process (see “ Asynchronous Signals™ for details).

Save/Restore Handlers

The system saves the signal state when the first thread connects to it. When the last thread disconnects, Caché
restores the signal state for every signal that it has handled.

Save/Restore Thread Signal Mask

The thread signal mask is saved on connect, and restored when the thread disconnects.

1.4.1.2 Synchronous Signals

Synchronous signals are generated by the application itself (for example, SIGSEGV). Caché establishes signal handlers for
all synchronous signals, and unblocks these signals for each thread when it connects to Caché.

Synchronous signals are caught by the thread that generated the signal. If the application has not specified a handler for a
signal it has generated (for example, SIGSEGV), or if the thread has blocked the signal, then the OS will halt the entire
process. If the thread enters the signal handler, that thread may exit cleanly (via pthread_exit) with no impact to any
other thread. If a thread attempts to return from the handler, the OS will halt the entire process. The following signals cause
thread termination:

SIGNAL DISPOSITION

SIGABRT process abort signal

SIGBUS bus error

SIGEMT EMT instruction

SIGFPE floating point exception

SIGILL illegal instruction

SIGSEGV access violation

SIGSYS bad argument to system call

SIGTRAP trace trap

SI1GXCPU CPU time limit exceeded (setrlimit)

1.4.1.3 Asynchronous signals

Asynchronous signals are generated outside the application (for example, SIGALRM, SIGINT, and SIGTERM). Caché
handles all asynchronous signals that would terminate the process.

Asynchronous signals may be caught by any thread that has not blocked the signal. The system chooses which thread to
use. Any signal whose default action is to cause the process to exit must be handled, with at least one thread eligible to
receive it, or else it must be specifically ignored.

The application must establish a signal handler for those signals it wants to handle, and must start a thread that does not
block those signals. That thread will then be the only one eligible to receive the signal and handle it. Both the handler and
the eligible thread must exist before the application makes its first call to CacheStart. On the first call to CacheStart, the
following actions are performed for all asynchronous signals that would terminate the process:

» Caché looks for a handler for these signals. If a handler is found, Caché leaves it in place. Otherwise, Caché sets the
signal to SIG_IGN (ignore the signal).

8 Using the Caché Callin API

Callin Programming Tips

e Caché blocks all of these signals for connected threads, whether or not a signal has a handler. Thus, if there is a handler,
only a thread that is not connected to Caché can catch the signal.

The following signals are affected by this process:

SIGNAL DISPOSITION
SIGALRM timer
SI1GCHLD blocked by threads

S1GDANGER ignore if unhandled

SIGHUP ignore if unhandled
SIGINT ignore if unhandled
SIGPIPE ignore if unhandled
SIGQUIT ignore if unhandled
SIGTERM If SIGTERM is unhandled, Cache will handle it. On receipt of a SIGTERM signal, the Cache

handler will disconnect all threads and no new connections will be permitted. Handlers for
SIGTERM are not stacked.

SIGUSR1 inter-process communication
SIGUSR2 inter-process communication
SIGVTALRM virtual timer

SIGXFSZ Caché asynchronous thread rundown

1.5 Callin Programming Tips

Topics in this section include:

» Tips for All Callin Programs

* Tips for Windows

e Tips for UNIX®, Linux, and Mac OS

1.5.1Tips for All Callin Programs

Your external program must follow certain rules to avoid corrupting Caché data structures, which can cause a system hang.
e Limits on the number of open files

Your program must ensure that it does not open so many files that it prevents Caché from opening the number of
databases or other files it expects to be able to. Normally, Caché looks up the user's open file quota and reserves a
certain number of files for opening databases, allocating the rest for the Open command. Depending on the quota,
Caché expects to have between 6 and 30 Caché database files open simultaneously, and from 0 to 36 files open with
the Open command.

* Maximum Directory Length for Callin Applications

Using the Caché Callin API 9

The Callin Interface

The directory containing any Callin application must have a full path that uses fewer than 232 characters. For example,
if an application is in the C-\CacheApps\Accounting\AccountsPayable\ directory, this has 40 characters in
it and is therefore valid.

Call CacheEnd after CacheStart before halting

If your Caché connection was established by a call to CacheStart, then you must call CacheEnd when you are done
with the connection. You can make as many Callin function calls in between as you wish.

You must call CacheEnd even if the connection was broken. The connection can be broken by a call to CacheAbort
with the RESJOB parameter.

CacheEnd performs cleanup operations which are necessary to prepare for another call to CacheStart. Calling
CacheStart again without calling CacheEnd (assuming a broken connection) will return the code CACHE_CONBRO-
KEN.

Wait until ObjectScript is done before exiting

If you are going to exit your program, you must be certain ObjectScript has completed any outstanding request. Use
the Callin function CacheContext to determine whether you are within ObjectScript. This call is particularly important
in exit handlers and ctrl-C or cCtrl-Y handlers. If CacheContext returns a non-zero value, you can invoke CacheAbort.

Maintaining Margins in Callin Sessions

While you can set the margin within a Callin session, the margin setting is only maintained for the rest of the current
command line. If a program (as with direct mode) includes the line:

:Use 0:10 Write X

the margin of 10 is established for the duration of the command line.

Certain calls affect the command line and therefore its margin. These are the calls are annotated as "calls into Caché"
in the function descriptions.

Avoid signal handling when using CacheStart()

CacheStart sets handlers for various signals, which may conflict with signal handlers set by the calling application.

1.5.2Tips for Windows

These tips apply only to Windows.

Limitations on building Callin applications using the cache shared library (cache.dll)

If Callin applications are built using the shared library (cache.dll) rather that the static object (cache.obj), users who
have large global buffer pools may see the Callin fail to initialize (in CacheStart) with an error:

<Cache Startup Error: Mapping shared memory (203)>

The explanation for this lies in the behavior of system DLLs loading in Windows. Applications coded in the Win 32
API or with the Microsoft Foundation Classes (the chief libraries that support Microsoft Visual C++ development)
need to have the OS load the DLLs for that Windows code as soon as they initialize. These DLLs get loaded from the
top of virtual storage (higher addresses), reducing the amount of space left for the heap. On most systems, there are
also a number of other DLLs (for example, DLLs supporting the display graphics) that load automatically with each
Windows process at locations well above the bottom of the virtual storage. These DLLs have a tendency to request a
specific address space, most commonly 0X10000000 (256MB), chopping off a few hundred megabytes of contiguous
memory at the bottom of virtual memory. The result may be that there is insufficient virtual memory space in the Callin
executable in which to map the Cache shared memory segment.

10

Using the Caché Callin API

Running Sample Programs on Windows

1.5.3Tips for UNIX®, Linux, and Mac OS

These tips apply only to UNIX®, Linux, and Mac OS.
» Do not disable interrupt delivery on UNIX®

UNIX® uses interrupts. Do not prevent delivery of interrupts.
* Use the correct version of XCode

Versions of Caché for Mac OS X (32-bit) previous to 2010.2 were built using the Xcode 2.5 compiler. Callin programs
for these versions of Caché must be built using the same compiler. If your development platform is Mac OS X 10.5
(Leopard) or later, you would have to load and use Xcode 2.5 in place of the default Xcode 3.0 compiler.

* Avoid using reserved signals

On UNIX®, Caché uses a number of signals. If possible, application programs linked with Caché should avoid using
the following reserved signals:

SIGABRT SIGDANGER SIGILL SIGQUIT SIGTERM SIGVTALRM
SIGALRM SIGEMT SIGINT SIGSTOP SIGTRAP SIGXCPU
SIGBUS SIGFPE SIGKILL SIGSEGV SIGUSR1 SIGXFSZ
SIGCHLD SIGHUP SIGPIPE SIGSYS SIGUSR2

If your application uses these signals, you should be aware of how Caché deals with them. See Threads and UNIX®
Signal Handling for details.

1.6 Running Sample Programs on Windows

The \dev\cache\callin directory contains source files, header files, and project directories for building Caché Callin applications.
These projects provide a simple demonstration of how to use some high level Caché call-in functions.

In order to build these projects, open any of the .vcproj files (for Visual C++ 2005), or .dsp files (for Visual C++ 2003).
Double-click on the file, or run your Visual C++ application and select Fi le>Open>Project/Solution to open the
project file.

Note: You can run call-in programs on Windows 2000, but you have to compile them on Windows XP or newer, since
Visual Studio 2008 and the Windows 2008 SDK only go back to Windows XP. The Visual Studio 2008 redis-
tributables are supported on Windows 2000, but there does not appear to be a compatible compiler that is supported
on Windows 2000.

The shdir.c file has been already initialized with the path to your Caché mgr directory. For a default installation, the shdir.c
file will look like this:

char shdir[256] = "c:\\cachesys\\mgr"';

The Callin interface provides the CACHESETDIR entry point to dynamically set the name of the manager directory at
runtime. The shared library version of cache requires the use of this interface to find the installation’s manager’s directory.

Two sample C programs are provided. The sampcallin.c program is the standard Callin application example, and sampcallint.c
is the thread-safe Callin application example.

There are two projects for sampcallin.c and a project for sampcallint.c. These projects are:

Using the Caché Callin API 11

The Callin Interface

» callin— builds a statically linked Callin application using cache.obj.
» callinsh — builds a dynamically linked Callin application using cache.dll.

» callint — builds a dynamically linked thread-safe Callin application, using cachet.dll.

After each of the projects is built, it may be run in the Visual C++ environment.

When a project is built from the cache shared library, using cache.dll, the location of cache.dll must be defined in the user's
PATH environment variable, except when the file is located in the current directory.

1.7 Running Sample Programs on UNIX® and Linux

The directory dev/cache/callin/samples contains a complete Makefile to build Callin samples. This replaces the clink file
found in previous releases.

A shared library version of cache is now provided in addition to the cache object file. The UNIX® Makefiles build two
Callin sample applications: one using the cache object, and one using the libcache shared library.

Run make in the dev/cache/callin/samples directory. The supplied Makefile will build a cache using the czf interface, a
standard Callin application, and a shared library Callin application.

The file shdir.c is set to the appropriate value during installation, so no editing is required.

The Callin interface provides the CACHESETDIR entry point to dynamically set the name of the manager directory at
runtime.

Using Makefiles on UNIX®

The UNIX® Makefiles for building Callin samples and customer Callin programs are run by the make command. make
automatically finds the file called Makefile in the current directory. Thus, running make in the samples directory produces
a sample Callin executable.

When invoking make, use the SRC variable to specify the name of the source program. The default is sampcallin. To change
the name of the source file being built, override the SRC variable on the command line. For example, with a Callin program
called mycallin.c, the command is:

make SRC=mycallin

Setting Permissions for Callin Executables on UNIX®

Caché executables, files, and resources such as shared memory and operating system messages, are owned by a user selected
at installation time (the installation owner) and a group with a default name of cacheusr (you can choose a different name
at installation time). These files and resources are only accessible to processes that either have this user ID or belong to
this group. Otherwise, attempting to connect to Caché results in protection errors from the operating system (usually spec-
ifying that access is denied); this occurs prior to establishing any connection with Caché.

A Callin program can only run if its effective group ID is cacheusr. To meet this condition, one of the following must be
true:

e The program is run by a user in the cacheusr group (or an alternate run-as group if it was changed from cacheusr to
something else).

» The program sets its effective user or group by manipulating its uid or gid file permissions (using the UNIX® chgrp
and chmod commands).

12 Using the Caché Callin API

Using the Callin Functions

This section provides a quick summary of the Callin functions, with links to the full description of each function. The fol-
lowing categories are discussed:

* Process Control

These functions start and stop a Callin session, and control various settings associated with the session.
* Functions and Routines

These functions execute function or routine calls. Stack functions are provided for pushing function or routine references.
» Transactions and Locking

These functions execute the standard Caché transaction commands (TSTART, TCOMMIT, and TROLLBACK) and
the LOCK command.

e Managing Objects

These functions manipulate the Oref counter, perform method calls, and get or set property values. Stack functions are
also included for Orefs, method references, and property names.

* Managing Globals

These functions call into Caché to manipulate globals. Functions are provided to push globals onto the argument stack.
e Managing Strings

These functions translate strings from one form to another, and push or pop string arguments.
* Managing Simple Datatypes

These stack functions are used to push and pop arguments that have int, double, $list, or pointer values.

The following sections discuss the individual functions in more detail.

2.1 Process Control

These functions start and stop a Callin session, control various settings associated with the session, and provide a high-level
interface for executing ObjectScript commands and expressions.

2.1.1 Session Control

These functions start and stop a Callin session, and control various settings associated with the session.

Using the Caché Callin API 13

Using the Callin Functions

Table 2-1: Session control functions

CacheAbort
CacheChangePasswordA[W][H]

CacheContext

CacheCtrl
CacheEnd

CacheEndAll
CacheOflush
CachePromptA[W][H]

CacheSetDir

CacheSignal
CacheSecureStartA[W][H]

CacheStartA[W][H]

Tells Caché to terminate the current request.

Changes the user's password if Caché authentication is used. Must be
called before a Callin session is initialized.

Returns an integer indicating whether you are in a $ZF callback session,
in the Caché side of a Callin call, or in the user program side.

Determines whether or not Caché ignores CTRL-C.

Terminates a Caché session and, if necessary, cleans up a broken
connection. (Calls into Caché).

Disconnects all Callin threads and waits until they terminate.

Flushes any pending output.

Returns a string that would be the programmer prompt.

Dynamically sets the name of the manager's directory (CacheSys\Mgr) at

runtime. On Windows, the shared library version of Caché requires this
function.

Reports a signal detected by the user program to Caché for handling.

Initiates a Caché process.

(Deprecated. Use CacheSecureStart instead) Initiates a Caché process.

2.1.2 Running ObjectScript

These functions provide a high-level interface for executing ObjectScript commands and expressions.

Table 2-2: ObjectScript command functions

CacheExecuteA[W][H]
CacheEvalA[W][H]

CacheConvert
CacheType
CacheErrorA[W][H]

CacheErrxlate A[W][H]

2.2 Functions and

Executes an ObjectScript command. (Calls into Caché).
Evaluates an ObjectScript expression. (Calls into Caché).

Returns the value of the Caché expression returned by CacheEval.
Returns the datatype of an item returned by CacheEval.
Returns the most recent error message, its associated source string, and

the offset to where in the source string the error occurred.

Returns the Caché error string associated with error number returned from
a Callin function.

Routines

These functions call into Caché to perform function or routine calls. Functions are provided to push function or routine

references onto the argument stack.

14

Using the Caché Callin API

Transactions and Locking

Table 2-3: Functions for performing function and routine calls

CacheDoFun
CacheDoRtn
CacheExtFun
CachePop

CacheUnPop
CachePushFunc[W][H]
CachePushFuncX[W][H]
CachePushRtn[W][H]
CachePushRtnX[W][H]

Perform a routine call (special case). (Calls into Caché).
Perform a routine call. (Calls into Caché).

Perform an extrinsic function call. (Calls into Caché).

Pops a value off argument stack.

Restores the stack entry from CachePop

Pushes an extrinsic function reference onto the argument stack.
Push an extended function reference onto argument stack
Push a routine reference onto argument stack

Push an extended routine reference onto argument stack

2.3 Transactions and Locking

These functions execute the standard Caché transaction commands (TSTART, TCOMMIT, and TROLLBACK) and the

LOCK command.

2.3.1 Transactions

The following functions execute the standard Caché transaction commands.

Table 2-4: Transaction functions

CacheTCommit
CacheTLevel
CacheTRollback
CacheTStart

2.3.2 Locking

Executes a Caché TCommit command.
Returns the current nesting level ($TLEVEL) for transaction processing.
Executes a Caché TRollback command.

Executes a Caché TStart command.

These functions execute various forms of the Cache LOCK command. Functions are provided to push lock names onto the
argument stack for use by the CacheAcquireLock function.

Using the Caché Callin API

15

Using the Callin Functions

Table 2-5: Locking functions

CacheAcquireLock

CacheReleaseAllLocks

CacheReleaselLock

CachePushLock[W][H]

CachePushLockX[W][H]

Executes a Caché LOCK command.

Performs an argumentless Cache LOCK command to remove all locks
currently held by the process.

Executes a Cache LOCK — command to decrement the lock count for
the specified lock name.

Initializes a CacheAcquireLock command by pushing the lock name on
the argument stack.

Initializes a CacheAcquireLock command by pushing the lock name and
an environment string on the argument stack.

2.4 Managing Objects

These functions call into Caché to manipulate the Oref counter, perform method calls, and get or set property values. Stack
functions are also included for Orefs, method references, and property names.

2.4.1 Orefs

Table 2-6: Oref functions

CacheCloseOref
CachelncrementCountOref
CachePopOref
CachePushOref

2.4.2 Methods

Table 2-7: Method functions

CachelnvokeMethod
CachePushMethod[W][H]
CachelnvokeClassMethod

CachePushClassMethod[W][H]

Decrement the reference counter for an OREF. (Calls into Caché).
Increment the reference counter for an OREF
Pop an OREF off argument stack

Push an OREF onto argument stack

Perform an instance method call. (Calls into Caché).
Push an instance method reference onto argument stack
Perform a class method call. (Calls into Caché).

Push a class method reference onto argument stack

16

Using the Caché Callin API

Managing Globals

2.4.3 Properties

Table 2-8: Property functions
CacheGetProperty Obtain the value for a property. (Calls into Caché).
CacheSetProperty Store the value for a property. (Calls into Caché).
CachePushProperty[W][H] Push a property name onto argument stack

2.5 Managing Globals

These functions call into Caché to manipulate globals. Functions are provided to push globals onto the argument stack.

Table 2-9: Functions for managing globals

CacheGlobalGet Obtains the value of the global reference defined by
CachePushGlobal[W][H] and any subscripts. The node value is pushed
onto the argument stack.

CacheGlobalGetBinary Obtains the value of the global reference like CacheGlobalGet, and also
tests to make sure that the result is a binary string that will fit in the provided
buffer.

CacheGlobalSet Stores the value of the global reference. The node value must be pushed
onto the argument stack before this call.

CacheGlobalData Performs a $Data on the specified global.

CacheGloballncrement Performs a $Increment and returns the result on top of the stack.

CacheGlobalKill Performs a ZKILL on a global node or tree.

CacheGlobalOrder Performs a $Order on the specified global.

CacheGlobalQuery Performs a $Query on the specified global.

CacheGlobalRelease Releases ownership of a retained global buffer, if one exists.

CachePushGlobal[W][H] Pushes a global name onto argument stack

CachePushGlobalX[W][H] Pushes an extended global name onto argument stack

2.6 Managing Strings
These functions translate strings from one form to another, and push or pop string arguments.

2.6.1 Long String Functions

Caché long string functions may be used for both long strings and standard strings. Functions are provided for local 8-bit
encoding, 2-byte Unicode, and 4-byte Unicode.

Using the Caché Callin API 17

Using the Callin Functions

Table 2-10: Long string functions

CacheCVvtExStrinA[W][H] Translates a string with specified external character set encoding to the
character string encoding used internally by Caché.

CacheCVtExStrOutA[W][H] Translates a string from the character string encoding used internally in
Caché to a string with the specified external character set encoding.

CacheExStrKill Releases the storage associated with a long string.

CacheExStrNew[W][H] Allocates the requested amount of storage for a long string, and fills in the
EXSTR structure with the length and a pointer to the value field of the
structure.

CachePopExStrCvtW[H] Pops a string off the argument stack and translates it to a Unicode string.

CachePushExStrCvtW[H] Converts a Unicode string to local 8—bit encoding and pushes it onto the
argument stack.

CachePopExStr[W][H] Pops a value off argument stack and converts it to a string of the desired
type.

CachePushExStr[W][H] Pushes a string onto the argument stack

2.6.2 Standard String Functions

The following functions deal with standard Caché strings (limited to 32K). Functions are provided for local 8-bit encoding,
2-byte Unicode, and 4-byte Unicode.

Table 2-11: Standard string functions

CacheCvtInA[W][H] Translates a string with the specified external character set encoding to
the character string encoding used internally in Caché.

CacheCvtOutA[W][H] Translates a string from the character string encoding used internally in
Caché to a string with the specified external character set encoding.

CachePopStr[W][H] Pops a value off argument stack and converts it to a string of the desired
type.

CachePushStr[W][H] Pushes a string onto argument stack

CachePushCvtWI[H] Translates a Unicode string to local and pushes it onto argument stack

CachePopCvtW[H] Pops a value off argument stack and translates it into the desired string
type.

2.7 Managing Other Datatypes

These functions are used to push and pop argument values with datatypes such as int, double, $list, or pointer, and to return
the position of specified bit values within a bitstring.

Table 2-12: Other datatype functions

CachePushint Push an integer onto argument stack

18 Using the Caché Callin API

Managing Other Datatypes

CachePoplint
CachePushint64
CachePoplInt64
CachePushDbl
CachePushIEEEDDI
CachePopDbl
CachePushList
CachePopList
CachePushPtr
CachePopPtr
CachePushUndef

CacheBitFind[B]

Pop a value off argument stack and convert it to an integer

Push a 64-bit (long long) value onto argument stack

Pop a value off argument stack and convert it to a 64—bit (long long) value
Push a Caché double onto argument stack

Push an IEEE double onto argument stack.

Pops value off argument stack and converts it to a double

Translates and pushes a $LIST object onto argument stack

Pops a $LIST object off argument stack and translates it

Pushes a pointer value onto argument stack

Pops a pointer value off argument stack

Pushes an Undefined value that is interpreted as an omitted function
argument.

Returns the position of specified bit values within a bitstring. Similar to
Caché $BITFIND.

Using the Caché Callin API

19

Callin Function Reference

This reference chapter contains detailed descriptions of all Caché Callin functions, arranged in alphabetical order. For an
introduction to the Callin functions organized by function, see Using the Callin Functions.

Note: Caché Callin functions that operate on strings have both 8-bit and Unicode versions. These functions use a suffix

character to indicate the type of string that they handle:

< Names with an “A” suffix or no suffix at all (for example,CacheEvalA or CachePopStr) are versions for
8-bit character strings.

* Names with a “W” suffix (for example,CacheEval\W or CachePopStrW) are versions for Unicode character
strings on platforms that use 2-byte Unicode characters.

» Names with an “H” suffix (for example,CacheEvalH or CachePopStrH) are versions for Unicode character
strings on platforms that use 4-byte Unicode characters.

For convenience, the different versions of each function are listed together here. For example, CacheEvalA[W][H]
or CachePopStr[W][H].

3.1 Alphabetical Function List

This section contains an alphabetical list of all Callin functions with a brief description of each function and links to detailed
descriptions.

CacheAbort — Tells Caché to cancel the current request being processed on the Caché side, when it is convenient to
do so.

CacheAcquirel ock — Executes a Cache LOCK command. The lock reference should already be set up with
CachePushL ock X[W][H].

CacheChangePasswor dA[W][H] — Changes the user's password if Caché authentication is used (not valid for other
forms of authentication).

CacheBitFind[B] — Returns the position of specified bit values within a bitstring (similar to Caché $BITFIND).
CacheCloseOref — Decrements the system reference counter for an OREF.

CacheContext — Returns true if there is a request currently being processed on the Caché side of the connection
when using an external Callin program.

CacheConvert — Converts the value returned by CacheEval A[W][H] into proper format and places in address
specified in its return value.

Using the Caché Callin API 21

Callin Function Reference

CacheCtrl — Determines whether or not Caché ignores CTRL-C.

CacheCvtExStrInA[W][H] — Translates a string with specified external character set encoding to the local 8-bit
character string encoding used internally only in 8-bit versions of Caché.

CacheCvtExStrOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in
the Caché 8-bit product to a string with the specified external character set encoding. (This is only available with 8-bit
versions of Caché.)

CacheCvtInA[W][H] — Translates string with specified external character set encoding to the local 8-bit character
string encoding (used internally only in 8-bit versions of Caché) or the Unicode character string encoding (used internally
in Unicode versions of Caché).

CacheCvtOutA[W][H] — Translates a string from the local 8-bit character string encoding used internally in the
Caché 8-hit product to a string with the specified external character set encoding. (This is only available with 8-bit
versions of Caché.)

CacheDoFun — Performs a routine call (special case).

CacheDoRtn — Performs a routine call.

CacheEnd — Terminates a Caché process. If there is a broken connection, it also performs clean-up operations.
CacheEndAll — Disconnects all Callin threads and waits until they terminate.

CacheError A[W][H] — Returns the most recent error message, its associated source string, and the offset to where
in the source string the error occurred.

CacheErrxlateA[W][H] — Translates an integer error code into a Cache error string.

CacheEvalA[W][H] — Evaluates a string as if it were a Caché expression and places the return value in memory for
further processing by CacheType and CacheConvert.

CacheExecuteA[W][H] — Executes a command string as if it were typed at the Caché programmer prompt.
CacheExStrKill — Releases the storage associated with an EXSTR string.

CacheExStrNew[W][H] — Allocates the requested amount of storage for a string, and fills in the EXSTR structure
with the length and a pointer to the value field of the structure.

CacheExtFun — Performs an extrinsic function call where the return value is pushed onto the argument stack.

CacheGetProperty — Obtains the value of the property defined by CachePushProperty[W][H]. The value is pushed
onto the argument stack.

CacheGlobal Data — Performs a $Data on the specified global.

CacheGlobal Get — Obtains the value of the global reference defined by CachePushGlobal[W][H] and any subscripts.
The node value is pushed onto the argument stack.

CacheGloball ncrement — Performs a $INCREMENT and returns the result on top of the stack.
CacheGlobalKill — Performs a ZKILL on a global node or tree.

CacheGlobalOrder — Performs a $Order on the specified global.

CacheGlobalQuery — Performs a $Query on the specified global.

CacheGlobalRelease — Release ownership of a retained global buffer, if one exists.

CacheGlobal Set — Stores the value of the global reference defined by CachePushGlobal[W][H] and any subscripts.
The node value must be pushed onto the argument stack before this call.

Cachel ncrementCountOref — Increments the system reference counter for an OREF.

22

Using the Caché Callin API

Alphabetical Function List

Cachel nvokeClassM ethod — Executes the class method call defined by CachePushClassM ethod[W][H] and any
arguments. The return value is pushed onto the argument stack.

Cachel nvokeM ethod — Executes the instance method call defined by CachePushM ethod[W][H] and any arguments
pushed onto the argument stack.

CacheOflush — Flushes any pending output.
CachePop — Pops a value off argument stack.

CachePopCvtW[H] — Pops a local 8-bit string off argument stack and translates it to Unicode. Identical to
CachePopStr[W][H] for Unicode versions.

CachePopDbl — Pops a value off argument stack and converts it to a double.

CachePopExStr[W][H] — Pops a value off argument stack and converts it to a long string.
CachePopExStr CvtW[H] — Pops a value off argument stack and converts it to a long Unicode string.
CachePoplnt — Pops a value off argument stack and converts it to an integer.

CachePoplnt64 — Pops a value off argument stack and converts it to a 64-bit (long long) number.

CachePopList — Pops a $LIST object off argument stack and converts it. String elements are copied or translated as
appropriate depending on whether this is a Unicode or 8-bit version.

CachePopOref — Pops an OREF off argument stack.

CachePopPtr — Pops a pointer off argument stack in internal format.

CachePopStr[W][H] — Pops a value off argument stack and converts it to a string.
CachePromptA[W][H] — Returns a string that would be the programmer prompt.
CachePushClassM ethod[W][H] — Pushes a class method reference onto the argument stack.

CachePushCvtW[H] — Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to
CachePushStr[W][H] for Unicode versions.

CachePushDbl — Pushes a Caché double onto the argument stack.

CachePushExStr[W][H] — Pushes a long string onto the argument stack.

CachePushExStr CvtW[H] — Translates a Unicode string to local 8-bit and pushes it onto the argument stack.
CachePushFunc[W][H] — Pushes an extrinsic function reference onto the argument stack.
CachePushFuncX[W][H] — Pushes an extended extrinsic function reference onto the argument stack.
CachePushGlobal[W][H] — Pushes a global reference onto the argument stack.

CachePushGlobal X[W][H] — Pushes an extended global reference onto the argument stack.
CachePushl EEEDbI — Pushes an IEEE double onto the argument stack.

CachePushlnt — Pushes an integer onto the argument stack.

CachePushlnt64 — Pushes a 64-bit (long long) number onto the argument stack.

CachePushList — Converts a $LIST object and pushes it onto the argument stack.

CachePushL ock[W][H] — Initializes a CacheAcquirelL ock command by pushing the lock name on the argument
stack.

CachePushL ock X[W][H] — Initializes a CacheAcquirel ock command by pushing the lock name and an environment
string on the argument stack.

CachePushM ethod[W][H] — Pushes an instance method reference onto the argument stack.

Using the Caché Callin API 23

Callin Function Reference

CachePushOref — Pushes an OREF onto the argument stack.
CachePushProperty[W][H] — Pushes a property reference onto the argument stack.
CachePushPtr — Pushes a pointer onto the argument stack in internal format.
CachePushRtn[W][H] — Pushes a routine reference onto the argument stack.
CachePushRtnX[W][H] — Pushes an extended routine reference onto the argument stack.
CachePushStr[W][H] — Pushes a byte string onto the argument stack.

CachePushExStr CvtW[H] — Converts a Unicode string to local 8-bit encoding and pushes it onto the argument
stack.

CachePushUndef — pushes an Undefined value that is interpreted as an omitted function argument.

CacheReleaseAllL ocks — Performs an argumentless Cache LOCK command to remove all locks currently held by
the process.

CacheReleasel. ock — Executes a Cache LOCK command to decrement the lock count for the specified lock name.
This command will only release one incremental lock at a time.

CacheSecureStartA[W][H] — Calls into Cache to set up a Cache process.

CacheSetDir — Dynamically sets the name of the manager's directory at runtime.
CacheSetProperty — Stores the value of the property defined by CachePushProperty[W][H].
CacheSignal — Passes on signals caught by user's program to Caché.

CacheSPCReceive — Receive single-process-communication message.

CacheSPCSend — Send a single-process-communication message.

CacheStartA[W][H] — Calls into Caché to set up a Caché process.

CacheT Commit — Executes a Cache TCommit command.

CacheT L evel — Returns the current nesting level ($TLEVEL) for transaction processing.
CacheTRollback — Executes a Cache TRollback command.

CacheT Start — Executes a Cache TStart command.

CacheType — Returns the native type of the item returned by CacheEval A[W][H], as the function value.
CacheUnPop — Restores the stack entry from CachePop.

3.2 CacheAbort

int CacheAbort(unsigned long type)

Arguments
type Either of the following predefined values that specify how the termination occurs:
e CACHE_CTRLC — Interrupts the Caché processing as if a CTRL-C had been processed
(regardless of whether CTRL-C has been enabled with CacheCtrl). A connection to Caché
remains.
e CACHE_RESJOB — Terminates the Callin connection. You must then call CacheEnd and
then CacheStart to reconnect to Caché.
24 Using the Caché Callin API

CacheAcquireLock

Description

Tells Caché to cancel the current request being processed on the Caché side, when it is convenient to do so. This function
is for use if you detect some critical event in an AST (asynchronous trap) or thread running on the Callin side. (You can
use CacheContext to determine if there is a Caché request currently being processed.) Note that this only applies to Callin
programs that use an AST or separate thread.

Return Values for CacheAbort

CACHE_BADARG The termination type is invalid.
CACHE_CONBROKEN Connection has been broken.
CACHE_NOCON No connection has been established.
CACHE_NOTINCACHE The Callin partner is not in Caché at this time.
CACHE_SUCCESS Connection formed.

Example

rc = CacheAbort(CACHE_CTRLC);

3.3 CacheAcquireLock

int CacheAcquireLock(int nsub, int flg, int tout, int * rval)

Arguments
nsub Number of subscripts in the lock reference.
flg Modifiers to the lock command. Valid values are one or both of CACHE_INCREMENTAL_LOCK
and CACHE_SHARED_LOCK.
tout Number of seconds to wait for the lock command to complete. Negative for no timeout. 0 means
return immediately if the lock is not available, although a minimum timeout may be applied if the
lock is mapped to a remote system.
rval Optional pointer to an int return value: success = 1, failure = 0.
Description

Executes a Cache LOCK command. The lock reference should already be set up with CachePushL ock.

Return Values for CacheAcquireLock

CACHE_FAILURE An unexpected error has occurred.

CACHE_SUCCESS Successfully called the LOCK command (but the rval parameter must be
examined to determine if the lock succeeded).

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_ERARGSTACK Argument stack overflow.

Using the Caché Callin API 25

Callin Function Reference

3.4 CacheBitFind

int CacheBitFind(int strlen, unsigned short *bitstr, int newlen, int srch, int revflg)

Arguments
strlen Data length of the bitstring.
bitstr Pointer to a Unicode bitstring.
newlen 0 to start at the beginning, otherwise 1-based starting position
srch The bit value (0 or 1) to search for within the bitstring.
revflg Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.
0 — Search backward from the position indicated by newlen.
Description

Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns O if there are no more bits of the specified value in the specified direction.

This function is similar to Caché $BITFIND (also see “General Information on Bitstring Functions™).
Return Values for CacheBitFind

CACHE_SUCCESS The operation was successful.

3.5 CacheBitFindB

int CacheBitFindB(int strlen, unsigned char *bitstr, int newlen, int srch, int revflg)

Arguments
strlen Data length of the bitstring.
bitstr Pointer to a bitstring.
newlen 0 to start at the beginning, otherwise 1-based starting position.
srch The bit value (0 or 1) to search for within the bitstring.
revflg Specifies the search direction:
1 — Search forward (left to right) from the position indicated by newlen.
0 — Search backward from the position indicated by newlen.
Description

Returns the bit position (1-based) of the next bit within bitstring bitstr that has the value specified by srch. The direction
of the search is indicated by revflg. Returns O if there are no more bits of the specified value in the specified direction.

This function is similar to Caché $BITFIND (also see “General Information on Bitstring Functions™).

26 Using the Caché Callin API

CacheChangePasswordA

Return Values for CacheBitFindB
CACHE_SUCCESS The operation was successful.

3.6 CacheChangePasswordA

Variants: CacheChangePasswor dW, CacheChangePasswor dH

int CacheChangePasswordA(CACHE_ASTRP username, CACHE_ASTRP oldpassword, CACHE_ASTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Return Values for CacheChangePasswordA
CACHE_FAILURE An unexpected error has occurred.
CACHE_SUCCESS Password changed.

3.7 CacheChangePasswordH

Variants: CacheChangePasswor dA, CacheChangePasswor dW

int CacheChangePasswordH(CACHEHSTRP username, CACHEHSTRP oldpassword, CACHEHSTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Using the Caché Callin API 27

Callin Function Reference

Return Values for CacheChangePasswordH
CACHE_FAILURE An unexpected error has occurred.
CACHE_SUCCESS Password changed.

3.8 CacheChangePasswordW

Variants: CacheChangePasswor dA, CacheChangePasswor dH

int CacheChangePasswordW(CACHEWSTRP username, CACHEWSTRP oldpassword, CACHEWSTRP newpassword)

Arguments
username Username of the user whose password must be changed.
oldpassword User's old password.

newpassword | New password.

Description

This function can change the user's password if Caché authentication is used. It is not valid for LDAP, DELEGATED,
Kerberos, or other forms of authentication. It must be called before a Callin session is initialized. A typical use would be
to handle a CACHE_CHANGEPASSWORD error from CacheSecureStart. In such a case CacheChangePassword would be
called to change the password, then CacheSecureStart would be called again.

Return Values for CacheChangePasswordW
CACHE_FAILURE An unexpected error has occurred.
CACHE_SUCCESS Password changed.

3.9 CacheCloseOref

int CacheCloseOref(unsigned int oref)

Arguments

oref Object reference.

Description
Decrements the system reference counter for an OREF.

Return Values for CacheCloseOref
CACHE_ERBADOREF Invalid OREF.
CACHE_SUCCESS The operation was successful.

28 Using the Caché Callin API

CacheContext

3.10 CacheContext

int CacheContext()

Description

Returns an integer as the function value.

If you are using an external Callin program (as opposed to a module that was called from a $ZF function) and your program
employs an AST or separate thread, then CacheContext tells you if there is a request currently being processed on the

Caché side of the connection. This information is needed to decide if you must return to Caché to allow processing to
complete.

Return Values for CacheContext

-1 Created in Caché via a $ZF callback.
0 No connection or not in Caché at the moment.
1 In Caché via an external (i.e., not $ZF) connection. An asynchronous trap (AST), such as an exit-

handler, would need to return to Caché to allow Caché to complete processing.

Note: The information about whether you are in a $ZF function from a program or an AST is needed becausg, if you
are in an AST, then you need to return to Caché to allow processing to complete.

Example

rc = CacheContext();

3.11 CacheConvert

int CacheConvert(unsigned long type, void * rbuf)

Arguments
type The #define'd type, with valid values listed below.
rouf Address of a data area of the proper size for the data type. If the type is CACHE_ASTRING,
rbuf should be the address of a CACHE_ASTR structure that will contain the result, and the len
element in the structure should be filled in to represent the maximum size of the string to be
returned (in characters). Similarly, if the type is CACHE_WSTRING, rbuf should be the address
of a CACHEWSTR structure whose len element has been filled in to represent the maximum
size (in characters).
Description

Converts the value returned by CacheEval into proper format and places in address specified in its return value (listed
below as rbuf).

Valid values of type are:
* CACHE_ASTRING — 8-bit character string.
* CACHE_CHAR — 8-hit signed integer.

Using the Caché Callin API 29

Callin Function Reference

CACHE_DOUBLE — 64-bit floating point.

» CACHE_FLOAT — 32-bit floating point.
o CACHE_INT — 32-bit signed integer.

* CACHE_INT2 — 16-bit signed integer.

» CACHE_INT4 — 32-hit signed integer.

e CACHE_INT8 — 64-hit signed integer.

e CACHE_UCHAR — 8-bit unsigned integer.
e CACHE_UINT — 32-bit unsigned integer.

* CACHE_UINT2 — 16-bit unsigned integer.

e CACHE_UINT4 — 32-bit unsigned integer.

 CACHE_UINT8 — 64-bit unsigned integer.
e CACHE_WSTRING — Unicode character string.

Return Values for CacheConvert
CACHE_BADARG
CACHE_CONBROKEN
CACHE_ERSYSTEM

CACHE_FAILURE
CACHE_NOCON
CACHE_NORES

CACHE_RETTRUNC

CACHE_STRTOOLONG
CACHE_SUCCESS

Type is invalid.
Connection has been closed due to a serious error.

Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

An unexpected error has occurred.
No connection has been established.

No result whose type can be returned (no call to CacheEvalA preceded
this call).

Success, but the type CACHE_ASTRING, CACHE_INT8, CACHE_UINTS8
and CACHE_WSTRING resulted in a value that would not fit in the space
allocated in retval. For CACHE_INT8 and CACHE_UINTS, this means that
the expression resulted in a floating point number that could not be normal-
ized to fit within 64 bits.

String is too long.

Value returned by last CacheEval converted successfully.

Note: Caché may perform division when calculating the return value for floating point types, CACHE_FLOAT and
CACHE_DOUBLE, which have decimal parts (including negative exponents), as well as the 64-bit integer types
(CACHE_INT8 and CACHE_UINTS). Therefore, the returned result may not be identical in value to the original.
CACHE_ASTRING, CACHE_INT8, CACHE_UINT8 and CACHE_WSTRING can return the status

CACHE_RETTRUNC.

Example

CACHE_ASTR retval;
/* define variable retval */

retval.len = 20;

/* maximum return length of string */

rc = CacheConvert(CACHE_ASTRING,&retval);

30

Using the Caché Callin API

CacheCitrl

3.12 CacheCtrl

int CacheCtrl(unsigned long flags)

Arguments

flags Either of two #define'd values specifying how Caché handles certain keystrokes.

Description

Determines whether or not Caché ignores CTRL-C. flags can have bit state values of

e CACHE_DISACTRLC — Caché ignores CTRL-C.

* CACHE_ENABCTRLC — Default if function is not called, unless overridden by a BREAK or an OPEN command. In
Caché, CTRL-C generates an <INTERRUPT>.

Return Values for CacheCtrl

CACHE_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
CACHE_SUCCESS Control function performed.
Example

rc = CacheCtrl (CACHE_ENABCTRLC);

3.13 CacheCvtExStrinA

Variants: CacheCvtExStrInW, CacheCvtExStrinH

int CacheCvtExStrInA(CACHE_EXSTRP src, CACHE_ASTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process I/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string with specified external character set encoding to the local 8-bit character string encoding used internally
only in 8-bit versions of Caché.

Using the Caché Callin API 31

Callin Function Reference

Return Values for CacheCvtExStrinA
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.14 CacheCvtEXStrinW

Variants: CacheCvtExStrInA, CacheCvtExStrinH

int CacheCvtExStrInW(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string with specified external character set encoding to the 2-byte Unicode character string encoding used

internally in Unicode versions of Caché.

32

Using the Caché Callin API

CacheCvtExStrinH

Return Values for CacheCvtExStrinW
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.15 CacheCvtExStrinH

Variants: CacheCvtExStrInA, CacheCvtExStrinW

int CacheCvtExStrInH(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string with specified external character set encoding to the 4-byte Unicode character string encoding used

internally in Unicode versions of Caché.

Using the Caché Callin API

33

Callin Function Reference

Return Values for CacheCvtExStrinH
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.16 CacheCvtExStrOutA

Variants: CacheCvtExStr OutW, CacheCvtExStr OutH

int CacheCvtExStrOutA(CACHE_EXSTRP src, CACHE_ASTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string from the local 8-bit character string encoding used internally in the Caché 8-bit product to a string with
the specified external character set encoding. (This is only available with 8-bit versions of Caché.)

34

Using the Caché Callin API

CacheCvtExStrOutwW

Return Values for CacheCvtExStrOutA

CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.17 CacheCvtExStrOutW

Variants: CacheCvtExStrOutA, CacheCvtExStr OutH

int CacheCvtExStrOutW(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string from the 2-byte Unicode character string encoding used internally in Unicode versions of Caché to a
string with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

Using the Caché Callin API

35

Callin Function Reference

Return Values for CacheCvtExStrOutW

CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.18 CacheCvtExStrOutH

Variants: CacheCvtExStr OutA, CacheCvtExStr OutW

int CacheCvtExStrOutH(CACHE_EXSTRP src, CACHEWSTRP tbl, CACHE_EXSTRP res)

Arguments
src Address of a CACHE_EXSTRP variable that contains the string to be converted.
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_EXSTRP variable that will contain the result.
Description

Translates a string from the 4-byte Unicode character string encoding used internally in Unicode versions of Caché to a
string with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

36

Using the Caché Callin API

CacheCvtInA

Return Values for CacheCvtExStrOutH

CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

3.19 CacheCvtInA

Variants: CacheCvtlnW, CacheCvtlnH

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

int CacheCvtInA(CACHE_ASTRP src, CACHE_ASTRP tbl, CACHE_ASTRP res)

Arguments
src The string in an external character set encoding to be translated (described using a counted
character string buffer). The string should be initialized, for example, by setting the value to the
number of blanks representing the maximum number of characters expected as output.
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_ASTR variable that will contain the counted 8-bit string result.
Description

Translates string with specified external character set encoding to the local 8-bit character string encoding used internally

only in 8-bit versions of Caché.

Using the Caché Callin API

37

Callin Function Reference

Return Values for CacheCvtinA
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

3.20 CacheCvtinH

Variants: CacheCvtlnA, CacheCvtlnW

Connection has been closed due to a serious error.
Not available for Unicode.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

int CacheCvtInH(CACHE_ASTRP src, CACHEHSTRP tbl, CACHEHSTRP res)

Arguments
src The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHEHSTRP variable that will contain the counted Unicode string result.
Description

Translates string with specified external character set encoding to the Unicode character string encoding used internally in

Unicode versions of Caché.

38

Using the Caché Callin API

CacheCvtInwW

Return Values for CacheCvtinH
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

3.21 CacheCvtinW

Variants: CacheCvtlnA, CacheCvtlnH

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

int CacheCvtInW(CACHE_ASTRP src, CACHEWSTRP tbl, CACHEWSTRP res)

Arguments
src The string in an external character set encoding to be translated (described using the number
of bytes required to hold the Unicode string).
tbl The name of the I/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHEWSTR variable that will contain the counted Unicode string result.
Description

Translates string with specified external character set encoding to the Unicode character string encoding used internally in

Unicode versions of Caché.

Using the Caché Callin API

39

Callin Function Reference

Return Values for CacheCvtinW
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.22 CacheCvtOutA

Variants: CacheCvtOutW, CacheCvtOutH

int CacheCvtOutA(CACHE_ASTRP src, CACHE_ASTRP tbl, CACHE_ASTRP res)

Arguments
src The string in the local 8-bit character string encoding used internally in the Caché 8-bit product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalWw).
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the local 8-bit character string encoding used internally in the Caché 8-bit product to a string with
the specified external character set encoding. (This is only available with 8-bit versions of Caché.)

40

Using the Caché Callin API

CacheCvtOutH

Return Values for CacheCvtOutA
CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_ERRUNIMPLEMENTED | Not available for Unicode.

CACHE_ERVALUE The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERXLATE Input string could not be translated using the specified I/O translation
table.

CACHE_NOCON No connection has been established.

CACHE_RETTRUNC Result was truncated because result buffer was too small.

CACHE_FAILURE Error encountered while trying to build translation data structures (prob-

ably not enough partition memory).

CACHE_SUCCESS Translation completed successfully.

3.23 CacheCvtOutH

Variants: CacheCvtOutA, CacheCvtOutW

int CacheCvtOutH(CACHEHSTRP src, CACHEHSTRP tbl, CACHE_ASTRP res)

Arguments
src The string in the Unicode character string encoding used internally in the Caché Unicode product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalWw).
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the Unicode character string encoding used internally in Unicode versions of Caché to a string
with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

Using the Caché Callin API 41

Callin Function Reference

Return Values for CacheCvtOutH
CACHE_CONBROKEN
CACHE_ERRUNIMPLEMENTED
CACHE_ERVALUE

CACHE_ERXLATE

CACHE_NOCON
CACHE_RETTRUNC
CACHE_FAILURE

CACHE_SUCCESS

Connection has been closed due to a serious error.
Not available for 8-bit systems.

The specified I/O translation table name was undefined or did not have
an input component.

Input string could not be translated using the specified I/O translation
table.

No connection has been established.
Result was truncated because result buffer was too small.

Error encountered while trying to build translation data structures (prob-
ably not enough partition memory).

Translation completed successfully.

3.24 CacheCvtOutW

Variants: CacheCvtOutA, CacheCvtOutH

int CacheCvtOutW(CACHEWSTRP src, CACHEWSTRP tbl, CACHE_ASTRP res)

Arguments
src The string in the Unicode character string encoding used internally in the Caché Unicode product
(if a NULL pointer is passed, Caché will use the result from the last call to CacheEvalA or
CacheEvalWw).
tbl The name of the 1/O translation table to use to perform the translation (a null string indicates that
the default process 1/O translation table name should be used).
res Address of a CACHE_ASTR variable that will contain the result in the target external character
set encoding (described using a counted 8-bit character string buffer).
Description

Translates a string from the Unicode character string encoding used internally in Unicode versions of Caché to a string
with the specified external character set encoding. (This is only available with Unicode versions of Caché.)

42

Using the Caché Callin API

CacheDoFun

Return Values for CacheCvtOutW
CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_ERRUNIMPLEMENTED | Not available for 8—bit systems.

CACHE_ERVALUE The specified I/O translation table name was undefined or did not have
an input component.

CACHE_ERXLATE Input string could not be translated using the specified I/O translation
table.

CACHE_NOCON No connection has been established.

CACHE_RETTRUNC Result was truncated because result buffer was too small.

CACHE_FAILURE Error encountered while trying to build translation data structures (prob-

ably not enough partition memory).

CACHE_SUCCESS Translation completed successfully.

3.25 CacheDoFun

int CacheDoFun(unsigned int flags, int narg)

Arguments
flags Routine flags from CachePushRtn[XW]
narg Number of call arguments pushed onto the argument stack. Target must have a (possibly empty)
formal parameter list.
Description

Performs a routine call (special case).

Return Values for CacheDoFun

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERARGSTACK Argument stack overflow.

CACHE_FAILURE Internal consistency error.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.26 CacheDoRtn

int CacheDoRtn(unsigned int flags, int narg)

Using the Caché Callin API 43

Callin Function Reference

Arguments
flags Routine flags from CachePushRtn[XW]
narg Number of call arguments pushed onto the argument stack. If zero, target must not have a formal
parameter list.
Description

Performs a routine call.

Return Values for CacheDoRtn

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERARGSTACK Argument stack overflow.

CACHE_FAILURE Internal consistency error.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.27 CacheEnd

int CacheEnd()

Description
Terminates a Caché process. If there is a broken connection, it also performs clean-up operations.

Return Values for CacheEnd

CACHE_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).

CACHE_NOCON No connection has been established.

CACHE_SUCCESS Caché session terminated/cleaned up.

CacheEnd can also return any of the Caché error codes.
Example

rc = CacheEnd(Q);

3.28 CacheEndAll

int CacheEndAll1()

Description

Disconnects all threads in a threaded Callin environment, then schedules the threads for termination and waits until they
are done.

44 Using the Caché Callin API

CacheErrorA

Return Values for CacheEndAll
CACHE_SUCCESS Caché session terminated/cleaned up.

Example

rc = CacheEndAll();

3.29 CacheErrorA

Variants: CacheErrorW, CacheErrorH

int CacheErrorA(CACHE_ASTRP msg, CACHE_ASTRP src, int * offp)

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp An integer that specifies the offset to location in errsrc or the address of an integer to receive
the offset to the source string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for CacheErrorA

CACHE_CONBROKEN Connection has been broken.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
CACHE_SUCCESS Connection formed.
Example

CACHE_ASTR errmsg;

CACHE_ASTR srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = CacheErrorA(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf(""\r\nfailed to display error - rc = %d",rc);

3.30 CacheErrorH

Variants: CacheErrorA, CacheErrorW

int CacheErrorH(CACHEHSTRP msg, CACHEHSTRP src, int * offp)

Using the Caché Callin API 45

Callin Function Reference

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

Return Values for CacheErrorH

CACHE_CONBROKEN Connection has been broken.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
CACHE_SUCCESS Connection formed.
Example

CACHEHSTRP errmsg;

CACHEHSTRP srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = CacheErrorH(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf(''\r\nfailed to display error - rc = %d",rc);

3.31 CacheErrorW

Variants: CacheErrorA, CacheErrorH

int CacheErrorW(CACHEWSTRP msg, CACHEWSTRP src, int * offp)

Arguments
msg The error message or the address of a variable to receive the error message.
src The source string for the error or the address of a variable to receive the source string the error
message.
offp The offset to location in errsrc or the address of an integer to receive the offset to the source
string the error message.
Description

Returns the most recent error message, its associated source string, and the offset to where in the source string the error
occurred.

46 Using the Caché Callin API

CacheErrxlateA

Return Values for CacheErrorW

CACHE_CONBROKEN Connection has been broken.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL The length of the return value for either errmsg or errsrc was not of the
valid size.
CACHE_SUCCESS Connection formed.
Example

CACHEWSTRP errmsg;

CACHEWSTRP srcline;

int offset;

errmsg.len = 50;

srcline.len = 100;

if ((rc = CacheErrorW(&errmsg, &srcline, &offset)) != CACHE_SUCCESS)
printf("\r\nfailed to display error - rc = %d",rc);

3.32 CacheErrxlateA

Variants: CacheErrxlateW, CacheErrxlateH

int CacheErrxlateA(int code, CACHE_ASTRP rbuf)

Arguments
code The error code.
rbuf Address of a CACHE_ASTR variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.
Description

Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateA

CACHE_ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.
CACHE_RETTRUNC The associated error string was truncated to fit in the allocated area.
CACHE_SUCCESS Connection formed.
Example

CACHE_ASTR retval; /* define variable retval */
retval.len = 30; /* maximum return length of string */
rc = CacheErrxlateA(CACHE_ERSTORE,&retval);

3.33 CacheErrxlateH

Variants: CacheErrxlateA, CacheErrxlateW

Using the Caché Callin API 47

Callin Function Reference

int CacheErrxlateH(int code, CACHEHSTRP rbuf)

Arguments
code The error code.
rbuf Address of a CACHEHSTRP variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.
Description

Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateH

CACHE_ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.
CACHE_RETTRUNC The associated error string was truncated to fit in the allocated area.
CACHE_SUCCESS Connection formed.
Example

CACHEHSTR retval; /* define variable retval */
retval . len = 30; /* maximum return length of string */
rc = CacheErrxlateH(CACHE_ERSTORE,&retval);

3.34 CacheErrxlateW

Variants: CacheErrxlateA, CacheErrxlateH

int CacheErrxlateW(int code, CACHEWSTRP rbuf)

Arguments
code The error code.
rouf Address of a CACHEWSTR variable to contain the Caché error string. The len field should be
loaded with the maximum string size that can be returned.
Description

Translates error code code into a Cache error string, and writes that string into the structure pointed to by rbuf

Return Values for CacheErrxlateW

CACHE_ERUNKNOWN The specified code is less than 1 (in the range of the Callin interface errors)
or is above the largest Caché error number.
CACHE_RETTRUNC The associated error string was truncated to fit in the allocated area.
CACHE_SUCCESS Connection formed.
Example

CACHEWSTR retval; /* define variable retval */
retval . len = 30; /* maximum return length of string */
rc = CacheErrxlateW(CACHE_ERSTORE,&retval);

48 Using the Caché Callin API

CacheEvalA

3.35 CacheEvalA

Variants: CacheEvalW, CacheEvalH

int CacheEvalA(CACHE_ASTRP volatile expr)

Arguments

expr The address of a CACHE_ASTR variable.

Description

Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEval A completes successfully, it sets a flag that allows calls to CacheTypeand CacheConvert to complete. These
functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalA, CacheExecuteA, or CacheEnd will overwrite the existing return value.

Return Values for CacheEvalA

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.
CACHE_ERSYSTEM Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHE_NOCON No connection has been established.
CACHE_STRTOOLONG String is too long.
CACHE_SUCCESS String evaluated successfully.

CacheEvalA can also return any of the Caché error codes.
Example

int rc;
CACHE_ASTR retval;
CACHE_ASTR expr;
strepy(expr.str, "\"Record\"_~Recnum \" = \"_$$"GetRec(”Recnum)');
expr.len = strlen(expr.str);
rc = CacheEvalA(&expr);
if (rc == CACHE_SUCCESS)
rc = CacheConvert(CACHE_ASTRING,&retval);

3.36 CacheEvalH

Variants: CacheEvalA, CacheEvalW

int CacheEvalH(CACHEHSTRP volatile expr)

Arguments

expr The address of a CACHEHSTRP variable.

Using the Caché Callin API 49

Callin Function Reference

Description

Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEvalH completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalH, CacheExecuteH, or CacheEnd will overwrite the existing return value.

Return Values for CacheEvalH

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.
CACHW_ERSYSTEM Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHE_NOCON No connection has been established.
CACHE_STRTOOLONG String is too long.
CACHE_SUCCESS String evaluated successfully.

CacheEvalH can also return any of the Caché error codes.
Example

int rc;
CACHEHSTRP retval ;
CACHEHSTRP expr;
strcpy(expr.str, "\"Record\"_"Recnum_\" = \"_$$"GetRec(”Recnum)'");
expr.len = strlen(expr.str);
rc = CacheEvalH(&expr);
if (rc == CACHE_SUCCESS)
rc = CacheConvert(ING,&retval);

3.37 CacheEvalW

Variants: CacheEvalA, CacheEvalH

int CacheEvalW(CACHEWSTRP volatile expr)

Arguments

expr The address of a CACHEWSTR variable.

Description

Evaluates a string as if it were a Caché expression and places the return value in memory for further processing by CacheType
and CacheConvert.

If CacheEvalW completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalA.

CAUTION: The next call to CacheEvalW, CacheExecuteW, or CacheEnd will overwrite the existing return value.

50 Using the Caché Callin API

CacheExecuteA

Return Values for CacheEvalW

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.
CACHW_ERSYSTEM Either Caché generated a <SYSTEM> error, or if called from a $ZF function,
an internal counter may be out of sync.

CACHE_NOCON No connection has been established.
CACHE_STRTOOLONG String is too long.
CACHE_SUCCESS String evaluated successfully.

CacheEvalW can also return any of the Caché error codes.
Example

int rc;
CACHEWSTR retval;
CACHEWSTR expr;

strepy(expr.str, "\"Record\"_~Recnum \" = \"_$$"GetRec(™Recnum)');
expr.len = strlen(expr.str);
rc = CacheEvalW(&expr);
if (rc == CACHE_SUCCESS)
rc = CacheConvert(ING,&retval);

3.38 CacheExecuteA

Variants: CacheExecuteW, CacheExecuteH

int CacheExecuteA(CACHE_ASTRP volatile cmd)

Arguments

cmd The address of a CACHE_ASTR variable.

Description
Executes the command string as if it were typed at the Caché programmer prompt.

CAUTION: The next call to CacheEvalA, CacheExecuteA, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteA

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_NOCON No connection has been established.

CACHE_STRTOOLONG String is too long.

CACHE_SUCCESS String executed successfully.

CacheExecuteA can also return any of the Caché error codes.

Using the Caché Callin API 51

Callin Function Reference

Example

int rc;

CACHE_ASTR command;

sprintf(command.str,"ZN \"USER\'"'"); /* changes namespace */
command. len = strlen(command.str);

rc = CacheExecuteA(&command) ;

3.39 CacheExecuteH

Variants: CacheExecuteA, CacheExecuteW
int CacheExecuteH(CACHEHSTRP volatile cmd)

Arguments

cmd The address of a CACHE_ASTR variable.

Description
Executes the command string as if it were typed at the Caché programmer prompt.

If CacheExecuteH completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalH.

CAUTION: The next call to CacheEvalH, CacheExecuteH, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteH

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_NOCON No connection has been established.

CACHE_STRTOOLONG String is too long.

CACHE_SUCCESS String executed successfully.

CacheExecuteH can also return any of the Caché error codes.

Example

int rc;

unsigned short zname[] = {"Z%,"N"," *,""","U","S","E","R","""};
CACHEHSTRP pcommand;

pcommand.str = Zname;

pcommand. len = sizeof(zname) / sizeof(unsigned short);
rc = CacheExecuteH(pcommand);

3.40 CacheExecuteW

Variants: CacheExecuteA, CacheExecuteH

int CacheExecuteW(CACHEWSTRP volatile cmd)

52 Using the Caché Callin API

CacheExStrKill

Arguments

cmd The address of a CACHE_ASTR variable.

Description
Executes the command string as if it were typed at the Caché programmer prompt.

If CacheExecuteW completes successfully, it sets a flag that allows calls to CacheType and CacheConvert to complete.
These functions are used to process the item returned from CacheEvalW.

CAUTION: The next call to CacheEvalW, CacheExecuteW, or CacheEnd will overwrite the existing return value.

Return Values for CacheExecuteW

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_NOCON No connection has been established.

CACHE_STRTOOLONG String is too long.

CACHE_SUCCESS String executed successfully.

CacheExecuteW can also return any of the Caché error codes.

Example

int rc;

unsigned short zname[] = {"Z","N"," *,""","U","S","E","R","""};
CACHEWSTRP pcommand;

pcommand .str = zname;

pcommand. len = sizeof(zname) / sizeof(unsigned short);
rc = CacheExecuteW(pcommand);

3.41 CacheExStrKill

int CacheExStrKill (CACHE_EXSTRP obj)

Arguments

obj Pointer to the string.

Description
Releases the storage associated with an EXSTR string.

Return Values for CacheExStrKill
CACHE_ERUNIMPLEMENTED | String is undefined.
CACHE_SUCCESS String storage has been released.

Using the Caché Callin API 53

Callin Function Reference

3.42 CacheExStrNew

Variants: CacheExStrNewW, CacheExStrNewH

unsigned char * CacheExStrNew(CACHE_EXSTRP zstr, int size)

Arguments
zstr Pointer to a CACHE_EXSTR string descriptor.
size Number of 8—bit characters to allocate.
Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNew
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.43 CacheExStrNewW

Variants: CacheExStr New, CacheExStr NewH

unsigned short * CacheExStrNewW(CACHE_EXSTRP zstr, int size)

Arguments
zstr Pointer to a CACHE_EXSTR string descriptor.
size Number of 2—byte characters to allocate.
Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNewW
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.44 CacheExStrNewH

Variants: CacheExStr New, CacheExStr NewW

unsigned short * CacheExStrNewH(CACHE_EXSTRP zstr, int size)

Arguments
zstr Pointer to a CACHE_EXSTR string descriptor.
size Number of 4—byte characters to allocate.

54 Using the Caché Callin API

CacheExtFun

Description

Allocates the requested amount of storage for a string, and fills in the EXSTR structure with the length and a pointer to the
value field of the structure.

Return Values for CacheExStrNewH
Returns a pointer to the allocated string, or NULL if no string was allocated.

3.45 CacheExtFun

int CacheExtFun(unsigned int flags, int narg)

Arguments

flags Routine flags from CachePushFunc[XW].

narg Number of call arguments pushed onto the argument stack.
Description

Performs an extrinsic function call where the return value is pushed onto the argument stack.

Return Values for CacheExtFun

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERARGSTACK Argument stack overflow.

CACHE_FAILURE Internal consistency error.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.46 CacheGetProperty

int CacheGetProperty()

Description
Obtains the value of the property defined by CachePushProperty. The value is pushed onto the argument stack.

Using the Caché Callin API 55

Callin Function Reference

Return Values for CacheGetProperty

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.47 CacheGlobalData

int CacheGlobalData(int narg, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Data on the specified global.

Return Values for CacheGlobalData

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

3.48 CacheGlobalGet

int CacheGlobalGet(int narg, int flag)

56 Using the Caché Callin API

CacheGlobalGetBinary

Arguments
narg Number of subscript expressions pushed onto the argument stack.
flag Indicates behavior when global reference is undefined:
e 0 —returns CACHE_ERUNDEF
e 1 —returns CACHE_SUCCESS but the return value is an empty string.
Description

Obtains the value of the global reference defined by CachePushGlobal and any subscripts. The node value is pushed onto
the argument stack.

Return Values for CacheGlobalGet

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

3.49 CacheGlobalGetBinary

int CacheGlobalGetBinary(int numsub, int flag, int *plen, Callin_char_t **pbuf)

Arguments
numsub Number of subscript expressions pushed onto the argument stack.
flag Indicates behavior when global reference is undefined:
e 0 —returns CACHE_ERUNDEF
e 1 —returns CACHE_SUCCESS but the return value is an empty string.

plen Pointer to length of buffer.
pbuf Pointer to buffer pointer.
Description

Obtains the value of the global reference defined by CachePushGlobal[W][H] and any subscripts, and also tests to make
sure that the result is a binary string that will fit in the provided buffer. The node value is pushed onto the argument stack.

Using the Caché Callin API 57

Callin Function Reference

Return Values for CacheGlobalGetBinary

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

3.50 CacheGloballncrement

int CacheGlobalIncrement(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description
Performs a SINCREMENT and returns the result on top of the stack.

Return Values for CacheGloballncrement

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_ERMAXINCR MAXINCREMENT system error
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

58 Using the Caché Callin API

CacheGlobalKill

3.51 CacheGlobalKill

int CacheGlobalKill(int narg, int nodeonly)

Arguments
narg Number of call arguments pushed onto the argument stack.

nodeonly | A value of 1 indicates that only the specified node should be killed. When the value is 0, the
entire specified global tree is killed.

Description
Performs a ZKILL on a global node or tree.

Return Values for CacheGlobalKill

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.

CACHE_ERUNDEF Node has no associated value.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.52 CacheGlobalOrder

int CacheGlobalOrder(int narg, int dir, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.
dir Direction for the $Order is 1 for forward, -1 for reverse.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Order on the specified global.

Using the Caché Callin API 59

Callin Function Reference

Return Values for CacheGlobalOrder

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

3.53 CacheGlobalQuery

int CacheGlobalQuery(int narg, int dir, int valueflag)

Arguments
narg Number of call arguments pushed onto the argument stack.
dir Direction for the $Query is 1 for forward, -1 for reverse.

valueflag | Indicates whether the data value, if there is one, should be returned.

Description
Performs a $Query on the specified global.

Return Values for CacheGlobalQuery

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_ERPROTECT Protection violation.
CACHE_ERUNDEF Node has no associated value.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

60 Using the Caché Callin API

CacheGlobalRelease

3.54 CacheGlobalRelease

int CacheGlobalRelease()

Description

Release ownership of a retained global buffer, if one exists.
Return Values for CacheGlobalRelease

CACHE_SUCCESS The operation was successful.

3.55 CacheGlobalSet

int CacheGlobalSet(int narg)

Arguments

narg Number of subscript expressions pushed onto the argument stack.

Description

Stores the value of the global reference defined by CachePushGlobal and any subscripts. The node value must be pushed
onto the argument stack before this call.

Return Values for CacheGlobalSet

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.56 CachelncrementCountOref

int CachelncrementCountOref(unsigned int oref)

Arguments

oref Object reference.

Description
Increments the system reference counter for an OREF.

Using the Caché Callin API 61

Callin Function Reference

Return Values for CachelncrementCountOref
CACHE_ERBADOREF Invalid OREF.
CACHE_SUCCESS The operation was successful.

3.57 CachelnvokeClassMethod

int CachelnvokeClassMethod(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description

Executes the class method call defined by CachePushClassM ethod[W] and any arguments. The return value is pushed
onto the argument stack.

Return Values for CachelnvokeClassMethod

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.58 CachelnvokeMethod

int CachelnvokeMethod(int narg)

Arguments

narg Number of call arguments pushed onto the argument stack.

Description
Executes the instance method call defined by CachePushM ethod[W] and any arguments pushed onto the argument stack.

62 Using the Caché Callin API

CacheOflush

Return Values for CachelnvokeMethod

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.59 CacheOflush

int CacheOflush()

Description
Flushes any pending output.

Return Values for CacheOflush

CACHE_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
CACHE_SUCCESS Control function performed.

3.60 CachePop

int CachePop(void ** arg)

Arguments

arg Pointer to argument stack entry.

Description
Pops a value off argument stack.

Return Values for CachePop
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_SUCCESS The operation was successful.

3.61 CachePopCvtH

Variants: CachePopCvtW

Using the Caché Callin API 63

Callin Function Reference

int CachePopCvtH(int * lenp, wchar_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a local 8-bit string off argument stack and translates it to 4-byte Unicode. Identical to CachePopStrH in Unicode
environments.

Return Values for CachePopCvtH

CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.62 CachePopCvtW

Variants: CachePopCvtH

int CachePopCvtW(int * lenp, unsigned short ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Deprecated: The long string function CachePopExStr CvtW should be used for all strings.

Pops a local 8-bit string off argument stack and translates it to 2-byte Unicode. Identical to CachePopStrW in Unicode
environments.

Return Values for CachePopCvtW
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.63 CachePopDbl

int CachePopDbl(double * nump)

Arguments

nump Pointer to double value.

64 Using the Caché Callin API

CachePopExStr

Description
Pops a value off argument stack and converts it to a double.

Return Values for CachePopDbl
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_SUCCESS The operation was successful.

3.64 CachePopExStr

Variants: CachePopExStrW, CachePopExStrH

int CachePopExStr(CACHE_EXSTRP sstrp)

Arguments

sstrp Pointer to long string pointer.

Description
Pops a value off argument stack and converts it to a string in local 8-bit encoding.

Return Values for CachePopExStr

CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_SUCCESS The operation was successful.
CACHE_EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.65 CachePopEXxStrCvtW

Variants: CachePopExStr CvtH

int CachePopExStrCvtW(CACHE_EXSTRP sstr)

Arguments

sstr Pointer to long string pointer.

Description

Pops a local 8-bit string off the argument stack and translates it to a 2—-byte Unicode string. On Unicode systems, this is
the same as CachePopEXStrw.

Return Values for CachePopExStrCvtW
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Using the Caché Callin API 65

Callin Function Reference

3.66 CachePopExStrCvtH

Variants: CachePopExStr CvtW

int CachePopExStrCvtW(CACHE_EXSTRP sstr)

Arguments

Sstr Pointer to long string pointer.

Description

Pops a local 8-bit string off argument stack and translates it to a 4—byte Unicode string. On Unicode systems, this is the
same as CachePopEXxStrH.

Return Values for CachePopExStrCvtH
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.67 CachePopEXxStrw

Variants: CachePopExStr, CachePopExStrH

int CachePopExStrW(CACHE_EXSTRP sstrp)

Arguments

sstrp Pointer to long string pointer.

Description
Pops a value off argument stack and converts it to a 2-byte Unicode string.

Return Values for CachePopExStrw
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.
CACHE_EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.68 CachePopEXxStrH

Variants: CachePopExStr, CachePopExStrW

int CachePopExStrH(CACHE_EXSTRP sstrp)

66 Using the Caché Callin API

CachePopint

Arguments

sstrp Pointer to long string pointer.

Description
Pops a value off argument stack and converts it to a 4-byte Unicode string.

Return Values for CachePopExStrH

CACHE_NORES No result whose type can be returned has preceded this call.

CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.
CACHE_EXSTR_INUSE Returned if sstrp has not been initialized to NULL.

3.69 CachePopint

int CachePoplInt(int* nump)

Arguments

nump Pointer to integer value.

Description
Pops a value off argument stack and converts it to an integer.

Return Values for CachePopint

CACHE_NORES No result whose type can be returned has preceded this call.

CACHE_SUCCESS The operation was successful.

3.70 CachePoplInt64

int CachePoplInt64(long long * nump)

Arguments

nump Pointer to long long value.

Description
Pops a value off argument stack and converts it to a 64-bit (long long) value.

Return Values for CachePopInt64

CACHE_NORES No result whose type can be returned has preceded this call.

CACHE_SUCCESS The operation was successful.

Using the Caché Callin API

67

Callin Function Reference

3.71 CachePopList

int CachePopList(int * lenp, Callin_char_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a $LIST object off argument stack and converts it. String elements are copied or translated as appropriate depending
on whether this is a Unicode or 8-bit version.

Return Values for CachePopList
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.72 CachePopOref

int CachePopOref(unsigned int * orefp)

Arguments

orefp Pointer to OREF value.

Description
Pops an OREF off argument stack.

Return Values for CachePopOref

CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERNOOREF Result is not an OREF.
CACHE_SUCCESS The operation was successful.

3.73 CachePopPtr

int CachePopPtr(void ** ptrp)

Arguments

ptrp Pointer to generic pointer.

68 Using the Caché Callin API

CachePopStr

Description
Pops a pointer off argument stack in internal format.

Return Values for CachePopPtr

CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_BADARG The entry is not a valid pointer.
CACHE_SUCCESS The operation was successful.

3.74 CachePopStr

Variants: CachePopStrW, CachePopStrH

int CachePopStr(int * lenp, Callin_char_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a string.

Return Values for CachePopStr
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_SUCCESS The operation was successful.

3.75 CachePopStrH

Variants: CachePopStr, CachePopStrW

int CachePopStrH(int * lenp, wchar_t ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a 4-byte Unicode string.

Using the Caché Callin API 69

Callin Function Reference

Return Values for CachePopStrH
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.76 CachePopStrw

Variants: CachePopStr, CachePopStrH

int CachePopStrW(int * lenp, unsigned short ** strp)

Arguments
lenp Pointer to length of string.
strp Pointer to string pointer.
Description

Pops a value off argument stack and converts it to a 2-byte Unicode string.

Return Values for CachePopStrw
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.77 CachePromptA

Variants: CachePromptW, CachePromptH

int CachePromptA(CACHE_ASTRP rbuf)

Arguments

rbuf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the programmer prompt (without the “>").

70 Using the Caché Callin API

CachePromptH

Return Values for CachePromptA

CACHE_CONBROKEN Connection has been broken.
CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.
CACHE_FAILURE An unexpected error has occurred.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL rbuf must have a length of at least five.
CACHE_SUCCESS Connection formed.
Example
CACHE_ASTR retval; /* define variable retval */

retval.len = 5; /* maximum return length of string */
rc = CachePromptA(&retval);

3.78 CachePromptH

Variants: CachePromptA, CachePromptW

int CachePromptH(CACHEHSTRP rbuf)

Arguments

rbuf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the programmer prompt (without the “>").

Return Values for CachePromptH

CACHE_CONBROKEN Connection has been broken.
CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.
CACHE_FAILURE Request failed.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL rbuf must have a length of at least five.
CACHE_SUCCESS Connection formed.
Example

CACHEHSTRP retval; /* define variable retval */
retval . len = 5; /* maximum return length of string */
rc = CachePromptH(&retval);

Using the Caché Callin API 71

Callin Function Reference

3.79 CachePromptW

Variants: CachePromptA, CachePromptH

int CachePromptW(CACHEWSTRP rbuf)

Arguments

rbuf The prompt string. The minimum length of the returned string is five characters.

Description
Returns a string that would be the programmer prompt (without the “>").

Return Values for CachePromptW

CACHE_CONBROKEN Connection has been broken.
CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.
CACHE_FAILURE Request failed.
CACHE_NOCON No connection has been established.
CACHE_RETTOOSMALL rbuf must have a length of at least five.
CACHE_SUCCESS Connection formed.
Example

CACHEWSTR retval; /* define variable retval */
retval . len = 5; /* maximum return length of string */
rc = CacheConvertW(&retval);

3.80 CachePushClassMethod

Variants: CachePushClassM ethodW, CachePushClassM ethodH

int CachePushClassMethod(int clen, const Callin_char_t * cptr,
int mlen, const Callin_char_t * mptr, int flg)

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must

be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.

72 Using the Caché Callin API

CachePushClassMethodH

Description
Pushes a class method reference onto the argument stack.

Return Values for CachePushClassMethod

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_BADARG Invalid call argument.
CACHE_SUCCESS The operation was successful.

3.81 CachePushClassMethodH

Variants: CachePushClassM ethod, CachePushClassM ethodW

int CachePushClassMethodH(int clen, const wchar_t * cptr,
int mlen, const wchar_t * mptr, int flg)

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.
Description

Pushes a 4-byte Unicode class method reference onto the argument stack.

Using the Caché Callin API 73

Callin Function Reference

Return Values for CachePushClassMethodH

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.82 CachePushClassMethodW

Variants: CachePushClassM ethod, CachePushClassM ethodH

int CachePushClassMethodW(int clen, const unsigned short * cptr,
int mlen, const unsigned short * mptr, int flg)

Arguments
clen Class name length (characters).
cptr Pointer to class name.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to 0 if no value will be returned.
Description

Pushes a 2-byte Unicode class method reference onto the argument stack.

74 Using the Caché Callin API

CachePushCvtH

Return Values for CachePushClassMethodW

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.83 CachePushCvtH

Variants: CachePushCvtW

int CachePushCvtH(int len, const wchar_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to CachePushStrH for Unicode
versions.

Return Values for CachePushCvtH

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating the string.

3.84 CachePushCvtW

Variants: CachePushCvtH

Using the Caché Callin API 75

Callin Function Reference

int CachePushCvtW(int len, const unsigned short * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Deprecated: The long string function CachePushExStr CvtW should be used for all strings.

Translates a Unicode string to local 8-bit and pushes it onto the argument stack. Identical to CachePushStrW for Unicode
versions.

Return Values for CachePushCvtW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating the string.

3.85 CachePushDbl

int CachePushDbl (double num)

Arguments

num Double value.

Description
Pushes a Caché double onto the argument stack.

Return Values for CachePushDbl

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_SUCCESS The operation was successful.

76 Using the Caché Callin API

CachePushExStr

3.86 CachePushExStr

Variants: CachePushExStrW, CachePushExStrH

int CachePushExStr(CACHE_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Pushes a string onto the argument stack.

Return Values for CachePushExStr

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.87 CachePushExStrCvtW

Variants: CachePushExStr CvtH

int CachePushExStrCvtW(CACHE_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Translates a Unicode string to local 8-bit and pushes it onto the argument stack.

Using the Caché Callin API

77

Callin Function Reference

Return Values for CachePushExStrCvtW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating the string.

3.88 CachePushExStrCvtH

Variants: CachePushExStr CvtW

int CachePushExStrCvtH(CACHE_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Translates a 4-byte Unicode string to local 8-bit and pushes it onto the argument stack.

Return Values for CachePushExStrCvtH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating the string.

3.89 CachePushExStrw

Variants: CachePushExStr, CachePushExStrH

int CachePushExStrW(CACHE_EXSTRP sptr)

78 Using the Caché Callin API

CachePushExStrH

Arguments

sptr Pointer to the argument value.

Description
Pushes a long Unicode string onto the argument stack.

Return Values for CachePushExStrw

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.90 CachePushExStrH

Variants: CachePushExStr, CachePushExStrwW

int CachePushExStrH(CACHE_EXSTRP sptr)

Arguments

sptr Pointer to the argument value.

Description
Pushes a 4-byte Unicode string onto the argument stack.

Return Values for CachePushExStrH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.91 CachePushFunc

Variants: CachePushFuncW, CachePushFuncH

Using the Caché Callin API 79

Callin Function Reference

int CachePushFunc(unsigned int * rflag, int tlen, const Callin_char_t * tptr,

Arguments
rflag
tlen

tptr

nlen

nptr

Description

int nlen, const Callin_char_t * nptr)

Routine flags for use by CacheExtFun.
Tag name length (characters), where 0 means that the tag name is null (").

Pointer to a tag name. If tlen == 0, then tagptr is unused and (void *) 0 may be used as the
pointer value.

Routine name length (characters), where 0 means that the routine name is null (
routine name is used.

) and the current

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

Pushes an extrinsic function reference onto the argument stack.

Return Values for CachePushFunc

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_SUCCESS The operation was successful.

3.92 CachePushFuncH

Variants: CachePushFunc, CachePushFuncW

int CachePushFuncH(unsigned int * rflag, int tlen, const wchar_t * tptr,

int nlen, const wchar_t * nptr)

Arguments
rflag Routine flags for use by CacheExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
80 Using the Caché Callin API

CachePushFuncwW

Description
Pushes a 4-byte Unicode extrinsic function reference onto the argument stack.

Return Values for CachePushFuncH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.93 CachePushFuncW

Variants: CachePushFunc, CachePushFuncH

int CachePushFuncW(unsigned int * rflag, int tlen, const unsigned short * tptr,
int nlen, const unsigned short * nptr)

Arguments
rflag Routine flags for use by CacheExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode extrinsic function reference onto the argument stack.

Using the Caché Callin API 81

Callin Function Reference

Return Values for CachePushFuncW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.94 CachePushFuncX

Variants: CachePushFuncXW, CachePushFuncXH

int CachePushFuncX(unsigned int * rflag, int tlen, const Callin_char_t * tptr, int off,
int elen, const Callin_char_t * eptr,
int nlen, const Callin_char_t * nptr)

Arguments
rflag Routine flags for use by CacheExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes an extended extrinsic function reference onto the argument stack.

82 Using the Caché Callin API

CachePushFuncXH

Return Values for CachePushFuncX

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.95 CachePushFuncXH

Variants: CachePushFuncX, CachePushFuncXW

int CachePushFuncXH(unsigned int * rflag, int tlen, const wchar_t * tptr, int off,
int elen, const wchar_t * eptr, int nlen, const wchar_t * nptr)

Arguments
rflag Routine flags for use by CacheExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (™).
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null ("") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 4-byte Unicode extended function routine reference onto the argument stack.

Using the Caché Callin API 83

Callin Function Reference

Return Values for CachePushFuncXH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.96 CachePushFuncXW

Variants: CachePushFuncX, CachePushFuncXH

int CachePushFuncXW(unsigned int * rflag, int tlen, const unsigned short * tptr, int off,
int elen, const unsigned short * eptr,
int nlen, const unsigned short * nptr)

Arguments
rflag Routine flags for use by CacheExtFun.
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode extended function routine reference onto the argument stack.

84 Using the Caché Callin API

CachePushGlobal

Return Values for CachePushFuncXW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.97 CachePushGlobal

Variants: CachePushGlobal\W, CachePushGlobalH

int CachePushGlobal(int nlen, const Callin_char_t * nptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a global reference onto the argument stack.

Return Values for CachePushGlobal

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.98 CachePushGlobalH

Variants: CachePushGlobal, CachePushGlobalW

intCachePushGlobalH(int nlen, const wchar_t * nptr)

Using the Caché Callin API 85

Callin Function Reference

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a 4-byte Unicode global reference onto the argument stack.

Return Values for CachePushGlobalH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.99 CachePushGlobalw

Variants: CachePushGlobal, CachePushGlobalH

int CachePushGlobalW(int nlen, const unsigned short * nptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
Description

Pushes a 2-byte Unicode global reference onto the argument stack.

Return Values for CachePushGlobalW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

86 Using the Caché Callin API

CachePushGlobalX

3.100 CachePushGlobalX

Variants: CachePushGlobal XW, CachePushGlobal XH

int CachePushGlobalX(int nlen, const Callin_char_t * nptr,

Arguments
nlen
nptr

elen

eptr

Description

int elen, const Callin_char_t * eptr)

Global name length (characters).
Pointer to global name.

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

Pushes an extended global reference onto the argument stack.

Return Values for CachePushGlobalX

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_SUCCESS The operation was successful.

3.101 CachePushGlobalXH

Variants: CachePushGlobal X, CachePushGlobal XW

int CachePushGlobalXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments
nlen
nptr

elen

eptr

Global name length (characters).
Pointer to global name.

Environment name length (characters), where O means that there is no environment specified
and that the function uses the current environment.

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

Using the Caché Callin API 87

Callin Function Reference

Description
Pushes a 4-byte Unicode extended global reference onto the argument stack.

Return Values for CachePushGlobalXH

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTAC String stack overflow.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.102 CachePushGlobalXw

Variants: CachePushGlobal X, CachePushGlobal XH

int CachePushGlobalXW(int nlen, const unsigned short * nptr,
int elen, const unsigned short * eptr)

Arguments
nlen Global name length (characters).
nptr Pointer to global name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Pushes a 2-byte Unicode extended global reference onto the argument stack.

Return Values for CachePushGlobalXW

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTAC String stack overflow.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

88 Using the Caché Callin API

CachePushlEEEDb

3.103 CachePushIEEEDDI

int CachePushlEEEDbI(double num)

Arguments

num Double value.

Description
Pushes an IEEE double onto the argument stack.

Return Values for CachePushlEEEDbI

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_SUCCESS The operation was successful.

3.104 CachePushint

int CachePushInt(int num)

Arguments

num Integer value.

Description
Pushes an integer onto the argument stack.

Return Values for CachePushint

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_SUCCESS The operation was successful.

3.105 CachePushint64

int CachePushInt64(long long num)

Using the Caché Callin API 89

Callin Function Reference

Arguments

num long long value.

Description
Pushes a 64-bit (long long) value onto the argument stack.

Return Values for CachePushInt64

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_SUCCESS The operation was successful.

3.106 CachePushList

int CachePushList(int len, const Callin_char_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Converts a $LIST object and pushes it onto the argument stack. String elements are copied or translated as appropriate
depending on whether this is a Unicode or 8-bit version.

Return Values for CachePushList

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a string element.

3.107 CachePushLock

Variants: CachePushL ockW, CachePushL ockH

90 Using the Caché Callin API

CachePushLockH

int CachePushLock(int nlen, const Callin_char_t * nptr)

Arguments
nlen Length (in bytes) of lock name.
nptr Pointer to lock name.
Description

Initializes a CacheAcquirel ock command by pushing the lock name on the argument stack.

Return Values for CachePushLock

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.108 CachePushLockH

Variants: CachePushL ock, CachePushL ockW

int CachePushLockH(int nlen, const wchar_t * nptr)

Arguments
nlen Length (number of 2—byte or 4-byte characters) of lock name.
nptr Pointer to lock name.

Description

Initializes a CacheAcquirel ock command by pushing the lock name on the argument stack.

Return Values for CachePushLockH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

Using the Caché Callin API 91

Callin Function Reference

3.109 CachePushLockW

Variants: CachePushL ock, CachePushL ockH

int CachePushLockW(int nlen, const unsigned short * nptr)

Arguments
nlen Length (number of 2—byte characters) of lock name.
nptr Pointer to lock name.

Description

Initializes a CacheAcquirel ock command by pushing the lock name on the argument stack.

Return Values for CachePushLockW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.110 CachePushLockX

Variants: CachePushL ockXW, CachePushL ockXH

int CachePushLockX(int nlen, const Callin_char_t * nptr, int elen, const Callin_char_t * eptr)

Arguments
nlen Length (number of 8-bit characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]~<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a CacheAcquirel ock command by pushing the lock name and an environment string on the argument stack.

92 Using the Caché Callin API

CachePushLockXH

Return Values for CachePushLockX
CACHE_CONBROKEN
CACHE_NOCON
CACHE_ERSYSTEM

CACHE_ERARGSTACK
CACHE_ERSTRINGSTACK
CACHE_SUCCESS

Any Caché error

Connection has been closed due to a serious error.
No connection has been established.

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.
The operation was successful.

From translating a name.

3.111 CachePushLockXH

Variants: CachePushL ock X, CachePushL ock X\W

int CachePushLockXH(int nlen, const wchar_t * nptr, int elen, const wchar_t * eptr)

Arguments
nlen Length (number of 2-byte or 4-byte characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where O means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]~<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a CacheAcquirel ock command by pushing the lock name and an environment string on the argument stack.

Return Values for CachePushLockXH

CACHE_CONBROKEN
CACHE_NOCON
CACHE_ERSYSTEM

CACHE_ERARGSTACK
CACHE_ERSTRINGSTACK
CACHE_SUCCESS

Any Caché error

Connection has been closed due to a serious error.
No connection has been established.

Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

Argument stack overflow.
String stack overflow.
The operation was successful.

From translating a name.

Using the Caché Callin API

93

Callin Function Reference

3.112 CachePushLockXW

Variants: CachePushL ock X, CachePushL ockXH

int CachePushLockXW(int nlen, const unsigned short * nptr, int elen, const unsigned short * eptr)

Arguments
nlen Length (number of 2—byte characters) of lock name.
nptr Pointer to lock name.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment. Name must be of the form
<Namespace>"[<system>]<directory>
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
Description

Initializes a CacheAcquirel ock command by pushing the lock name and an environment string on the argument stack.

Return Values for CachePushLockXW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.113 CachePushMethod

Variants: CachePushM ethodW, CachePushM ethodH

int CachePushMethod(unsigned int oref, int mlen, const Callin_char_t * mptr, int flg)

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must

be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to O if no value will be returned.

94 Using the Caché Callin API

CachePushMethodH

Description
Pushes an instance method reference onto the argument stack.

Return Values for CachePushMethod

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_BADARG Invalid call argument.
CACHE_SUCCESS The operation was successful.

3.114 CachePushMethodH

Variants: CachePushM ethod, CachePushM ethodW

int CachePushMethodH(unsigned int oref, int mlen, const wchar_t * mptr, int flg)

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to O if no value will be returned.
Description

Pushes a 4-byte Unicode instance method reference onto the argument stack.

Return Values for CachePushMethodH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

Using the Caché Callin API 95

Callin Function Reference

3.115 CachePushMethodW

Variants: CachePushM ethod, CachePushM ethodH

int CachePushMethodW(unsigned int oref, int mlen, const unsigned short * mptr, int flg)

Arguments
oref Object reference.
mlen Method name length (characters).
mptr Pointer to method name.
flg Specifies whether the method will return a value. If the method returns a value, this flag must
be set to 1 in order to retrieve it. The method must return a value via Quit with an argument. Set
this parameter to O if no value will be returned.
Description

Pushes a 2-byte Unicode instance method reference onto the argument stack.

Return Values for CachePushMethodW

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.116 CachePushOref

int CachePushOref(unsigned int oref)

Arguments

oref Object reference.

Description
Pushes an OREF onto the argument stack.

96 Using the Caché Callin API

CachePushProperty

Return Values for CachePushOref

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERBADOREF Invalid OREF.

CACHE_SUCCESS The operation was successful.

3.117 CachePushProperty

Variants: CachePushPropertyW, CachePushPropertyH

int CachePushProperty(unsigned int oref, int plen, const Callin_char_t * pptr)

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a property reference onto the argument stack.

Return Values for CachePushProperty

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_BADARG Invalid call argument.
CACHE_SUCCESS The operation was successful.

3.118 CachePushPropertyH

Variants: CachePushProperty, CachePushPropertyW

int CachePushPropertyH(unsigned int oref, int plen, const wchar_t * pptr)

Using the Caché Callin API 97

Callin Function Reference

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a 4-byte Unicode property reference onto the argument stack.

Return Values for CachePushPropertyH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.
CACHE_SUCCESS The operation was successful.
Any Caché error From translating a name.

3.119 CachePushPropertyW

Variants: CachePushProperty, CachePushPropertyH

int CachePushPropertyW(unsigned int oref, int plen, const unsigned short * pptr)

Arguments
oref Object reference.
plen Property name length (characters).
pptr Pointer to property name.
Description

Pushes a 2-byte Unicode property reference onto the argument stack.

98 Using the Caché Callin API

CachePushPtr

Return Values for CachePushPropertyW

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_BADARG Invalid call argument.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.120 CachePushPtr

int CachePushPtr(void * ptr)

Arguments

ptr Generic pointer.

Description
Pushes a pointer onto the argument stack in internal format.

Return Values for CachePushPtr

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_SUCCESS The operation was successful.

3.121 CachePushRtn

Variants: CachePushRtnW, CachePushRtnH

int CachePushRtn(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
int nlen, const Callin_char_t * nptr)

Using the Caché Callin API 99

Callin Function Reference

Arguments
rflag Routine flags for use by CacheDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a routine reference onto the argument stack. See CachePushRtnX for a version that takes all arguments. This is a
short form that only takes a tag name and a routine name.

Return Values for CachePushRtn

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.122 CachePushRtnH

Variants: CachePushRtn, CachePushRtnW

int CachePushRtnH(unsigned int * rflag, int tlen, const wchar_t * tptr,
int nlen, const wchar_t * nptr)

Arguments

rflag Routine flags for use by CacheDoRtn

tlen Tag name length (characters), where 0 means that the tag name is null ().

tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.

nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the

pointer value.

100 Using the Caché Callin API

CachePushRtnW

Description

Pushes a 4-byte Unicode routine reference onto the argument stack. See CachePushRtnXH for a version that takes all
arguments. This is a short form that only takes a tag name and a routine name.

Return Values for CachePushRtnH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.123 CachePushRtnW

Variants: CachePushRtn, CachePushRtnH

int CachePushRtnW(unsigned int * rflag, int tlen, const unsigned short * tptr,
int nlen, const unsigned short * nptr)

Arguments
rflag Routine flags for use by CacheDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 2-byte Unicode routine reference onto the argument stack. See CachePushRtnXW for a version that takes all
arguments. This is a short form that only takes a tag name and a routine name.

Using the Caché Callin API 101

Callin Function Reference

Return Values for CachePushRtnW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.124 CachePushRtnX

Variants: CachePushRtnXW, CachePushRtnXH

int CachePushRtnX(unsigned int * rflag, int tlen, const Callin_char_t * tptr,
int off, int elen, const Callin_char_t * eptr,
int nlen, const Callin_char_t * nptr)

Arguments
rflag Routine flags for use by CacheDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes an extended routine reference onto the argument stack. See CachePushRtn for a short form that only takes a tag
name and a routine name.

102 Using the Caché Callin API

CachePushRtnXH

Return Values for CachePushRtnX

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.125 CachePushRtnXH

Variants: CachePushRtnX, CachePushRtnXW

int CachePushRtnXH(unsigned int * rflag, int tlen, const wchar_t * tptr,
int off, int elen, const wchar_t * eptr,
int nlen, const wchar_t * nptr)

Arguments
rflag Routine flags for use by CacheDoRtn
tlen Tag name length (characters), where 0 means that the tag name is null (").
tptr Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.
off Line offset from specified tag, where 0 means that there is no offset.
elen Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.
eptr Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.
nlen Routine name length (characters), where 0 means that the routine name is null (") and the current
routine name is used.
nptr Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.
Description

Pushes a 4-byte Unicode extended routine reference onto the argument stack. See CachePushRtnH for a short form that
only takes a tag name and a routine name.

Using the Caché Callin API 103

Callin Function Reference

Return Values for CachePushRtnXH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.

CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.126 CachePushRtnXW

Variants: CachePushRtnX, CachePushRtnXH

int CachePushRtnXW(unsigned int * rflag, int tlen, const unsigned short * tptr,

Arguments

rflag
tlen

tptr

off

elen

eptr

nlen

nptr

Description

int off, int elen, const unsigned short * eptr,
int nlen, const unsigned short * nptr)

Routine flags for use by CacheDoRtn
Tag name length (characters), where 0 means that the tag name is null (").

Pointer to a tag name. If tlen == 0, then tptr is unused and (void *) 0 may be used as the
pointer value.

Line offset from specified tag, where 0 means that there is no offset.

Environment name length (characters), where 0 means that there is no environment specified
and that the function uses the current environment.

Pointer to environment name. If elen == 0, then eptr is unused and (void *) 0 may be used
as the pointer value.

Routine name length (characters), where 0 means that the routine name is null (
routine name is used.

) and the current

Pointer to routine name. If nlen == 0, then nptr is unused and (void *) 0 may be used as the
pointer value.

Pushes a 2-byte Unicode extended routine reference onto the argument stack. See CachePushRtnW for a short form that
only takes a tag name and a routine name.

104

Using the Caché Callin API

CachePushStr

Return Values for CachePushRtnXW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.127 CachePushStr

Variants: CachePushStrW, CachePushStrH

int CachePushStr(int len, const Callin_char_t * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Pushes a byte string onto the argument stack.

Return Values for CachePushStr

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.128 CachePushStrH

Variants: CachePushStr, CachePushStrw

int CachePushStrH(int len, const wchar_t * ptr)

Using the Caché Callin API 105

Callin Function Reference

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Pushes a 4-byte Unicode string onto the argument stack.

Return Values for CachePushStrH

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

3.129 CachePushStrWw

Variants: CachePushStr, CachePushStrH

int CachePushStrW(int len, const unsigned short * ptr)

Arguments
len Number of characters in string.
ptr Pointer to string.

Description

Pushes a 2-byte Unicode string onto the argument stack.

Return Values for CachePushStrwW

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.
CACHE_ERARGSTACK Argument stack overflow.
CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

106 Using the Caché Callin API

CachePushUndef

3.130 CachePushUndef

int CachePushUndef()

Description
Pushes an Undefined value on the argument stack. The value is interpreted as an omitted function argument.

Return Values for CachePushUndef

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_SUCCESS The operation was successful.

3.131 CacheReleaseAllLocks

int CacheReleaseAllLocks()

Description
Performs an argumentless Cache LOCK command to remove all locks currently held by the process.

Return Values for CacheReleaseAllLocks
CACHE_SUCCESS The operation was successful.

3.132 CacheReleaselLock

int CacheReleaselLock(int nsub, int flg)

Arguments
nsub Number of subscripts in the lock reference.
flg Maodifiers to the lock command. Valid values are one or both of CACHE_IMMEDIATE _RELEASE
and CACHE_SHARED_LOCK.
Description

Executes a Cache LOCK command to decrement the lock count for the specified lock name. This command will only
release one incremental lock at a time.

Return Values for CacheReleaseLock
CACHE_FAILURE An unexpected error has occurred.
CACHE_SUCCESS Successful lock.

Using the Caché Callin API 107

Callin Function Reference

3.133 CacheSecureStartA

Variants: CacheSecureStartW, CacheSecureStartH

int CacheSecureStartA(CACHE_ASTRP username, CACHE_ASTRP password, CACHE_ASTRP exename,

unsigned long flags, int tout, CACHE_ASTRP prinp, CACHE_ASTRP prout)

Arguments
username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.
password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.
exename | Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.
flags One or more of the terminal settings listed below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
Description

Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

CACHE_TTNEVER — Caché should not alter the terminal's settings.

108

Using the Caché Callin API

CacheSecureStartH

 CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

» CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheSecureStartA

CACHE_ACCESSDENIED

CACHE_ALREADYCON

CACHE_CHANGEPASSWORD

CACHE_CONBROKEN

CACHE_FAILURE
CACHE_STRTOOLONG
CACHE_SUCCESS

Authentication has failed. Check the audit log for the real authentication
error.

Connection already existed. Returned if you call CacheSecureStartH
from a $ZF function.

Password change required. This return value is only returned if you are
using Caché authentication.

Connection was formed and then broken, and CacheEnd has not been
called to clean up.

An unexpected error has occurred.
prinp or prout is too long.

Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

3.134 CacheSecureStartH

Variants: CacheSecureStartA, CacheSecureStartW

int CacheSecureStartH(CACHEHSTRP username, CACHEHSTRP password, CACHEHSTRP exename,
unsigned long flags, int tout, CACHEHSTRP prinp, CACHEHSTRP prout)

Using the Caché Callin API

109

Callin Function Reference

Arguments

username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or

kerberos credentials cache.

password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication

or kerberos credentials cache.

exename | Callin executable name (or other process identifier). This user-defined string will show up in

JOBEXAM and in audit records. NULL is a valid value.

flags One or more of the terminal settings listed below.

tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The

timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies

using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies

using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

Description

Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

CACHE_TTNEVER — Caché should not alter the terminal's settings.

CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

110

Using the Caché Callin API

CacheSecureStartW

Return Values for CacheSecureStartH

CACHE_ACCESSDENIED Authentication has failed. Check the audit log for the real authentication
error.
CACHE_ALREADYCON Connection already existed. Returned if you call CacheSecureStartH

from a $ZF function.

CACHE_CHANGEPASSWORD Password change required. This return value is only returned if you are
using Caché authentication.

CACHE_CONBROKEN Connection was formed and then broken, and CacheEnd has not been
called to clean up.

CACHE_FAILURE An unexpected error has occurred.

CACHE_STRTOOLONG prinp or prout is too long.

CACHE_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

3.135 CacheSecureStartW

Variants: CacheSecureStartA, CacheSecureStartH

int CacheSecureStartW(CACHEWSTRP username, CACHEWSTRP password, CACHEWSTRP exename,
unsigned long flags, int tout, CACHEWSTRP prinp, CACHEWSTRP prout)

Arguments

username | Username to authenticate. Use NULL to authenticate as UnknownUseror OS authentication or
kerberos credentials cache.

password | Password to authenticate with. Use NULL to authenticate as UnknownUser or OS authentication
or kerberos credentials cache.

exename | Callin executable name (or other process identifier). This user-defined string will show up in
JOBEXAM and in audit records. NULL is a valid value.

flags One or more of the terminal settings listed below.

tout The timeout specified in seconds. Default is 0. If O is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.

prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.

Using the Caché Callin API 111

Callin Function Reference

Description
Calls into Cache to set up a Cache process..

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

e CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

e CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

* CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

» CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

e« CACHE_TTNEVER — Caché should not alter the terminal's settings.

e CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

e CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheSecureStartW

CACHE_ACCESSDENIED Authentication has failed. Check the audit log for the real authentication
error.
CACHE_ALREADYCON Connection already existed. Returned if you call CacheSecureStartH

from a $ZF function.

CACHE_CHANGEPASSWORD Password change required. This return value is only returned if you are
using Caché authentication.

CACHE_CONBROKEN Connection was formed and then broken, and CacheEnd has not been
called to clean up.

CACHE_FAILURE An unexpected error has occurred.

CACHE_STRTOOLONG prinp or prout is too long.

CACHE_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

112 Using the Caché Callin API

CacheSetDir

3.136 CacheSetDir

int CacheSetDir(char * dir)

Arguments

dir Pointer to the directory name string.

Description

Dynamically sets the name of the manager's directory (CacheSys\Mgr) at runtime. On Windows, the shared library version
of Caché requires the use of this function to identify the managers directory for the installation.

Return Values for CacheSetDir

CACHE_FAILURE Returns if called from a $ZF function (rather than from within a Callin exe-
cutable).
CACHE_SUCCESS Control function performed.

3.137 CacheSetProperty

int CacheSetProperty()

Description

Stores the value of the property defined by CachePushProperty. The value must be pushed onto the argument stack before
this call.

Return Values for CacheSetProperty

CACHE_CONBROKEN Connection has been closed due to a serious error.
CACHE_NOCON No connection has been established.
CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected

an internal data inconsistency.

CACHE_SUCCESS The operation was successful.

3.138 CacheSignal

int CacheSignal(int signal)

Arguments

signal The operating system's signal value.

Description
Passes on signals caught by user's program to Caché.

Using the Caché Callin API 113

Callin Function Reference

This function is very similar to CacheAbort, but allows passing of any known signal value from a thread or user side of
the connection to the Caché side, for whatever action might be appropriate. For example, this could be used to pass signals
intercepted in a user-defined signal handler on to Caché.

Example

rc = CacheSignal (CTRL_C_EVENT); // Windows response to Ctrl-C
rc = CacheSignal (CTRL_C EVENT); // UNIX response to Ctrl-C

Return Values for CacheSignal

CACHE_CONBROKEN Connection has been broken.
CACHE_NOCON No connection has been established.
CACHE_NOTINCACHE The Callin partner is not in Caché at this time.
CACHE_SUCCESS Connection formed.

3.139 CacheSPCReceive

int CacheSPCReceive(int * lenp, Callin_char_t * ptr)

Arguments
lenp Maximum length to receive. Modified on return to indicate number of bytes actually received.
ptr Pointer to buffer that will receive message. Must be at least lenp bytes.

Description

Receive single-process-communication message. The current device must be a TCP device opened in SPC mode, or
CACHE_ERFUNCTION will be returned.

Return Values for CacheSPCReceive

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERFUNCTION Current device is not TCP device or is not connected.

CACHE_SUCCESS The operation was successful.

3.140 CacheSPCSend

int CacheSPCSend(int len, const Callin_char_t * ptr)

Arguments
len Length of message in bytes.
ptr Pointer to string containing message.

114 Using the Caché Callin API

CachesStartA

Description

Send a single-process-communication message. The current device must be a TCP device opened in SPC mode, or
CACHE_ERFUNCTION will be returned.

Return Values for CacheSPCSend

CACHE_CONBROKEN Connection has been closed due to a serious error.

CACHE_NOCON No connection has been established.

CACHE_ERSYSTEM Either the Caché engine generated a <SYSTEM> error, or Callin detected
an internal data inconsistency.

CACHE_ERFUNCTION Current device is not TCP device or is not connected.

CACHE_ERARGSTACK Argument stack overflow.

CACHE_ERSTRINGSTACK String stack overflow.
CACHE_SUCCESS The operation was successful.

Any Caché error From translating a name.

3.141 CacheStartA

Variants: CacheStartW, CacheStartH

int CacheStartA(unsigned long flags, int tout, CACHE_ASTRP prinp, CACHE_ASTRP prout)

Arguments
flags One or more of the values listed in the description below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
Description

Calls into Caché to set up a Caché process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

* CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in

Using the Caché Callin API 115

Callin Function Reference

closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

* CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

» CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

e CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

» CACHE_TTNEVER — Caché should not alter the terminal's settings.

» CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

+ CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheStartA

CACHE_ALREADYCON Connection already existed. Returned if you call CacheStartA from a $ZF
function.

CACHE_CONBROKEN Connection was formed and then broken, and CacheEndA has not been
called to clean up.

CACHE_FAILURE An unexpected error has occurred.

CACHE_STRTOOLONG prinp or prout is too long.

CACHE_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example

A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

CACHE_ASTR inpdev;

CACHE_ASTR outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup');

inpdev.len = strlen(inpdev.str);

strcpy(outdev.str,"");

outdev.len = strlen(outdev.str);

rc = CacheStartA(CACHE_TTALL|]CACHE_TTNOUSE,O, inpdev,outdev) ;

3.142 CacheStartH

Variants: CacheStartA, CacheStartW

116 Using the Caché Callin API

CacheStartH

int CacheStartH(unsigned long flags, int tout,CACHEHSTRP prinp,CACHEHSTRP prout)

Arguments
flags One or more of the values listed in the description below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
Description

Calls into Caché to set up a Caché process.

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first I/O
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

CACHE_TTNEVER — Caché should not alter the terminal's settings.

CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Using the Caché Callin API 117

Callin Function Reference

Return Values for CacheStartH

CACHE_ALREADYCON Connection already existed. Returned if you call CacheStartH from a $ZF
function.

CACHE_CONBROKEN Connection was formed and then broken, and CacheEndH has not been
called to clean up.

CACHE_FAILURE An unexpected error has occurred.

CACHE_STRTOOLONG prinp or prout is too long.

CACHE_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example

A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

inpdev;

outdev;

int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup™);
inpdev.len = strlen(inpdev.str);
strcpy(outdev.str,™");

outdev.len = strlen(outdev.str);
rc = CacheStartH(CACHE_TTALL|CACHE_TTNOUSE, O, inpdev,outdev);

3.143 CacheStartW

Variants: CacheStartA, CacheStartH

int CacheStartW(unsigned long flags, int tout,CACHEWSTRP prinp,CACHEWSTRP prout)

Arguments
flags One or more of the values listed in the description below.
tout The timeout specified in seconds. Default is 0. If 0 is specified, the timeout will never expire. The
timeout applies only to waiting for an available partition, not the time associated with initializing
the partition, waiting for internal resources, opening the principal input and output devices, etc.
prinp String that defines the principal input device for Caché. An empty string (prinp.len == 0) implies
using the standard input device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
prout String that defines the principal output device for Caché. An empty string (prout.len == 0) implies
using the standard output device for the process. A NULL pointer ((void *) 0) implies using
the NULL device.
Description

Calls into Caché to set up a Caché process.

118 Using the Caché Callin API

CacheStartw

The input and output devices (prinp and prout) are opened when this command is executed, not deferred until the first 1/0
operation. By contrast, normally when you initiate a Caché connection with the cache command, Caché does not open the
principal input or output device until it is first used.

Valid values for the flags variable are:

« CACHE_PROGMODE — Caché should treat the connection as one in Programmer mode, rather than the Application
mode. This means that distinct errors are reported to the calling function and the connection remains active. (By default,
a Callin connection is like execution of a routine in application mode. Any runtime error detected by Caché results in
closing the connection and returning error CACHE_CONBROKEN for both the current operation and any subsequent
attempts to use Callin without establishing a new connection.)

* CACHE_TTALL — Default. Caché should initialize the terminal's settings and restore them across each call into, and
return from, the interface.

e CACHE_TTCALLIN — Caché should initialize the terminal each time it is called but should restore it only when
CacheEnd is called or the connection is broken.

e CACHE_TTSTART — Caché should initialize the terminal when the connection is formed and reset it when the con-
nection is terminated.

* CACHE_TTNEVER — Caché should not alter the terminal's settings.

 CACHE_TTNONE — Caché should not do any output or input from the principal input/output devices. This is
equivalent to specifying the null device for principal input and principal output. Read commands from principal input
generate an <ENDOFFILE> error and Write command to principal output are ignored.

e CACHE_TTNOUSE — This flag is allowed with CACHE_TTALL, CACHE_TTCALLIN, and CACHE_TTSTART.
It is implicitly set by the flags CACHE_TTNEVER and CACHE_TTNONE. It indicates that Caché Open and Use
commands are not allowed to alter the terminal, subsequent to the initial open of principal input and principal output.

Return Values for CacheStartW

CACHE_ALREADYCON Connection already existed. Returned if you call CacheStartW from a $ZF
function.

CACHE_CONBROKEN Connection was formed and then broken, and CacheEndW has not been
called to clean up.

CACHE_FAILURE An unexpected error has occurred.

CACHE_STRTOOLONG prinp or prout is too long.

CACHE_SUCCESS Connection formed.

The flags parameter(s) convey information about how your C program will behave and how you want Caché to set terminal
characteristics. The safest, but slowest, route is to have Caché set and restore terminal settings for each call into ObjectScript.
However, you can save ObjectScript overhead by handling more of that yourself, and collecting only information that
matters to your program. The parameter CACHE_TTNEVER requires the least overhead.

Example

A Caché process is started. The terminal is reset after each interface Callin function. The start fails if a partition is not
allocated within 20 seconds. The file dobackup is used for input. It contains an ObjectScript script for a Caché backup.
Output appears on the terminal.

Using the Caché Callin API 119

Callin Function Reference

inpdev;
outdev;
int rc;

strcpy(inpdev.str, "[BATCHDIR]dobackup'™);
inpdev.len = strlen(inpdev.str);

strcpy(outdev.str,'"");
outdev.len = strlen(outdev.str);
rc = CacheStartW(CACHE_TTALL]CACHE_TTNOUSE,O, inpdev,outdev);

3.144 CacheTCommit

int CacheTCommit()

Description

Executes a Cache TCommit command.
Return Values for CacheTCommit

CACHE_SUCCESS TCommit was successful.

3.145 CacheTLevel

int CacheTLevel()

Description

Returns the current nesting level ($TLEVEL) for transaction processing.
Return Values for CacheTLevel

CACHE_SUCCESS TLevel was successful.

3.146 CacheTRollback

int CacheTRollback(int nlev)

Arguments

nlev Determines how many levels to roll back, (all levels if 0, one level if 1).

Description

Executes a Cache TRollback command. If nlev is O, rolls back all transactions in progress (no matter how many levels of
TSTART were issued) and resets STLEVEL to 0. If nlev is 1, rolls back the current level of nested transactions (the one
initiated by the most recent TSTART) and decrements $TLEVEL by 1.

Return Values for CacheTRollback

CACHE_SUCCESS TStart was successful.

120 Using the Caché Callin API

CacheTStart

3.147 CacheTStart

int CacheTStart()

Description
Executes a Cache TStart command.

Return Values for CacheTStart

CACHE_SUCCESS TStart was successful.

3.148 CacheType

int CacheType()

Description
Returns the native type of the item returned by CacheEvalA, CacheEvalW, or CacheEvalH as the function value.

Return Values for CacheType

CACHE_ASTRING 8-bit string.

CACHE_CONBROKEN Connection has been closed due to a serious error condition or RESJOB.

CACHE_DOUBLE 64-bit Caché floating point.

CACHE_ERSYSTEM Either ObjectScript generated a <SYSTEM> error, or if called from a $ZF
function, an internal counter may be out of sync.

CACHE_IEEE_DBL 64-bit IEEE floating point.

CACHE_INT 32-hit integer.

CACHE_NOCON No connection has been established.

CACHE_NORES No result whose type can be returned (no call to CacheEvalA or
CacheEvalW preceded this call).

CACHE_OREF Caché object reference.

CACHE_WSTRING Unicode string.

Example

rc = CacheType(Q;

3.149 CacheUnPop

int CacheUnPop()

Description
Restores the stack entry from CachePop.

Using the Caché Callin API 121

Callin Function Reference

Return Values for CacheUnPop
CACHE_NORES No result whose type can be returned has preceded this call.
CACHE_SUCCESS The operation was successful.

122 Using the Caché Callin API

	Table of Contents
	About This Book
	1 The Callin Interface
	1.1 The callin.h Header File
	1.2 8-bit and Unicode String Handling
	1.2.1 8-bit String Data Types
	1.2.2 2–byte Unicode Data Types
	1.2.3 4–byte Unicode Data Types
	1.2.4 System-neutral Symbol Definitions

	1.3 Using Caché Security Functions
	1.4 Using Callin with Multithreading
	1.4.1 Threads and UNIX® Signal Handling

	1.5 Callin Programming Tips
	1.5.1 Tips for All Callin Programs
	1.5.2 Tips for Windows
	1.5.3 Tips for UNIX®, Linux, and Mac OS

	1.6 Running Sample Programs on Windows
	1.7 Running Sample Programs on UNIX® and Linux

	2 Using the Callin Functions
	2.1 Process Control
	2.1.1 Session Control
	2.1.2 Running ObjectScript

	2.2 Functions and Routines
	2.3 Transactions and Locking
	2.3.1 Transactions
	2.3.2 Locking

	2.4 Managing Objects
	2.4.1 Orefs
	2.4.2 Methods
	2.4.3 Properties

	2.5 Managing Globals
	2.6 Managing Strings
	2.6.1 Long String Functions
	2.6.2 Standard String Functions

	2.7 Managing Other Datatypes

	3 Callin Function Reference
	3.1 Alphabetical Function List
	3.2 CacheAbort
	3.3 CacheAcquireLock
	3.4 CacheBitFind
	3.5 CacheBitFindB
	3.6 CacheChangePasswordA
	3.7 CacheChangePasswordH
	3.8 CacheChangePasswordW
	3.9 CacheCloseOref
	3.10 CacheContext
	3.11 CacheConvert
	3.12 CacheCtrl
	3.13 CacheCvtExStrInA
	3.14 CacheCvtExStrInW
	3.15 CacheCvtExStrInH
	3.16 CacheCvtExStrOutA
	3.17 CacheCvtExStrOutW
	3.18 CacheCvtExStrOutH
	3.19 CacheCvtInA
	3.20 CacheCvtInH
	3.21 CacheCvtInW
	3.22 CacheCvtOutA
	3.23 CacheCvtOutH
	3.24 CacheCvtOutW
	3.25 CacheDoFun
	3.26 CacheDoRtn
	3.27 CacheEnd
	3.28 CacheEndAll
	3.29 CacheErrorA
	3.30 CacheErrorH
	3.31 CacheErrorW
	3.32 CacheErrxlateA
	3.33 CacheErrxlateH
	3.34 CacheErrxlateW
	3.35 CacheEvalA
	3.36 CacheEvalH
	3.37 CacheEvalW
	3.38 CacheExecuteA
	3.39 CacheExecuteH
	3.40 CacheExecuteW
	3.41 CacheExStrKill
	3.42 CacheExStrNew
	3.43 CacheExStrNewW
	3.44 CacheExStrNewH
	3.45 CacheExtFun
	3.46 CacheGetProperty
	3.47 CacheGlobalData
	3.48 CacheGlobalGet
	3.49 CacheGlobalGetBinary
	3.50 CacheGlobalIncrement
	3.51 CacheGlobalKill
	3.52 CacheGlobalOrder
	3.53 CacheGlobalQuery
	3.54 CacheGlobalRelease
	3.55 CacheGlobalSet
	3.56 CacheIncrementCountOref
	3.57 CacheInvokeClassMethod
	3.58 CacheInvokeMethod
	3.59 CacheOflush
	3.60 CachePop
	3.61 CachePopCvtH
	3.62 CachePopCvtW
	3.63 CachePopDbl
	3.64 CachePopExStr
	3.65 CachePopExStrCvtW
	3.66 CachePopExStrCvtH
	3.67 CachePopExStrW
	3.68 CachePopExStrH
	3.69 CachePopInt
	3.70 CachePopInt64
	3.71 CachePopList
	3.72 CachePopOref
	3.73 CachePopPtr
	3.74 CachePopStr
	3.75 CachePopStrH
	3.76 CachePopStrW
	3.77 CachePromptA
	3.78 CachePromptH
	3.79 CachePromptW
	3.80 CachePushClassMethod
	3.81 CachePushClassMethodH
	3.82 CachePushClassMethodW
	3.83 CachePushCvtH
	3.84 CachePushCvtW
	3.85 CachePushDbl
	3.86 CachePushExStr
	3.87 CachePushExStrCvtW
	3.88 CachePushExStrCvtH
	3.89 CachePushExStrW
	3.90 CachePushExStrH
	3.91 CachePushFunc
	3.92 CachePushFuncH
	3.93 CachePushFuncW
	3.94 CachePushFuncX
	3.95 CachePushFuncXH
	3.96 CachePushFuncXW
	3.97 CachePushGlobal
	3.98 CachePushGlobalH
	3.99 CachePushGlobalW
	3.100 CachePushGlobalX
	3.101 CachePushGlobalXH
	3.102 CachePushGlobalXW
	3.103 CachePushIEEEDbl
	3.104 CachePushInt
	3.105 CachePushInt64
	3.106 CachePushList
	3.107 CachePushLock
	3.108 CachePushLockH
	3.109 CachePushLockW
	3.110 CachePushLockX
	3.111 CachePushLockXH
	3.112 CachePushLockXW
	3.113 CachePushMethod
	3.114 CachePushMethodH
	3.115 CachePushMethodW
	3.116 CachePushOref
	3.117 CachePushProperty
	3.118 CachePushPropertyH
	3.119 CachePushPropertyW
	3.120 CachePushPtr
	3.121 CachePushRtn
	3.122 CachePushRtnH
	3.123 CachePushRtnW
	3.124 CachePushRtnX
	3.125 CachePushRtnXH
	3.126 CachePushRtnXW
	3.127 CachePushStr
	3.128 CachePushStrH
	3.129 CachePushStrW
	3.130 CachePushUndef
	3.131 CacheReleaseAllLocks
	3.132 CacheReleaseLock
	3.133 CacheSecureStartA
	3.134 CacheSecureStartH
	3.135 CacheSecureStartW
	3.136 CacheSetDir
	3.137 CacheSetProperty
	3.138 CacheSignal
	3.139 CacheSPCReceive
	3.140 CacheSPCSend
	3.141 CacheStartA
	3.142 CacheStartH
	3.143 CacheStartW
	3.144 CacheTCommit
	3.145 CacheTLevel
	3.146 CacheTRollback
	3.147 CacheTStart
	3.148 CacheType
	3.149 CacheUnPop

	Index

