InterSystems:

Caché

Using Caché Direct

\Version 2018.1
2019-09-20

InterSystems Corporation 1 Memorial Drive Cambridge MA 02142 www.intersystems.com

Using Caché Direct

Caché Version 2018.1 2019-09-20
Copyright © 2019 InterSystems Corporation
All rights reserved.

ulnterSystems‘ InterSystems: ulnterSystemS' ulnterSystemS" ulnterSystemS‘

Health | Business | Government Caché Ensemble HealthShare TrakCare

InterSystems, InterSystems Caché, InterSystems Ensemble, InterSystems HealthShare, HealthShare, InterSystems TrakCare, TrakCare,
InterSystems DeepSee, and DeepSee are registered trademarks of InterSystems Corporation.

[l InterSystems

IRIS Data Platform

InterSystems IRIS Data Platform, InterSystems IRIS, InterSystems iKnow, Zen, and Caché Server Pages are trademarks of InterSystems
Corporation.

All other brand or product names used herein are trademarks or registered trademarks of their respective companies or organizations.

This document contains trade secret and confidential information which is the property of InterSystems Corporation, One Memorial Drive,
Cambridge, MA 02142, or its affiliates, and is furnished for the sole purpose of the operation and maintenance of the products of InterSystems
Corporation. No part of this publication is to be used for any other purpose, and this publication is not to be reproduced, copied, disclosed,
transmitted, stored in a retrieval system or translated into any human or computer language, in any form, by any means, in whole or in part,
without the express prior written consent of InterSystems Corporation.

The copying, use and disposition of this document and the software programs described herein is prohibited except to the limited extent
set forth in the standard software license agreement(s) of InterSystems Corporation covering such programs and related documentation.
InterSystems Corporation makes no representations and warranties concerning such software programs other than those set forth in such
standard software license agreement(s). In addition, the liability of InterSystems Corporation for any losses or damages relating to or arising
out of the use of such software programs is limited in the manner set forth in such standard software license agreement(s).

THE FOREGOING IS A GENERAL SUMMARY OF THE RESTRICTIONS AND LIMITATIONS IMPOSED BY INTERSYSTEMS
CORPORATION ON THE USE OF, AND LIABILITY ARISING FROM, ITS COMPUTER SOFTWARE. FOR COMPLETE INFORMATION
REFERENCE SHOULD BE MADE TO THE STANDARD SOFTWARE LICENSE AGREEMENT(S) OF INTERSYSTEMS CORPORATION,
COPIES OF WHICH WILL BE MADE AVAILABLE UPON REQUEST.

InterSystems Corporation disclaims responsibility for errors which may appear in this document, and it reserves the right, in its sole discretion
and without notice, to make substitutions and modifications in the products and practices described in this document.

For Support questions about any InterSystems products, contact:

InterSystems Worldwide Response Center (WRC)
Tel: +1-617-621-0700
Tel: +44 (0) 844 854 2917

Email: support@InterSystems.com

Table of Contents

ADOUL THIS BOOK ...ttt bbbt bbb bbbttt e et et e e b et ebe e 1
1 INtroduction t0 CaChE DITECTccvieiiieiceiece ettt st a et b sans 3
I O =] o] £ TSSOSO PP PR PR PPN 3
00 05 =Y 32 1T o SRS 4
1.1.2 CommUNICAtION MO ...cvoviiiicieice e 4

1.2 Available ToOIS and APPIrOACNEScoiiiiiririiie et e 5
2 Basics of USINg the VISIM CONTIOIooiiiiiiiiiiiie ettt 7
2.1 Accessing the VISIM CONIOLcviieiiiiieiii s 7
2.2 Connecting and DISCONNECLINGc..cvervevirieiirieiirieiisieestee sttt ettt et bbb s 8
2.2.1 Connection Strings and CONNECLION TAGS .vvvvervevverrereereeeeieesresresresresresreseeseesseseeseessesenses 8
2.2.2 ConNeCtiNg t0 CACNEcuveieecece e neens 9
2.2.3 Changing the Channel of @ CDCONNECEc.cccveiiiieieie e 10
2.2.4 Disconnecting from CaChe ..o s 10
2.2.5 Destroying @ CDCONNECTcoieiirieiiiieiiieisie ettt re e 10
2.2.6 SUMMary Of TECANIGUESoveiiiiiiiiere s 10

2.3 Establishing the NAMESPACEcceiveieirieierieeeeees ettt sttt st re e enesresre e 12
2.4 EXECULING COUE ..vvviiiiiiiieiieititeie ettt sttt sttt eeneeseeseeneebenbesnestenreneenrenes 13
2.5 USING MIFTOred PrOPEITIES ...c.eiviitiitiitiiteiee sttt sttt st e 13
2.5.1 Using Basic Mirrored VAIUES ..ot 14
2.5.2 USING PLIST oiiiiiiice sttt sttt sttt sttt bbb st 14

2.6 Callbacks to the Visual Basic USEr INTEITACEcccuviiriiiriiiieircneiees s 15
2.6.1 Requirements to Support Visual Basic Callbackscccevvvvivrierencneieieeiecesecn e 16
2.6.2 Referring to Properties 0f @ CONLIOlcccvieiiriieieieccee e 16
2.6.3 Executing Methods 0f @ CONLIOlccveiiiiii e 16

2.7 Using Windows Functions and Caché Utility FUNCEIONScccccvvviiinicenennicence s 16
2.8 Understanding Message CONSIIAINTSccuieireiieriserise ettt 17
2.8.1 UNicode and LOCAIE ISSUESceiurruerirreiriesierienieiesieeeseeresiesseseeseeseesseseeseessenseseesesseesenses 17
2.8.2 IMIESSAGE SIZE .vvevrevesieitestese e ste et e st e et e e et et s e te st e s te e s be s te s te st e e e e e st en e e e neerenrenrenrenen 18

BN B T U] o] [T PSSR 18
2.9.1 Simple Example: A Lightweight Terminal ..o 18
2.9.2 ANOTNEr EXAMPIE ...ttt bbb bbbt 19

3 AAAITIONAI FEATUIESeviiiieeitiie ettt sttt s et besbe st e sbesbe b seenae e e eeneeneas 21
TR O 1Y =T T SRRSO 21
KT (o G I 1] o] [TSRS 22
3.2.1 %CAEHOOK LOoCal Variablecccoeirieiiiiiieiiece s 22

3.3 The Keep AlIVE FEALUIEccueitiiiteie ettt eae b 22
3.3.1 Initial Keep AlIVE INTEIVALcc.oiuiieiiieiee e 23
3.3.2 Keep Alive Settings (CHENT)oviiiiiiiiecreees e 23
3.3.3 Shutdown Event for Keep Alive Failure (CHENt)oovviiriiiiiiceeceesens 23

3.4 The Server Read Loop and QUIt ChECKccvveiiiriiieieceese s 23
3.4.1 Server QUit CheCK PrOCEAUIEccviiieiiirieie et et ens 24
3.4.2 %CAPULSE L0OCal VArIADIEcuoiiiiiiiiiiiie et 24

3.5 Read and WIILE HOOKSccueiuiitiiiiitiie ittt sttt sae s 24
3.5.1 Server-side Read and WIite HOOKScoouiiriiniiiniirieirecseeseese i 25
3.5.2 Client-side Read and Write HOOKSccocereieriiieieieeeee s 25

3.6 Other Server-side Hooks (Global Variables)ccccuovvviieriinieiiiiineiescee e 25

Using Caché Direct

3.6.1 BEQINTASKHOOKcoiviiiiiiiiciicie ettt et sttt te e re s 26

TG IZ [(=T oo PO RRS 26

3.6.3 ENATASKHOOK ..ottt sttt st neenea 26

3.6.4 SNUIDOWNHOOKoviiiiiiiieiesiie ettt sre st e neenes 26

3.7 USEI CaNCel OPLION ..oviiciiieieieee ettt st sttt sttt 27

4 BESE PTACLICES ...veveeteieie ettt ettt sttt ettt stttk st bt bbbt b et bt bttt et e et et n s 29
4.1 Clear UNUSEA PrOPEITIEScuiiiiitirierieitesie sttt sttt ettt sbe bt st sb e st sn e se e besbe e 29

4.2 Disconnect Explicitly at Application SHULOWN ..ot 29

4.3 Recursive or ASynchronous SErver CallS ... 30
4.3.1 TImMErs 0N the CHENT ...cviiieie e e see e e 30

4.3.2 Visual Basic DOEVENLS FUNCLIONcoiviiriiiriiiniiisese e 30

5 VISM.OCX CONTIOI DELAIIS ..oveveiiiiiiiiiciiiee s 31
5.1 VisM Extended Connection String SYNTAXccccccveveiieeiiesieeiesieesesieseeeseeee st eve e e e e e 31
5.1.1 Runtime Form of the CONNECtioN SErNGccociiiirieiiiirere s 31

5.1.2 Other Forms of the CONNECLION SEING ...c.evvevirieirieirieisies e 32

5.2 VISIMI PTOPEITIES ..ttt ettt et bbb bbbt bt ettt 32
5.2.1 Mirrored ViSM PrOPEITIEScviviiieriirieiereeeeesesiestestestestesie e sressesaesaeaesessessessessessessens 32

5.2.2 Other VISM PrOPEITIESvcveuveieriesiesiesestestesieseeseeeeseeeesesteste e srestesressesseseessensessesesnessenses 33

5.3 VISIM IMBENOUS ...ttt ettt b bbb bbb e 37
5.3.1 Comparison of Connection Methodscceoeieiiciiineiisese e 38

5.4 VISIVI EVENES ...ttt sttt sttt ettt st s b et e st st et et st e e enee e eneeneas 39

6 Using Caché Direct in Non-ActiveX APPlCAtIONSccccoverererierieieeeeeese e 41
6.1 GENEIAl PIOCEUUIEviviieeeieie ettt sttt ettt st sttt s b e bbbt 41

6.2 RECOMMENUALIONS ...vivvitiieiirieiiitei ettt bbbttt sttt st 41

(ORI AN 0] (=TT ST PO PP PT PP 42

A oo o1 o OO U TR 43
7.1 CIIENT LOGUING +trvtttretiitetinteieitetere ettt et se ettt et sr bbbt b et b e e b e et st et e sr bt sn bt snebesneseanas 43
7.1.1 ViSM LOGMASK PIOPEITY ...cveviiiiiiiiiiieiiteieterieie sttt 43

7.1.2 REQISIIY SWILCNES ..e.vvieiciice ettt ne e sre e 43

7.1.3 Getting and Setting the RegiStry VAIUESccccveivevieieeicere e 44

7.1.4 Limiting the Size of the LOg FIlEScvieeiiie e 44

7.2 SEIVEE LOGGING -trtentinieieieieeteeieeie ettt st sbe sttt sb b b se e e e se e e e st ehe et e e b e ebeeb e s besbesbesbesbeeb e besee e eneeneenes 45

7.3 SEIVEr ErrOr GIODAIccueiiiiiiiiie ettt 45
Appendix A: Installation and UPGradecccceeeieieneneieieieieeee et seens 47
A.1 Upgrading Your Caché DITECt SEIVERccueiuereeieeeeseseseseste e seestesee e seesseseseesessessessessesseses 47
A.2 Installing VisSM 0n a NeW MaChINecccccviiiiieieieciees et 47
Appendix B: Notes for Users of the Previous VEISIONScccooeieirieieiiniene e 49
B.1 IPV6 ISSUES IN CAChE DITECTviiviiviiiiitiiiecie ettt ettt sttt be st st sa et eeneereenas 49

B.2 Previous Shared Connection BENAVIOLccoiiiieiirieieieeceesese e s 50

B.3 NEW AFCHITECIUIE ..ottt ettt e reste st see st e e seenae e e eneenens 50

B4 BENAVIOT INOLESveviitiiitiiete ettt bbbttt b b s bt e s 51

B.5 Other ArchiteCture ChanQgEScvcvieiiierere ettt ns 51
Appendix C: Example: Visual Basic Printer SUPPOITcoviiiiiriiiiiise e 53
C.L OVEIVIBW .ttt sttt sttt ettt et e a e et e e st e s te et e sae e s testeeseesRee s beaseesbeesbesteantesteenbenteentesaeenees 53

C.2 Internal CoMMANG SYNTAX ..c.viveiireiireiererieteniete ettt er et sr et b et b e et e b sn b snebesnere s 53
C.2.1 SEttING PrOPEITIES ..oueiveiiterieterieie ettt sttt sttt ettt b e 53

C.2.2 GELING PrOPEITIES ...vvivvieesieriestisiestesteseeseeseesseses e ssessessessestestesseseesseseeseessesessesssssessessessenees 54

C.2.3 EXECULING MELNOUSveiviieiiicieeeee ettt sr et sre s 54

Using Caché Direct

About This Book

This book tells programmers how to use Caché Direct to create clients that communicate with a Caché server by means of
its ActiveX control or its C++ API.

This book contains the following chapters:

Introduction to Caché Direct introduces Caché Direct, its major concepts, and the tools it provides to you.
Basics of Using the VisM Control describes how to use the VisM control in general.

Additional Features discusses how you can specify custom processing to perform at various times of the overall
client/server interaction.

Best Practices describes best programming practices for Caché Direct.
VisM.ocx Control Details provides reference details for the Caché Direct ActiveX control (VisM.ocx).

Using Caché Direct in Non-ActiveX Applications describes how to use Caché Direct properties and methods from an
application such as C++ that does not use ActiveX (where you do not have VisM.ocx).

Logging describes how to enable client or server logging, particularly to diagnose problems.

This book also contains the following appendixes:

Installation and Upgrade describes how to upgrade the server without reinstalling Caché and how to install the client-
side software on a machine where Caché is not installed.

Notes for Users of the Previous Versions describes architectural changes of interest to users of previous versions, who
may want to adapt their applications to take advantage of the new features.

Example: Visual Basic Printer Support describes a sample that demonstrates callbacks by using the Windows default
printer (the VB Printer object) from ObjectScript.

And a complete table of contents.

Using Caché Direct 1

Introduction to Caché Direct

Caché Direct is a client/server connection mechanism that provides, over a TCP connection, direct control over server
operation from a Windows COM/OLE or C++ client program. The connection is performed via a very fast, low overhead
mechanism. Caché Direct includes built-in, transparent support for Caché security, Citrix/Windows Terminal services,
IPv6, and so on.

Note: As of Caché 2015.1, the client is available in separate versions for 32-bit and 64-bit systems.

As suggested by its name, Caché Direct provides the most direct possible access from a client to a Caché server. That is,
ObjectScript commands are sent from the client to the server, executed there, and the results returned to the client. Caché
Direct sets up one or more TCP channels between the two parts of the application and manages the messages between them.
The full power of Caché objects and embedded SQL are also available through Caché Direct; the client has full access to
all the facilities of the server, restricted only by the Caché security settings.

Multiple server jobs/channels may be created and managed simultaneously from a single client process, providing the
possibility of client multithreading and connections to multiple servers from a single client at the same time.

Caché Direct also provides facilities for calling back from the server to the client, logging flow of control and communications
traffic on both the client and server, and various hooks for message transformations (such as compression), error handling,
and shutdown tasks.

Note: Caché Direct is not intended for use in building Web-based applications. Instead it is meant for direct client/server
applications.

1.1 Concepts

Caché Direct provides an ActiveX control (VisM.OCX, or VisM64.0CX) that is used most frequently in Visual Basic projects,
as well as a C++ interface for C++ clients. The VisM control has properties and methods that you use to specify the con-
nection to Caché and the commands to send.

Internally, the VisM control does not communicate directly with Caché. Instead, it starts and is attached to an object called
CDConnect, which in turn connects to Caché, starting a slave server process on the server and managing the communication
channel. The CDConnect can be attached to multiple VisM instances, can exist even if detached from all VisM instances,
and can be redirected to a different server process. This flexibility means that Caché Direct can support various architectures
such as the following:

» A setup in which each client VisM has its own server.

* Asetup where all client VisMs share a single server.

Using Caché Direct 3

Introduction to Caché Direct

» A setup in which a pool of client VisMs share a pool of servers, possibly moving among them, using whichever is
currently free.

* Assetup in which selected client VisMs share selected servers based on the specific databases those servers can access.

The Caché Direct client is supported on all Windows platforms that support the Caché client.
The Caché Direct server is supported on all platforms that support the Caché server.

The servers can be on the same or different machines or databases, in any convenient distribution.

1.1.1 Terminology

The Caché Direct communications model uses the following terms:

» Acaller is the client code from which you call Caché. These are usually VisM instances and are referred to as VisMs
in this document. They may also be C++ code.

» A CDConnect is the intermediary object between the VisM client and the server. The CDConnects are created as
needed and run on the client machine.

» The attachment between a VisM and a CDConnect is referred to as a connection.
e The TCP attachment between a CDConnect and a Caché server process is referred to as a channel.
The following figure shows a possible state of a Caché Direct application. The items in the upper area (above the double

line) are all running on the client side, within a single process. The items below the double line run on the Caché server
machine or machines.

Caché Direct client process
Caller Caller Caller
(Vishl) (Vish) (Vish)
X x A
\\ ¢ !f
\\ // Jr.-f
copnectrbn,s’ S connection
N // ’
\ // {
- ¥
CDConnect CDConnect
F 3 F 3
channel channel
¥ v
Server Server
process process

1.1.2 Communication Model

Formally, the Caché Direct communications model obeys the following rules:

» Each VisM can have at most one connection at any given time. That is, any VisM is either unattached or is attached
to a single CDConnect.

4 Using Caché Direct

Available Tools and Approaches

» Each CDConnect can have at most one channel at any given time. That is, any CDConnect is either unattached or is
attached to a single Caché server process.

» Each CDConnect can have any number of connections. That is, any CDConnect can be attached to zero, one, or more
VisMs. This means that multiple VisMs can share the same server context. These VisMs would have access to the
same server local variables, except for the variables that are reinitialized by each message; see the section Mirrored
VisM Properties, in the next chapter.

» A CDConnect does not have to be attached to a Cache server process. It lives independently of the VisMs and the
server processes. A CDConnect exists until it is destroyed. It is destroyed automatically when it is no longer accessible
(when it has no connections and if it has no tag), or you can explicitly destroy it via the DeleteConnection() method.

Note: Before ISCDLink version 220, a CDConnect was not automatically destroyed when it became inaccessible.

» A CDConnect can be redirected to a different Caché server. This means, of course, that any VisMs that are attached
to this CDConnect will be effectively attached to the newly chosen server as well.

» Each Caché server job is a single thread. Therefore, communication on each channel must be synchronous; that is,
each client message must be processed and responded to before the next message can be read. This means that if mul-
tiple VisMs share a single CDConnect, they are constrained not to try to communicate simultaneously. If they do, you
will get a “nonsynchronous communication” error.

» A Caché server job must have exactly one channel. When you close a channel from a CDConnect, you also end the
corresponding Caché server job.

An analogy may be helpful. A CDConnect behaves as a speaker phone with a single telephone line. The listeners in the
room are the VisMs; they all hear the same communication. There is one person on the other end of the call; that person is
the Caché server. If the call is transferred to another server, all the VisMs are now connected to that new person.

1.2 Available Tools and Approaches

On the client side, Caché Direct is a set of layered C++ classes, which in turn are wrapped in the VisM control, which
exposes all the necessary properties and methods. When you install the Caché client software, it installs and registers this
control so that you can use it in an ActiveX host, such as Visual Basic. As a result, you can use Caché Direct at several
different levels:

e You can include the Caché Direct ActiveX control in a Visual Basic project. Then your application (possibly with user
interaction) can set values of properties, execute methods that send code to the Caché server, and display the results.
This document assumes that this technique is the most common usage.

* You can use the Caché Direct C++ classes in your C++ project. Then you can create instances of these classes as
needed, and set properties and execute methods, to communicate with the Caché server.

On the server side, Caché Direct is a transparent part of the Caché server installation. If you need to upgrade the Caché
Direct server without installing a later version of Caché itself, there is a simple way to load the latest Caché Direct server
code into your Caché installation. See Upgrading Your Caché Direct Server, near the end of this manual.

Using Caché Direct 5

Basics of Using the VisM Control

This chapter describes the basics of using the VisM control:

» Accessing the control and adding it to your project.

e Connecting to and disconnecting from Caché.

» Establishing the Caché namespace in which your server-side code will run.
» Executing code on the server, from the VisM client.

» Mirroring VisM properties between the client and server, which gives your code an easy way to pass data between
server and client.

» Referring to other client user interface properties and methods from the server, via callbacks.

e Calling Windows functions or Caché Direct utilities.

This chapter also discusses constraints on Caché Direct messages that may affect your code on either side. It concludes
with a couple of simple examples.

Note: A leading underline indicates a callback reference to the Visual Basic user interface. Note that Caché does not
allow this usage in any other situation.

2.1 Accessing the VisM Control

When you install the Caché client software, it installs and registers the VisM control so that it is available to any ActiveX
host, such as Visual Basic.

Note: If the Caché client is not installed on a given machine, you can manually copy the Caché Direct client files into
place and register them. See the section Installing VisM on a New Machine, near the end of this manual.

In the case of Visual Basic, to add this control to your project, click Project —>Components, scroll to VisM, and select the
check box. Then you can add instances of the control to your forms as you do any other control.

Using Caché Direct 7

Basics of Using the VisM Control

2.2 Connecting and Disconnecting

To connect or disconnect the Caché Direct client from the server, you can use the Server property, the ConnTag property,
the SetServer() method, the Connect() method, and the DeleteConnection() method. Each of these tools has specific uses,
but there is overlap. The SetServer() and Connect() methods are similar, but have small differences for historical reasons
and to preserve backward compatibility. The Server property and the SetServer() method are the same except for the second
argument to SetServer().

Also see the appendix Notes for Users of Previous Version.

2.2.1 Connection Strings and Connection Tags

Before describing the specific syntax for connecting to Caché, it is useful to know about the connection strings and connection
tags that are used in that syntax.

2.2.1.1 Basic Connection String
A connection string is a pieced string of the following form:

"CN_I PTCP: server[port]"

The first piece of this argument, CN_| PTCP, is the connection method, which is always TCP. The second piece is the server
name or IP address and port where the Caché superserver is running. For example, you could use the following syntax to
set the connection of a VisM named VisM1:

Vi sML. Server ="CN_I PTCP: 127. 0. 0. 1[57772] "

There are extensions to this basic string (as described in VisM Extended Connection String Syntax in the chapter on
VisM.ocx Control Details). These extensions are not commonly used.

2.2.1.2 Connecting with an Indirect Reference

Alternatively, you can use an indirect reference to a locally defined database alias. In this case, you use a string of the form
" @ervernanme" where servername is the server name as specified within the Caché Server Manager. (For details on
using the Caché Server Manager, see Define a Remote Server Connection in the Caché System Administration Guide).
Note that these aliases are local to the client machine. You would hard code this approach only if the client machines followed
a naming convention for their Caché server aliases.

For example, you could use the following syntax to set the connection of a VisM object named Vi sML to server name
uni x1:

Vi sML. Server =" @ni x1"

Note: An indirect reference is the preferred way to open a connection that uses Kerberos authentication. The Caché
Server Manager allows you to set Kerberos as the authentication method, specify the connection security level,
and define the Service Principal Name.

2.2.1.3 User Prompt

In any place where you can use a connection string, you can instead use a quoted question mark (" ?"). In this case, the
user is prompted to choose one of the server aliases defined on the client machine.

For example, the following syntax would cause the user to be prompted for the connection of a VisM named Vi sML:

Vi sML. Server =""?"

8 Using Caché Direct

Connecting and Disconnecting

2.2.1.4 ConnectionTags

In some cases, when you create a new connection to Caché, you can provide an optional connection tag. This is meant to
serve as a name for the CDConnect that you are creating and its channel. It is your responsibility to ensure that all tags are
unique within a given client process.

Then, when you connect a VisM, you can specify the connection tag of an existing CDConnect, rather than using a connection
string. This is the main way to explicitly share a channel. For example, you could use the following syntax to set the con-
nection of a VisM named Vi sML:

Vi sML. Ser ver =" TagA"

Alternatively, suppose that we wanted to connect Vi sML to the same CDConnect to which Vi sM is connected and that
CDConnect has a tag assigned to it. If we did not want to use a connection tag itself, we could use the ConnTag property
as follows:

Vi sML. Server =Vi sM2. ConnTag

2.2.2 Connecting to Caché

Connecting is the action of attaching a VisM to a CDConnect (creating the CDConnect if necessary). If the VisM is currently
attached to a CDConnect object, it is disconnected from that CDConnect first.

2.2.2.1 If Not Yet Connected

If the VisM is not yet connected to Caché, you can connect it to Caché by using any of the following techniques, which
are listed here in order by how commonly they are used:

» Set the Server property equal to a connection string (or equivalent). For example:

Vi sML. Server ="CN_I PTCP: 127. 0. 0. 1[57772] "

» Call the SetServer() method with a connection string (or equivalent) as the first argument. This is equivalent to the
previous technique. For example:

Vi sML. Set Ser ver (" CN_I PTCP: 127. 0. 0. 1[57772] ")

e Call the Connect() method with a connection string (or equivalent) as the first argument. For example:

Vi sML. Connect (" CN_I PTCP: 127. 0. 0. 1[57772] ")

In each case, Caché Direct creates a CDConnect and creates a connection from the VisM to the CDConnect object. It also
starts a server process and creates a channel from the CDConnect to the server process.

If you use the SetServer() or the Connect() method, you can provide a connection tag as the second argument. For example:

Vi sML. Set Server ("CN_I PTCP: 127. 0. 0. 1[57772] ", "t agA")

2.2.2.2 If Already Connected

If the VisM is already connected to Caché, that means that a CDConnect has been created, possibly with an associated
server process. You can connect the VisM to a different CDConnect, disconnecting from the original CDConnect and cre-
ating a server for the new CDConnect. To connect to a different CDConnect, use any of the following techniques.

e Tocreate anew CDConnect and connect to it, call the Connect() method with a connection string as the first argument.
» To connect to the most recently opened CDConnect, call the Connect() method with an empty string as the first argument.

* To connect to an existing CDConnect, do any of the following:

Using Caché Direct 9

Basics of Using the VisM Control

— Set the Server property equal to a connection tag (permitted as of Caché 2007.1).
— Call the SetServer() method with a connection tag as the first argument (permitted as of Caché 2007.1).

— Call the Connect() method with a connection tag as the first argument.

For example:

Vi sML. Server ="t agA"

These actions do not destroy the original CDConnect; nor do they affect its server channel, if it has one. The CDConnect
exists until it is no longer accessible (when it will be destroyed automatically) or until it is explicitly destroyed, as described
in Destroying a CDConnect.

2.2.3 Changing the Channel of a CDConnect

To change the channel of an existing CDConnect, use either of the following equivalent techniques:
e Set the Server property equal to a connection string.
e Call the SetServer() method with a connection string as the first argument.

In either case, the CDConnect stops the server process to which it is currently connected, disconnects from it, and then
starts and connects to a new server process.

2.2.4 Disconnecting from Caché

To disconnect from the Caché server, use either of the following equivalent techniques:

» Set the Server property equal to an empty string.

» Call the SetServer() method with an empty string as the argument.

These actions do not destroy the CDConnect; nor do they affect its server channel, if it has one. The CDConnect exists

until it is no longer accessible (when it will be destroyed automatically) or until it is explicitly destroyed, as described in
the next section.

2.2.5 Destroying a CDConnect

To destroy the CDConnect and its channel, call the DeleteConnection() method. This method also stops the server process,
of course. For example:

Vi sML. Del et eConnecti on()

2.2.6 Summary of Techniques

The following table summarizes how to connect and disconnect from Caché. Notice that setting the Server property has
the same effect as calling the SetServer() method, in all cases.

10 Using Caché Direct

Connecting and Disconnecting

Action

Connecting to a new CDConnect, if
not yet connected

Connecting to a new CDConnect, if
already connected*

Connecting to an existing CDConnect
(after disconnecting from current
CDConnect, if any)*

Connecting to the last opened
CDConnect (after disconnecting from
current CDConnect, if any)*

Changing the channel of the existing
CDConnect

Disconnecting*

Destroying the CDConnect and its
channel

How To Do This
Use any of the following techniques:
¢ Set the Server property equal to a connection string.

¢ Call the SetServer() method with a connection string as the first
argument.

¢ Call the Connect() method with a connection string as the first
argument.

Call the Connect() method with a connection string as the first
argument.
Use any of the following techniques:

e Call the Connect() method with a connection tag as the first
argument.

e Set the Server property equal to a connection tag (permitted as
of Caché 2007.1).

e Call the SetServer() method with a connection tag as the first
argument (permitted as of Caché 2007.1).

Call the Connect() method with an empty string as the first argument.

Use either of the following techniques:
e Set the Server property equal to a connection string.

e Call the SetServer() method with a connection string as the first
argument.

Use either of the following techniques:
e Set the Server property equal to an empty string.

e Call the SetServer() method with an empty string as the argu-
ment.

Call the DeleteConnection() method.

Key: *These actions do not destroy the CDConnect; nor do they affect its server channel, if it has one. The CDConnect

exists until it is no longer accessible (when it will be destroyed automatically) or until it is explicitly destroyed.

The following figure summarizes the differences between the Connect() and the SetServer() methods.

Using Caché Direct 11

Basics of Using the VisM Control

Cacheé Direct
client process

Caller

(VisM)

Connect *

mothod comnéction
|

L 4
CDConnect

Fy
channel

—

SetServer
method

¥
Server
process

2.3 Establishing the Namespace

When you connect to a server, the namespace is initially set to the current namespace of the superserver, which is generally
not a suitable place to execute your application code. There are three equivalent ways to switch the namespace:

* Your code can explicitly change the namespace (via the $ZNAME command).

* You can use the VisM NameSpace property, which is sent to the server in every execution message. The server
examines this property before executing any code, and it uses the following logic: If NameSpace is empty or equals
the current namespace of the server, the server remains in this namespace. If NameSpace is different from the current
namespace, then the namespace of the server is changed before the code is executed. The server job is then left in the
new namespace.

* You can use a special kind of indirection. In this case, you specify a formal namespace, which is translated to an actual
namespace at runtime by means of a registry entry.

To establish a formal namespace, use syntax of the following form:

Vi sM NaneSpace=" @4 NS"

Here VisM is the name of the VisM instance, and MyNS is the formal hamespace.

The registry must include an entry at Cache/CacheDirect/FormalNamespaces. Each entry is a subkey whose name is
the formal namespace (for example MyNS) with a single string value, named t r ans| at i on, whose value is the actual
namespace to use on this machine.

With this option, you can easily build and test an application in a test namespace and then deploy it to another namespace
when it is ready, without modifying the code. This option also permits you to use the identical application on different
machines, with a different namespace on each.

Remember that changing namespace is a relatively expensive operation. In particular, the global and routine buffers are
purged. For example, it would be undesirable to have messages alternating between namespaces, which would entirely
eliminate the advantages of buffering data in memory. If you need to work alternately in two namespaces, you should

12 Using Caché Direct

Executing Code

instead establish connections to two server jobs, each running in its own namespace — then each job can take advantage of
the buffering efficiencies.

2.4 Executing Code

There are two general ways to use Caché Direct to execute ObjectScript:

» One technique is to use the Execute() method. The argument for the method is a line of code. This is the shortest way
to the most common use of the control, executing a line of ObjectScript code on command. This technique is shown
in the example later in this section.

» The less common technique is to put the code into the Code property and set the ExecFlag property to 1 (execute
immediately). As soon as the ExecFlag property has been set to 1, you have effectively pushed a virtual execute button.
The VisM immediately assembles a message to the server, sends it off, and receives the reply. When the reply has
arrived, ExecFlag is set back to 0 (idle), and the virtual execute button is released.

There are other possible settings of ExecFlag for use in special situations. See the reference section for the VisM.ocx
properties.

These techniques have exactly the same net effect. (When you call Execute(), the client stores the string temporarily in the
Code property and internally changes the ExecFlag setting to 1.) Choosing one method or the other depends on the application.
If the code string is not changing, or is chosen by some separate computation, the ExecFlag technique is slightly more
convenient. If you just need to execute a line of code, the Execute() technique is more convenient and more direct.

The line of code to be executed can be any legal line of code or expression.

If you call Execute() and the client fails to connect to a remote Cache instance, Caché Direct will try to connect to the

default server. This behavior allows an application, including a non-interactive one, to connect to a default server without
having to prompt the user or code the server into the application. If there is no default, then the client will prompt the user
with a '‘Communication Error' dialog. Clicking the 'Cancel’ button causes the client to connect to the local default instance.

Because it is common to evaluate expressions, there is a useful convention: the server looks at the beginning of the line of
code and tries to determine if the line has the form of an expression. Specifically, it checks whether the line begins with an
equal sign or at least one dollar sign. If so, the server code prepends either " Set VALUE " or" Set VALUE = " tocreate
a command that sets the VALUE property to the result of the expression. For example, " $zv" on the client side would be
expanded to " Set VALUE=$zv" on the server side. Except for this special treatment, the VALUE property is no different
from any of the other mirrored properties; see the next section.

2.5 Using Mirrored Properties

Caché Direct mirrors the values of certain VisM properties between the client and server, as follows.

1. When the client communicates with the server, it creates a message that contains the values of the mirrored properties
(as well as other needed information). When the server receives the message, it creates and sets local variables that
have the same names.

2. On the server side, you can use the local variables in the same way you would use any other local variables. There are
no limitations on how you can use them, including, for example, indirection.

3. When the server replies, it creates and sends another message that contains the values of all the mirrored properties,
whether or not they have changed, as well as other information.

4. The server then destroys (via $KILL) these local variables (but leaves your other local server variables untouched).

Using Caché Direct 13

Basics of Using the VisM Control

Therefore the mirrored variables are not preserved on the server between calls; they exist only while the server is
executing a client command.

2.5.1 Using Basic Mirrored Values

The basic VisM properties that are mirrored are string properties named PO, P1, P2, P3, P4, P5, P6, P7, P8, P9, and VALUE.
When the server is executing a client command, the server process will have local variables with the same names, with
values equal to the properties in VisM. A change on the server is followed by a change to the properties on the client when
the response message is received from the server.

For the VALUE property, there is one additional feature. If the value of the Code property is an expression (that is, if it
begins with a dollar sign or an equal sign), then the server returns the result of that expression in the VALUE property, as
noted in the section on Executing Code.

2.5.2 Using PLIST

One other VisM property is mirrored, the PLIST property. Caché Direct uses this property to pass array-like values between
the server and client. Because the client and Caché have different representations of arrays, it is important to understand
the transformations in both directions. The PLIST property has a different form in these two environments:

* Onthe client, PLIST is a pieced list that contains all the “array” elements, appended to each other with a delimiter. The
delimiter is specified by the PDELIM property, which is used only on the client. For example, if PDELIM were equal
to " then PLIST could equal "first*second”third".

* Onthe server, PLIST is a one-dimensional array with the following form:

PLIST contains a number that indicates how many items were in the list on the client.

PLIST(1) contains the first list element.

PLIST(2) contains the second list element.

And so on.

If the PDELIM property is an empty string, PLIST is considered to be a single piece.
When the server assembles its reply message, it treats PLIST as follows:
e If PLIST equals the number of elements that are currently in the list, the server returns the PLIST array as is.

» If PLIST is less than the number of elements that are currently in the list, the server adjusts the PLIST array by removing
elements from the end of the list.

For example, on the client you may have the following code:

Vi sML. PDELI M = "A"
Vi sML. PLI ST = "arnmadi |l | o*beaver~cobra"

On the server, you will see
PLIST=3
PLIST(1)="armadillo"

PLIST(2)="beaver"
PLIST(3)="cobra"

Suppose the server then runs this code:

14 Using Caché Direct

Callbacks to the Visual Basic User Interface

Set PLIST(3)="cat"
Set PLI ST(4)="donkey"

When you return to the client, the PLIST property will be "armadillo*beaver”cat". The third list element is updated,
but the fourth list element has not been returned, because we have not updated the list count.

If PLIST is greater than the number of elements that are currently in the list, the server adjusts the PLIST array by adding
empty strings as elements, adding them in the empty list positions.

Consider the previous example, suppose that the server code does the following instead:

Set PLI ST=5
Set PLI ST(5)="eagl e"

Then the client property would become "armadillo”beaver"“cobra™eagle".

If PLIST does not equal a positive integer, the server counts the number of elements in the list— including any elements
with nonnumeric subscripts — and sets PLIST equal to that number. (In contrast, in all the previous cases, the server
returns only array values with numeric subscripts.)

Note that both the count and the values returned are computed with $Order. This has the effect of eliminating the
requirement of sequential, numbered entries in the array. This means that you can make use of the string subscripts
and automatic sorting that Caché provides.

Thus, either of the following would produce the same result as the four-piece example above:

Set PLI ST=""
Set PLI ST(10) ="donkey"

Or

Set PLI ST=""
Set PLI ST("don") ="donkey"

The preceding behavior means that typically if the server changes the number of list elements, it should either update PLIST
to the new count or clear PLIST (and let the server count the list elements).

2.6 Callbacks to the Visual Basic User Interface

If you use Visual Basic, VisM includes a special feature that allows your ObjectScript code to refer to elements of the client
user interface. These property and method references are called callbacks because they cause a message to be sent from
the server to the client when the reference is made. The client looks up the form and control, issues an OLE call, and returns
the result to the server.

Specifically, you can access properties of any controls on the client user interface, via getter and setter methods. Your
ObijectScript can also use the following Visual Basic methods, if your form includes controls that provide these methods:

Addltem()
Removeltem()
Refresh()
Move()
Clear()

Hide()

Show()

Using Caché Direct 15

Basics of Using the VisM Control

e SetFocus()

2.6.1 Requirements to Support Visual Basic Callbacks

In order to make callbacks available for a particular form, there are two requirements:
» The form must contain a VisM control.

» Before you make the first server reference to a control on that form, make a call like the following (usually in the
Form_Load event code):

Creat eDi spatch Mg, VisM

Here, Me is the Visual Basic reference to the current form, and VisM1 is the name of the VisM on that form. The
CreateDispatch function is part of the <cache-install-dir>\dev\cdirectVBRUN.BAS module, which must be included in
your project. This function creates a list of the controls on the form and stores them, for future reference, in a hidden
property of the VisM.

2.6.2 Referring to Properties of a Control

To refer to a property of a control, use the following special ObjectScript syntax:

_[formane!] control name[(controlindex)]. propertynane[(propertyindex)]

The elements in square brackets are optional, and the brackets are not part of the syntax. The leading underline is required.
If you omit formname, it is assumed to be the form whose VisM sent the current message. The controlname and propertyname
are required. If the control is one of a collection, controlindex is required. If the property is a collection, propertyindex is
required. For example, to get the text property of a text control named txt1 on the current form, use the following code:

Set x=_txt1. Text

To set the text property, use the following code:

Set _txt1. Text ="sonet hi ng"

Because the underline is also a concatenation operator in ObjectScript, if there is any ambiguity about its meaning, use
parentheses.

2.6.3 Executing Methods of a Control

To execute a method of a control, use the following syntax:

Do _[formmane!]control name[(controlindex)]. method[(args)]

For example, to add an item to a list box named list1, use the following code:

Do listl. Addlitenm("item data")

2.7 Using Windows Functions and Cacheé Utility Functions

Your ObjectScript code can also use the following general Windows functions:
* MsgBox(message,style, title)

e DoEvents

16 Using Caché Direct

Understanding Message Constraints

* WinExec(name,flag)

Also, it can use the following Caché Direct utilities, also available in the %CDSrv routine:
» GetClientlP() returns the IP address of the client
» GetSvrNode() returns the name of the server machine

e GetTCPDevice() returns the identifier of the TCP device that is serving this channel, in Caché format

To execute any of these functions, use syntax like the following:

Set var nanme=3f uncti on*%CDSr v(ar gunent s)

For example, to call the Windows MsgBox function, use code like the following:

Set repl y=$$MsgBox " %CDSrv(" Are you fi ni shed?", 1)

2.8 Understanding Message Constraints

All communication between the CDConnect and the server is done as Caché Direct messages. These messages are sent
over TCP connections (even when all components are local).

There are certain constraints on messages that in turn impose constraints on how you set the properties whose contents are
sent in the messages. These constraints also affect how you write callbacks. While you do not need to know the internal
details of the message structure, a general description is useful. Generally, a message consists of a 56-byte header followed
by a series of fields for the data. Flags in the header describe the type of message and, by implication, what fields to expect.
Types of messages include NewTask, Begi nTask, Execut eCode, EndTask, and other types. In addition to internal
information, the message includes the mirrored properties plus a few additional ones noted in the Other VisM Properties
section.

2.8.1 Unicode and Locale Issues

For all properties that are sent to the server, the values must have only text characters. This restriction also applies to any
Visual Basic properties that are set or retrieved by Caché Direct; see the section Callbacks to the Client User Interface.
(There are exceptions to this constraint that work in some environments, but the general requirement still exists.)

Caché servers operate in either 8-bit or 16-bit (Unicode) mode. In the initial communications between the client and server,
the server notifies the client of the mode of the server. Then:

» If the server is Unicode, all clients convert all strings to Unicode before sending them to the server. This may make
the messages larger, but then any client, operating in any locale, can communicate reliably with the server.

« Ifthe server is in 8-bit mode, none of the clients convert strings in any way. If any client is not using the same locale
as the server, then it is likely that data will be lost or confused when the server writes to the database, because some
characters have different meanings in the different locales. Therefore, it becomes the responsibility of your application
to either convert or interpret what it receives from the client.

Using Caché Direct 17

Basics of Using the VisM Control

Note: The requirement for properties to be strings arises from the conversions that are performed for Unicode servers.
However, there are two situations in which non-text data is preserved: 8-bit servers and control codes with values
in the range $c(1) to $c(31).

Because no conversion occurs for 8-bit servers, no corruption can take place. And because the low-range control
codes are the same in all 8-bit locales and in Unicode, they also survive for any server.

However, because the client is written in C++ and uses C string conventions, embedded null values ($c(0)) may
cause strings to be truncated.

2.8.2 Message Size

For historical reasons, the limit on the size of a single message in either direction between the client and server is 32Kb.
Caché Direct does not split long messages into multiple shorter messages and cannot recover from an attempt to send a
message that is too large. As a result, it is the responsibility of your application to make sure that no attempt is made to
construct a message that exceeds this limit. To transmit more data than that, you send a series of messages. Tests have
shown that there is no speed penalty for this arrangement, because TCP breaks large messages into small segments for
transmission. All else being equal, optimum speed — in terms of total bytes per second — seems to be achieved with messages
in the 12-20 Kb range.

To estimate message size, consider all characters in the VisM properties that are sent to the server, plus a few hundred bytes
of overhead. The properties sent are the mirrored properties, plus a few smaller ones like CODE and NameSpace. A normal
message has about a dozen fields plus the pieces of the PLIST property, which are each transmitted as a field. The data
fields are one byte per character if the server is 8-bit or if the string is all Latin-1 characters. (Latin-1 characters have no
bits on in the high byte of their Unicode representation. Such strings can be sent as 8-bit strings.) If the server is Unicode
and the property contains any non-Latin-1 characters, the field contains two bytes per character. The result is that the
maximum capacity of a message, instead of being about 30K characters, is less than half of that. A good guideline, which
does not sacrifice any efficiency, is to make sure none of your messages are larger than about 12K characters.

2.9 Examples

2.9.1 Simple Example: A Lightweight Terminal

This is a minimal sample application that shows how to create a single client form in Visual Basic, where the user can enter
a single line of ObjectScript and get its result. You will use defaults wherever they are available. There is also almost no
error checking.

This sample assumes you have a Caché server running on your local machine and have also installed the Caché Direct
components. Make sure Caché is running locally on your machine.

Start Visual Basic. Create a new Standard EXE project with one form. Using the Project/Components menu, add the VisM
control to your toolbox. On your form, add a command button (Conmand1), two text boxes (Text 1 and Text 2), and a
VisM control. Make the first text box wide enough to enter a simple line of ObjectScript and the second big enough to hold
a result string. In the Command1_Click event code, enter the following:

Vi sM Execut e Text 1. Text
If VisML.Error <> 0 Then

Text2. Text = "Error " & VisML.Error & ": " & VisML. Error Nane
El se

Text 2. Text = Vi sML. VALUE
Endi f

In the For m_Unl oad method, add the following line:

18 Using Caché Direct

Examples

Vi sML. Server = ""

Run the project. When the form appears, click the command button. You should get a Choose Server Connection dialog.
Choose LOCALTCP and press OK. Leave the Text 1 field empty and click the Conmand1 command button. A syntax error
message should appear in Text 2, because you did not enter a line of ObjectScript.

Now enter "$H" in Text 1. Click the command button again. The current date and time in $H format should appear in
Text 2.

Then exit the application.

2.9.1.1 Explanation

When you click the command button, the contents of Text 1 are temporarily put into the VisM Code property and sent to
the server to be executed (by means of the VisM Execute() method). On the first click, because “Textl ”(the default
contents of the text box) is not valid ObjectScript, you receive a syntax error in the Error and ErrorName properties. The
code in the Command1_Click event routine displays the error in Text 2.

In the second case, the server can execute the code you provide, and it sets the VALUE property to the current $H. The code
in the Command1_Click event routine again displays the contents of the VALUE property in the Text 2 text box.

As you exit, the code in the Form_Unload event routine sets the Server property to the empty string, which disconnects the
client from the server gracefully.

On the one hand, this is clearly a very simple example. On the other hand, it is also very powerful. Any line of ObjectScript
can be executed on the client and any (small) result can be retrieved and displayed. A value from a global could be retrieved.
A computation could be performed and the result returned. You could start a long-running background process via $JOB.

2.9.2 Another Example

Consider the following example code:

Vi sML. PO = "pig"
Vi sML. Execute "Set VALUE=$e(PO, 2, $| (P0))_$e(PO, 1) _""ay"""
Print VisML.. VALUE

This would result in the VALUE property being set to "igpay". In slightly more detail, the PO property is sent to the server
and becomes a local server variable named PO. The server executes the line of code, which computes a variable named
VALUE, and sends a message back to the client. The client updates the VALUE property correspondingly and then prints
it.

Using Caché Direct 19

Additional Features

The previous chapter discusses the basic requirements for a client application that uses Caché Direct. This chapter discusses
how you can specify custom processing to perform at various times of the overall client/server interaction. Many of these
features are hooks included in specific parts of the typical client/server interaction; most of these are specific to the server.
The client has some additional features as well.

This chapter contains the following sections:

Overview

Error Trapping

The Keep Alive Feature

The Server Read Loop and Quit Check
Read and Write Hooks

Server-side Hooks (Global Variables)

User Cancel Option on the Client

3.1 Overview

This section provides an overview of the client/server interaction and the server behavior in general. First, the typical
client/server interaction consists of the following steps:

1.
2.

The client connects to the server and sends a NewTask message to it.

The client then sends a BeginTask message.

If no license slot is available, the server returns a <No License> error and disconnects.

The server checks the BeginTaskHook, to which you can add your own processing for the server to execute.

The client then typically sends any number of ExecuteCode messages. Just before the client sends each message, there
is a client-side write hook where you can add your own processing.

The server receives the message, performs any processing specified in the server read hook (ReadHook) and then
reads the message.

The server executes the code as required.

The server performs any processing specified in the server write hook (WriteHook) and then sends the message.

Using Caché Direct 21

Additional Features

8. The client receives the message, performs any processing specified in the client-side read hook and then reads the
message.

9. At the end of the interaction, the client sends an EndTask message, which breaks the connection.

10. The server receives the EndTask message and then checks the End TaskHook, to which you can add your own processing
for the server to execute.

11. The server checks the ShutDownHook, to which you can add your own processing. The server then shuts down.

Note: In contrast to your custom EndTask processing, your custom shutdown processing also occurs outside of the
client/server interaction that is described here. The shutdown processing occurs if the server shuts down for
any reason, such as a timeout failure.

As you can see from this description, Caché Direct provides hooks that you can use to insert processing just before messages
are sent (a write hook) and just after they are received (a read hook). You can use these hooks for such tasks as custom
logging, compression, encryption, or any other purpose chosen by the application. The write hook on the client is paired
with the read hook on the server, and vice versa. If a write hook transforms a message, the corresponding read hook should
ensure that the message is back in the format expected by Caché Direct.

3.2 Error Trapping

The server traps any nonfatal errors and reports them to the client, via the following procedure:
1. Set values for the server local variables error and errorcode.
2. Call the function named by the local error hook (%6cdEHOOK).

3. Send a message to the client, passing the current values of the server local variables error and errorcode.

3.2.1 %cdEHOOK Local Variable

The %cdEHOOK error hook is a local variable on the server (that is, within an individual job). To use it, you set it equal
to a string that contains a routine name in the form | abel ~r t n. The server evaluates the variable when an error occurs.
If the variable is not empty, the server then calls the routine. If the variable is empty, the server continues to its next step.

You use this hook to specify additional error processing. For example, you can extend the error message. Your function
can use the local variables error and errorcode in any way, provided that it does not render them unusable by the rest of
the error-handling routine. (That is, the variables must still be defined and must still be text and a number that fits in two
bytes, respectively). For example, your code could change or expand the error number or text for better use by the client
application code.

3.3The Keep Alive Feature

In a client/server application, there are many ways for the client and server to lose connection with each other. Caché Direct
provides a way for the client and server to periodically check the connection and to respond appropriately if it has been
lost. For the server, shutting down gracefully is the only meaningful response. For the client, however, you might want to
establish a new server connection, for example, or display a message for the user.

This feature includes the following elements:

22 Using Caché Direct

The Server Read Loop and Quit Check

* Aninitial setting of the keep alive interval, discussed in the following section.
» Properties on the client that specify the keep alive interval and timeout, discussed in a following section.
» The ShutDown event on the client, discussed in a following section.

» A hook on the server to which you can add your own processing. The ShutDownHook is used any time the server is
shut down; for information, see the section Other Server-side Hooks (Global Variables), later in this chapter.

3.3.1 Initial Keep Alive Interval

The server shuts down if it has not received a message from its client within five keep alive cycles. When the server starts
up, its initial KeepAlivelnterval is 17280 seconds (1/5 of a day). So, by default, the server will shut down if it has not heard
from its client in five keep alive cycles of 17280 seconds each (a total of 86400 seconds/24 hours). A lower setting like
300 (5 minutes) would usually be reasonable.

3.3.2 Keep Alive Settings (Client)
The client controls the keep alive interval and resends this value each time it sends a keep alive message to the server. The
VisM has two properties that control the keep alive behavior:

* The KeepAlivelnterval property specifies the communication idle time in seconds, for the purpose of the keep alive
mechanism. When no client/server communication has occurred for this many seconds, the client sends a keep alive
message to the server. If the client does not receive a reply within the period specified by KeepAliveTimeOut property,
the client fires its ShutDown event. If it does receive a reply, it waits again and sends another keep alive message.

e The KeepAliveTimeOut property specifies a timeout for the keep alive round trip, which should be shorter than the
general timeout period, TimeOut.

3.3.3 Shutdown Event for Keep Alive Failure (Client)

If the client does not receive a response to its keep alive message as noted previously, the client then does the following:
1. It changes the value of the ConnectionState property.

This property always indicates the state of the connection. If ConnectionState is a zero, the connection is OK or a
successful disconnect has occurred. If the property is nonzero, then it indicates the time of day (in seconds since midnight)
when the server was lost. (This is the same as the second piece of $Horolog. The day is not indicated,; it is presumed
to be recent.)

2. It then fires the ShutDown event, passing one argument to this event, namely, the current value of the ConnectionState
property.

If the client attempts to send a message after the connection is lost, a <ServerLost> error results.

Note: This event is triggered only if the client does not receive a response to its keep alive message as noted previously.

3.4The Server Read Loop and Quit Check

After a Caché Direct server process has been established, it waits in a polling loop that begins with a timed read, listening
for communication from the client. The read timeout is ten seconds. If the read is completed before the timeout, the server
processes the client communication, writes the response message back to the client, and returns to the start of the polling

Using Caché Direct 23

Additional Features

loop. If the timeout expires first, however, the server follows a specific procedure to determine whether this server process
should shut down, as described next.

3.4.1 Server Quit Check Procedure

If the read loop times out, the server follows a specific procedure to determine whether this server process should shut
down. If the server determines that it should shut down, it calls the ShutDownHook, performs any processing specified
there, and then shuts down. Otherwise, it continues to the next step in the quit check procedure.

Several of the server-side hooks appear within this procedure, which is roughly as follows:

1. Call the function named by the local idle-time hook (%cdPULSE), and, if requested, perform idle-time processing.
If the function returns 0, the server continues the server quit check procedure. If the function returns 1, the server shuts
down.

2. Call the function named by the global idle-time hook (IdleHook), and, if requested, perform idle-time processing. If
the function returns 0, the server continues the server quit check procedure. If the function returns 1, the server shuts
down. For more information, see the section Other Server-side Hooks (Global Variables), later in this chapter.

3. Calculate the amount of time since the last communication from the client. If more than five keep alive intervals have
passed without any communication from the client, the server shuts down.

4. Check to see whether the system has received a shutdown signal. If so, the server shuts down.

5. Check to see whether the server has received the Stop”~%CDSrv command. If so, the server shuts down all Caché
Direct server jobs.

6. Check to see whether the server has received the StopJob”"%CDSrv command. If so, the server shuts down the
specified server job.

7. Check to see whether the slave server should quit. If so, the server shuts down.

Note: At any step, if the check indicates that the server should shut down, the server calls the shutdown hook
(ShutDownHook), performs any processing specified there, and then shuts down.

3.4.2 %cdPULSE Local Variable

This %cdPULSE hook is present only as a local variable (that is, within an individual server job). To use it, you set it
equal to a string that contains a function call in the form $$1 abel ~r t n. The server evaluates the variable at a specific
time as described in the previous section. If the variable is not empty, the server then performs the designated function call
and quits if the result isnot 0 or " " . If the variable is empty, the server continues to its next step.

3.5 Read and Write Hooks

As noted earlier, Caché Direct provides hooks that you can use to insert processing just before messages are sent (a write
hook) and just after they are received (a read hook). You can use these hooks for such tasks as custom logging, compression,
encryption, or any other purpose chosen by the application. The write hook on the client is paired with the read hook on
the server, and vice versa. If a write hook transforms a message, the corresponding read hook should ensure that the message
is back in the format expected by Caché Direct.

Note: Expected Message Format

The first four bytes of the message are a 32-bit integer that contains the length of the message. You must be sure
to update this if you change the length of the message.

24 Using Caché Direct

Other Server-side Hooks (Global Variables)

It is the responsibility of the programmer to ensure that the server and client routines correspond appropriately with each
other.

3.5.1 Server-side Read and Write Hooks

The hooks on the server side use the same general mechanism as other server-side hooks. For details, see the section Other
Server-side Hooks (Global Variables).

3.5.1.1 ReadHook

You use this hook to specify processing that the server should perform right after it receives an ExecuteCode message. The
server calls this hook as soon as it receives an ExecuteCode message from the client, before assigning values to the mirrored
properties.

Your function uses the local variable named %cdMSG, which contains the incoming message. The function should perform
its actions and return the converted message. If the message was not changed, just quit: Qui t ~%dMSG

3.5.1.2 WriteHook

You use this hook to specify processing that the server should perform before it sends a response to the client. The server
calls this hook just before it sends the message to the client.

Your function uses the local variable named %cdMSG, which contains the outgoing message. The function should perform
its actions and return the converted message. If the message was not changed, just quit: Qui t "% dMSG

3.5.2 Client-side Read and Write Hooks

On the client side, you install the hooks by creating a DLL named CDHooks.dll (for 32-bit systems) or CDHooks64.dll (for
64-bit systems) in the same directory as the VisM.ocx or VisM64.ocx file, respectively. The hooks are entry points with
specific names and signatures, namely:

unsi gned char* ReadHook(unsi gned char* plnMsg);
unsi gned char* WiteHook(unsigned char* plnMsg);
voi d FreeHookMen(unsi gned char* pMen);

The ReadHook and WriteHook routines are expected to behave as follows:

» Take an input argument that is a pointer to a block of bytes, the incoming message.

* Return a pointer to a block of data.

» Return a pointer to the newly allocated data. (In that case, the client will copy the new data block and then free what

was returned with the FreeHookMem routine.)

If the return value is the same as the argument, then no memory will be freed. This case would be a situation where the
data was either not changed or occupies the same space as the original message. It is your responsibility to write client
routines that correspond appropriately with your routines on the server side.

The FreeHookMem routine is expected to free the memory allocated by the other routines.

3.6 Other Server-side Hooks (Global Variables)

This section provides reference information for other server-side hooks that are kept in a global variable.

* BeginTaskHook

Using Caché Direct 25

Additional Features

* ldleHook

e EndTaskHook

e ShutDownHook

All the hooks in this section use the same general mechanism. You specify a value for the global
~oeCDSwitch(*"HookName'), which should be a string that contains a function call in the form $$1 abel ~r t n. The server

evaluates the global at a specific time; see the Overview section of this chapter. If the global is not empty, the server then
performs the designated function call. If the global is empty, the server continues to its next step.

For all of these, execution takes place by indirection, as follows:

Set @"r="_AuCDSwi t ch(" HookNane"))

where r is the return value.

3.6.1 BeginTaskHook

You use this hook for activities such as adjusting protection parameters or changing namespace for the process. The server
calls this hook after creating the server job and before executing any code; see the Overview section of this chapter.

Your function can use the following local server variables as arguments:
» username — the Caché Direct username
» taskname — the name of the executable that is being run on the client, such as myapp. exe

» clientIP - the IP address of the client, in string form, such as 127. 0. 0. 1. This may or may not be useful, depending
on how the client is connected. For example, a non-TCP Citrix connection receives an artificial IP address to satisfy
the Caché licensing system.

Your function should return either:

e Success (the value 0)

» Failure (a string of the form ~errornumber”~errorname", where errornumber may not be 0). The range 20900-20999
has been reserved in the Caché Direct error numbers for application-created errors. In the case of failure, the error
number and text will appear in the VisM properties Error and ErrorName, and the error event will be signaled.

3.6.2 IdleHook

You use this hook to specify server-side processing to occur when the server is otherwise idle, for example, when the polling
read interval has timed out. The server calls this hook as part of its quit check procedure; see the section Server Quit Check
Procedure in the overview of this chapter.

3.6.3 EndTaskHook

You use this hook to specify any additional processing that the server should perform if it receives an EndTask message
from the client. This hook allows for any application cleanup.

3.6.4 ShutDownHook

You use this hook to specify any additional processing that the server should perform when it shuts down for any reason.
The server calls this hook whenever it shuts down.

The function should return either 0 (if the server should not shut down) or 1 (if the server should shut down).

26 Using Caché Direct

User Cancel Option

3.7 User Cancel Option

When VisM sends a message to Caché, the server may take some time to process the message request, which leaves the
user waiting for a response. If the delay is long, you can give users the option of canceling the request. To set this, you use
the Promptinterval property. This property specifies how long, in seconds, the client application should wait (if the server
has not yet responded) before displaying a prompt to the user. This prompt would give the user the option of waiting longer
or of canceling the activity. The MsgText property is a four-piece string that specifies the message to use in this situation;
for details, see the Other VisM Properties section of the chapter VisM.ocx Control Details.

Using Caché Direct 27

Best Practices

As a general statement, communications and CPUs are very fast. In particular, unless the tasks are large, the computer can
keep up with many users who are making small requests. However, the load on a client machine is only that imposed by a
single client. On the other hand, the load on the network and the server is the accumulation of all the clients at the same
time. So practices that increase message traffic, message size, or server load — even by a small amount — can have signif-
icant effects on overall throughput and capacity. Several of the following practices are aimed at minimizing these cumulative
loads and thereby improving the throughput, response time, or total capacity of the system.

4.1 Clear Unused Properties

Each time the client sends an execute message to the server, the message includes fields for the NameSpace, Code, VALUE,
PO through P9, and PLIST properties. The return message drops the NameSpace and Code fields and returns the new values
of all the other properties, whether or not they have changed. So the size of the message (and the time to assemble, transmit,
and disassemble the message) depends on the total size of the current values of all the properties. If there are many busy
clients, the effect on the network bandwidth and server capacity can become significant.

Although communications are fast and the messages relatively small, if you are sending many messages and speed is a
concern, it is good practice to clear any properties that are not being used in a given message so they do not consume
bandwidth. Remember that these VisM properties are intended for communication with the server and are inefficient as
longer term storage on the client.

Also remember that the mirrored properties cannot be used as storage on the server, since they are created and destroyed
for each message.

4.2 Disconnect Explicitly at Application Shutdown

While it is a small effect, if you shut down the client without first disconnecting from the server, you cause a TCP error on
the channel. This causes an 1/O error to be raised in the server code, which responds by shutting down the server job. (This
is considered a valid response because the server has no further use if it cannot communicate with the client.) It is good
practice to disconnect explicitly instead, allowing the server to shut down gracefully.

Using Caché Direct 29

Best Practices

4.3 Recursive or Asynchronous Server Calls

All communication on each server channel is synchronous, that is, each message must be sent and received before the next
message can be sent. (This requirement is enforced by Caché Direct, which will return an error condition if you try to send
a message while another is pending.) For the most common case of a single-threaded client and a single server, this does
not become a problem. However, there are ways around this safety — events that do not happen synchronously. Two of
these are timer events and the Visual Basic DoEvents() method.

4.3.1 Timers on the Client

A timer is, by definition, an asynchronous event. They can be set up so that they do not interfere with whatever other pro-
cessing is happening. For example, a timer could be set up to check on progress or if some event has happened on the server.
But if you send a message to the server that results in a long operation, you tie up that channel for the duration of the
operation. If you wish to check on progress, you must either have the server call back periodically and report progress or
have the client send an inquiry on a different channel. Another way to perform a long server operation that does not tie up
the client is to Job off a separate process to do the work and then return to the client. This does not require another channel,
but it does still require a separate job. If a timer goes off while a message is being processed, it can result in an attempt to
send another message. In this case, Caché Direct will reject the message with a “nonsynchronous communication” error.

4.3.2 Visual Basic DoEvents Function

Visual Basic has a built-in function, DoEvents, that is an explicit call to the Windows event loop. It is often used to allow
an immediate repaint while other operations are still in progress. The hazard appears if DoEvents causes a server message
while one is already in progress. (For example, DoEvents would allow the user to continue with another task. This task
could result in a server message.) In theory, this can only happen in a callback. DoEvents is particularly onerous in this
case, since a new, recursive message will be sent to the server, probably destroying the context of the original message.
From there, it is a slippery slope. As a general rule, do not have a callback that calls DoEvents. If you do, the application
should have some sort of flag that disables user input or at least disallows calls to the server until the stack has been unwound.

30 Using Caché Direct

VisM.ocx Control Detalls

This chapter provides reference details for the Caché Direct ActiveX control (VisM.ocx). It discusses the following topics:
» Extended connection string syntax

e VisM properties

* VisM methods (including a comparison of the and methods)

* VisM events

This control is a wrapper for the C++ classes listed in a later chapter.

5.1VisM Extended Connection String Syntax

The Server property, Connect() method, and SetServer() method can all use a connection string, which is a pieced string
that uses a colon for the delimiter. Usually it has the following form (as described in Connection Strings and Connection
Tags):

"CN_I PTCP: server[port]"

The first piece of this argument, CN_| PTCP, is the connection method, which is always TCP. The second piece is the server
name or IP address and port where the Caché superserver is running. For example, you could use the following syntax to
set the connection of a VisM named VisM1:

Vi sML. Server = "CN_I PTCP: 127. 0. 0. 1[57772] "

5.1.1 Runtime Form of the Connection String

For historical reasons, the connection string can have a slightly different form at runtime. Specifically, if you are connected,
the connection string has an odd number of pieces, because Caché Direct inserts a third piece to this property, after the
superserver information, as follows:

"CN_I PTCP: server[port]:slaveserver[port]"

This new third piece indicates the slave server to which you are connected. It has the same form as the master server piece.
If you are not currently connected, this property is empty.

Usernames and passwords cannot contain characters that are used as delimiters in the connection string. These include the
colon (*: ", the $Piece delimiter), and square brackets (“[" and "] ", used to separate the port number).

Using Caché Direct 31

VisM.ocx Control Details

5.1.2 Other Forms of the Connection String

The connection string can include the username and password; these are used only if you have enabled the Caché Direct
login option. This login option has been rendered obsolete by Caché security and is thus not documented apart from this
mention.

CAUTION: Use of this form is discouraged. If you include a password in the connection string, your Cachg is suscep-
tible to any simple attack.
The connection string can include the username and encrypted password as follows:

"CN_I PTCP: server [port]: usernane: password"

In this case, if you are connected, the connection string would have the following form at runtime:

"CN_I PTCP: server[port]:slaveserver[port]: usernane: password"

Alternatively, the connection string can include the username and unencrypted password. If you are connecting to a 5.2 or
later server, note that Caché requires the password in unencrypted format.

"CN_I PTCP: server [port]: usernane: @assword"

In this case, if you are connected, the connection string would have the following form at runtime:

"CN_I PTCP: server[port]:slaveserver[port]:usernane: @assword"

Note: Ifyourclientis 5.2 or later, then the client automatically uses your Windows authorization information (username
and password) for Kerberos validation if needed (see Connecting with an Indirect Reference for details on con-
nections that use Kerberos authorization). This supplements the Caché Direct login (rather than replacing it). If
Caché security is not turned on, then Caché Direct bypasses the Kerberos checking, but still passes the user-
name/password if they are given. The server then does whatever is switched on at that end.

5.2 VisM Properties

The VisM control has a set of properties that are mirrored on the server, as well as other properties.

5.2.1 Mirrored VisM Properties

Caché Direct mirrors the values of certain VisM properties between the client and server, as described in the section Mirrored
Properties in the chapter Basics of the VisM Control.

If you are using these properties for one-way communication — and especially if they are large — clear them before returning
values from the server. Otherwise, your application will waste communication resources. See the chapter Best Practices.
As with all other properties that the client sends to the server, the values must have only text characters; see the section
Unicode and Locale Issues in that chapter.

PO, P1, P2, P3, P4, P5, P6, P7, P8, P9

These properties are mirrored on the client and server. On the client, they appear as properties of the VisM control;
on the server, they appear as local variables, having the same values as the corresponding properties on the client.

32 Using Caché Direct

VisM Properties

PLIST

This property is mirrored on the client and server in a different manner. Because the client and Caché have different
representations of arrays, Caché Direct uses this property to pass array-like values between the server and client.
The property has a different form on the client and server. For complete details, see the section Using PLIST in
the chapter Basics of the VisM Control.

VALUE

This property is mirrored on the client and server in the same way as PO, P1, and so on, with one addition: If the
value of the Code property begins with a dollar sign or an equal sign, the server prepends “Set VALUE” or “Set

VALUE =" to the start of the Code property. This means that the result is returned in the VALUE property in such
a case.

5.2.2 Other VisM Properties

This section lists the other VisM properties (the properties that are not mirrored). Note that some of these properties are
sent to the server.
Code
Contains the line of ObjectScript code that is sent to the server for execution. As with all other properties that the
client sends to the server, this string must have only text characters; see the section Unicode and Locale Issues.
ConnectionState

This property always indicates the state of the connection. It is used in conjunction with the keep alive feature and
tells an application whether the client has had a communication failure and, if so, when the connection was broken.

If ConnectionState is zero, the connection is OK or a successful disconnect has occurred. If the property is nonzero,
then it indicates the time of day (in seconds since midnight) when the server was lost. (This is the same as the
second piece of $Horolog. The day is not indicated; it is presumed to be recent.) This property is a long integer.

ConnTag

Runtime only. Indicates the tag of the CDConnect to which this VisM is connected. If you change this property,
you change the tag of the associated CDConnect itself, rather than changing the connection. This property is mainly
useful for informational purposes. Note that if this property is an empty string, either there is no connection or
there is a connection but no tag is associated with it.

ElapsedTime

Indicates how long it took Caché Direct to process the last message; this is the time from when the client sent the
message to the time when the client received a reply. This property is read-only at runtime.

Error
Contains an error number. If it is zero, no error has occurred. This property is read-only at runtime. See the
description of the ErrorName property, next.

ErrorName

A string describing an error that has occurred. If it is empty, no error has occurred. This property is read-only at
runtime.

Using Caché Direct 33

VisM.ocx Control Details

The Error and ErrorName properties are set after every server call. If the call is successful, Error is set to 0 and
ErrorName is cleared. If an error is reported from the server, the error number is set into Error and a short
description is set into ErrorName. While these are not always fully distinctive or descriptive, they still allow the
client portion of the application to inform the user that something has gone wrong and to take some action.

Note that errors reported at this level are errors noticed by the server, usually programming errors such as
<SYNTAX> or <UNDEFINED>. Logical errors, inconsistencies, and others noticed by the application code
should be reported by the application in its results. There are features in the server that allow an application to
return error conditions through the Error and ErrorName properties.

ErrorTrap

Controls the handling of communication errors. There are two classes of errors that may occur in a Caché Direct
application: errors in the communications process itself, and errors that occur in the application and are reported
back to the client.

» Application errors are always reported through the Error and ErrorName properties and the OnError event.

e Communication errors are reported differently, depending on the value of ErrorTrap. If ErrorTrap is False,
communications errors are handled with a message box, warning the user of a problem. If ErrorTrap is True,
communications errors are reported through the Error and ErrorName properties and the OnError event. The
application can then handle them any way you choose.

For historical reasons, the default value for ErrorTrap is False. You should usually set ErrorTrap to True before
trying to connect to Caché from the VisM.

This matters only if the application is running without a user or if you want the application to handle such errors
automatically.

ExecFlag

A switch that controls when the line of code in the Code property is executed. Its default value is 0, indicating that
the client is idle and not sending messages to the server. Possible values:

* Assoon as you set ExecFlag to 1, the server executes the line of code in the Code property once (in the context
of the PO-P9, VALUE, and PLIST properties). After the server returns, it resets ExecFlag to 0. (You might
find the Execute() method more convenient than this setting.)

» If ExecFlag is set to 2, this means “execute on reference.” That is, any reference to the VALUE property is
preceded by an automatic call to the server to execute the code in the Code property. This is useful if the Code
property is an expression that represents the current state of something on the server and that you would like
to execute again every time you need it. For example, if the Code property were "=$$GetNext"mydata”, then
the following Visual Basic code could be used to retrieve an array of data from the server:

For i =1 to 1000 array(l) = VisML. VALUE Next i

» If ExecFlag is set to 3, this means “execute on interval timer.” In this case, a timer (with the interval given
by the Interval property), causes the Code to be executed each time the timer goes off.

A common use of the timer option is to do something periodically and use the Executed event to respond after
each execution. To use the timer option, use the following overall flow:

1. Set ExecFlagto 0.

2. Setvalues for all the relevant mirrored properties and for the Interval property.

3. Then set ExecFlag to 3 to switch on the timer.

34

Using Caché Direct

VisM Properties

Remember that all communication with the server is synchronous. The client must receive the reply to the current
message before sending the next message. Using timers can occasionally cause the client to try to send a nonsyn-
chronous message. For example, a user might perform an operation that generates a message while a timer-generated
message is in progress. In this case, the client will receive a “nonsynchronous message” error, and the message
will be not be sent.

Interval
The number of milliseconds between automatic execution of the Code property. The default value is 1000 millisec-
onds (= 1 second). See the ExecFlag property for value 3.
KeepAlivelnterval
Specifies the interval between automatic keep alive messages from the client. It is an integer number of seconds.
These messages are sent whenever the client is otherwise idle and the interval has expired.
KeepAliveTimeOut

Specifies how long the client waits for a reply from the server, after sending a keep alive message to the server.

LogMask

Used for debugging on the client side. This is a 32-bit integer property, with each bit assigned as a flag for a par-
ticular type of logging. If logging is on at any time during the run of a process, a text log file will be created in
the same directory from which the executable is run. Its name will be CDxxx.log, where xxx is the next available
sequential number, starting at 000. (So, the first time a log is created, it will be CD000.log.) . The log is closed
when the process exits.

To enable client-slide logging, turn all the bits on by setting the value of this property to 2,147,483,647 (231 -1).
In Visual Basic, you can use &H7 FFFFFFF, which is the hexadecimal representation of the same number. To
turn off logging, set the value to 0.

The contents of the log are best interpreted by InterSystems personnel, but they include a trace of most of what
happened to the VisM and a full dump of all the messages sent to and received from the server. It tends to err on
the side of too much information rather than too little. If it is needed, it can be very helpful as a real-time record
of what actually happened.

MServer

Has the same purpose as the Server property and can be set to any of the same values as that property. This property
is provided only for backward compatibility and should not be used in new applications. See the appendix Notes
for Users of the Previous Versions.

MsgText

A four-piece string that specifies the message to display when asking the user whether to cancel (see the
Promptinterval property). This property must be a string of the form:

"pronpt _nessage|title_text| OK button_text|Cancel _button_text"

The message dialog box that is displayed has a window title (as given by title_text) and longer message (as given
by prompt_message). The dialog box also has two buttons that have text labels.

» If the user clicks the button that is labeled with OK_button_text, the dialog box is closed and the query is not
interrupted.

» If the user clicks the button that is labeled with Cancel_button_text, the dialog box is closed and the query is
interrupted.

Using Caché Direct 35

VisM.ocx Control Details

The default value of this property is as follows:

"This may take a while. Do you wish to wait?|
Communi cations|Wait for Reply|Cancel Wait"

When you set this property, you can omit any piece. The client uses the default for any string piece that you omit
or that you set to a zero length string.

NameSpace

Establishes the namespace context of the routines and globals referenced by the application code. The default

value is the empty string. In that case, the routines and globals are referenced in the namespace in which the server
is running. When the execution message arrives at the server, if the NameSpace property is not empty and is dif-
ferent from the current namespace, the namespace is changed as indicated. This occurs before the code is executed.

Remember that there is a significant cost to changing the namespace; see the chapter Best Practices.

PDELIM

The delimiter string used with the PLIST property; see the section Mirrored VisM Properties. It is read/write at
runtime, which means it cannot be set at design time. For historical reasons, the default value is the string $C(13,10).
If it is set to the empty string, there is effectively no delimiter and PLIST is taken as a single element. Note that
this property is not sent to the server.

Promptinterval

Server

Tag

Specifies how long to wait, in seconds (not milliseconds), before asking whether the user wants to keep waiting
or cancel the activity (which is typically a long query). This prompt is displayed only if the server has not yet
replied. This prompt would give the user the option of waiting longer or of canceling the activity. The MsgText
property specifies the text of the message to display in this case. If the property is zero or negative, the user is
never prompted; the default is zero.

This property serves two purposes.

* You set the property to connect to a particular server or to disconnect from the currently connected server.

» Atruntime, you can get the property to see what server the client is connected to; in this case, the property
value has a slightly different form.

You can set this property to a connection string, a connection tag, a quoted question mark, or an empty string. For

details on connection strings, see the section VisM Connection String, earlier in this chapter.

Setting the Server property has the same effect as calling the SetServer() method. See the section Comparison of
Connection Methods, later in this chapter.

Not used by Caché Direct. This property exists for compatibility with Microsoft Visual Basic conventions. You
may use it any way you wish.

TimeOut

The integer number of milliseconds that the client will wait for a reply from the server. The time is measured from
just after the message is sent through TCP to when Windows reports that data has been received. When the timer
goes off, meaning that no reply has been received within the allowable time, the connection is broken, which
normally causes a TCP error on the server, causing it to shut down. The client then regains control with an error

36

Using Caché Direct

VisM Methods

condition that can be handled. If the application wishes to proceed, it should create a new CDConnect, which will
create a new slave server job, with access to the globals (naturally), but none of the local state of the old server
job.

If this property is negative or zero, the client will wait forever for a return message. The default value is 60000
(60 seconds).

5.3 VisM Methods

The VisM control provides the following methods:

Connect

Connects this VisM to the specified Caché server, creating a new CDConnect if needed. Use any of the following
syntaxes:
Connect (connection_string, tag)
Connect (connecti on_string)
Connect ("?", tag)
Connect (" ?")
)

Connect (tag
Connect ("")

connection_string A string of the form CN_I PTCP: server_name[port] where
server_name is the DNS name or the IP address of the machine
that is running Caché and port is the port that the Caché superserver
is using. Also see the section VisM Connection String earlier in this
chapter.

tag An optional string that acts as the name for the newly created
CDConnect object. Note that it is your responsibility to make sure
that each tag is unique within a given client process, at any time.

In this case, VisM connects to most recently opened CDConnect,
after first disconnecting if applicable. The original CDConnect is not
changed.

For details on the behavior, see the subsection Comparison of Connection Methods.

DeleteConnection

Disconnects from and destroys the CDConnect connected to this VisM, and shuts down the server job.

Execute

This method is a shortcut way of setting the Code property and calling the server. It is exactly equivalent to saving
the Code property, setting the Code property to the argument to the Execute method, setting the ExecFlag property
to 1 to cause execution, and then restoring the Code property to what it was before the call. All error trapping and
execution of the OnError and Executed events occurs in the same way.

LoadRtnFromFile

Obsolete. Do not use.

Using Caché Direct 37

VisM.ocx Control Details

LoadGblFromFile

Obsolete. Do not use.

SetMServer

Has the same purpose as the SetServer() method. This method is provided only for backward compatibility and
should not be used in new applications. See the appendix Notes for Users of the Previous \ersions.

SetServer

Closes the existing connection for this VVisM and creates a new connection, as specified. In contrast to the Connect()
method, the SetServer() method can change the channel of an existing CDConnect. Use any of the following

syntaxes:

Set Server (connection_string, tag)
Set Server (connecti on_string)

Set Server ("?",

Set Server (" ?"
Set Server (tag
Set Server ("")

connection_string

tag

t ag)

A string of the form CN_I PTCP: server_name][port] where

server_name is the DNS name or the IP address of the machine that
is running Caché and port is the port that the Caché superserver is
using. Also see the section VisM Connection String earlier in this

chapter.

An optional string that acts as the name for the CDConnect object.
Note that it is your responsibility to make sure that each tag is unique
within a given client process, at any time.

In this case, VisM disconnects from the CDConnect, leaving its

channel alone.

For details on the behavior, see the subsection Comparison of Connection Methods, next.

5.3.1 Comparison of Connection Methods

The following table describes the actions of the SetServer() and Connect() methods.

First Argument

Connection string

Connection tag

SetServer Method

Action depends on whether already
connected:

* If not yet connected, connect to this
server

« Ifalready connected, change chan-
nel of the CDConnect (and shut
down old server process)

Connect to specified CDConnect
(disconnecting first if already connected,;
original CDConnect is not changed)
[permitted as of Caché version 2007.1]

Connect Method

Action depends on whether already
connected:

» If not yet connected, connect to this
server

» If already connected, disconnect from
the original CDConnect and connect
to a new CDConnect (original CDCon-
nect is not changed)

Connect to specified CDConnect
(disconnecting first if already connected;
original CDConnect is not changed)

38

Using Caché Direct

VisM Events

First Argument SetServer Method Connect Method
Empty string Disconnect from the CDConnect, Connect to most recently opened
leaving its channel alone CDConnect (disconnecting first if already
connected; original CDConnect is not
changed)
Quoted question Prompt user for a server and then: Prompt user for a server and then:
mark < Ifnotyet connected, connectto this | « If not yet connected, connect to the
server specified server
« Ifalready connected, change chan- | « If already connected, disconnect from
nel of the CDConnect (and shut the original CDConnect and connect
down old server process) to a new CDConnect (original CDCon-

nect is not changed)

Setting the Server property has the same effect as calling the SetServer() method.

Note that multiple VisMs sharing a single CDConnect should not try to communicate simultaneously. If they do, you will
get a "nonsynchronous communication error" message.

5.4VisM Events

VisM has events that are fired after a line of code has been executed. You may attach code to these events to simplify the
operation of the client.

Executed
This event is fired after every attempt to execute code on the server, whether successful or not. If an error occurred,
the OnError event is fired before the Executed event.

OnError

This event is fired any time the server reports an error to the client (that is, whenever the Error and ErrorName
properties are set to non-empty values). If the error occurred while trying to execute some code, OnError is fired
before the Executed event.

ShutDown

This event is fired if any server message times out or if the server indicates it is in the process of shutting down.
Your application can use this to inform the user, perform a graceful shut down, or attempt a reconnection. The
integer argument to this event is the value of the ConnectionState property, the time when the server was lost.

Once a connection has been lost, further attempts to send a message result in a <ServerLost> error.

Using Caché Direct 39

Using Cache Direct in Non-ActiveX
Applications

This chapter describes how to use Caché Direct properties and methods from an application such as C++ that does not use
ActiveX (where you do not have VisM.ocx). It assumes you have a good understanding of programming in other languages.

6.1 General Procedure

The overall procedure is as follows:

1. Getthe Caché Direct header files (.h) from the InterSystems InterSystems Worldwide Response Center (WRC). These
files define the C++ classes that provide Caché Direct capabilities.

2. Include these files in your application source code.

3. Toreproduce the functionality of the VisM object, have your code create an instance of the CDLink class and an instance
of the CDParms class. In general:

» CDLink includes properties such as timeouts and error properties and methods for managing connections to Caché.
These are the same as the corresponding properties of the VisM control.

» CDParms contains all the properties that the client sends to the server. These properties are also the same as the
corresponding properties of the VisM control.

4. Set values of properties and execute methods as needed. The same rules and considerations apply in this case as with
the VisM control.

6.2 Recommendations

The header files provide a lot of information about the Caché Direct classes, but not all these classes are suitable for direct
use. The first recommendation is to use only the CDLink and CDParms classes. These classes expose the appropriate
methods of the lower-level classes and ensure that connections are managed correctly. You should ignore classes other
than CDLink and CDParms.

The second recommendation is to use the CtrlExec1() method of CDLink, rather than the CtrlExec() method. The former
method is designed for use with the CDParms class, which you use as a container for the mirrored properties.

Using Caché Direct 41

http://www.intersystems.com/support/cache-support.html

Using Caché Direct in Non-ActiveX Applications

6.3 Notes

For reference purposes only, you may find it helpful to understand the organization of the Caché Direct classes. First, the
primary classes are as follows:

The CDLink class represents the client. The VisM control is a wrapper around this class. This class exposes the common
properties and methods that would be needed by any client. Properties include timeouts, callback function pointer, the
CDMsg object, Error, ErrorName and ErrorTrap, keepalive, client tag. Methods include those to manage its own
properties and those of its CDConnect object, which it creates as needed. Each CDLink may be attached to zero or one
CDConnect.

The CDConnect class represents the CDConnect object, as described earlier in this document. It includes linkages to
the underlying communications DLLs, either the older NTI DLLs or the newer CConnect.dll that manages Kerberos
security. It also provides the client side of the read/write hooks. It holds the basic static client information, such as the
executable name and signature, and the user and client machine names. It handles the communications threading,
timeouts, and the keep alive facility. It provides basic methods like Connect, Send and SendKeepAlive, Receive, and
Disconnect, and exposes the Server property and other properties to its clients. It also exposes server properties like
whether it is a Unicode server, and the address and port of the server. It keeps a list of its zero or more attached CDLink
clients.

There is also a helper class, CDMsg, that knows how to compose and decompose messages in the proper format. CDMsg
provides methods like Init, AppendField, and GetField. The CDLink includes a CDMsg for building messages from
its client. There is also a CDMsg in the CDConnect, used for messages which it constructs itself, like the Task and
KeepAlive messages.

To support direct access, there are also some helper classes:

The CDProp class defines some data types and provides conversion methods for them. It is used to represent a single
mirrored property.

The CDParms class is a container for all the VisM properties that the client sends to the server: the mirrored properties
and a few additional properties. Internally, this class contains multiple instances of CDProp.

Each CDProp contains a single property. CDParms is a collection of all the CDProps for one client.

42

Using Caché Direct

Logging

In rare situations, you may want to enable client or server logging, particularly to diagnose problems. The server also records
all error traps in its error global.

7.1 Client Logging

You can enable client logging in two general ways:
» By setting the LogMask property of VisM.ocx. This property overrides any registry settings.

» By setting the registry switches. The registry settings act as defaults if the property is not set. The registry switches
provide precise control over what client processes create logs. Specifically, the switches can now reside in either the
HKEY_CURRENT_USER hive or the HKEY_LOCAL_MACHINE hive, and can be modified so that logging only occurs
for a particular user, or application program, or combination of the two. The choices are searched in a hierarchy, from
most specific to most general, so that general switches can be overridden by more specific ones for special purposes.

In addition, Caché Direct provides routines to set and get these registry entries, so they can be manipulated easily under
program control.

7.1.1VisM LogMask Property

You can directly set the LogMask property of VisM.ocx. To enable logging, set this property equal to the integer value of
0x7FFFFFFF (for C++) or &H7FFFFFFF (for Visual Basic). For example:

Vi SML. LogMask = Val (&H7FFFFFFF)

The decimal integer corresponding to this hex value is 2147483647.
To disable logging, set the property to 0. This property overrides any registry settings.

7.1.2 Registry Switches

The client logging switches are registry key values with the following names:

* LogMask is a bit mask that indicates whether logging should take place or not. It takes the same values as the LogMask
property described in the previous section, VisM LogMask Property.

Using Caché Direct 43

Logging

* LogFolder allows the logs to be directed to a specific folder. The default is the folder that contains the main executable
for the application. The default applies if the value is not given or if it is blank. Also see the section Limiting the Size
of the Log Files, later in this chapter.

The switches are located under the key hivename/Software/InterSystems/Cache, where hivename is either:
e HKCU (the HKEY_CURRENT_USER hive)

* HKLM (the HKEY_LOCAL_MACHINE hive).

In addition, for a specific user running a given application, three other versions of each value are available. They are named
by concatenating the user and/or application name to the basic value name. For example, if the username is Joe and the
application name is MyApp. exe, you could also have values named LogMaskJoeMyApp, LogMaskJoe, and
LogMaskMy App, which would be checked in that order. Each would be checked first in HKCU and then in HKLM. The first
one found would be used. Similarly, there could be values named LogFol der JoeMyApp, LogFol der Joe, and

LogFol der My App.

7.1.3 Getting and Setting the Registry Values

Four client-side routines are available to set and get these registry values. They are exposed by the ISLog.dll file. Their C
signatures are as follows:

DWORD Get RegLogMaskEx(LPCSTR pUser nane, LPCSTR pAppnane);

DWORD Set RegLogMaskEx(HKEY hi veKey,
LPCSTR pUser nane,
LPCSTR pAppnane,
DWORD dwivask) ;

int Get RegLogFol der Ex(LPCSTR pUser nane,
LPCSTR pAppnane,
LPSTR buf,
int buflen);

voi d Set RegLogFol der Ex(HKEY hi veKey,
LPCSTR pUser nane,
LPCSTR pAppnane,
LPSTR buf);

In each case, if pUsername or pAppname are null or empty strings, those arguments are not used. If those arguments are
given, the Get_ routines will search through the appropriate combinations, returning the first one found, if any.

For example, if you call GetRegLogMaskEx(NULL, “Joe”, NULL), it will first look for LogMaskJoe in HKCU and
HKLM and then LogMask in HKCU and HKLM, returning the first one found, or O if none are found. If both pUsername and
pAppname are given, then all four combinations will be searched, in the order given above.

For the SetRegLogMaskEx and SetRegLogFolderEx routines, if HKCU or HKLMis given for the first argument, then that
hive will be set. If no hive is given, then HKLM, the default, will be set.

SetRegLogMaskEX returns any previous value of the key it is setting.

GetRegLogFolderEx returns the length of the folder name it finds, and 0 if none is found.

7.1.4 Limiting the Size of the Log Files

Two client-side registry settings (LogSizeLimit) can prevent the log files from becoming too large. The switches are located
under the key HK/Software/InterSystems/Cache, where HK is either HKCU or HKLM as before.

This setting specifies the maximum size of any log file, while the client is writing to the log. When the log reaches that
size, the client starts writing to a new log file. If there was a previous older log file, it is discarded, so that there are never
more than two log files. When the client shuts down, the two existing log files are combined, and the resulting log can be
up to two times the value of LogSizeLimit, but never more than that.

44 Using Caché Direct

Server Logging

The start of the log file will contain basic information about the session, followed by a divider labeled with the string Sni p,
followed by the most recently logged activity.

7.2 Server Logging

If you enable server logging, the logs will contain a trace of the activity in the server portion of the slave server job,
including all the messages that went between the client and server. To enable server logging, use the Terminal to enter the
following command:

Set "UCDLOG=1

After you enable logging, any new Caché Direct server job creates a text log file, usually in the mgr directory, named
CDxxx.log, where xxx is the $Job of the job for which the log is created. Each new job gets its own log file. Once the switch
is on, run whatever tests you like.

The switch is checked only as the slave server job starts. If the switch is changed after that, it has no effect on jobs that are
already running. So logging cannot be turned either on or off after a job starts.

When the tests are over (or at least started), turn the switch off by setting it to an empty string or by killing it:

Kill "oCDLOG

CAUTION: This switch is global and thus affects all new jobs. Also, the logs can get very large. Therefore, it is a good
idea to perform logging as briefly as possible, especially if the server is not dedicated to the tests. You
could automate the process from the client, running a Caché Direct job that turns on the switches just before
the test itself starts and a similar job that turns them off just after the test starts. This could even be part of
the test itself, setting the switches, reconnecting by resetting the Server property (which will start a new
server job), and then turning off the switches as the first activity after reconnecting. For example, if the
client is a Visual Basic application, it might start up with code like this:

Vi sML. Execute "Set ~%CDLOG=1"

reset to the sane value as before then start a new job
Vi sML. Server = Vi sML. Server
Vi sML. Execute "Kill "%CDLOG'

7.3 Server Error Global

Independently of the server logging that is mentioned above, the server keeps an internal server error log in the global
%CDServer(""Error"). This contains all trapped errors.

Note that if this log includes a line that says “emergency brake,” that indicates that the server detected an infinite error
loop (five or more errors within a second).

Using Caché Direct 45

Installation and Upgrade

Caché Direct is installed automatically when you install Caché. Sometimes, however, you may want to upgrade the server
without reinstalling Caché or you may want to install the client-side software on a machine where Caché is not installed.
This appendix describes how to do both of these things.

A.1 Upgrading Your Caché Direct Server

Caché Direct uses a server that is automatically installed with the rest of the Caché installation, but you can upgrade it
easily without performing a new Caché installation. The Caché Direct server code is built to be backward compatible with
older clients and all platforms. This means that you can upgrade the Caché Direct server to correct problems or install new
features without other major upgrades.

To upgrade your Caché Direct server:

1. Get the latest Caché Direct encrypted text file for your platform from the InterSystems InterSystems Worldwide
Response Center (WRC) and place it on the Caché server machine. This file has the extension .enc.

2. Stop any running Caché Direct jobs.

3. Inthe Terminal, enter the following command:
Do rload™%CDCrypt(<path_to_.enc file>[,password])
For example:

Do rl oad %CDCrypt (" C:\\tenp\\ CDCache. enc", " SYS")

This decrypts the source, loads the resulting .int code, compiles it, and destroys the source. The optional password is for
the case where the server source is to be preserved. It is usually left off. If the password is provided and is correct, the .int
source is retained. If you need to perform some activity that requires the source (such as debugging or testing changes),
you can get the password from the InterSystems InterSystems Worldwide Response Center (WRC).

A.2 Installing VisM on a New Machine

The easiest way to install VisM is to install the Caché client software as usual. You can, however, install the Caché Direct
client software manually. To do so:

Using Caché Direct 47

http://www.intersystems.com/support/cache-support.html
http://www.intersystems.com/support/cache-support.html
http://www.intersystems.com/support/cache-support.html

Installation and Upgrade

1. Make sure that you have installed the Microsoft Visual 2008 Redistributable Package, which is needed in order to
register the VisM DLLs.

2. Copy the following files from a machine where the client is installed:
» For Caché Direct before version 5.1 32-bit systems

NTLdII

NTIHPTCP.dII

Cmvism32.dll and all files with similar names

ISLog.dll
VISM.ocx

* For Caché Direct 5.1 and later 32—bit systems

cconnect.dll

Cmvism32.dll and all files with similar names

ISCDLink.dll

ISLog.dll
VISM.ocx

» For Caché Direct 5.1 and later 64-bit systems

cconnect64.dll

Cmvism64.dll and all files with similar names

ISCDLink64.dll

ISLog64.dlI
VISM64.0cx

Copy the files from the directory C:\Program Files\Common Files\InterSystems\Cache and paste them into the same
directory on the target machine.

3. Open a command prompt, navigate to this directory, and enter the following command to register the ActiveX control
(must be run by a user with administator privileges):

For 32-bit systems

C: \ W ndows\ SysWOW64\ r egsvr 32 vi sm ocx

For 64-bit systems

C:\ W ndows\ Syst enB2\ r egsvr 32 vi snb4. ocx

48 Using Caché Direct

Notes for Users of the Previous Versions

Caché Direct is designed to be backward compatible, but in some cases there are behavior changes you should know about.
Some of the architectural changes are worth highlighting for users of previous versions, who may want to adapt their
applications to take advantage of the new features.

B.1 IPv6 Issues in Caché Direct

In the current release of Caché Direct, IPv6 address formats are fully supported. In particular, the Server/MServer property
of VisM.ocx allows IPv6 addresses within the same general connection string format as previously.

However, depending on how they are used by an application, there may be some hazards that need to be confronted.
Specifically, the connection string in Caché Direct is a colon-delimited expression of the following general form:

CN_| PTCP: server _addr ess[port]

where server_address is the master server and can be an IP address, a server DNS name, or the special name | ocal host .

On the return from setting the Server property (which is the mechanism to request a connection to the given server), the
property is reset to reflect the result of the connection attempt. If the attempt was successful, a last piece was added containing
the slave server address. In recent releases (since the introduction of the superserver), this piece was always the same as
the second piece, making it redundant. If the connection attempt was unsuccessful, the value of the property was changed
to the empty string, " " .

Potential confusion arises with IPv6 addresses, which contain colons in the server_address part. IPv6 also supports more
than one form of loopback address. Caché Direct supports all of these format variations. But, depending on the assumptions
made by application code, the new addresses could cause incorrect behavior. The following describes how Caché Direct
handles IPv6 addresses:

1. The connection string is still in the same general format, given above. It recognizes the extent of the server_address
by looking for the square brackets that enclose the port number.

2. IPv6 has its own loopback form (: : 1) and also supports IPv4-style and “mapped IPv4” address forms. These look
like::a.b.c.dand: : FFFF. a. b. c. d, where a. b. c. d are the decimal bytes of the IPv4 address and FFFF is the
two-byte sequence of all ones. So IPv4 loopbacks can be expressed as: : 127. 0. 0. 1 or: : FFFF. 127. 0. 0. 1 or
: : FFFF: 007F: 0100 (low bytes come first in the address). All of these loopbacks are equivalent and don’t represent
real addresses. In order to make meaningful comparisons, Caché Direct converts them all, whether from the registry
or explicitly from application code, to the name | ocal host , which is recognized by the connection software and
handled appropriately.

Using Caché Direct 49

Notes for Users of the Previous Versions

3. Caché Direct no longer appends a third redundant piece to the connection string if the address is in IPv6 format (i.e.,
contains any colons). If a connection is successful, the Server property will contain the server to which a connection
was made. For IPv6 format addresses, it will look like the simple form of the string it was given. For IPv4 or DNS
names, or | ocal host , it will still contain the redundant third piece to maintain backward compatibility with versions
of Caché prior to 5.1.

4. If the application code relies on colons only representing piece delimiters in an IPv6 environment, it will likely fail.
The general approach is that, if a human can easily recognize what is meant by the connection string, then the software
can, too. The parsing rules for the connection string are:

1. The first part is the same as always, CN_| PTCP: .

2. The next piece (the server, in IPv4 or IPv6 form, and port) is terminated by the closing square bracket after the port
number. This eliminates any confusion caused by colons in the address.

3. The inclusion of username and password in the connection string has been deprecated since the introduction of Cache
security. However, both parameters are still recognized and handled correctly by Caché Direct in the extended IPv6
format.

B.2 Previous Shared Connection Behavior

The old VisM control was a single-threaded, shared connection mechanism. It had an MServer property, which was shared
among all the VisM controls in the process. The property was actually a computed value that reflected the connection to
the server. If any VisM changed it, it disconnected from any current server and made a new connection to a new server
process. If it was set to an empty string, it disconnected from the server.

Communication occurred in a separate thread.

B.3 New Architecture

The new VisM control has a new internal structure with three layers: the VisM objects, the CDConnects to which they are
connected, and below that, the server processes that are attached to the CDConnects. The CDConnect has several qualities
that are particularly relevant to this discussion:

» The CDConnect can be connected to multiple callers. This means that multiple VisM clients can share the same server
process.

» The CDConnect can be disconnected from one server process and connected to another, bringing along all the callers
with it.
» The CDConnect does not have to be connected to any server process.

* There can be multiple CDConnects, each with its own server and VisM clients.

Because there are now three layers and because of how the CDConnect layer is designed, there is a great deal more flexi-

bility of Caché Direct applications. You can create client/server relationships that were not previously possible. Also because
there are simultaneous separate connections, you can have a multithreaded application. Each connection still has a separate
communication thread that it manages. Note that each connection must still be synchronous, because the server job itself

is single-threaded and can only handle one message at a time.

50 Using Caché Direct

Behavior Notes

B.4 Behavior Notes

Given the changes described here, a backward compatibility problem arises for some situations. The new VisM tries to
behave the same way for the most common cases. Where it can not, it tries to do the most expected thing.

This version of VisM provides a property called Server, which you use to connect to Caché. For backward compatibility,
VisM still has a property with the older name, MServer. In most situations, these properties are interchangeable. These
properties do behave differently in the case where the VisM control has not yet been connected to a server.

» Ifthe application gets the MServer property and the VisM is not yet connected, it will share the most recent connection,
if any, and return that as the MServer property.

» Ifthe application gets the Server property in the same situation, the VisM will not be connected, and the Server property
remains as an empty string.

If the application sets either the Server property or the MServer property, the behavior is as follows:

» If the VisM was not previously connected, a new connection is created, not affecting any existing VisMs or their con-
nections. This behavior is different from that of previous versions of Caché Direct.

« Ifthe VisM had previously been connected, the connection object that it is using (possibly shared with other VisMs)
will disconnect from its server and, if the connection string is not empty, connect to a new one. Only the VisMs that
are sharing the channel are affected. This is compatible with the older versions of Caché Direct, which would change
the server for all other VisMs.

Also, this version of VisM provides new methods, which you can read about in the chapter Basics of Using the VisM
Control. These methods are Connect(), SetServer(), and DeleteConnection().

As of Caché version 2007.1, you can use a connection tag as the first argument to SetServer(). You can also now set the
Server property (or the MServer property) equal to a connection tag.

B.5 Other Architecture Changes

» The Caché superserver now takes the place of the old Caché Direct master server routine. Formerly, the master server
would receive a request for a connection, spawn a slave server process on a new port, and redirect the caller to the new
port. The caller would disconnect from the master server and then connect to the slave server on the correct port.

Now the superserver receives a request for a connection, spawns a slave server process, and forwards the caller to this
process without any intermediate disconnection. No additional ports are used.

» If the Caché Direct server is a Unicode server, all messages are sent in Unicode, eliminating locale issues. (Note that
the same is not true for 8-bit servers; see Unicode and Locale Issues.)

» Depending on the version of Caché Direct you are using, this version may have more hooks for message handling,
controlling the client/server interaction, and so on.

» Caché Direct now provides transparent support for Caché security, so there is little need for the login hook
("%CDSwitch(**SecHook')) in the NewTask processing. The hook is still supported, but is no longer documented.

Using Caché Direct 51

Example: Visual Basic Printer Support

InterSystems can provide you with a Caché Direct sample that demonstrates callbacks by using the Windows default printer
(the VB Printer object) from ObjectScript. As a by-product, the sample will provide a Visual Basic form that can be included
into any project and used or expanded as necessary. The approach can also be easily extended to support the Screen and
Clipboard Visual Basic objects.

The sample routine prints itself to the Windows default printer, in several fonts, with comments italicized and page headers
and numbers in a different font. This is fairly simple to write and shows most of the printing capabilities you might need.
The printing model is that of Visual Basic (and Windows), not Caché. (Slash parameters to the Write command could be
implemented in a custom GBI device, but they would not provide any more capabilities or convenience than this sample.)
The one concession to Caché conventions is in the parameters of the Print method, which follow the ObjectScript model,
since it is both simpler and more familiar. Note that the arguments to the Print() method are quoted strings, because
ObjectScript variable names have no meaning to Basic.

C.1 Overview

A common way to execute Basic code from an ObjectScript routine is to put the code into the Click event of a button and
set the Value property of the button to 1. This causes the Click event to fire and the Basic code to execute. As a variation,
we can exploit the fact that there are other events that fire in response to other actions. In particular, the text control fires
a Change event in response to a change in the Text property. This is convenient because we can set the Text property to an
appropriate string in a single call from Caché and have the Change event code interpret it. The result, if any, will be returned
in the Tag property of the same text control. This approach can be used on a separate, hidden form, in a totally general way,
and all in Basic.

C.2 Internal Command Syntax

The sample includes a few simple ObjectScript routines to format command strings and send them to the Printer object.
The Text property contains a string consisting of a command and some number of arguments. The commands correspond
to the operations to be performed with the Printer object: setting and getting properties and performing methods.

C.2.1 Setting Properties

To set properties, use SetProp() followed by one or more comma-separated pieces of the form property _name=value. This
allows you to set multiple properties in a single call. For example, to access the Printerl instance directly, use this:

Using Caché Direct 53

Example: Visual Basic Printer Support

Set _Printerl1!txtPrint. Text="SetProp: Font Nane=Ari al , Font Si ze=12, Font Bol d=1"

Or to access the printer through the helper routine, use this:

Do Set Prop"%CDPrt (" Font Nane=Ari al , Font Si ze=12, Font Bol d=1")

C.2.2 Getting Properties

To get property values, use GetProp() followed by one or more comma-separated property names. The response to the
query will be set into the Tag property, in the same form as the SetProp() arguments. For example, to access the printer
directly, use this:

Set _Printerl1!txtPrint. Text="GCetProp: Font Nane, Font Si ze, Font Bol d"

Or to access it through the helper routine, use this:

Set prop=$$Get Pr op"%CDPr i nt (" Font Nane, Font Si ze, Font Bol d")

The Tag property is then set to a string of the following form:

"Font Nane=Ari al , Font Si ze=12, Font Bol d=1"

This property would also returned as the function result.

C.2.3 Executing Methods

The following methods are available in this sample: NewPage(), Scale(), TextHeight(), TextWidth(), Print(), and EndDoc().
Each of these methods has an equivalent command that you can execute through the helper routine.

The arguments to the Print() method follow ObjectScript format control conventions (as in the Write command), not Basic
conventions. For example, to access the printer directly, use the following:

Set _Printer1!txtPrint.Text="NewPage"

Set _Printerl!txtPrint. Text="Scal e: 0,0, 80,60" or "Scale"
Set _Printerl1!txtPrint. Text="TextHeight:"12""

Set _Printerl!txtPrint. Text="TextWdth:"50""

Set _Printerl!txtPrint. Text="Print:!,?8,""Sone text"""

Set _Printer1!txtPrint. Text="EndDoc"

To access it through the helper routine, use this:

Do NewPage”%CDPri nt

Do Scal er%CDPrint (0, 0,80,60) or Do Scal e*¥CDPrint()
Set ht =Text Hei ght A%CDPr i nt (" 12")

Set w d=Text W dt h"%CDPr i nt (" 50")

Do Print"%CDPrint("!,?8,""Sone text""")

Do EndDoc”%CDPr i nt

The arguments to the Print() method must be quoted strings, because ObjectScript variable names have no meaning to
Basic. See quot e”CDPr Test in the sample code for a routine that properly quotes strings, doubling up internal quotes.

54 Using Caché Direct

	Table of Contents
	About This Book
	1 Introduction to Caché Direct
	1.1 Concepts
	1.1.1 Terminology
	1.1.2 Communication Model

	1.2 Available Tools and Approaches

	2 Basics of Using the VisM Control
	2.1 Accessing the VisM Control
	2.2 Connecting and Disconnecting
	2.2.1 Connection Strings and Connection Tags
	2.2.2 Connecting to Caché
	2.2.3 Changing the Channel of a CDConnect
	2.2.4 Disconnecting from Caché
	2.2.5 Destroying a CDConnect
	2.2.6 Summary of Techniques

	2.3 Establishing the Namespace
	2.4 Executing Code
	2.5 Using Mirrored Properties
	2.5.1 Using Basic Mirrored Values
	2.5.2 Using PLIST

	2.6 Callbacks to the Visual Basic User Interface
	2.6.1 Requirements to Support Visual Basic Callbacks
	2.6.2 Referring to Properties of a Control
	2.6.3 Executing Methods of a Control

	2.7 Using Windows Functions and Caché Utility Functions
	2.8 Understanding Message Constraints
	2.8.1 Unicode and Locale Issues
	2.8.2 Message Size

	2.9 Examples
	2.9.1 Simple Example: A Lightweight Terminal
	2.9.2 Another Example

	3 Additional Features
	3.1 Overview
	3.2 Error Trapping
	3.2.1 %cdEHOOK Local Variable

	3.3 The Keep Alive Feature
	3.3.1 Initial Keep Alive Interval
	3.3.2 Keep Alive Settings (Client)
	3.3.3 Shutdown Event for Keep Alive Failure (Client)

	3.4 The Server Read Loop and Quit Check
	3.4.1 Server Quit Check Procedure
	3.4.2 %cdPULSE Local Variable

	3.5 Read and Write Hooks
	3.5.1 Server-side Read and Write Hooks
	3.5.2 Client-side Read and Write Hooks

	3.6 Other Server-side Hooks (Global Variables)
	3.6.1 BeginTaskHook
	3.6.2 IdleHook
	3.6.3 EndTaskHook
	3.6.4 ShutDownHook

	3.7 User Cancel Option

	4 Best Practices
	4.1 Clear Unused Properties
	4.2 Disconnect Explicitly at Application Shutdown
	4.3 Recursive or Asynchronous Server Calls
	4.3.1 Timers on the Client
	4.3.2 Visual Basic DoEvents Function

	5 VisM.ocx Control Details
	5.1 VisM Extended Connection String Syntax
	5.1.1 Runtime Form of the Connection String
	5.1.2 Other Forms of the Connection String

	5.2 VisM Properties
	5.2.1 Mirrored VisM Properties
	5.2.2 Other VisM Properties

	5.3 VisM Methods
	5.3.1 Comparison of Connection Methods

	5.4 VisM Events

	6 Using Caché Direct in Non-ActiveX Applications
	6.1 General Procedure
	6.2 Recommendations
	6.3 Notes

	7 Logging
	7.1 Client Logging
	7.1.1 VisM LogMask Property
	7.1.2 Registry Switches
	7.1.3 Getting and Setting the Registry Values
	7.1.4 Limiting the Size of the Log Files

	7.2 Server Logging
	7.3 Server Error Global

	Appendix A: Installation and Upgrade
	A.1 Upgrading Your Caché Direct Server
	A.2 Installing VisM on a New Machine

	Appendix B: Notes for Users of the Previous Versions
	B.1 IPv6 Issues in Caché Direct
	B.2 Previous Shared Connection Behavior
	B.3 New Architecture
	B.4 Behavior Notes
	B.5 Other Architecture Changes

	Appendix C: Example: Visual Basic Printer Support
	C.1 Overview
	C.2 Internal Command Syntax
	C.2.1 Setting Properties
	C.2.2 Getting Properties
	C.2.3 Executing Methods

